dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (272) hide show
  1. dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
  2. dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
  3. dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +22 -0
  8. tests/conftest.py +83 -0
  9. tests/test_cli.py +138 -0
  10. tests/test_cuda.py +215 -0
  11. tests/test_engine.py +131 -0
  12. tests/test_exports.py +236 -0
  13. tests/test_integrations.py +154 -0
  14. tests/test_python.py +694 -0
  15. tests/test_solutions.py +187 -0
  16. ultralytics/__init__.py +30 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1023 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +77 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +443 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/VOC.yaml +106 -0
  29. ultralytics/cfg/datasets/VisDrone.yaml +77 -0
  30. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  31. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  32. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  33. ultralytics/cfg/datasets/coco-pose.yaml +42 -0
  34. ultralytics/cfg/datasets/coco.yaml +118 -0
  35. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  36. ultralytics/cfg/datasets/coco128.yaml +101 -0
  37. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  38. ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
  39. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  40. ultralytics/cfg/datasets/coco8.yaml +101 -0
  41. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  42. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  43. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  44. ultralytics/cfg/datasets/dota8.yaml +35 -0
  45. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  46. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  47. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  48. ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
  49. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  50. ultralytics/cfg/datasets/signature.yaml +21 -0
  51. ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
  52. ultralytics/cfg/datasets/xView.yaml +155 -0
  53. ultralytics/cfg/default.yaml +127 -0
  54. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  55. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  56. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  57. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  58. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  59. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  60. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  61. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  62. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  63. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  64. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  65. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  67. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  68. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  69. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  70. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  71. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  72. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  73. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  74. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  75. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  77. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  78. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  79. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  80. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  81. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  82. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  83. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
  84. ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
  85. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  86. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  87. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  88. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  89. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  90. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  91. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  92. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  93. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  94. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  95. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  96. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  97. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  99. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  100. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  102. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  103. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  104. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  105. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  106. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  109. ultralytics/cfg/trackers/botsort.yaml +22 -0
  110. ultralytics/cfg/trackers/bytetrack.yaml +14 -0
  111. ultralytics/data/__init__.py +26 -0
  112. ultralytics/data/annotator.py +66 -0
  113. ultralytics/data/augment.py +2945 -0
  114. ultralytics/data/base.py +438 -0
