dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from collections import deque
|
4
|
+
from math import sqrt
|
5
|
+
|
6
|
+
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
|
7
|
+
from ultralytics.utils.plotting import colors
|
8
|
+
|
9
|
+
|
10
|
+
class SpeedEstimator(BaseSolution):
|
11
|
+
"""
|
12
|
+
A class to estimate the speed of objects in a real-time video stream based on their tracks.
|
13
|
+
|
14
|
+
This class extends the BaseSolution class and provides functionality for estimating object speeds using
|
15
|
+
tracking data in video streams.
|
16
|
+
|
17
|
+
Attributes:
|
18
|
+
spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
|
19
|
+
trk_hist (Dict[int, float]): Dictionary storing the object tracking data.
|
20
|
+
max_hist (int): maximum track history before computing speed
|
21
|
+
meters_per_pixel (float): Real-world meters represented by one pixel (e.g., 0.04 for 4m over 100px).
|
22
|
+
max_speed (int): Maximum allowed object speed; values above this will be capped at 120 km/h.
|
23
|
+
|
24
|
+
Methods:
|
25
|
+
initialize_region: Initializes the speed estimation region.
|
26
|
+
process: Processes input frames to estimate object speeds.
|
27
|
+
store_tracking_history: Stores the tracking history for an object.
|
28
|
+
extract_tracks: Extracts tracks from the current frame.
|
29
|
+
display_output: Displays the output with annotations.
|
30
|
+
|
31
|
+
Examples:
|
32
|
+
>>> estimator = SpeedEstimator()
|
33
|
+
>>> frame = cv2.imread("frame.jpg")
|
34
|
+
>>> results = estimator.process(frame)
|
35
|
+
>>> cv2.imshow("Speed Estimation", results.plot_im)
|
36
|
+
"""
|
37
|
+
|
38
|
+
def __init__(self, **kwargs):
|
39
|
+
"""
|
40
|
+
Initialize the SpeedEstimator object with speed estimation parameters and data structures.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
**kwargs (Any): Additional keyword arguments passed to the parent class.
|
44
|
+
"""
|
45
|
+
super().__init__(**kwargs)
|
46
|
+
|
47
|
+
self.fps = self.CFG["fps"] # assumed video FPS
|
48
|
+
self.frame_count = 0 # global frame count
|
49
|
+
self.trk_frame_ids = {} # Track ID → first frame index
|
50
|
+
self.spd = {} # Final speed per object (km/h), once locked
|
51
|
+
self.trk_hist = {} # Track ID → deque of (time, position)
|
52
|
+
self.locked_ids = set() # Track IDs whose speed has been finalized
|
53
|
+
self.max_hist = self.CFG["max_hist"] # Required frame history before computing speed
|
54
|
+
self.meter_per_pixel = self.CFG["meter_per_pixel"] # Scene scale, depends on camera details
|
55
|
+
self.max_speed = self.CFG["max_speed"] # max_speed adjustment
|
56
|
+
|
57
|
+
def process(self, im0):
|
58
|
+
"""
|
59
|
+
Process an input frame to estimate object speeds based on tracking data.
|
60
|
+
|
61
|
+
Args:
|
62
|
+
im0 (np.ndarray): Input image for processing with shape (H, W, C) for RGB images.
|
63
|
+
|
64
|
+
Returns:
|
65
|
+
(SolutionResults): Contains processed image `plot_im` and `total_tracks` (number of tracked objects).
