dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,376 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import copy
|
4
|
+
|
5
|
+
import cv2
|
6
|
+
import numpy as np
|
7
|
+
|
8
|
+
from ultralytics.utils import LOGGER
|
9
|
+
|
10
|
+
|
11
|
+
class GMC:
|
12
|
+
"""
|
13
|
+
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
|
14
|
+
|
15
|
+
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
|
16
|
+
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
|
17
|
+
|
18
|
+
Attributes:
|
19
|
+
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
20
|
+
downscale (int): Factor by which to downscale the frames for processing.
|
21
|
+
prevFrame (np.ndarray): Previous frame for tracking.
|
22
|
+
prevKeyPoints (list): Keypoints from the previous frame.
|
23
|
+
prevDescriptors (np.ndarray): Descriptors from the previous frame.
|
24
|
+
initializedFirstFrame (bool): Flag indicating if the first frame has been processed.
|
25
|
+
|
26
|
+
Methods:
|
27
|
+
apply: Apply the chosen method to a raw frame and optionally use provided detections.
|
28
|
+
apply_ecc: Apply the ECC algorithm to a raw frame.
|
29
|
+
apply_features: Apply feature-based methods like ORB or SIFT to a raw frame.
|
30
|
+
apply_sparseoptflow: Apply the Sparse Optical Flow method to a raw frame.
|
31
|
+
reset_params: Reset the internal parameters of the GMC object.
|
32
|
+
|
33
|
+
Examples:
|
34
|
+
Create a GMC object and apply it to a frame
|
35
|
+
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
|
36
|
+
>>> frame = np.array([[1, 2, 3], [4, 5, 6]])
|
37
|
+
>>> processed_frame = gmc.apply(frame)
|
38
|
+
>>> print(processed_frame)
|
39
|
+
array([[1, 2, 3],
|
40
|
+
[4, 5, 6]])
|
41
|
+
"""
|
42
|
+
|
43
|
+
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
|
44
|
+
"""
|
45
|
+
Initialize a Generalized Motion Compensation (GMC) object with tracking method and downscale factor.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
49
|
+
downscale (int): Downscale factor for processing frames.
|
50
|
+
|
51
|
+
Examples:
|
52
|
+
Initialize a GMC object with the 'sparseOptFlow' method and a downscale factor of 2
|
53
|
+
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
|
54
|
+
"""
|
55
|
+
super().__init__()
|
56
|
+
|
57
|
+
self.method = method
|
58
|
+
self.downscale = max(1, downscale)
|
59
|
+
|
60
|
+
if self.method == "orb":
|
61
|
+
self.detector = cv2.FastFeatureDetector_create(20)
|
62
|
+
self.extractor = cv2.ORB_create()
|
63
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
|
64
|
+
|
65
|
+
elif self.method == "sift":
|
66
|
+
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
67
|
+
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
68
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
|
69
|
+
|
70
|
+
elif self.method == "ecc":
|
71
|
+
number_of_iterations = 5000
|
72
|
+
termination_eps = 1e-6
|
73
|
+
self.warp_mode = cv2.MOTION_EUCLIDEAN
|
74
|
+
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
|
75
|
+
|
76
|
+
elif self.method == "sparseOptFlow":
|
77
|
+
self.feature_params = dict(
|
78
|
+
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
|
79
|
+
)
|
80
|
+
|
81
|
+
elif self.method in {"none", "None", None}:
|
82
|
+
self.method = None
|
83
|
+
else:
|
84
|
+
raise ValueError(f"Unknown GMC method: {method}")
|
85
|
+
|
86
|
+
self.prevFrame = None
|
87
|
+
self.prevKeyPoints = None
|
88
|
+
self.prevDescriptors = None
|
89
|
+
self.initializedFirstFrame = False
|
90
|
+
|
91
|
+
def apply(self, raw_frame: np.ndarray, detections: list = None) -> np.ndarray:
|
92
|
+
"""
|
93
|
+
Apply object detection on a raw frame using the specified method.