  115. ultralytics/data/build.py +258 -0
  116. ultralytics/data/converter.py +754 -0
  117. ultralytics/data/dataset.py +834 -0
  118. ultralytics/data/loaders.py +676 -0
  119. ultralytics/data/scripts/download_weights.sh +18 -0
  120. ultralytics/data/scripts/get_coco.sh +61 -0
  121. ultralytics/data/scripts/get_coco128.sh +18 -0
  122. ultralytics/data/scripts/get_imagenet.sh +52 -0
  123. ultralytics/data/split.py +125 -0
  124. ultralytics/data/split_dota.py +325 -0
  125. ultralytics/data/utils.py +777 -0
  126. ultralytics/engine/__init__.py +1 -0
  127. ultralytics/engine/exporter.py +1519 -0
  128. ultralytics/engine/model.py +1156 -0
  129. ultralytics/engine/predictor.py +502 -0
  130. ultralytics/engine/results.py +1840 -0
  131. ultralytics/engine/trainer.py +853 -0
  132. ultralytics/engine/tuner.py +243 -0
  133. ultralytics/engine/validator.py +377 -0
  134. ultralytics/hub/__init__.py +168 -0
  135. ultralytics/hub/auth.py +137 -0
  136. ultralytics/hub/google/__init__.py +176 -0
  137. ultralytics/hub/session.py +446 -0
  138. ultralytics/hub/utils.py +248 -0
  139. ultralytics/models/__init__.py +9 -0
  140. ultralytics/models/fastsam/__init__.py +7 -0
  141. ultralytics/models/fastsam/model.py +61 -0
  142. ultralytics/models/fastsam/predict.py +181 -0
  143. ultralytics/models/fastsam/utils.py +24 -0
  144. ultralytics/models/fastsam/val.py +40 -0
  145. ultralytics/models/nas/__init__.py +7 -0
  146. ultralytics/models/nas/model.py +102 -0
  147. ultralytics/models/nas/predict.py +58 -0
  148. ultralytics/models/nas/val.py +39 -0
  149. ultralytics/models/rtdetr/__init__.py +7 -0
  150. ultralytics/models/rtdetr/model.py +63 -0
  151. ultralytics/models/rtdetr/predict.py +84 -0
  152. ultralytics/models/rtdetr/train.py +85 -0
  153. ultralytics/models/rtdetr/val.py +191 -0
  154. ultralytics/models/sam/__init__.py +6 -0
  155. ultralytics/models/sam/amg.py +260 -0
  156. ultralytics/models/sam/build.py +358 -0
  157. ultralytics/models/sam/model.py +170 -0
  158. ultralytics/models/sam/modules/__init__.py +1 -0
  159. ultralytics/models/sam/modules/blocks.py +1129 -0
  160. ultralytics/models/sam/modules/decoders.py +515 -0
  161. ultralytics/models/sam/modules/encoders.py +854 -0
  162. ultralytics/models/sam/modules/memory_attention.py +299 -0
  163. ultralytics/models/sam/modules/sam.py +1006 -0
  164. ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
  165. ultralytics/models/sam/modules/transformer.py +351 -0
  166. ultralytics/models/sam/modules/utils.py +394 -0
  167. ultralytics/models/sam/predict.py +1605 -0
  168. ultralytics/models/utils/__init__.py +1 -0
  169. ultralytics/models/utils/loss.py +455 -0
  170. ultralytics/models/utils/ops.py +268 -0
  171. ultralytics/models/yolo/__init__.py +7 -0
  172. ultralytics/models/yolo/classify/__init__.py +7 -0
  173. ultralytics/models/yolo/classify/predict.py +88 -0
  174. ultralytics/models/yolo/classify/train.py +233 -0
  175. ultralytics/models/yolo/classify/val.py +215 -0
  176. ultralytics/models/yolo/detect/__init__.py +7 -0
  177. ultralytics/models/yolo/detect/predict.py +124 -0
  178. ultralytics/models/yolo/detect/train.py +217 -0
  179. ultralytics/models/yolo/detect/val.py +451 -0
  180. ultralytics/models/yolo/model.py +354 -0
  181. ultralytics/models/yolo/obb/__init__.py +7 -0
  182. ultralytics/models/yolo/obb/predict.py +66 -0
  183. ultralytics/models/yolo/obb/train.py +81 -0
  184. ultralytics/models/yolo/obb/val.py +283 -0
  185. ultralytics/models/yolo/pose/__init__.py +7 -0
  186. ultralytics/models/yolo/pose/predict.py +79 -0
  187. ultralytics/models/yolo/pose/train.py +154 -0
  188. ultralytics/models/yolo/pose/val.py +394 -0
  189. ultralytics/models/yolo/segment/__init__.py +7 -0
  190. ultralytics/models/yolo/segment/predict.py +113 -0
  191. ultralytics/models/yolo/segment/train.py +123 -0
  192. ultralytics/models/yolo/segment/val.py +428 -0
  193. ultralytics/models/yolo/world/__init__.py +5 -0
  194. ultralytics/models/yolo/world/train.py +119 -0
  195. ultralytics/models/yolo/world/train_world.py +176 -0
  196. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  197. ultralytics/models/yolo/yoloe/predict.py +169 -0
  198. ultralytics/models/yolo/yoloe/train.py +298 -0
  199. ultralytics/models/yolo/yoloe/train_seg.py +124 -0
  200. ultralytics/models/yolo/yoloe/val.py +191 -0
  201. ultralytics/nn/__init__.py +29 -0
  202. ultralytics/nn/autobackend.py +842 -0
  203. ultralytics/nn/modules/__init__.py +182 -0
  204. ultralytics/nn/modules/activation.py +53 -0
  205. ultralytics/nn/modules/block.py +1966 -0
  206. ultralytics/nn/modules/conv.py +712 -0
  207. ultralytics/nn/modules/head.py +880 -0
  208. ultralytics/nn/modules/transformer.py +713 -0
  209. ultralytics/nn/modules/utils.py +164 -0
  210. ultralytics/nn/tasks.py +1627 -0
  211. ultralytics/nn/text_model.py +351 -0
  212. ultralytics/solutions/__init__.py +41 -0
  213. ultralytics/solutions/ai_gym.py +116 -0
  214. ultralytics/solutions/analytics.py +252 -0
  215. ultralytics/solutions/config.py +106 -0
  216. ultralytics/solutions/distance_calculation.py +124 -0
  217. ultralytics/solutions/heatmap.py +127 -0
  218. ultralytics/solutions/instance_segmentation.py +84 -0
  219. ultralytics/solutions/object_blurrer.py +90 -0