|
66
|
+
|
67
|
+
Examples:
|
68
|
+
>>> estimator = SpeedEstimator()
|
69
|
+
>>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
70
|
+
>>> results = estimator.process(image)
|
71
|
+
"""
|
72
|
+
self.frame_count += 1
|
73
|
+
self.extract_tracks(im0)
|
74
|
+
annotator = SolutionAnnotator(im0, line_width=self.line_width)
|
75
|
+
|
76
|
+
for box, track_id, _, _ in zip(self.boxes, self.track_ids, self.clss, self.confs):
|
77
|
+
self.store_tracking_history(track_id, box)
|
78
|
+
|
79
|
+
if track_id not in self.trk_hist: # Initialize history if new track found
|
80
|
+
self.trk_hist[track_id] = deque(maxlen=self.max_hist)
|
81
|
+
self.trk_frame_ids[track_id] = self.frame_count
|
82
|
+
|
83
|
+
if track_id not in self.locked_ids: # Update history until speed is locked
|
84
|
+
trk_hist = self.trk_hist[track_id]
|
85
|
+
trk_hist.append(self.track_line[-1])
|
86
|
+
|
87
|
+
# Compute and lock speed once enough history is collected
|
88
|
+
if len(trk_hist) == self.max_hist:
|
89
|
+
p0, p1 = trk_hist[0], trk_hist[-1] # First and last points of track
|
90
|
+
dt = (self.frame_count - self.trk_frame_ids[track_id]) / self.fps # Time in seconds
|
91
|
+
if dt > 0:
|
92
|
+
dx, dy = p1[0] - p0[0], p1[1] - p0[1] # pixel displacement
|
93
|
+
pixel_distance = sqrt(dx * dx + dy * dy) # get pixel distance
|
94
|
+
meters = pixel_distance * self.meter_per_pixel # convert to meters
|
95
|
+
self.spd[track_id] = int(
|
96
|
+
min((meters / dt) * 3.6, self.max_speed)
|
97
|
+
) # convert to km/h and store final speed
|
98
|
+
self.locked_ids.add(track_id) # prevent further updates
|
99
|
+
self.trk_hist.pop(track_id, None) # free memory
|
100
|
+
self.trk_frame_ids.pop(track_id, None) # optional: remove frame start too
|
101
|
+
|
102
|
+
if track_id in self.spd:
|
103
|
+
speed_label = f"{self.spd[track_id]} km/h"
|
104
|
+
annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
|
105
|
+
|
106
|
+
plot_im = annotator.result()
|
107
|
+
self.display_output(plot_im) # Display output with base class function
|
108
|
+
|
109
|
+
# Return results with processed image and tracking summary
|
110
|
+
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))
|
@@ -0,0 +1,196 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import io
|
4
|
+
from typing import Any
|
5
|
+
|
6
|
+
import cv2
|
7
|
+
|
8
|
+
from ultralytics import YOLO
|
9
|
+
from ultralytics.utils import LOGGER
|
10
|
+
from ultralytics.utils.checks import check_requirements
|
11
|
+
from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
|
12
|
+
|
13
|
+
|
14
|
+
class Inference:
|
15
|
+
"""
|
16
|
+
A class to perform object detection, image classification, image segmentation and pose estimation inference.
|
17
|
+
|
18
|
+
This class provides functionalities for loading models, configuring settings, uploading video files, and performing
|
19
|
+
real-time inference using Streamlit and Ultralytics YOLO models.
|
20
|
+
|
21
|
+
Attributes:
|
22
|
+
st (module): Streamlit module for UI creation.
|
23
|
+
temp_dict (dict): Temporary dictionary to store the model path and other configuration.
|
24
|
+
model_path (str): Path to the loaded model.
|
25
|
+
model (YOLO): The YOLO model instance.
|
26
|
+
source (str): Selected video source (webcam or video file).
|
27
|
+
enable_trk (str): Enable tracking option ("Yes" or "No").
|
28
|
+
conf (float): Confidence threshold for detection.
|
29
|
+
iou (float): IoU threshold for non-maximum suppression.
|
30
|
+
org_frame (Any): Container for the original frame to be displayed.
|
31
|
+
ann_frame (Any): Container for the annotated frame to be displayed.
|
32
|
+
vid_file_name (str | int): Name of the uploaded video file or webcam index.
|
33
|
+
selected_ind (List[int]): List of selected class indices for detection.
|
34
|
+
|
35
|
+
Methods:
|
36
|
+
web_ui: Sets up the Streamlit web interface with custom HTML elements.