|
94
|
+
|
95
|
+
Args:
|
96
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
97
|
+
detections (List | None): List of detections to be used in the processing.
|
98
|
+
|
99
|
+
Returns:
|
100
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
101
|
+
|
102
|
+
Examples:
|
103
|
+
>>> gmc = GMC(method="sparseOptFlow")
|
104
|
+
>>> raw_frame = np.random.rand(480, 640, 3)
|
105
|
+
>>> transformation_matrix = gmc.apply(raw_frame)
|
106
|
+
>>> print(transformation_matrix.shape)
|
107
|
+
(2, 3)
|
108
|
+
"""
|
109
|
+
if self.method in {"orb", "sift"}:
|
110
|
+
return self.apply_features(raw_frame, detections)
|
111
|
+
elif self.method == "ecc":
|
112
|
+
return self.apply_ecc(raw_frame)
|
113
|
+
elif self.method == "sparseOptFlow":
|
114
|
+
return self.apply_sparseoptflow(raw_frame)
|
115
|
+
else:
|
116
|
+
return np.eye(2, 3)
|
117
|
+
|
118
|
+
def apply_ecc(self, raw_frame: np.ndarray) -> np.ndarray:
|
119
|
+
"""
|
120
|
+
Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
|
121
|
+
|
122
|
+
Args:
|
123
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
124
|
+
|
125
|
+
Returns:
|
126
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
127
|
+
|
128
|
+
Examples:
|
129
|
+
>>> gmc = GMC(method="ecc")
|
130
|
+
>>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
131
|
+
>>> print(processed_frame)
|
132
|
+
[[1. 0. 0.]
|
133
|
+
[0. 1. 0.]]
|
134
|
+
"""
|
135
|
+
height, width, c = raw_frame.shape
|
136
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
137
|
+
H = np.eye(2, 3, dtype=np.float32)
|
138
|
+
|
139
|
+
# Downscale image
|
140
|
+
if self.downscale > 1.0:
|
141
|
+
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
142
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
143
|
+
|
144
|
+
# Handle first frame
|
145
|
+
if not self.initializedFirstFrame:
|
146
|
+
# Initialize data
|
147
|
+
self.prevFrame = frame.copy()
|
148
|
+
|
149
|
+
# Initialization done
|
150
|
+
self.initializedFirstFrame = True
|
151
|
+
|
152
|
+
return H
|
153
|
+
|
154
|
+
# Run the ECC algorithm. The results are stored in warp_matrix.
|
155
|
+
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
|
156
|
+
try:
|
157
|
+
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
158
|
+
except Exception as e:
|
159
|
+
LOGGER.warning(f"find transform failed. Set warp as identity {e}")
|
160
|
+
|
161
|
+
return H
|
162
|
+
|
163
|
+
def apply_features(self, raw_frame: np.ndarray, detections: list = None) -> np.ndarray:
|
164
|
+
"""
|
165
|
+
Apply feature-based methods like ORB or SIFT to a raw frame.
|
166
|
+
|
167
|
+
Args:
|
168
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
169
|
+
detections (List | None): List of detections to be used in the processing.
