dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,443 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Objects365 dataset https://www.objects365.org/ by Megvii
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
5
+ # Example usage: yolo train data=Objects365.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/Objects365 # dataset root dir
13
+ train: images/train # train images (relative to 'path') 1742289 images
14
+ val: images/val # val images (relative to 'path') 80000 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: Person
20
+ 1: Sneakers
21
+ 2: Chair
22
+ 3: Other Shoes
23
+ 4: Hat
24
+ 5: Car
25
+ 6: Lamp
26
+ 7: Glasses
27
+ 8: Bottle
28
+ 9: Desk
29
+ 10: Cup
30
+ 11: Street Lights
31
+ 12: Cabinet/shelf
32
+ 13: Handbag/Satchel
33
+ 14: Bracelet
34
+ 15: Plate
35
+ 16: Picture/Frame
36
+ 17: Helmet
37
+ 18: Book
38
+ 19: Gloves
39
+ 20: Storage box
40
+ 21: Boat
41
+ 22: Leather Shoes
42
+ 23: Flower
43
+ 24: Bench
44
+ 25: Potted Plant
45
+ 26: Bowl/Basin
46
+ 27: Flag
47
+ 28: Pillow
48
+ 29: Boots
49
+ 30: Vase
50
+ 31: Microphone
51
+ 32: Necklace
52
+ 33: Ring
53
+ 34: SUV
54
+ 35: Wine Glass
55
+ 36: Belt
56
+ 37: Monitor/TV
57
+ 38: Backpack
58
+ 39: Umbrella
59
+ 40: Traffic Light
60
+ 41: Speaker
61
+ 42: Watch
62
+ 43: Tie
63
+ 44: Trash bin Can
64
+ 45: Slippers
65
+ 46: Bicycle
66
+ 47: Stool
67
+ 48: Barrel/bucket
68
+ 49: Van
69
+ 50: Couch
70
+ 51: Sandals
71
+ 52: Basket
72
+ 53: Drum
73
+ 54: Pen/Pencil
74
+ 55: Bus
75
+ 56: Wild Bird
76
+ 57: High Heels
77
+ 58: Motorcycle
78
+ 59: Guitar
79
+ 60: Carpet
80
+ 61: Cell Phone
81
+ 62: Bread
82
+ 63: Camera
83
+ 64: Canned
84
+ 65: Truck
85
+ 66: Traffic cone
86
+ 67: Cymbal
87
+ 68: Lifesaver
88
+ 69: Towel
89
+ 70: Stuffed Toy
90
+ 71: Candle
91
+ 72: Sailboat
92
+ 73: Laptop
93
+ 74: Awning
94
+ 75: Bed
95
+ 76: Faucet
96
+ 77: Tent
97
+ 78: Horse
98
+ 79: Mirror
99
+ 80: Power outlet
100
+ 81: Sink
101
+ 82: Apple
102
+ 83: Air Conditioner
103
+ 84: Knife
104
+ 85: Hockey Stick
105
+ 86: Paddle
106
+ 87: Pickup Truck
107
+ 88: Fork
108
+ 89: Traffic Sign
109
+ 90: Balloon
110
+ 91: Tripod
111
+ 92: Dog
112
+ 93: Spoon
113
+ 94: Clock
114
+ 95: Pot
115
+ 96: Cow
116
+ 97: Cake
117
+ 98: Dining Table
118
+ 99: Sheep
119
+ 100: Hanger
120
+ 101: Blackboard/Whiteboard
121
+ 102: Napkin
122
+ 103: Other Fish
123
+ 104: Orange/Tangerine
124
+ 105: Toiletry
125
+ 106: Keyboard
126
+ 107: Tomato
127
+ 108: Lantern
128
+ 109: Machinery Vehicle
129
+ 110: Fan
130
+ 111: Green Vegetables
131
+ 112: Banana
132
+ 113: Baseball Glove
133
+ 114: Airplane
134
+ 115: Mouse
135
+ 116: Train
136
+ 117: Pumpkin
137
+ 118: Soccer
138
+ 119: Skiboard
139
+ 120: Luggage
140
+ 121: Nightstand
141
+ 122: Tea pot
142
+ 123: Telephone
143
+ 124: Trolley
144
+ 125: Head Phone
145
+ 126: Sports Car