|
37
|
+
sidebar: Configures the Streamlit sidebar for model and inference settings.
|
38
|
+
source_upload: Handles video file uploads through the Streamlit interface.
|
39
|
+
configure: Configures the model and loads selected classes for inference.
|
40
|
+
inference: Performs real-time object detection inference.
|
41
|
+
|
42
|
+
Examples:
|
43
|
+
>>> inf = Inference(model="path/to/model.pt") # Model is an optional argument
|
44
|
+
>>> inf.inference()
|
45
|
+
"""
|
46
|
+
|
47
|
+
def __init__(self, **kwargs: Any):
|
48
|
+
"""
|
49
|
+
Initialize the Inference class, checking Streamlit requirements and setting up the model path.
|
50
|
+
|
51
|
+
Args:
|
52
|
+
**kwargs (Any): Additional keyword arguments for model configuration.
|
53
|
+
"""
|
54
|
+
check_requirements("streamlit>=1.29.0") # scope imports for faster ultralytics package load speeds
|
55
|
+
import streamlit as st
|
56
|
+
|
57
|
+
self.st = st # Reference to the Streamlit module
|
58
|
+
self.source = None # Video source selection (webcam or video file)
|
59
|
+
self.enable_trk = False # Flag to toggle object tracking
|
60
|
+
self.conf = 0.25 # Confidence threshold for detection
|
61
|
+
self.iou = 0.45 # Intersection-over-Union (IoU) threshold for non-maximum suppression
|
62
|
+
self.org_frame = None # Container for the original frame display
|
63
|
+
self.ann_frame = None # Container for the annotated frame display
|
64
|
+
self.vid_file_name = None # Video file name or webcam index
|
65
|
+
self.selected_ind = [] # List of selected class indices for detection
|
66
|
+
self.model = None # YOLO model instance
|
67
|
+
|
68
|
+
self.temp_dict = {"model": None, **kwargs}
|
69
|
+
self.model_path = None # Model file path
|
70
|
+
if self.temp_dict["model"] is not None:
|
71
|
+
self.model_path = self.temp_dict["model"]
|
72
|
+
|
73
|
+
LOGGER.info(f"Ultralytics Solutions: ✅ {self.temp_dict}")
|
74
|
+
|
75
|
+
def web_ui(self):
|
76
|
+
"""Sets up the Streamlit web interface with custom HTML elements."""
|
77
|
+
menu_style_cfg = """<style>MainMenu {visibility: hidden;}</style>""" # Hide main menu style
|
78
|
+
|
79
|
+
# Main title of streamlit application
|
80
|
+
main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px; margin-top:-50px;
|
81
|
+
font-family: 'Archivo', sans-serif; margin-bottom:20px;">Ultralytics YOLO Streamlit Application</h1></div>"""
|
82
|
+
|
83
|
+
# Subtitle of streamlit application
|
84
|
+
sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center; font-family: 'Archivo', sans-serif;
|
85
|
+
margin-top:-15px; margin-bottom:50px;">Experience real-time object detection on your webcam with the power
|
86
|
+
of Ultralytics YOLO! 🚀</h4></div>"""
|
87
|
+
|
88
|
+
# Set html page configuration and append custom HTML
|
89
|
+
self.st.set_page_config(page_title="Ultralytics Streamlit App", layout="wide")
|
90
|
+
self.st.markdown(menu_style_cfg, unsafe_allow_html=True)
|
91
|
+
self.st.markdown(main_title_cfg, unsafe_allow_html=True)
|
92
|
+
self.st.markdown(sub_title_cfg, unsafe_allow_html=True)
|
93
|
+
|
94
|
+
def sidebar(self):
|
95
|
+
"""Configure the Streamlit sidebar for model and inference settings."""