  220. ultralytics/solutions/object_counter.py +195 -0
  221. ultralytics/solutions/object_cropper.py +84 -0
  222. ultralytics/solutions/parking_management.py +273 -0
  223. ultralytics/solutions/queue_management.py +93 -0
  224. ultralytics/solutions/region_counter.py +120 -0
  225. ultralytics/solutions/security_alarm.py +154 -0
  226. ultralytics/solutions/similarity_search.py +172 -0
  227. ultralytics/solutions/solutions.py +724 -0
  228. ultralytics/solutions/speed_estimation.py +110 -0
  229. ultralytics/solutions/streamlit_inference.py +196 -0
  230. ultralytics/solutions/templates/similarity-search.html +160 -0
  231. ultralytics/solutions/trackzone.py +88 -0
  232. ultralytics/solutions/vision_eye.py +68 -0
  233. ultralytics/trackers/__init__.py +7 -0
  234. ultralytics/trackers/basetrack.py +124 -0
  235. ultralytics/trackers/bot_sort.py +260 -0
  236. ultralytics/trackers/byte_tracker.py +480 -0
  237. ultralytics/trackers/track.py +125 -0
  238. ultralytics/trackers/utils/__init__.py +1 -0
  239. ultralytics/trackers/utils/gmc.py +376 -0
  240. ultralytics/trackers/utils/kalman_filter.py +493 -0
  241. ultralytics/trackers/utils/matching.py +157 -0
  242. ultralytics/utils/__init__.py +1435 -0
  243. ultralytics/utils/autobatch.py +106 -0
  244. ultralytics/utils/autodevice.py +174 -0
  245. ultralytics/utils/benchmarks.py +695 -0
  246. ultralytics/utils/callbacks/__init__.py +5 -0
  247. ultralytics/utils/callbacks/base.py +234 -0
  248. ultralytics/utils/callbacks/clearml.py +153 -0
  249. ultralytics/utils/callbacks/comet.py +552 -0
  250. ultralytics/utils/callbacks/dvc.py +205 -0
  251. ultralytics/utils/callbacks/hub.py +108 -0
  252. ultralytics/utils/callbacks/mlflow.py +138 -0
  253. ultralytics/utils/callbacks/neptune.py +140 -0
  254. ultralytics/utils/callbacks/raytune.py +43 -0
  255. ultralytics/utils/callbacks/tensorboard.py +132 -0
  256. ultralytics/utils/callbacks/wb.py +185 -0
  257. ultralytics/utils/checks.py +897 -0
  258. ultralytics/utils/dist.py +119 -0
  259. ultralytics/utils/downloads.py +499 -0
  260. ultralytics/utils/errors.py +43 -0
  261. ultralytics/utils/export.py +219 -0
  262. ultralytics/utils/files.py +221 -0
  263. ultralytics/utils/instance.py +499 -0
  264. ultralytics/utils/loss.py +813 -0
  265. ultralytics/utils/metrics.py +1356 -0
  266. ultralytics/utils/ops.py +885 -0
  267. ultralytics/utils/patches.py +143 -0
  268. ultralytics/utils/plotting.py +1011 -0
  269. ultralytics/utils/tal.py +416 -0
  270. ultralytics/utils/torch_utils.py +990 -0
  271. ultralytics/utils/triton.py +116 -0
  272. ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,676 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import glob
4
+ import math
5
+ import os
6
+ import time
7
+ import urllib
8
+ from dataclasses import dataclass
9
+ from pathlib import Path
10
+ from threading import Thread
11
+
12
+ import cv2
13
+ import numpy as np
14
+ import torch
15
+ from PIL import Image
16
+
17
+ from ultralytics.data.utils import FORMATS_HELP_MSG, IMG_FORMATS, VID_FORMATS
18
+ from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, ops
19
+ from ultralytics.utils.checks import check_requirements
20
+ from ultralytics.utils.patches import imread
21
+
22
+
23
+ @dataclass
24
+ class SourceTypes:
25
+ """
26
+ Class to represent various types of input sources for predictions.
27
+
28
+ This class uses dataclass to define boolean flags for different types of input sources that can be used for
29
+ making predictions with YOLO models.
30
+
31
+ Attributes:
32
+ stream (bool): Flag indicating if the input source is a video stream.
33
+ screenshot (bool): Flag indicating if the input source is a screenshot.
34
+ from_img (bool): Flag indicating if the input source is an image file.
35
+ tensor (bool): Flag indicating if the input source is a tensor.
36
+
37
+ Examples:
38
+ >>> source_types = SourceTypes(stream=True, screenshot=False, from_img=False)
39
+ >>> print(source_types.stream)
40
+ True
41
+ >>> print(source_types.from_img)
42
+ False
43
+ """
44
+
45
+ stream: bool = False
46
+ screenshot: bool = False
47
+ from_img: bool = False
48
+ tensor: bool = False
49
+
50
+
51
+ class LoadStreams:
52
+ """
53
+ Stream Loader for various types of video streams.
54
+
55
+ Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video
56
+ streams simultaneously, making it suitable for real-time video analysis tasks.
57
+
58
+ Attributes:
59
+ sources (List[str]): The source input paths or URLs for the video streams.
60
+ vid_stride (int): Video frame-rate stride.
61
+ buffer (bool): Whether to buffer input streams.
62
+ running (bool): Flag to indicate if the streaming thread is running.
63
+ mode (str): Set to 'stream' indicating real-time capture.
64
+ imgs (List[List[np.ndarray]]): List of image frames for each stream.
65
+ fps (List[float]): List of FPS for each stream.
66
+ frames (List[int]): List of total frames for each stream.
67
+ threads (List[Thread]): List of threads for each stream.
68
+ shape (List[Tuple[int, int, int]]): List of shapes for each stream.
69
+ caps (List[cv2.VideoCapture]): List of cv2.VideoCapture objects for each stream.
70
+ bs (int): Batch size for processing.
71
+ cv2_flag (int): OpenCV flag for image reading (grayscale or RGB).