146
+ 127: Stop Sign
147
+ 128: Dessert
148
+ 129: Scooter
149
+ 130: Stroller
150
+ 131: Crane
151
+ 132: Remote
152
+ 133: Refrigerator
153
+ 134: Oven
154
+ 135: Lemon
155
+ 136: Duck
156
+ 137: Baseball Bat
157
+ 138: Surveillance Camera
158
+ 139: Cat
159
+ 140: Jug
160
+ 141: Broccoli
161
+ 142: Piano
162
+ 143: Pizza
163
+ 144: Elephant
164
+ 145: Skateboard
165
+ 146: Surfboard
166
+ 147: Gun
167
+ 148: Skating and Skiing shoes
168
+ 149: Gas stove
169
+ 150: Donut
170
+ 151: Bow Tie
171
+ 152: Carrot
172
+ 153: Toilet
173
+ 154: Kite
174
+ 155: Strawberry
175
+ 156: Other Balls
176
+ 157: Shovel
177
+ 158: Pepper
178
+ 159: Computer Box
179
+ 160: Toilet Paper
180
+ 161: Cleaning Products
181
+ 162: Chopsticks
182
+ 163: Microwave
183
+ 164: Pigeon
184
+ 165: Baseball
185
+ 166: Cutting/chopping Board
186
+ 167: Coffee Table
187
+ 168: Side Table
188
+ 169: Scissors
189
+ 170: Marker
190
+ 171: Pie
191
+ 172: Ladder
192
+ 173: Snowboard
193
+ 174: Cookies
194
+ 175: Radiator
195
+ 176: Fire Hydrant
196
+ 177: Basketball
197
+ 178: Zebra
198
+ 179: Grape
199
+ 180: Giraffe
200
+ 181: Potato
201
+ 182: Sausage
202
+ 183: Tricycle
203
+ 184: Violin
204
+ 185: Egg
205
+ 186: Fire Extinguisher
206
+ 187: Candy
207
+ 188: Fire Truck
208
+ 189: Billiards
209
+ 190: Converter
210
+ 191: Bathtub
211
+ 192: Wheelchair
212
+ 193: Golf Club
213
+ 194: Briefcase
214
+ 195: Cucumber
215
+ 196: Cigar/Cigarette
216
+ 197: Paint Brush
217
+ 198: Pear
218
+ 199: Heavy Truck
219
+ 200: Hamburger
220
+ 201: Extractor
221
+ 202: Extension Cord
222
+ 203: Tong
223
+ 204: Tennis Racket
224
+ 205: Folder
225
+ 206: American Football
226
+ 207: earphone
227
+ 208: Mask
228
+ 209: Kettle
229
+ 210: Tennis
230
+ 211: Ship
231
+ 212: Swing
232
+ 213: Coffee Machine
233
+ 214: Slide
234
+ 215: Carriage
235
+ 216: Onion
236
+ 217: Green beans
237
+ 218: Projector
238
+ 219: Frisbee
239
+ 220: Washing Machine/Drying Machine
240
+ 221: Chicken
241
+ 222: Printer
242
+ 223: Watermelon
243
+ 224: Saxophone
244
+ 225: Tissue
245
+ 226: Toothbrush
246
+ 227: Ice cream
247
+ 228: Hot-air balloon
248
+ 229: Cello
249
+ 230: French Fries
250
+ 231: Scale
251
+ 232: Trophy
252
+ 233: Cabbage
253
+ 234: Hot dog
254
+ 235: Blender
255
+ 236: Peach
256
+ 237: Rice
257
+ 238: Wallet/Purse
258
+ 239: Volleyball
259
+ 240: Deer
260
+ 241: Goose
261
+ 242: Tape
262
+ 243: Tablet
263
+ 244: Cosmetics
264
+ 245: Trumpet
265
+ 246: Pineapple
266
+ 247: Golf Ball
267
+ 248: Ambulance
268
+ 249: Parking meter
269
+ 250: Mango
270
+ 251: Key
271
+ 252: Hurdle
272
+ 253: Fishing Rod
273
+ 254: Medal
274
+ 255: Flute
275
+ 256: Brush
276
+ 257: Penguin
277
+ 258: Megaphone
278
+ 259: Corn
279
+ 260: Lettuce
280
+ 261: Garlic
281
+ 262: Swan
282
+ 263: Helicopter
283
+ 264: Green Onion
284
+ 265: Sandwich
285
+ 266: Nuts