|
96
|
+
with self.st.sidebar: # Add Ultralytics LOGO
|
97
|
+
logo = "https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg"
|
98
|
+
self.st.image(logo, width=250)
|
99
|
+
|
100
|
+
self.st.sidebar.title("User Configuration") # Add elements to vertical setting menu
|
101
|
+
self.source = self.st.sidebar.selectbox(
|
102
|
+
"Video",
|
103
|
+
("webcam", "video"),
|
104
|
+
) # Add source selection dropdown
|
105
|
+
self.enable_trk = self.st.sidebar.radio("Enable Tracking", ("Yes", "No")) # Enable object tracking
|
106
|
+
self.conf = float(
|
107
|
+
self.st.sidebar.slider("Confidence Threshold", 0.0, 1.0, self.conf, 0.01)
|
108
|
+
) # Slider for confidence
|
109
|
+
self.iou = float(self.st.sidebar.slider("IoU Threshold", 0.0, 1.0, self.iou, 0.01)) # Slider for NMS threshold
|
110
|
+
|
111
|
+
col1, col2 = self.st.columns(2) # Create two columns for displaying frames
|
112
|
+
self.org_frame = col1.empty() # Container for original frame
|
113
|
+
self.ann_frame = col2.empty() # Container for annotated frame
|
114
|
+
|
115
|
+
def source_upload(self):
|
116
|
+
"""Handle video file uploads through the Streamlit interface."""
|
117
|
+
self.vid_file_name = ""
|
118
|
+
if self.source == "video":
|
119
|
+
vid_file = self.st.sidebar.file_uploader("Upload Video File", type=["mp4", "mov", "avi", "mkv"])
|
120
|
+
if vid_file is not None:
|
121
|
+
g = io.BytesIO(vid_file.read()) # BytesIO Object
|
122
|
+
with open("ultralytics.mp4", "wb") as out: # Open temporary file as bytes
|
123
|
+
out.write(g.read()) # Read bytes into file
|
124
|
+
self.vid_file_name = "ultralytics.mp4"
|
125
|
+
elif self.source == "webcam":
|
126
|
+
self.vid_file_name = 0 # Use webcam index 0
|
127
|
+
|
128
|
+
def configure(self):
|
129
|
+
"""Configure the model and load selected classes for inference."""
|
130
|
+
# Add dropdown menu for model selection
|
131
|
+
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
|
132
|
+
if self.model_path: # If user provided the custom model, insert model without suffix as *.pt is added later
|
133
|
+
available_models.insert(0, self.model_path.split(".pt")[0])
|
134
|
+
selected_model = self.st.sidebar.selectbox("Model", available_models)
|
135
|
+
|
136
|
+
with self.st.spinner("Model is downloading..."):
|
137
|
+
self.model = YOLO(f"{selected_model.lower()}.pt") # Load the YOLO model
|
138
|
+
class_names = list(self.model.names.values()) # Convert dictionary to list of class names
|
139
|
+
self.st.success("Model loaded successfully!")
|
140
|
+
|
141
|
+
# Multiselect box with class names and get indices of selected classes
|
142
|
+
selected_classes = self.st.sidebar.multiselect("Classes", class_names, default=class_names[:3])
|
143
|
+
self.selected_ind = [class_names.index(option) for option in selected_classes]
|
144
|
+
|
145
|
+
if not isinstance(self.selected_ind, list): # Ensure selected_options is a list
|
146
|
+
self.selected_ind = list(self.selected_ind)
|
147
|
+
|
148
|
+
def inference(self):
|
149
|
+
"""Perform real-time object detection inference on video or webcam feed."""
|
150
|
+
self.web_ui() # Initialize the web interface
|
151
|
+
self.sidebar() # Create the sidebar
|
152
|
+
self.source_upload() # Upload the video source
|
153
|
+
self.configure() # Configure the app
|
154
|
+
|
155
|
+
if self.st.sidebar.button("Start"):
|
156
|
+
stop_button = self.st.button("Stop") # Button to stop the inference
|
157
|
+
cap = cv2.VideoCapture(self.vid_file_name) # Capture the video
|
158
|
+
if not cap.isOpened():
|
159
|
+
self.st.error("Could not open webcam or video source.")