72
+
73
+ Methods:
74
+ update: Read stream frames in daemon thread.
75
+ close: Close stream loader and release resources.
76
+ __iter__: Returns an iterator object for the class.
77
+ __next__: Returns source paths, transformed, and original images for processing.
78
+ __len__: Return the length of the sources object.
79
+
80
+ Examples:
81
+ >>> stream_loader = LoadStreams("rtsp://example.com/stream1.mp4")
82
+ >>> for sources, imgs, _ in stream_loader:
83
+ ... # Process the images
84
+ ... pass
85
+ >>> stream_loader.close()
86
+
87
+ Notes:
88
+ - The class uses threading to efficiently load frames from multiple streams simultaneously.
89
+ - It automatically handles YouTube links, converting them to the best available stream URL.
90
+ - The class implements a buffer system to manage frame storage and retrieval.
91
+ """
92
+
93
+ def __init__(self, sources="file.streams", vid_stride=1, buffer=False, channels=3):
94
+ """Initialize stream loader for multiple video sources, supporting various stream types."""
95
+ torch.backends.cudnn.benchmark = True # faster for fixed-size inference
96
+ self.buffer = buffer # buffer input streams
97
+ self.running = True # running flag for Thread
98
+ self.mode = "stream"
99
+ self.vid_stride = vid_stride # video frame-rate stride
100
+ self.cv2_flag = cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR # grayscale or RGB
101
+
102
+ sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
103
+ n = len(sources)
104
+ self.bs = n
105
+ self.fps = [0] * n # frames per second
106
+ self.frames = [0] * n
107
+ self.threads = [None] * n
108
+ self.caps = [None] * n # video capture objects
109
+ self.imgs = [[] for _ in range(n)] # images
110
+ self.shape = [[] for _ in range(n)] # image shapes
111
+ self.sources = [ops.clean_str(x).replace(os.sep, "_") for x in sources] # clean source names for later
112
+ for i, s in enumerate(sources): # index, source
113
+ # Start thread to read frames from video stream
114
+ st = f"{i + 1}/{n}: {s}... "
115
+ if urllib.parse.urlparse(s).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}: # YouTube video
116
+ # YouTube format i.e. 'https://www.youtube.com/watch?v=Jsn8D3aC840' or 'https://youtu.be/Jsn8D3aC840'
117
+ s = get_best_youtube_url(s)
118
+ s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
119
+ if s == 0 and (IS_COLAB or IS_KAGGLE):
120
+ raise NotImplementedError(
121
+ "'source=0' webcam not supported in Colab and Kaggle notebooks. "
122
+ "Try running 'source=0' in a local environment."
123
+ )
124
+ self.caps[i] = cv2.VideoCapture(s) # store video capture object
125
+ if not self.caps[i].isOpened():
126
+ raise ConnectionError(f"{st}Failed to open {s}")
127
+ w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
128
+ h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
129
+ fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
130
+ self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
131
+ "inf"
132
+ ) # infinite stream fallback
133
+ self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
134
+
135
+ success, im = self.caps[i].read() # guarantee first frame
136
+ im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)[..., None] if self.cv2_flag == cv2.IMREAD_GRAYSCALE else im
137
+ if not success or im is None:
138
+ raise ConnectionError(f"{st}Failed to read images from {s}")
139
+ self.imgs[i].append(im)
140
+ self.shape[i] = im.shape
141
+ self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
142
+ LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
143
+ self.threads[i].start()
144
+ LOGGER.info("") # newline
145
+
146
+ def update(self, i, cap, stream):
147
+ """Read stream frames in daemon thread and update image buffer."""
148
+ n, f = 0, self.frames[i] # frame number, frame array
149
+ while self.running and cap.isOpened() and n < (f - 1):
150
+ if len(self.imgs[i]) < 30: # keep a <=30-image buffer
151
+ n += 1
152
+ cap.grab() # .read() = .grab() followed by .retrieve()
153
+ if n % self.vid_stride == 0:
154
+ success, im = cap.retrieve()
155
+ im = (
156
+ cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)[..., None] if self.cv2_flag == cv2.IMREAD_GRAYSCALE else im
157
+ )
158
+ if not success:
159
+ im = np.zeros(self.shape[i], dtype=np.uint8)
160
+ LOGGER.warning("Video stream unresponsive, please check your IP camera connection.")
161
+ cap.open(stream) # re-open stream if signal was lost
162
+ if self.buffer:
163
+ self.imgs[i].append(im)
164
+ else:
165
+ self.imgs[i] = [im]
166
+ else:
167
+ time.sleep(0.01) # wait until the buffer is empty
168
+
169
+ def close(self):
170
+ """Terminates stream loader, stops threads, and releases video capture resources."""
171
+ self.running = False # stop flag for Thread
172
+ for thread in self.threads:
173
+ if thread.is_alive():
174
+ thread.join(timeout=5) # Add timeout
175
+ for cap in self.caps: # Iterate through the stored VideoCapture objects
176
+ try:
177
+ cap.release() # release video capture
178
+ except Exception as e:
179
+ LOGGER.warning(f"Could not release VideoCapture object: {e}")
180
+ cv2.destroyAllWindows()
181
+
182
+ def __iter__(self):
183
+ """Iterates through YOLO image feed and re-opens unresponsive streams."""