286
+ 267: Speed Limit Sign
287
+ 268: Induction Cooker
288
+ 269: Broom
289
+ 270: Trombone
290
+ 271: Plum
291
+ 272: Rickshaw
292
+ 273: Goldfish
293
+ 274: Kiwi fruit
294
+ 275: Router/modem
295
+ 276: Poker Card
296
+ 277: Toaster
297
+ 278: Shrimp
298
+ 279: Sushi
299
+ 280: Cheese
300
+ 281: Notepaper
301
+ 282: Cherry
302
+ 283: Pliers
303
+ 284: CD
304
+ 285: Pasta
305
+ 286: Hammer
306
+ 287: Cue
307
+ 288: Avocado
308
+ 289: Hami melon
309
+ 290: Flask
310
+ 291: Mushroom
311
+ 292: Screwdriver
312
+ 293: Soap
313
+ 294: Recorder
314
+ 295: Bear
315
+ 296: Eggplant
316
+ 297: Board Eraser
317
+ 298: Coconut
318
+ 299: Tape Measure/Ruler
319
+ 300: Pig
320
+ 301: Showerhead
321
+ 302: Globe
322
+ 303: Chips
323
+ 304: Steak
324
+ 305: Crosswalk Sign
325
+ 306: Stapler
326
+ 307: Camel
327
+ 308: Formula 1
328
+ 309: Pomegranate
329
+ 310: Dishwasher
330
+ 311: Crab
331
+ 312: Hoverboard
332
+ 313: Meatball
333
+ 314: Rice Cooker
334
+ 315: Tuba
335
+ 316: Calculator
336
+ 317: Papaya
337
+ 318: Antelope
338
+ 319: Parrot
339
+ 320: Seal
340
+ 321: Butterfly
341
+ 322: Dumbbell
342
+ 323: Donkey
343
+ 324: Lion
344
+ 325: Urinal
345
+ 326: Dolphin
346
+ 327: Electric Drill
347
+ 328: Hair Dryer
348
+ 329: Egg tart
349
+ 330: Jellyfish
350
+ 331: Treadmill
351
+ 332: Lighter
352
+ 333: Grapefruit
353
+ 334: Game board
354
+ 335: Mop
355
+ 336: Radish
356
+ 337: Baozi
357
+ 338: Target
358
+ 339: French
359
+ 340: Spring Rolls
360
+ 341: Monkey
361
+ 342: Rabbit
362
+ 343: Pencil Case
363
+ 344: Yak
364
+ 345: Red Cabbage
365
+ 346: Binoculars
366
+ 347: Asparagus
367
+ 348: Barbell
368
+ 349: Scallop
369
+ 350: Noddles
370
+ 351: Comb
371
+ 352: Dumpling
372
+ 353: Oyster
373
+ 354: Table Tennis paddle
374
+ 355: Cosmetics Brush/Eyeliner Pencil
375
+ 356: Chainsaw
376
+ 357: Eraser
377
+ 358: Lobster
378
+ 359: Durian
379
+ 360: Okra
380
+ 361: Lipstick
381
+ 362: Cosmetics Mirror
382
+ 363: Curling
383
+ 364: Table Tennis
384
+
385
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
386
+ download: |
387
+ from pathlib import Path
388
+
389
+ import numpy as np
390
+ from tqdm import tqdm
391
+
392
+ from ultralytics.utils.checks import check_requirements
393
+ from ultralytics.utils.downloads import download
394
+ from ultralytics.utils.ops import xyxy2xywhn
395
+
396
+ check_requirements(("pycocotools>=2.0",))
397
+ from pycocotools.coco import COCO
398
+
399
+ # Make Directories
400
+ dir = Path(yaml["path"]) # dataset root dir
401
+ for p in "images", "labels":
402
+ (dir / p).mkdir(parents=True, exist_ok=True)
403
+ for q in "train", "val":
404
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
405
+
406
+ # Train, Val Splits
407
+ for split, patches in [("train", 50 + 1), ("val", 43 + 1)]:
408
+ print(f"Processing {split} in {patches} patches ...")