|
160
|
+
return
|
161
|
+
|
162
|
+
while cap.isOpened():
|
163
|
+
success, frame = cap.read()
|
164
|
+
if not success:
|
165
|
+
self.st.warning("Failed to read frame from webcam. Please verify the webcam is connected properly.")
|
166
|
+
break
|
167
|
+
|
168
|
+
# Process frame with model
|
169
|
+
if self.enable_trk == "Yes":
|
170
|
+
results = self.model.track(
|
171
|
+
frame, conf=self.conf, iou=self.iou, classes=self.selected_ind, persist=True
|
172
|
+
)
|
173
|
+
else:
|
174
|
+
results = self.model(frame, conf=self.conf, iou=self.iou, classes=self.selected_ind)
|
175
|
+
|
176
|
+
annotated_frame = results[0].plot() # Add annotations on frame
|
177
|
+
|
178
|
+
if stop_button:
|
179
|
+
cap.release() # Release the capture
|
180
|
+
self.st.stop() # Stop streamlit app
|
181
|
+
|
182
|
+
self.org_frame.image(frame, channels="BGR") # Display original frame
|
183
|
+
self.ann_frame.image(annotated_frame, channels="BGR") # Display processed frame
|
184
|
+
|
185
|
+
cap.release() # Release the capture
|
186
|
+
cv2.destroyAllWindows() # Destroy all OpenCV windows
|
187
|
+
|
188
|
+
|
189
|
+
if __name__ == "__main__":
|
190
|
+
import sys # Import the sys module for accessing command-line arguments
|
191
|
+
|
192
|
+
# Check if a model name is provided as a command-line argument
|
193
|
+
args = len(sys.argv)
|
194
|
+
model = sys.argv[1] if args > 1 else None # Assign first argument as the model name if provided
|
195
|
+
# Create an instance of the Inference class and run inference
|
196
|
+
Inference(model=model).inference()
|
@@ -0,0 +1,160 @@
|
|
1
|
+
<!-- Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license -->
|
2
|
+
|
3
|
+
<!--Similarity search webpage-->
|
4
|
+
<!doctype html>
|
5
|
+
<html lang="en">
|
6
|
+
<head>
|
7
|
+
<meta charset="UTF-8" />
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Semantic Image Search</title>
|
10
|
+
<link
|
11
|
+
href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap"
|
12
|
+
rel="stylesheet"
|
13
|
+
/>
|
14
|
+
<style>
|
15
|
+
body {
|
16
|
+
background: linear-gradient(135deg, #f0f4ff, #f9fbff);
|
17
|
+
font-family: "Inter", sans-serif;
|
18
|
+
color: #111e68;
|
19
|
+
padding: 2rem;
|
20
|
+
margin: 0;
|
21
|
+
min-height: 100vh;
|
22
|
+
}
|
23
|
+
|
24
|
+
h1 {
|
25
|
+
text-align: center;
|
26
|
+
margin-bottom: 2rem;
|
27
|
+
font-size: 2.5rem;
|
28
|
+
font-weight: 600;
|
29
|
+
}
|
30
|
+
|
31
|
+
form {
|
32
|
+
display: flex;
|
33
|
+
flex-wrap: wrap;
|
34
|
+
justify-content: center;
|
35
|
+
align-items: center;
|
36
|
+
gap: 1rem;
|
37
|
+
margin-bottom: 3rem;
|
38
|
+
animation: fadeIn 1s ease-in-out;
|
39
|
+
}
|
40
|
+
|
41
|
+
input[type="text"] {
|
42
|
+
width: 300px;
|
43
|
+
padding: 0.75rem 1rem;
|
44
|
+
font-size: 1rem;
|
45
|
+
border-radius: 10px;
|
46
|
+
border: 1px solid #ccc;
|
47
|
+
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.05);
|
48
|
+
transition: box-shadow 0.3s ease;
|
49
|
+
}
|
50
|
+
|
51
|
+
input[type="text"]:focus {
|
52
|
+
outline: none;
|
53
|
+
box-shadow: 0 0 0 3px rgba(17, 30, 104, 0.2);
|
54
|
+
}
|
55