|
170
|
+
|
171
|
+
Returns:
|
172
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
173
|
+
|
174
|
+
Examples:
|
175
|
+
>>> gmc = GMC(method="orb")
|
176
|
+
>>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
177
|
+
>>> transformation_matrix = gmc.apply_features(raw_frame)
|
178
|
+
>>> print(transformation_matrix.shape)
|
179
|
+
(2, 3)
|
180
|
+
"""
|
181
|
+
height, width, c = raw_frame.shape
|
182
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
183
|
+
H = np.eye(2, 3)
|
184
|
+
|
185
|
+
# Downscale image
|
186
|
+
if self.downscale > 1.0:
|
187
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
188
|
+
width = width // self.downscale
|
189
|
+
height = height // self.downscale
|
190
|
+
|
191
|
+
# Find the keypoints
|
192
|
+
mask = np.zeros_like(frame)
|
193
|
+
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
|
194
|
+
if detections is not None:
|
195
|
+
for det in detections:
|
196
|
+
tlbr = (det[:4] / self.downscale).astype(np.int_)
|
197
|
+
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
|
198
|
+
|
199
|
+
keypoints = self.detector.detect(frame, mask)
|
200
|
+
|
201
|
+
# Compute the descriptors
|
202
|
+
keypoints, descriptors = self.extractor.compute(frame, keypoints)
|
203
|
+
|
204
|
+
# Handle first frame
|
205
|
+
if not self.initializedFirstFrame:
|
206
|
+
# Initialize data
|
207
|
+
self.prevFrame = frame.copy()
|
208
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
209
|
+
self.prevDescriptors = copy.copy(descriptors)
|
210
|
+
|
211
|
+
# Initialization done
|
212
|
+
self.initializedFirstFrame = True
|
213
|
+
|
214
|
+
return H
|
215
|
+
|
216
|
+
# Match descriptors
|
217
|
+
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
|
218
|
+
|
219
|
+
# Filter matches based on smallest spatial distance
|
220
|
+
matches = []
|
221
|
+
spatialDistances = []
|
222
|
+
|
223
|
+
maxSpatialDistance = 0.25 * np.array([width, height])
|
224
|
+
|
225
|
+
# Handle empty matches case
|
226
|
+
if len(knnMatches) == 0:
|
227
|
+
# Store to next iteration
|
228
|
+
self.prevFrame = frame.copy()
|
229
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
230
|
+
self.prevDescriptors = copy.copy(descriptors)
|
231
|
+
|
232
|
+
return H
|
233
|
+
|
234
|
+
for m, n in knnMatches:
|
235
|
+
if m.distance < 0.9 * n.distance:
|
236
|
+
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
|
237
|
+
currKeyPointLocation = keypoints[m.trainIdx].pt
|
238
|
+
|
239
|
+
spatialDistance = (
|
240
|
+
prevKeyPointLocation[0] - currKeyPointLocation[0],
|
241
|
+
prevKeyPointLocation[1] - currKeyPointLocation[1],
|
242
|
+
)
|
243
|
+
|
244
|
+
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
|
245
|
+
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
|
246
|
+
):
|
247
|
+
spatialDistances.append(spatialDistance)
|
248
|
+
matches.append(m)
|
249
|
+
|
250
|
+
meanSpatialDistances = np.mean(spatialDistances, 0)
|
251
|
+
stdSpatialDistances = np.std(spatialDistances, 0)
|
252
|
+
|
253
|
+
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
|
254
|
+
|
255
|
+
goodMatches = []
|
256
|
+
prevPoints = []
|
257
|
+
currPoints = []
|
258
|
+
for i in range(len(matches)):
|
259
|
+
if inliers[i, 0] and inliers[i, 1]:
|
260
|
+
goodMatches.append(matches[i])
|
261
|
+
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
|
262
|
+
currPoints.append(keypoints[matches[i].trainIdx].pt)
|
263
|
+
|
264
|
+
prevPoints = np.array(prevPoints)
|
265
|
+
currPoints = np.array(currPoints)
|
266
|
+
|
267
|
+
# Draw the keypoint matches on the output image
|
268
|
+
# if False:
|
269
|
+
# import matplotlib.pyplot as plt
|
270
|
+
# matches_img = np.hstack((self.prevFrame, frame))
|
271
|
+
# matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
|
272
|
+
# W = self.prevFrame.shape[1]
|
273
|
+
# for m in goodMatches:
|
274
|
+
# prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
|
275
|
+
# curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
|
276
|
+
# curr_pt[0] += W
|
277
|
+
# color = np.random.randint(0, 255, 3)
|
278
|
+
# color = (int(color[0]), int(color[1]), int(color[2]))
|
279
|
+
#
|
280
|
+
# matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
|
281
|
+
# matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
|
282
|
+
# matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
|
283
|
+
#
|
284
|
+
# plt.figure()
|
285
|
+
# plt.imshow(matches_img)
|
286
|
+
# plt.show()
|
287
|
+
|
288
|
+
# Find rigid matrix
|
289
|
+
if prevPoints.shape[0] > 4:
|
290
|
+
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
291
|
+
|
292
|
+
# Handle downscale
|
293
|
+
if self.downscale > 1.0:
|
294
|
+
H[0, 2] *= self.downscale
|
295
|
+
H[1, 2] *= self.downscale
|
296
|
+
else:
|
297
|
+
LOGGER.warning("not enough matching points")
|
298
|
+
|
299
|
+
# Store to next iteration
|
300
|
+
self.prevFrame = frame.copy()
|
301
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
302
|
+
self.prevDescriptors = copy.copy(descriptors)
|
303
|
+
|
304
|
+
return H
|
305
|
+
|
306
|
+
def apply_sparseoptflow(self, raw_frame: np.ndarray) -> np.ndarray:
|
307
|
+
"""
|
308
|
+
Apply Sparse Optical Flow method to a raw frame.
|
309
|
+
|
310
|
+
Args:
|
311
|
+
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
|
312
|
+
|
313
|
+
Returns:
|
314
|
+
(np.ndarray): Transformation matrix with shape (2, 3).
|
315
|
+
|
316
|
+
Examples:
|
317
|
+
>>> gmc = GMC()
|
318
|
+
>>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
|
319
|
+
>>> print(result)
|
320
|
+
[[1. 0. 0.]
|
321
|
+
[0. 1. 0.]]
|
322
|
+
"""
|
323
|
+
height, width, c = raw_frame.shape
|
324
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
|
325
|
+
H = np.eye(2, 3)
|
326
|
+
|
327
|
+
# Downscale image
|
328
|
+
if self.downscale > 1.0:
|
329
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
330
|
+
|
331
|
+
# Find the keypoints
|
332
|
+
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
|
333
|
+
|
334
|
+
# Handle first frame
|
335
|
+
if not self.initializedFirstFrame or self.prevKeyPoints is None:
|
336
|
+
self.prevFrame = frame.copy()
|
337
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
338
|
+
self.initializedFirstFrame = True
|
339
|
+
return H
|
340
|
+
|
341
|
+
# Find correspondences
|
342
|
+
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
343
|
+
|
344
|
+
# Leave good correspondences only
|
345
|
+
prevPoints = []
|
346
|
+
currPoints = []
|
347
|
+
|
348
|
+
for i in range(len(status)):
|
349
|
+
if status[i]:
|
350
|
+
prevPoints.append(self.prevKeyPoints[i])
|
351
|
+
currPoints.append(matchedKeypoints[i])
|
352
|
+
|
353
|
+
prevPoints = np.array(prevPoints)
|
354
|
+
currPoints = np.array(currPoints)
|
355
|
+
|
356
|
+
# Find rigid matrix
|
357
|
+
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == currPoints.shape[0]):
|
358
|
+
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
359
|
+
|
360
|
+
if self.downscale > 1.0:
|
361
|
+
H[0, 2] *= self.downscale
|
362
|
+
H[1, 2] *= self.downscale
|
363
|
+
else:
|
364
|
+
LOGGER.warning("not enough matching points")
|
365
|
+
|
366
|
+
self.prevFrame = frame.copy()
|
367
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
368
|
+
|
369
|
+
return H
|
370
|
+
|
371
|
+
def reset_params(self) -> None:
|
372
|
+
"""Reset the internal parameters including previous frame, keypoints, and descriptors."""
|
373
|
+
self.prevFrame = None
|
374
|
+
self.prevKeyPoints = None
|
375
|
+
self.prevDescriptors = None
|
376
|
+
self.initializedFirstFrame = False
|