184
+ self.count = -1
185
+ return self
186
+
187
+ def __next__(self):
188
+ """Returns the next batch of frames from multiple video streams for processing."""
189
+ self.count += 1
190
+
191
+ images = []
192
+ for i, x in enumerate(self.imgs):
193
+ # Wait until a frame is available in each buffer
194
+ while not x:
195
+ if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit
196
+ self.close()
197
+ raise StopIteration
198
+ time.sleep(1 / min(self.fps))
199
+ x = self.imgs[i]
200
+ if not x:
201
+ LOGGER.warning(f"Waiting for stream {i}")
202
+
203
+ # Get and remove the first frame from imgs buffer
204
+ if self.buffer:
205
+ images.append(x.pop(0))
206
+
207
+ # Get the last frame, and clear the rest from the imgs buffer
208
+ else:
209
+ images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
210
+ x.clear()
211
+
212
+ return self.sources, images, [""] * self.bs
213
+
214
+ def __len__(self):
215
+ """Return the number of video streams in the LoadStreams object."""
216
+ return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years
217
+
218
+
219
+ class LoadScreenshots:
220
+ """
221
+ Ultralytics screenshot dataloader for capturing and processing screen images.
222
+
223
+ This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with
224
+ `yolo predict source=screen`.
225
+
226
+ Attributes:
227
+ source (str): The source input indicating which screen to capture.
228
+ screen (int): The screen number to capture.
229
+ left (int): The left coordinate for screen capture area.
230
+ top (int): The top coordinate for screen capture area.
231
+ width (int): The width of the screen capture area.
232
+ height (int): The height of the screen capture area.
233
+ mode (str): Set to 'stream' indicating real-time capture.
234
+ frame (int): Counter for captured frames.
235
+ sct (mss.mss): Screen capture object from `mss` library.
236
+ bs (int): Batch size, set to 1.
237
+ fps (int): Frames per second, set to 30.
238
+ monitor (Dict[str, int]): Monitor configuration details.
239
+ cv2_flag (int): OpenCV flag for image reading (grayscale or RGB).
240
+
241
+ Methods:
242
+ __iter__: Returns an iterator object.
243
+ __next__: Captures the next screenshot and returns it.
244
+
245
+ Examples:
246
+ >>> loader = LoadScreenshots("0 100 100 640 480") # screen 0, top-left (100,100), 640x480
247
+ >>> for source, im, im0s, vid_cap, s in loader:
248
+ ... print(f"Captured frame: {im.shape}")
249
+ """
250
+
251
+ def __init__(self, source, channels=3):
252
+ """Initialize screenshot capture with specified screen and region parameters."""
253
+ check_requirements("mss")
254
+ import mss # noqa
255
+
256
+ source, *params = source.split()
257
+ self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
258
+ if len(params) == 1:
259
+ self.screen = int(params[0])
260
+ elif len(params) == 4:
261
+ left, top, width, height = (int(x) for x in params)
262
+ elif len(params) == 5:
263
+ self.screen, left, top, width, height = (int(x) for x in params)
264
+ self.mode = "stream"
265
+ self.frame = 0
266
+ self.sct = mss.mss()
267
+ self.bs = 1
268
+ self.fps = 30
269
+ self.cv2_flag = cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR # grayscale or RGB
270
+
271
+ # Parse monitor shape
272
+ monitor = self.sct.monitors[self.screen]
273
+ self.top = monitor["top"] if top is None else (monitor["top"] + top)
274
+ self.left = monitor["left"] if left is None else (monitor["left"] + left)
275
+ self.width = width or monitor["width"]
276
+ self.height = height or monitor["height"]
277
+ self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
278
+
279
+ def __iter__(self):
280
+ """Yields the next screenshot image from the specified screen or region for processing."""
281
+ return self
282
+
283
+ def __next__(self):
284
+ """Captures and returns the next screenshot as a numpy array using the mss library."""
285
+ im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
286
+ im0 = cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)[..., None] if self.cv2_flag == cv2.IMREAD_GRAYSCALE else im0
287
+ s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
288
+
289
+ self.frame += 1
290
+ return [str(self.screen)], [im0], [s] # screen, img, string
291
+
292
+
293
+ class LoadImagesAndVideos:
294
+ """
295
+ A class for loading and processing images and videos for YOLO object detection.
296
+
297
+ This class manages the loading and pre-processing of image and video data from various sources, including
298
+ single image files, video files, and lists of image and video paths.
299
+
300
+ Attributes:
301
+ files (List[str]): List of image and video file paths.
302
+ nf (int): Total number of files (images and videos).
303
+ video_flag (List[bool]): Flags indicating whether a file is a video (True) or an image (False).