|
+
|
56
|
+
button {
|
57
|
+
background-color: #111e68;
|
58
|
+
color: white;
|
59
|
+
font-weight: 600;
|
60
|
+
font-size: 1rem;
|
61
|
+
padding: 0.75rem 1.5rem;
|
62
|
+
border-radius: 10px;
|
63
|
+
border: none;
|
64
|
+
cursor: pointer;
|
65
|
+
transition:
|
66
|
+
background-color 0.3s ease,
|
67
|
+
transform 0.2s ease;
|
68
|
+
}
|
69
|
+
|
70
|
+
button:hover {
|
71
|
+
background-color: #1f2e9f;
|
72
|
+
transform: translateY(-2px);
|
73
|
+
}
|
74
|
+
|
75
|
+
.grid {
|
76
|
+
display: grid;
|
77
|
+
grid-template-columns: repeat(auto-fill, minmax(260px, 1fr));
|
78
|
+
gap: 1.5rem;
|
79
|
+
max-width: 1600px;
|
80
|
+
margin: auto;
|
81
|
+
animation: fadeInUp 1s ease-in-out;
|
82
|
+
}
|
83
|
+
|
84
|
+
.card {
|
85
|
+
background: white;
|
86
|
+
border-radius: 16px;
|
87
|
+
overflow: hidden;
|
88
|
+
box-shadow: 0 6px 14px rgba(0, 0, 0, 0.08);
|
89
|
+
transition:
|
90
|
+
transform 0.3s ease,
|
91
|
+
box-shadow 0.3s ease;
|
92
|
+
}
|
93
|
+
|
94
|
+
.card:hover {
|
95
|
+
transform: translateY(-6px);
|
96
|
+
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);
|
97
|
+
}
|
98
|
+
|
99
|
+
.card img {
|
100
|
+
width: 100%;
|
101
|
+
height: 100%;
|
102
|
+
object-fit: cover;
|
103
|
+
display: block;
|
104
|
+
}
|
105
|
+
|
106
|
+
@keyframes fadeIn {
|
107
|
+
0% {
|
108
|
+
opacity: 0;
|
109
|
+
transform: scale(0.95);
|
110
|
+
}
|
111
|
+
100% {
|
112
|
+
opacity: 1;
|
113
|
+
transform: scale(1);
|
114
|
+
}
|
115
|
+
}
|
116
|
+
|
117
|
+
@keyframes fadeInUp {
|
118
|
+
0% {
|
119
|
+
opacity: 0;
|
120
|
+
transform: translateY(20px);
|
121
|
+
}
|
122
|
+
100% {
|
123
|
+
opacity: 1;
|
124
|
+
transform: translateY(0);
|
125
|
+
}
|
126
|
+
}
|
127
|
+
</style>
|
128
|
+
</head>
|
129
|
+
<body>
|
130
|
+
<div style="text-align: center; margin-bottom: 1rem">
|
131
|
+
<img
|
132
|
+
src="https://raw.githubusercontent.com/ultralytics/assets/main/logo/favicon.png"
|
133
|
+
alt="Ultralytics Logo"
|
134
|
+
style="height: 40px"
|
135
|
+
/>
|
136
|
+
</div>
|
137
|
+
<h1>Semantic Image Search with AI</h1>
|
138
|
+
|
139
|
+
<!-- Search box -->
|
140
|
+
<form method="POST">
|
141
|
+
<input
|
142
|
+
type="text"
|
143
|
+
name="query"
|
144
|
+
placeholder="Describe the scene (e.g., man walking)"
|
145
|
+
value="{{ request.form['query'] }}"
|
146
|
+
required
|
147
|
+
/>
|
148
|
+
<button type="submit">Search</button>
|
149
|
+
</form>
|
150
|
+
|
151
|
+
<!-- Search results grid -->
|
152
|
+
<div class="grid">
|
153
|
+
{% for img in results %}
|
154
|
+
<div class="card">
|
155
|
+
<img src="{{ url_for('static', filename=img) }}" alt="Result Image" />
|
156
|
+
</div>
|
157
|
+
{% endfor %}
|
158
|
+
</div>
|
159
|
+
</body>
|
160
|
+
</html>
|
@@ -0,0 +1,88 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import cv2
|
4
|
+
import numpy as np
|
5
|
+
|
6
|
+
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
|
7
|
+
from ultralytics.utils.plotting import colors
|
8
|
+
|
9
|
+
|
10
|
+
class TrackZone(BaseSolution):
|
11
|
+
"""
|
12
|
+
A class to manage region-based object tracking in a video stream.