409
+ images, labels = dir / "images" / split, dir / "labels" / split
410
+
411
+ # Download
412
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
413
+ if split == "train":
414
+ download([f"{url}zhiyuan_objv2_{split}.tar.gz"], dir=dir) # annotations json
415
+ download([f"{url}patch{i}.tar.gz" for i in range(patches)], dir=images, curl=True, threads=8)
416
+ elif split == "val":
417
+ download([f"{url}zhiyuan_objv2_{split}.json"], dir=dir) # annotations json
418
+ download([f"{url}images/v1/patch{i}.tar.gz" for i in range(15 + 1)], dir=images, curl=True, threads=8)
419
+ download([f"{url}images/v2/patch{i}.tar.gz" for i in range(16, patches)], dir=images, curl=True, threads=8)
420
+
421
+ # Move
422
+ for f in tqdm(images.rglob("*.jpg"), desc=f"Moving {split} images"):
423
+ f.rename(images / f.name) # move to /images/{split}
424
+
425
+ # Labels
426
+ coco = COCO(dir / f"zhiyuan_objv2_{split}.json")
427
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
428
+ for cid, cat in enumerate(names):
429
+ catIds = coco.getCatIds(catNms=[cat])
430
+ imgIds = coco.getImgIds(catIds=catIds)
431
+ for im in tqdm(coco.loadImgs(imgIds), desc=f"Class {cid + 1}/{len(names)} {cat}"):
432
+ width, height = im["width"], im["height"]
433
+ path = Path(im["file_name"]) # image filename
434
+ try:
435
+ with open(labels / path.with_suffix(".txt").name, "a", encoding="utf-8") as file:
436
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
437
+ for a in coco.loadAnns(annIds):
438
+ x, y, w, h = a["bbox"] # bounding box in xywh (xy top-left corner)
439
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
440
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
441
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
442
+ except Exception as e:
443
+ print(e)
@@ -0,0 +1,58 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
5
+ # Example usage: yolo train data=SKU-110K.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── SKU-110K ← downloads here (13.6 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/SKU-110K # dataset root dir
13
+ train: train.txt # train images (relative to 'path') 8219 images
14
+ val: val.txt # val images (relative to 'path') 588 images
15
+ test: test.txt # test images (optional) 2936 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: object
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import shutil
24
+ from pathlib import Path
25
+
26
+ import numpy as np
27
+ import pandas as pd
28
+ from tqdm import tqdm
29
+
30
+ from ultralytics.utils.downloads import download
31
+ from ultralytics.utils.ops import xyxy2xywh
32
+
33
+ # Download
34
+ dir = Path(yaml["path"]) # dataset root dir
35
+ parent = Path(dir.parent) # download dir
36
+ urls = ["http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz"]
37
+ download(urls, dir=parent)
38
+
39
+ # Rename directories
40
+ if dir.exists():
41
+ shutil.rmtree(dir)
42
+ (parent / "SKU110K_fixed").rename(dir) # rename dir
43
+ (dir / "labels").mkdir(parents=True, exist_ok=True) # create labels dir
44
+
45
+ # Convert labels
46
+ names = "image", "x1", "y1", "x2", "y2", "class", "image_width", "image_height" # column names
47
+ for d in "annotations_train.csv", "annotations_val.csv", "annotations_test.csv":
48
+ x = pd.read_csv(dir / "annotations" / d, names=names).values # annotations
49
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
50
+ with open((dir / d).with_suffix(".txt").__str__().replace("annotations_", ""), "w", encoding="utf-8") as f:
51
+ f.writelines(f"./images/{s}\n" for s in unique_images)