304
+ mode (str): Current mode, 'image' or 'video'.
305
+ vid_stride (int): Stride for video frame-rate.
306
+ bs (int): Batch size.
307
+ cap (cv2.VideoCapture): Video capture object for OpenCV.
308
+ frame (int): Frame counter for video.
309
+ frames (int): Total number of frames in the video.
310
+ count (int): Counter for iteration, initialized at 0 during __iter__().
311
+ ni (int): Number of images.
312
+ cv2_flag (int): OpenCV flag for image reading (grayscale or RGB).
313
+
314
+ Methods:
315
+ __init__: Initialize the LoadImagesAndVideos object.
316
+ __iter__: Returns an iterator object for VideoStream or ImageFolder.
317
+ __next__: Returns the next batch of images or video frames along with their paths and metadata.
318
+ _new_video: Creates a new video capture object for the given path.
319
+ __len__: Returns the number of batches in the object.
320
+
321
+ Examples:
322
+ >>> loader = LoadImagesAndVideos("path/to/data", batch=32, vid_stride=1)
323
+ >>> for paths, imgs, info in loader:
324
+ ... # Process batch of images or video frames
325
+ ... pass
326
+
327
+ Notes:
328
+ - Supports various image formats including HEIC.
329
+ - Handles both local files and directories.
330
+ - Can read from a text file containing paths to images and videos.
331
+ """
332
+
333
+ def __init__(self, path, batch=1, vid_stride=1, channels=3):
334
+ """Initialize dataloader for images and videos, supporting various input formats."""
335
+ parent = None
336
+ if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
337
+ parent = Path(path).parent
338
+ path = Path(path).read_text().splitlines() # list of sources
339
+ files = []
340
+ for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
341
+ a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
342
+ if "*" in a:
343
+ files.extend(sorted(glob.glob(a, recursive=True))) # glob
344
+ elif os.path.isdir(a):
345
+ files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir
346
+ elif os.path.isfile(a):
347
+ files.append(a) # files (absolute or relative to CWD)
348
+ elif parent and (parent / p).is_file():
349
+ files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
350
+ else:
351
+ raise FileNotFoundError(f"{p} does not exist")
352
+
353
+ # Define files as images or videos
354
+ images, videos = [], []
355
+ for f in files:
356
+ suffix = f.split(".")[-1].lower() # Get file extension without the dot and lowercase
357
+ if suffix in IMG_FORMATS:
358
+ images.append(f)
359
+ elif suffix in VID_FORMATS:
360
+ videos.append(f)
361
+ ni, nv = len(images), len(videos)
362
+
363
+ self.files = images + videos
364
+ self.nf = ni + nv # number of files
365
+ self.ni = ni # number of images
366
+ self.video_flag = [False] * ni + [True] * nv
367
+ self.mode = "video" if ni == 0 else "image" # default to video if no images
368
+ self.vid_stride = vid_stride # video frame-rate stride
369
+ self.bs = batch
370
+ self.cv2_flag = cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR # grayscale or RGB
371
+ if any(videos):
372
+ self._new_video(videos[0]) # new video
373
+ else:
374
+ self.cap = None
375
+ if self.nf == 0:
376
+ raise FileNotFoundError(f"No images or videos found in {p}. {FORMATS_HELP_MSG}")
377
+
378
+ def __iter__(self):
379
+ """Iterates through image/video files, yielding source paths, images, and metadata."""
380
+ self.count = 0
381
+ return self
382
+
383
+ def __next__(self):
384
+ """Returns the next batch of images or video frames with their paths and metadata."""
385
+ paths, imgs, info = [], [], []
386
+ while len(imgs) < self.bs:
387
+ if self.count >= self.nf: # end of file list
388
+ if imgs:
389
+ return paths, imgs, info # return last partial batch
390
+ else:
391
+ raise StopIteration
392
+
393
+ path = self.files[self.count]
394
+ if self.video_flag[self.count]:
395
+ self.mode = "video"
396
+ if not self.cap or not self.cap.isOpened():
397
+ self._new_video(path)
398
+
399
+ success = False
400
+ for _ in range(self.vid_stride):
401
+ success = self.cap.grab()
402
+ if not success:
403
+ break # end of video or failure
404
+
405
+ if success:
406
+ success, im0 = self.cap.retrieve()
407
+ im0 = (
408
+ cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)[..., None]
409
+ if self.cv2_flag == cv2.IMREAD_GRAYSCALE
410
+ else im0
411
+ )
412
+ if success:
413
+ self.frame += 1
414
+ paths.append(path)
415
+ imgs.append(im0)
416
+ info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
417
+ if self.frame == self.frames: # end of video
418
+ self.count += 1
419
+ self.cap.release()
420
+ else:
421
+ # Move to the next file if the current video ended or failed to open
422
+ self.count += 1
423
+ if self.cap:
424
+ self.cap.release()
425
+ if self.count < self.nf:
426
+ self._new_video(self.files[self.count])
427
+ else:
428
+ # Handle image files (including HEIC)
429
+ self.mode = "image"
430
+ if path.split(".")[-1].lower() == "heic":
431
+ # Load HEIC image using Pillow with pillow-heif
432
+ check_requirements("pillow-heif")
433
+
434
+ from pillow_heif import register_heif_opener
435
+
436
+ register_heif_opener() # Register HEIF opener with Pillow
437
+ with Image.open(path) as img:
438
+ im0 = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) # convert image to BGR nparray
439
+ else:
440
+ im0 = imread(path, flags=self.cv2_flag) # BGR
441
+ if im0 is None:
442
+ LOGGER.warning(f"Image Read Error {path}")
443
+ else:
444
+ paths.append(path)
445
+ imgs.append(im0)
446
+ info.append(f"image {self.count + 1}/{self.nf} {path}: ")
447
+ self.count += 1 # move to the next file
448
+ if self.count >= self.ni: # end of image list
449
+ break
450
+
451
+ return paths, imgs, info
452
+
453
+ def _new_video(self, path):
454
+ """Creates a new video capture object for the given path and initializes video-related attributes."""
455
+ self.frame = 0
456
+ self.cap = cv2.VideoCapture(path)
457
+ self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
458
+ if not self.cap.isOpened():
459
+ raise FileNotFoundError(f"Failed to open video {path}")
460
+ self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
461
+
462
+ def __len__(self):
463
+ """Returns the number of files (images and videos) in the dataset."""
464
+ return math.ceil(self.nf / self.bs) # number of batches
465
+
466
+
467
+ class LoadPilAndNumpy:
468
+ """
469
+ Load images from PIL and Numpy arrays for batch processing.
470
+
471
+ This class manages loading and pre-processing of image data from both PIL and Numpy formats. It performs basic
472
+ validation and format conversion to ensure that the images are in the required format for downstream processing.
473
+
474
+ Attributes:
475
+ paths (List[str]): List of image paths or autogenerated filenames.
476
+ im0 (List[np.ndarray]): List of images stored as Numpy arrays.
477
+ mode (str): Type of data being processed, set to 'image'.
478
+ bs (int): Batch size, equivalent to the length of `im0`.
479
+
480
+ Methods:
481
+ _single_check: Validate and format a single image to a Numpy array.
482
+
483
+ Examples:
484
+ >>> from PIL import Image
485
+ >>> import numpy as np
486
+ >>> pil_img = Image.new("RGB", (100, 100))
487
+ >>> np_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
488
+ >>> loader = LoadPilAndNumpy([pil_img, np_img])
489
+ >>> paths, images, _ = next(iter(loader))
490
+ >>> print(f"Loaded {len(images)} images")
491
+ Loaded 2 images
492
+ """
493
+
494
+ def __init__(self, im0, channels=3):
495
+ """Initializes a loader for PIL and Numpy images, converting inputs to a standardized format."""
496
+ if not isinstance(im0, list):
497
+ im0 = [im0]
498
+ # use `image{i}.jpg` when Image.filename returns an empty path.
499
+ self.paths = [getattr(im, "filename", "") or f"image{i}.jpg" for i, im in enumerate(im0)]
500
+ pil_flag = "L" if channels == 1 else "RGB" # grayscale or RGB
501
+ self.im0 = [self._single_check(im, pil_flag) for im in im0]
502
+ self.mode = "image"
503
+ self.bs = len(self.im0)
504
+
505
+ @staticmethod
506
+ def _single_check(im, flag="RGB"):
507
+ """Validate and format an image to numpy array, ensuring RGB order and contiguous memory."""
508
+ assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
509
+ if isinstance(im, Image.Image):
510
+ im = np.asarray(im.convert(flag))
511
+ # adding new axis if it's grayscale, and converting to BGR if it's RGB
512
+ im = im[..., None] if flag == "L" else im[..., ::-1]
513
+ im = np.ascontiguousarray(im) # contiguous
514
+ elif im.ndim == 2: # grayscale in numpy form
515
+ im = im[..., None]
516
+ return im
517
+
518
+ def __len__(self):
519
+ """Returns the length of the 'im0' attribute, representing the number of loaded images."""
520
+ return len(self.im0)
521
+
522
+ def __next__(self):
523
+ """Returns the next batch of images, paths, and metadata for processing."""
524
+ if self.count == 1: # loop only once as it's batch inference
525
+ raise StopIteration
526
+ self.count += 1
527
+ return self.paths, self.im0, [""] * self.bs
528
+
529
+ def __iter__(self):
530
+ """Iterates through PIL/numpy images, yielding paths, raw images, and metadata for processing."""
531
+ self.count = 0
532
+ return self
533
+
534
+
535
+ class LoadTensor:
536
+ """
537
+ A class for loading and processing tensor data for object detection tasks.
538
+
539
+ This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for
540
+ further processing in object detection pipelines.
541
+
542
+ Attributes:
543
+ im0 (torch.Tensor): The input tensor containing the image(s) with shape (B, C, H, W).
544
+ bs (int): Batch size, inferred from the shape of `im0`.
545
+ mode (str): Current processing mode, set to 'image'.
546
+ paths (List[str]): List of image paths or auto-generated filenames.
547
+
548
+ Methods:
549
+ _single_check: Validates and formats an input tensor.
550
+
551
+ Examples:
552
+ >>> import torch
553
+ >>> tensor = torch.rand(1, 3, 640, 640)
554
+ >>> loader = LoadTensor(tensor)
555
+ >>> paths, images, info = next(iter(loader))
556
+ >>> print(f"Processed {len(images)} images")
557
+ """
558
+
559
+ def __init__(self, im0) -> None:
560
+ """Initialize LoadTensor object for processing torch.Tensor image data."""
561
+ self.im0 = self._single_check(im0)
562
+ self.bs = self.im0.shape[0]
563
+ self.mode = "image"
564
+ self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
565
+
566
+ @staticmethod
567
+ def _single_check(im, stride=32):
568
+ """Validates and formats a single image tensor, ensuring correct shape and normalization."""
569
+ s = (
570
+ f"torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
571
+ f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
572
+ )
573
+ if len(im.shape) != 4:
574
+ if len(im.shape) != 3:
575
+ raise ValueError(s)
576
+ LOGGER.warning(s)
577
+ im = im.unsqueeze(0)
578
+ if im.shape[2] % stride or im.shape[3] % stride:
579
+ raise ValueError(s)
580
+ if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07
581
+ LOGGER.warning(
582
+ f"torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. Dividing input by 255."
583
+ )
584
+ im = im.float() / 255.0
585
+
586
+ return im
587
+
588
+ def __iter__(self):
589
+ """Yields an iterator object for iterating through tensor image data."""
590
+ self.count = 0
591
+ return self
592
+
593
+ def __next__(self):
594
+ """Yields the next batch of tensor images and metadata for processing."""
595
+ if self.count == 1:
596
+ raise StopIteration
597
+ self.count += 1
598
+ return self.paths, self.im0, [""] * self.bs
599
+
600
+ def __len__(self):
601
+ """Returns the batch size of the tensor input."""
602
+ return self.bs
603
+
604
+
605
+ def autocast_list(source):
606
+ """Merges a list of sources into a list of numpy arrays or PIL images for Ultralytics prediction."""
607
+ files = []
608
+ for im in source:
609
+ if isinstance(im, (str, Path)): # filename or uri
610
+ files.append(Image.open(urllib.request.urlopen(im) if str(im).startswith("http") else im))
611
+ elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
612
+ files.append(im)
613
+ else:
614
+ raise TypeError(
615
+ f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
616
+ f"See https://docs.ultralytics.com/modes/predict for supported source types."
617
+ )
618
+
619
+ return files
620
+
621
+
622
+ def get_best_youtube_url(url, method="pytube"):
623
+ """
624
+ Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
625
+
626
+ Args:
627
+ url (str): The URL of the YouTube video.
628
+ method (str): The method to use for extracting video info. Options are "pytube", "pafy", and "yt-dlp".
629
+ Defaults to "pytube".
630
+
631
+ Returns:
632
+ (str | None): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
633
+
634
+ Examples:
635
+ >>> url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
636
+ >>> best_url = get_best_youtube_url(url)
637
+ >>> print(best_url)
638
+ https://rr4---sn-q4flrnek.googlevideo.com/videoplayback?expire=...
639
+
640
+ Notes:
641
+ - Requires additional libraries based on the chosen method: pytubefix, pafy, or yt-dlp.
642
+ - The function prioritizes streams with at least 1080p resolution when available.
643
+ - For the "yt-dlp" method, it looks for formats with video codec, no audio, and *.mp4 extension.
644
+ """
645
+ if method == "pytube":
646
+ # Switched from pytube to pytubefix to resolve https://github.com/pytube/pytube/issues/1954
647
+ check_requirements("pytubefix>=6.5.2")
648
+ from pytubefix import YouTube
649
+
650
+ streams = YouTube(url).streams.filter(file_extension="mp4", only_video=True)
651
+ streams = sorted(streams, key=lambda s: s.resolution, reverse=True) # sort streams by resolution
652
+ for stream in streams:
653
+ if stream.resolution and int(stream.resolution[:-1]) >= 1080: # check if resolution is at least 1080p
654
+ return stream.url
655
+
656
+ elif method == "pafy":
657
+ check_requirements(("pafy", "youtube_dl==2020.12.2"))
658
+ import pafy # noqa
659
+
660
+ return pafy.new(url).getbestvideo(preftype="mp4").url
661
+
662
+ elif method == "yt-dlp":
663
+ check_requirements("yt-dlp")
664
+ import yt_dlp
665
+
666
+ with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
667
+ info_dict = ydl.extract_info(url, download=False) # extract info
668
+ for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last
669
+ # Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
670
+ good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
671
+ if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
672
+ return f.get("url")
673
+
674
+
675
+ # Define constants
676
+ LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)