|
13
|
+
|
14
|
+
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
|
15
|
+
defined by a polygonal area. Objects outside the region are excluded from tracking.
|
16
|
+
|
17
|
+
Attributes:
|
18
|
+
region (np.ndarray): The polygonal region for tracking, represented as a convex hull of points.
|
19
|
+
line_width (int): Width of the lines used for drawing bounding boxes and region boundaries.
|
20
|
+
names (List[str]): List of class names that the model can detect.
|
21
|
+
boxes (List[np.ndarray]): Bounding boxes of tracked objects.
|
22
|
+
track_ids (List[int]): Unique identifiers for each tracked object.
|
23
|
+
clss (List[int]): Class indices of tracked objects.
|
24
|
+
|
25
|
+
Methods:
|
26
|
+
process: Processes each frame of the video, applying region-based tracking.
|
27
|
+
extract_tracks: Extracts tracking information from the input frame.
|
28
|
+
display_output: Displays the processed output.
|
29
|
+
|
30
|
+
Examples:
|
31
|
+
>>> tracker = TrackZone()
|
32
|
+
>>> frame = cv2.imread("frame.jpg")
|
33
|
+
>>> results = tracker.process(frame)
|
34
|
+
>>> cv2.imshow("Tracked Frame", results.plot_im)
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(self, **kwargs):
|
38
|
+
"""
|
39
|
+
Initialize the TrackZone class for tracking objects within a defined region in video streams.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
**kwargs (Any): Additional keyword arguments passed to the parent class.
|
43
|
+
"""
|
44
|
+
super().__init__(**kwargs)
|
45
|
+
default_region = [(75, 75), (565, 75), (565, 285), (75, 285)]
|
46
|
+
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
|
47
|
+
|
48
|
+
def process(self, im0):
|
49
|
+
"""
|
50
|
+
Process the input frame to track objects within a defined region.
|
51
|
+
|
52
|
+
This method initializes the annotator, creates a mask for the specified region, extracts tracks
|
53
|
+
only from the masked area, and updates tracking information. Objects outside the region are ignored.
|
54
|
+
|
55
|
+
Args:
|
56
|
+
im0 (np.ndarray): The input image or frame to be processed.
|
57
|
+
|
58
|
+
Returns:
|
59
|
+
(SolutionResults): Contains processed image `plot_im` and `total_tracks` (int) representing the
|
60
|
+
total number of tracked objects within the defined region.
|
61
|
+
|
62
|
+
Examples:
|
63
|
+
>>> tracker = TrackZone()
|
64
|
+
>>> frame = cv2.imread("path/to/image.jpg")
|
65
|
+
>>> results = tracker.process(frame)
|
66
|
+
"""
|
67
|
+
annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
|
68
|
+
|
69
|
+
# Create a mask for the region and extract tracks from the masked image
|
70
|
+
mask = np.zeros_like(im0[:, :, 0])
|
71
|
+
mask = cv2.fillPoly(mask, [self.region], 255)
|
72
|
+
masked_frame = cv2.bitwise_and(im0, im0, mask=mask)
|
73
|
+
self.extract_tracks(masked_frame)
|
74
|
+
|
75
|
+
# Draw the region boundary
|
76
|
+
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
|
77
|
+
|
78
|
+
# Iterate over boxes, track ids, classes indexes list and draw bounding boxes
|
79
|
+
for box, track_id, cls, conf in zip(self.boxes, self.track_ids, self.clss, self.confs):
|
80
|
+
annotator.box_label(
|
81
|
+
box, label=self.adjust_box_label(cls, conf, track_id=track_id), color=colors(track_id, True)
|
82
|
+
)
|
83
|
+
|
84
|
+
plot_im = annotator.result()
|
85
|
+
self.display_output(plot_im) # display output with base class function
|
86
|
+
|
87
|
+
# Return a SolutionResults
|
88
|
+
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
|
4
|
+
from ultralytics.utils.plotting import colors
|
5
|
+
|
6
|
+
|
7
|
+
class VisionEye(BaseSolution):
|
8
|
+
"""
|
9
|
+
A class to manage object detection and vision mapping in images or video streams.