52
+ for im in tqdm(unique_images, desc=f"Converting {dir / d}"):
53
+ cls = 0 # single-class dataset
54
+ with open((dir / "labels" / im).with_suffix(".txt"), "a", encoding="utf-8") as f:
55
+ for r in x[images == im]:
56
+ w, h = r[6], r[7] # image width, height
57
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
58
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
@@ -0,0 +1,106 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
4
+ # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
5
+ # Example usage: yolo train data=VOC.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── VOC ← downloads here (2.8 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/VOC
13
+ train: # train images (relative to 'path') 16551 images
14
+ - images/train2012
15
+ - images/train2007
16
+ - images/val2012
17
+ - images/val2007
18
+ val: # val images (relative to 'path') 4952 images
19
+ - images/test2007
20
+ test: # test images (optional)
21
+ - images/test2007
22
+
23
+ # Classes
24
+ names:
25
+ 0: aeroplane
26
+ 1: bicycle
27
+ 2: bird
28
+ 3: boat
29
+ 4: bottle
30
+ 5: bus
31
+ 6: car
32
+ 7: cat
33
+ 8: chair
34
+ 9: cow
35
+ 10: diningtable
36
+ 11: dog
37
+ 12: horse
38
+ 13: motorbike
39
+ 14: person
40
+ 15: pottedplant
41
+ 16: sheep
42
+ 17: sofa
43
+ 18: train
44
+ 19: tvmonitor
45
+
46
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
47
+ download: |
48
+ import xml.etree.ElementTree as ET
49
+ from pathlib import Path
50
+
51
+ from tqdm import tqdm
52
+
53
+ from ultralytics.utils.downloads import download
54
+
55
+
56
+ def convert_label(path, lb_path, year, image_id):
57
+ """Converts XML annotations from VOC format to YOLO format by extracting bounding boxes and class IDs."""
58
+
59
+ def convert_box(size, box):
60
+ dw, dh = 1.0 / size[0], 1.0 / size[1]
61
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
62
+ return x * dw, y * dh, w * dw, h * dh
63
+
64
+ in_file = open(path / f"VOC{year}/Annotations/{image_id}.xml")
65
+ out_file = open(lb_path, "w")
66
+ tree = ET.parse(in_file)
67
+ root = tree.getroot()
68
+ size = root.find("size")
69
+ w = int(size.find("width").text)
70
+ h = int(size.find("height").text)
71
+
72
+ names = list(yaml["names"].values()) # names list
73
+ for obj in root.iter("object"):
74
+ cls = obj.find("name").text
75
+ if cls in names and int(obj.find("difficult").text) != 1:
76
+ xmlbox = obj.find("bndbox")
77
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
78
+ cls_id = names.index(cls) # class id
79
+ out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
80
+
81
+
82
+ # Download
83
+ dir = Path(yaml["path"]) # dataset root dir
84
+ url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
85
+ urls = [
86
+ f"{url}VOCtrainval_06-Nov-2007.zip", # 446MB, 5012 images
87
+ f"{url}VOCtest_06-Nov-2007.zip", # 438MB, 4953 images
88
+ f"{url}VOCtrainval_11-May-2012.zip", # 1.95GB, 17126 images
89
+ ]
90
+ download(urls, dir=dir / "images", curl=True, threads=3, exist_ok=True) # download and unzip over existing (required)
91
+
92
+ # Convert
93
+ path = dir / "images/VOCdevkit"
94
+ for year, image_set in ("2012", "train"), ("2012", "val"), ("2007", "train"), ("2007", "val"), ("2007", "test"):
95
+ imgs_path = dir / "images" / f"{image_set}{year}"
96
+ lbs_path = dir / "labels" / f"{image_set}{year}"
97
+ imgs_path.mkdir(exist_ok=True, parents=True)
98
+ lbs_path.mkdir(exist_ok=True, parents=True)
99
+
100
+ with open(path / f"VOC{year}/ImageSets/Main/{image_set}.txt") as f:
101
+ image_ids = f.read().strip().split()