|
10
|
+
|
11
|
+
This class extends the BaseSolution class and provides functionality for detecting objects,
|
12
|
+
mapping vision points, and annotating results with bounding boxes and labels.
|
13
|
+
|
14
|
+
Attributes:
|
15
|
+
vision_point (Tuple[int, int]): Coordinates (x, y) where vision will view objects and draw tracks.
|
16
|
+
|
17
|
+
Methods:
|
18
|
+
process: Process the input image to detect objects, annotate them, and apply vision mapping.
|
19
|
+
|
20
|
+
Examples:
|
21
|
+
>>> vision_eye = VisionEye()
|
22
|
+
>>> frame = cv2.imread("frame.jpg")
|
23
|
+
>>> results = vision_eye.process(frame)
|
24
|
+
>>> print(f"Total detected instances: {results.total_tracks}")
|
25
|
+
"""
|
26
|
+
|
27
|
+
def __init__(self, **kwargs):
|
28
|
+
"""
|
29
|
+
Initialize the VisionEye class for detecting objects and applying vision mapping.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
**kwargs (Any): Keyword arguments passed to the parent class and for configuring vision_point.
|
33
|
+
"""
|
34
|
+
super().__init__(**kwargs)
|
35
|
+
# Set the vision point where the system will view objects and draw tracks
|
36
|
+
self.vision_point = self.CFG["vision_point"]
|
37
|
+
|
38
|
+
def process(self, im0):
|
39
|
+
"""
|
40
|
+
Perform object detection, vision mapping, and annotation on the input image.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
im0 (numpy.ndarray): The input image for detection and annotation.
|
44
|
+
|
45
|
+
Returns:
|
46
|
+
(SolutionResults): Object containing the annotated image and tracking statistics.
|
47
|
+
- plot_im: Annotated output image with bounding boxes and vision mapping
|
48
|
+
- total_tracks: Number of tracked objects in the frame
|
49
|
+
|
50
|
+
Examples:
|
51
|
+
>>> vision_eye = VisionEye()
|
52
|
+
>>> frame = cv2.imread("image.jpg")
|
53
|
+
>>> results = vision_eye.process(frame)
|
54
|
+
>>> print(f"Detected {results.total_tracks} objects")
|
55
|
+
"""
|
56
|
+
self.extract_tracks(im0) # Extract tracks (bounding boxes, classes, and masks)
|
57
|
+
annotator = SolutionAnnotator(im0, self.line_width)
|
58
|
+
|
59
|
+
for cls, t_id, box, conf in zip(self.clss, self.track_ids, self.boxes, self.confs):
|
60
|
+
# Annotate the image with bounding boxes, labels, and vision mapping
|
61
|
+
annotator.box_label(box, label=self.adjust_box_label(cls, conf, t_id), color=colors(int(t_id), True))
|
62
|
+
annotator.visioneye(box, self.vision_point)
|
63
|
+
|
64
|
+
plot_im = annotator.result()
|
65
|
+
self.display_output(plot_im) # Display the annotated output using the base class function
|
66
|
+
|
67
|
+
# Return a SolutionResults object with the annotated image and tracking statistics
|
68
|
+
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))
|