102
+ for id in tqdm(image_ids, desc=f"{image_set}{year}"):
103
+ f = path / f"VOC{year}/JPEGImages/{id}.jpg" # old img path
104
+ lb_path = (lbs_path / f.name).with_suffix(".txt") # new label path
105
+ f.rename(imgs_path / f.name) # move image
106
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
@@ -0,0 +1,77 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
5
+ # Example usage: yolo train data=VisDrone.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── VisDrone ← downloads here (2.3 GB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/VisDrone # dataset root dir
13
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: pedestrian
20
+ 1: people
21
+ 2: bicycle
22
+ 3: car
23
+ 4: van
24
+ 5: truck
25
+ 6: tricycle
26
+ 7: awning-tricycle
27
+ 8: bus
28
+ 9: motor
29
+
30
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
31
+ download: |
32
+ import os
33
+ from pathlib import Path
34
+
35
+ from ultralytics.utils.downloads import download
36
+
37
+
38
+ def visdrone2yolo(dir):
39
+ """Convert VisDrone annotations to YOLO format, creating label files with normalized bounding box coordinates."""
40
+ from PIL import Image
41
+ from tqdm import tqdm
42
+
43
+ def convert_box(size, box):
44
+ # Convert VisDrone box to YOLO xywh box
45
+ dw = 1.0 / size[0]
46
+ dh = 1.0 / size[1]
47
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
48
+
49
+ (dir / "labels").mkdir(parents=True, exist_ok=True) # make labels directory
50
+ pbar = tqdm((dir / "annotations").glob("*.txt"), desc=f"Converting {dir}")
51
+ for f in pbar:
52
+ img_size = Image.open((dir / "images" / f.name).with_suffix(".jpg")).size
53
+ lines = []
54
+ with open(f, encoding="utf-8") as file: # read annotation.txt
55
+ for row in [x.split(",") for x in file.read().strip().splitlines()]:
56
+ if row[4] == "0": # VisDrone 'ignored regions' class 0
57
+ continue
58
+ cls = int(row[5]) - 1
59
+ box = convert_box(img_size, tuple(map(int, row[:4])))
60
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
61
+ with open(str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}"), "w", encoding="utf-8") as fl:
62
+ fl.writelines(lines) # write label.txt
63
+
64
+
65
+ # Download
66
+ dir = Path(yaml["path"]) # dataset root dir
67
+ urls = [
68
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip",
69
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip",
70
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip",
71
+ "https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip",
72
+ ]
73
+ download(urls, dir=dir, curl=True, threads=4)
74
+
75
+ # Convert
76
+ for d in "VisDrone2019-DET-train", "VisDrone2019-DET-val", "VisDrone2019-DET-test-dev":
77
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
@@ -0,0 +1,25 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # African-wildlife dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
5
+ # Example usage: yolo train data=african-wildlife.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── african-wildlife ← downloads here (100 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/african-wildlife # dataset root dir
13
+ train: train/images # train images (relative to 'path') 1052 images
14
+ val: valid/images # val images (relative to 'path') 225 images
15
+ test: test/images # test images (relative to 'path') 227 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: buffalo
20
+ 1: elephant
21
+ 2: rhino
22
+ 3: zebra
23
+
24
+ # Download script/URL (optional)
25
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip