dgenerate-ultralytics-headless 8.3.134__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.134.dist-info/METADATA +400 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/RECORD +272 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.134.dist-info/top_level.txt +1 -0
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +138 -0
- tests/test_cuda.py +215 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +236 -0
- tests/test_integrations.py +154 -0
- tests/test_python.py +694 -0
- tests/test_solutions.py +187 -0
- ultralytics/__init__.py +30 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1023 -0
- ultralytics/cfg/datasets/Argoverse.yaml +77 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +33 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +443 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/VOC.yaml +106 -0
- ultralytics/cfg/datasets/VisDrone.yaml +77 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +42 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +26 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +666 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +25 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +127 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +45 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +45 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +22 -0
- ultralytics/cfg/trackers/bytetrack.yaml +14 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2945 -0
- ultralytics/data/base.py +438 -0
- ultralytics/data/build.py +258 -0
- ultralytics/data/converter.py +754 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +676 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +125 -0
- ultralytics/data/split_dota.py +325 -0
- ultralytics/data/utils.py +777 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1519 -0
- ultralytics/engine/model.py +1156 -0
- ultralytics/engine/predictor.py +502 -0
- ultralytics/engine/results.py +1840 -0
- ultralytics/engine/trainer.py +853 -0
- ultralytics/engine/tuner.py +243 -0
- ultralytics/engine/validator.py +377 -0
- ultralytics/hub/__init__.py +168 -0
- ultralytics/hub/auth.py +137 -0
- ultralytics/hub/google/__init__.py +176 -0
- ultralytics/hub/session.py +446 -0
- ultralytics/hub/utils.py +248 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +61 -0
- ultralytics/models/fastsam/predict.py +181 -0
- ultralytics/models/fastsam/utils.py +24 -0
- ultralytics/models/fastsam/val.py +40 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +102 -0
- ultralytics/models/nas/predict.py +58 -0
- ultralytics/models/nas/val.py +39 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +84 -0
- ultralytics/models/rtdetr/train.py +85 -0
- ultralytics/models/rtdetr/val.py +191 -0
- ultralytics/models/sam/__init__.py +6 -0
- ultralytics/models/sam/amg.py +260 -0
- ultralytics/models/sam/build.py +358 -0
- ultralytics/models/sam/model.py +170 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +515 -0
- ultralytics/models/sam/modules/encoders.py +854 -0
- ultralytics/models/sam/modules/memory_attention.py +299 -0
- ultralytics/models/sam/modules/sam.py +1006 -0
- ultralytics/models/sam/modules/tiny_encoder.py +1002 -0
- ultralytics/models/sam/modules/transformer.py +351 -0
- ultralytics/models/sam/modules/utils.py +394 -0
- ultralytics/models/sam/predict.py +1605 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +455 -0
- ultralytics/models/utils/ops.py +268 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +88 -0
- ultralytics/models/yolo/classify/train.py +233 -0
- ultralytics/models/yolo/classify/val.py +215 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +124 -0
- ultralytics/models/yolo/detect/train.py +217 -0
- ultralytics/models/yolo/detect/val.py +451 -0
- ultralytics/models/yolo/model.py +354 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +66 -0
- ultralytics/models/yolo/obb/train.py +81 -0
- ultralytics/models/yolo/obb/val.py +283 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +79 -0
- ultralytics/models/yolo/pose/train.py +154 -0
- ultralytics/models/yolo/pose/val.py +394 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +113 -0
- ultralytics/models/yolo/segment/train.py +123 -0
- ultralytics/models/yolo/segment/val.py +428 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +119 -0
- ultralytics/models/yolo/world/train_world.py +176 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +169 -0
- ultralytics/models/yolo/yoloe/train.py +298 -0
- ultralytics/models/yolo/yoloe/train_seg.py +124 -0
- ultralytics/models/yolo/yoloe/val.py +191 -0
- ultralytics/nn/__init__.py +29 -0
- ultralytics/nn/autobackend.py +842 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +53 -0
- ultralytics/nn/modules/block.py +1966 -0
- ultralytics/nn/modules/conv.py +712 -0
- ultralytics/nn/modules/head.py +880 -0
- ultralytics/nn/modules/transformer.py +713 -0
- ultralytics/nn/modules/utils.py +164 -0
- ultralytics/nn/tasks.py +1627 -0
- ultralytics/nn/text_model.py +351 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +116 -0
- ultralytics/solutions/analytics.py +252 -0
- ultralytics/solutions/config.py +106 -0
- ultralytics/solutions/distance_calculation.py +124 -0
- ultralytics/solutions/heatmap.py +127 -0
- ultralytics/solutions/instance_segmentation.py +84 -0
- ultralytics/solutions/object_blurrer.py +90 -0
- ultralytics/solutions/object_counter.py +195 -0
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +273 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +120 -0
- ultralytics/solutions/security_alarm.py +154 -0
- ultralytics/solutions/similarity_search.py +172 -0
- ultralytics/solutions/solutions.py +724 -0
- ultralytics/solutions/speed_estimation.py +110 -0
- ultralytics/solutions/streamlit_inference.py +196 -0
- ultralytics/solutions/templates/similarity-search.html +160 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +68 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +124 -0
- ultralytics/trackers/bot_sort.py +260 -0
- ultralytics/trackers/byte_tracker.py +480 -0
- ultralytics/trackers/track.py +125 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +376 -0
- ultralytics/trackers/utils/kalman_filter.py +493 -0
- ultralytics/trackers/utils/matching.py +157 -0
- ultralytics/utils/__init__.py +1435 -0
- ultralytics/utils/autobatch.py +106 -0
- ultralytics/utils/autodevice.py +174 -0
- ultralytics/utils/benchmarks.py +695 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +234 -0
- ultralytics/utils/callbacks/clearml.py +153 -0
- ultralytics/utils/callbacks/comet.py +552 -0
- ultralytics/utils/callbacks/dvc.py +205 -0
- ultralytics/utils/callbacks/hub.py +108 -0
- ultralytics/utils/callbacks/mlflow.py +138 -0
- ultralytics/utils/callbacks/neptune.py +140 -0
- ultralytics/utils/callbacks/raytune.py +43 -0
- ultralytics/utils/callbacks/tensorboard.py +132 -0
- ultralytics/utils/callbacks/wb.py +185 -0
- ultralytics/utils/checks.py +897 -0
- ultralytics/utils/dist.py +119 -0
- ultralytics/utils/downloads.py +499 -0
- ultralytics/utils/errors.py +43 -0
- ultralytics/utils/export.py +219 -0
- ultralytics/utils/files.py +221 -0
- ultralytics/utils/instance.py +499 -0
- ultralytics/utils/loss.py +813 -0
- ultralytics/utils/metrics.py +1356 -0
- ultralytics/utils/ops.py +885 -0
- ultralytics/utils/patches.py +143 -0
- ultralytics/utils/plotting.py +1011 -0
- ultralytics/utils/tal.py +416 -0
- ultralytics/utils/torch_utils.py +990 -0
- ultralytics/utils/triton.py +116 -0
- ultralytics/utils/tuner.py +159 -0
@@ -0,0 +1,354 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from pathlib import Path
|
4
|
+
|
5
|
+
from ultralytics.data.build import load_inference_source
|
6
|
+
from ultralytics.engine.model import Model
|
7
|
+
from ultralytics.models import yolo
|
8
|
+
from ultralytics.nn.tasks import (
|
9
|
+
ClassificationModel,
|
10
|
+
DetectionModel,
|
11
|
+
OBBModel,
|
12
|
+
PoseModel,
|
13
|
+
SegmentationModel,
|
14
|
+
WorldModel,
|
15
|
+
YOLOEModel,
|
16
|
+
YOLOESegModel,
|
17
|
+
)
|
18
|
+
from ultralytics.utils import ROOT, YAML
|
19
|
+
|
20
|
+
|
21
|
+
class YOLO(Model):
|
22
|
+
"""YOLO (You Only Look Once) object detection model."""
|
23
|
+
|
24
|
+
def __init__(self, model="yolo11n.pt", task=None, verbose=False):
|
25
|
+
"""
|
26
|
+
Initialize a YOLO model.
|
27
|
+
|
28
|
+
This constructor initializes a YOLO model, automatically switching to specialized model types
|
29
|
+
(YOLOWorld or YOLOE) based on the model filename.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
model (str | Path): Model name or path to model file, i.e. 'yolo11n.pt', 'yolo11n.yaml'.
|
33
|
+
task (str | None): YOLO task specification, i.e. 'detect', 'segment', 'classify', 'pose', 'obb'.
|
34
|
+
Defaults to auto-detection based on model.
|
35
|
+
verbose (bool): Display model info on load.
|
36
|
+
|
37
|
+
Examples:
|
38
|
+
>>> from ultralytics import YOLO
|
39
|
+
>>> model = YOLO("yolo11n.pt") # load a pretrained YOLOv11n detection model
|
40
|
+
>>> model = YOLO("yolo11n-seg.pt") # load a pretrained YOLO11n segmentation model
|
41
|
+
"""
|
42
|
+
path = Path(model)
|
43
|
+
if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model
|
44
|
+
new_instance = YOLOWorld(path, verbose=verbose)
|
45
|
+
self.__class__ = type(new_instance)
|
46
|
+
self.__dict__ = new_instance.__dict__
|
47
|
+
elif "yoloe" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOE PyTorch model
|
48
|
+
new_instance = YOLOE(path, task=task, verbose=verbose)
|
49
|
+
self.__class__ = type(new_instance)
|
50
|
+
self.__dict__ = new_instance.__dict__
|
51
|
+
else:
|
52
|
+
# Continue with default YOLO initialization
|
53
|
+
super().__init__(model=model, task=task, verbose=verbose)
|
54
|
+
|
55
|
+
@property
|
56
|
+
def task_map(self):
|
57
|
+
"""Map head to model, trainer, validator, and predictor classes."""
|
58
|
+
return {
|
59
|
+
"classify": {
|
60
|
+
"model": ClassificationModel,
|
61
|
+
"trainer": yolo.classify.ClassificationTrainer,
|
62
|
+
"validator": yolo.classify.ClassificationValidator,
|
63
|
+
"predictor": yolo.classify.ClassificationPredictor,
|
64
|
+
},
|
65
|
+
"detect": {
|
66
|
+
"model": DetectionModel,
|
67
|
+
"trainer": yolo.detect.DetectionTrainer,
|
68
|
+
"validator": yolo.detect.DetectionValidator,
|
69
|
+
"predictor": yolo.detect.DetectionPredictor,
|
70
|
+
},
|
71
|
+
"segment": {
|
72
|
+
"model": SegmentationModel,
|
73
|
+
"trainer": yolo.segment.SegmentationTrainer,
|
74
|
+
"validator": yolo.segment.SegmentationValidator,
|
75
|
+
"predictor": yolo.segment.SegmentationPredictor,
|
76
|
+
},
|
77
|
+
"pose": {
|
78
|
+
"model": PoseModel,
|
79
|
+
"trainer": yolo.pose.PoseTrainer,
|
80
|
+
"validator": yolo.pose.PoseValidator,
|
81
|
+
"predictor": yolo.pose.PosePredictor,
|
82
|
+
},
|
83
|
+
"obb": {
|
84
|
+
"model": OBBModel,
|
85
|
+
"trainer": yolo.obb.OBBTrainer,
|
86
|
+
"validator": yolo.obb.OBBValidator,
|
87
|
+
"predictor": yolo.obb.OBBPredictor,
|
88
|
+
},
|
89
|
+
}
|
90
|
+
|
91
|
+
|
92
|
+
class YOLOWorld(Model):
|
93
|
+
"""YOLO-World object detection model."""
|
94
|
+
|
95
|
+
def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:
|
96
|
+
"""
|
97
|
+
Initialize YOLOv8-World model with a pre-trained model file.
|
98
|
+
|
99
|
+
Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default
|
100
|
+
COCO class names.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.
|
104
|
+
verbose (bool): If True, prints additional information during initialization.
|
105
|
+
"""
|
106
|
+
super().__init__(model=model, task="detect", verbose=verbose)
|
107
|
+
|
108
|
+
# Assign default COCO class names when there are no custom names
|
109
|
+
if not hasattr(self.model, "names"):
|
110
|
+
self.model.names = YAML.load(ROOT / "cfg/datasets/coco8.yaml").get("names")
|
111
|
+
|
112
|
+
@property
|
113
|
+
def task_map(self):
|
114
|
+
"""Map head to model, validator, and predictor classes."""
|
115
|
+
return {
|
116
|
+
"detect": {
|
117
|
+
"model": WorldModel,
|
118
|
+
"validator": yolo.detect.DetectionValidator,
|
119
|
+
"predictor": yolo.detect.DetectionPredictor,
|
120
|
+
"trainer": yolo.world.WorldTrainer,
|
121
|
+
}
|
122
|
+
}
|
123
|
+
|
124
|
+
def set_classes(self, classes):
|
125
|
+
"""
|
126
|
+
Set the model's class names for detection.
|
127
|
+
|
128
|
+
Args:
|
129
|
+
classes (list[str]): A list of categories i.e. ["person"].
|
130
|
+
"""
|
131
|
+
self.model.set_classes(classes)
|
132
|
+
# Remove background if it's given
|
133
|
+
background = " "
|
134
|
+
if background in classes:
|
135
|
+
classes.remove(background)
|
136
|
+
self.model.names = classes
|
137
|
+
|
138
|
+
# Reset method class names
|
139
|
+
if self.predictor:
|
140
|
+
self.predictor.model.names = classes
|
141
|
+
|
142
|
+
|
143
|
+
class YOLOE(Model):
|
144
|
+
"""YOLOE object detection and segmentation model."""
|
145
|
+
|
146
|
+
def __init__(self, model="yoloe-11s-seg.pt", task=None, verbose=False) -> None:
|
147
|
+
"""
|
148
|
+
Initialize YOLOE model with a pre-trained model file.
|
149
|
+
|
150
|
+
Args:
|
151
|
+
model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.
|
152
|
+
task (str, optional): Task type for the model. Auto-detected if None.
|
153
|
+
verbose (bool): If True, prints additional information during initialization.
|
154
|
+
"""
|
155
|
+
super().__init__(model=model, task=task, verbose=verbose)
|
156
|
+
|
157
|
+
# Assign default COCO class names when there are no custom names
|
158
|
+
if not hasattr(self.model, "names"):
|
159
|
+
self.model.names = YAML.load(ROOT / "cfg/datasets/coco8.yaml").get("names")
|
160
|
+
|
161
|
+
@property
|
162
|
+
def task_map(self):
|
163
|
+
"""Map head to model, validator, and predictor classes."""
|
164
|
+
return {
|
165
|
+
"detect": {
|
166
|
+
"model": YOLOEModel,
|
167
|
+
"validator": yolo.yoloe.YOLOEDetectValidator,
|
168
|
+
"predictor": yolo.detect.DetectionPredictor,
|
169
|
+
"trainer": yolo.yoloe.YOLOETrainer,
|
170
|
+
},
|
171
|
+
"segment": {
|
172
|
+
"model": YOLOESegModel,
|
173
|
+
"validator": yolo.yoloe.YOLOESegValidator,
|
174
|
+
"predictor": yolo.segment.SegmentationPredictor,
|
175
|
+
"trainer": yolo.yoloe.YOLOESegTrainer,
|
176
|
+
},
|
177
|
+
}
|
178
|
+
|
179
|
+
def get_text_pe(self, texts):
|
180
|
+
"""Get text positional embeddings for the given texts."""
|
181
|
+
assert isinstance(self.model, YOLOEModel)
|
182
|
+
return self.model.get_text_pe(texts)
|
183
|
+
|
184
|
+
def get_visual_pe(self, img, visual):
|
185
|
+
"""
|
186
|
+
Get visual positional embeddings for the given image and visual features.
|
187
|
+
|
188
|
+
This method extracts positional embeddings from visual features based on the input image. It requires
|
189
|
+
that the model is an instance of YOLOEModel.
|
190
|
+
|
191
|
+
Args:
|
192
|
+
img (torch.Tensor): Input image tensor.
|
193
|
+
visual (torch.Tensor): Visual features extracted from the image.
|
194
|
+
|
195
|
+
Returns:
|
196
|
+
(torch.Tensor): Visual positional embeddings.
|
197
|
+
|
198
|
+
Examples:
|
199
|
+
>>> model = YOLOE("yoloe-11s-seg.pt")
|
200
|
+
>>> img = torch.rand(1, 3, 640, 640)
|
201
|
+
>>> visual_features = model.model.backbone(img)
|
202
|
+
>>> pe = model.get_visual_pe(img, visual_features)
|
203
|
+
"""
|
204
|
+
assert isinstance(self.model, YOLOEModel)
|
205
|
+
return self.model.get_visual_pe(img, visual)
|
206
|
+
|
207
|
+
def set_vocab(self, vocab, names):
|
208
|
+
"""
|
209
|
+
Set vocabulary and class names for the YOLOE model.
|
210
|
+
|
211
|
+
This method configures the vocabulary and class names used by the model for text processing and
|
212
|
+
classification tasks. The model must be an instance of YOLOEModel.
|
213
|
+
|
214
|
+
Args:
|
215
|
+
vocab (list): Vocabulary list containing tokens or words used by the model for text processing.
|
216
|
+
names (list): List of class names that the model can detect or classify.
|
217
|
+
|
218
|
+
Raises:
|
219
|
+
AssertionError: If the model is not an instance of YOLOEModel.
|
220
|
+
|
221
|
+
Examples:
|
222
|
+
>>> model = YOLOE("yoloe-11s-seg.pt")
|
223
|
+
>>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])
|
224
|
+
"""
|
225
|
+
assert isinstance(self.model, YOLOEModel)
|
226
|
+
self.model.set_vocab(vocab, names=names)
|
227
|
+
|
228
|
+
def get_vocab(self, names):
|
229
|
+
"""Get vocabulary for the given class names."""
|
230
|
+
assert isinstance(self.model, YOLOEModel)
|
231
|
+
return self.model.get_vocab(names)
|
232
|
+
|
233
|
+
def set_classes(self, classes, embeddings):
|
234
|
+
"""
|
235
|
+
Set the model's class names and embeddings for detection.
|
236
|
+
|
237
|
+
Args:
|
238
|
+
classes (list[str]): A list of categories i.e. ["person"].
|
239
|
+
embeddings (torch.Tensor): Embeddings corresponding to the classes.
|
240
|
+
"""
|
241
|
+
assert isinstance(self.model, YOLOEModel)
|
242
|
+
self.model.set_classes(classes, embeddings)
|
243
|
+
# Verify no background class is present
|
244
|
+
assert " " not in classes
|
245
|
+
self.model.names = classes
|
246
|
+
|
247
|
+
# Reset method class names
|
248
|
+
if self.predictor:
|
249
|
+
self.predictor.model.names = classes
|
250
|
+
|
251
|
+
def val(
|
252
|
+
self,
|
253
|
+
validator=None,
|
254
|
+
load_vp=False,
|
255
|
+
refer_data=None,
|
256
|
+
**kwargs,
|
257
|
+
):
|
258
|
+
"""
|
259
|
+
Validate the model using text or visual prompts.
|
260
|
+
|
261
|
+
Args:
|
262
|
+
validator (callable, optional): A callable validator function. If None, a default validator is loaded.
|
263
|
+
load_vp (bool): Whether to load visual prompts. If False, text prompts are used.
|
264
|
+
refer_data (str, optional): Path to the reference data for visual prompts.
|
265
|
+
**kwargs (Any): Additional keyword arguments to override default settings.
|
266
|
+
|
267
|
+
Returns:
|
268
|
+
(dict): Validation statistics containing metrics computed during validation.
|
269
|
+
"""
|
270
|
+
custom = {"rect": not load_vp} # method defaults
|
271
|
+
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
|
272
|
+
|
273
|
+
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
|
274
|
+
validator(model=self.model, load_vp=load_vp, refer_data=refer_data)
|
275
|
+
self.metrics = validator.metrics
|
276
|
+
return validator.metrics
|
277
|
+
|
278
|
+
def predict(
|
279
|
+
self,
|
280
|
+
source=None,
|
281
|
+
stream: bool = False,
|
282
|
+
visual_prompts: dict = {},
|
283
|
+
refer_image=None,
|
284
|
+
predictor=None,
|
285
|
+
**kwargs,
|
286
|
+
):
|
287
|
+
"""
|
288
|
+
Run prediction on images, videos, directories, streams, etc.
|
289
|
+
|
290
|
+
Args:
|
291
|
+
source (str | int | PIL.Image | np.ndarray, optional): Source for prediction. Accepts image paths,
|
292
|
+
directory paths, URL/YouTube streams, PIL images, numpy arrays, or webcam indices.
|
293
|
+
stream (bool): Whether to stream the prediction results. If True, results are yielded as a
|
294
|
+
generator as they are computed.
|
295
|
+
visual_prompts (dict): Dictionary containing visual prompts for the model. Must include 'bboxes' and
|
296
|
+
'cls' keys when non-empty.
|
297
|
+
refer_image (str | PIL.Image | np.ndarray, optional): Reference image for visual prompts.
|
298
|
+
predictor (callable, optional): Custom predictor function. If None, a predictor is automatically
|
299
|
+
loaded based on the task.
|
300
|
+
**kwargs (Any): Additional keyword arguments passed to the predictor.
|
301
|
+
|
302
|
+
Returns:
|
303
|
+
(List | generator): List of Results objects or generator of Results objects if stream=True.
|
304
|
+
|
305
|
+
Examples:
|
306
|
+
>>> model = YOLOE("yoloe-11s-seg.pt")
|
307
|
+
>>> results = model.predict("path/to/image.jpg")
|
308
|
+
>>> # With visual prompts
|
309
|
+
>>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
|
310
|
+
>>> results = model.predict("path/to/image.jpg", visual_prompts=prompts)
|
311
|
+
"""
|
312
|
+
if len(visual_prompts):
|
313
|
+
assert "bboxes" in visual_prompts and "cls" in visual_prompts, (
|
314
|
+
f"Expected 'bboxes' and 'cls' in visual prompts, but got {visual_prompts.keys()}"
|
315
|
+
)
|
316
|
+
assert len(visual_prompts["bboxes"]) == len(visual_prompts["cls"]), (
|
317
|
+
f"Expected equal number of bounding boxes and classes, but got {len(visual_prompts['bboxes'])} and "
|
318
|
+
f"{len(visual_prompts['cls'])} respectively"
|
319
|
+
)
|
320
|
+
self.predictor = (predictor or self._smart_load("predictor"))(
|
321
|
+
overrides={
|
322
|
+
"task": self.model.task,
|
323
|
+
"mode": "predict",
|
324
|
+
"save": False,
|
325
|
+
"verbose": refer_image is None,
|
326
|
+
"batch": 1,
|
327
|
+
},
|
328
|
+
_callbacks=self.callbacks,
|
329
|
+
)
|
330
|
+
|
331
|
+
if len(visual_prompts):
|
332
|
+
num_cls = (
|
333
|
+
max(len(set(c)) for c in visual_prompts["cls"])
|
334
|
+
if isinstance(source, list) # means multiple images
|
335
|
+
else len(set(visual_prompts["cls"]))
|
336
|
+
)
|
337
|
+
self.model.model[-1].nc = num_cls
|
338
|
+
self.model.names = [f"object{i}" for i in range(num_cls)]
|
339
|
+
self.predictor.set_prompts(visual_prompts.copy())
|
340
|
+
|
341
|
+
self.predictor.setup_model(model=self.model)
|
342
|
+
|
343
|
+
if refer_image is None and source is not None:
|
344
|
+
dataset = load_inference_source(source)
|
345
|
+
if dataset.mode in {"video", "stream"}:
|
346
|
+
# NOTE: set the first frame as refer image for videos/streams inference
|
347
|
+
refer_image = next(iter(dataset))[1][0]
|
348
|
+
if refer_image is not None and len(visual_prompts):
|
349
|
+
vpe = self.predictor.get_vpe(refer_image)
|
350
|
+
self.model.set_classes(self.model.names, vpe)
|
351
|
+
self.task = "segment" if isinstance(self.predictor, yolo.segment.SegmentationPredictor) else "detect"
|
352
|
+
self.predictor = None # reset predictor
|
353
|
+
|
354
|
+
return super().predict(source, stream, **kwargs)
|
@@ -0,0 +1,66 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
from ultralytics.engine.results import Results
|
6
|
+
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
7
|
+
from ultralytics.utils import DEFAULT_CFG, ops
|
8
|
+
|
9
|
+
|
10
|
+
class OBBPredictor(DetectionPredictor):
|
11
|
+
"""
|
12
|
+
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
|
13
|
+
|
14
|
+
This predictor handles oriented bounding box detection tasks, processing images and returning results with rotated
|
15
|
+
bounding boxes.
|
16
|
+
|
17
|
+
Attributes:
|
18
|
+
args (namespace): Configuration arguments for the predictor.
|
19
|
+
model (torch.nn.Module): The loaded YOLO OBB model.
|
20
|
+
|
21
|
+
Examples:
|
22
|
+
>>> from ultralytics.utils import ASSETS
|
23
|
+
>>> from ultralytics.models.yolo.obb import OBBPredictor
|
24
|
+
>>> args = dict(model="yolo11n-obb.pt", source=ASSETS)
|
25
|
+
>>> predictor = OBBPredictor(overrides=args)
|
26
|
+
>>> predictor.predict_cli()
|
27
|
+
"""
|
28
|
+
|
29
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
30
|
+
"""
|
31
|
+
Initialize OBBPredictor with optional model and data configuration overrides.
|
32
|
+
|
33
|
+
This constructor sets up an OBBPredictor instance for oriented bounding box detection tasks.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
cfg (dict, optional): Default configuration for the predictor.
|
37
|
+
overrides (dict, optional): Configuration overrides that take precedence over the default config.
|
38
|
+
_callbacks (list, optional): List of callback functions to be invoked during prediction.
|
39
|
+
|
40
|
+
Examples:
|
41
|
+
>>> from ultralytics.utils import ASSETS
|
42
|
+
>>> from ultralytics.models.yolo.obb import OBBPredictor
|
43
|
+
>>> args = dict(model="yolo11n-obb.pt", source=ASSETS)
|
44
|
+
>>> predictor = OBBPredictor(overrides=args)
|
45
|
+
"""
|
46
|
+
super().__init__(cfg, overrides, _callbacks)
|
47
|
+
self.args.task = "obb"
|
48
|
+
|
49
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
50
|
+
"""
|
51
|
+
Construct the result object from the prediction.
|
52
|
+
|
53
|
+
Args:
|
54
|
+
pred (torch.Tensor): The predicted bounding boxes, scores, and rotation angles with shape (N, 6) where
|
55
|
+
the last dimension contains [x, y, w, h, confidence, class_id, angle].
|
56
|
+
img (torch.Tensor): The image after preprocessing with shape (B, C, H, W).
|
57
|
+
orig_img (np.ndarray): The original image before preprocessing.
|
58
|
+
img_path (str): The path to the original image.
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
(Results): The result object containing the original image, image path, class names, and oriented bounding boxes.
|
62
|
+
"""
|
63
|
+
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1))
|
64
|
+
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True)
|
65
|
+
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1)
|
66
|
+
return Results(orig_img, path=img_path, names=self.model.names, obb=obb)
|
@@ -0,0 +1,81 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from copy import copy
|
4
|
+
|
5
|
+
from ultralytics.models import yolo
|
6
|
+
from ultralytics.nn.tasks import OBBModel
|
7
|
+
from ultralytics.utils import DEFAULT_CFG, RANK
|
8
|
+
|
9
|
+
|
10
|
+
class OBBTrainer(yolo.detect.DetectionTrainer):
|
11
|
+
"""
|
12
|
+
A class extending the DetectionTrainer class for training based on an Oriented Bounding Box (OBB) model.
|
13
|
+
|
14
|
+
Attributes:
|
15
|
+
loss_names (Tuple[str]): Names of the loss components used during training.
|
16
|
+
|
17
|
+
Methods:
|
18
|
+
get_model: Return OBBModel initialized with specified config and weights.
|
19
|
+
get_validator: Return an instance of OBBValidator for validation of YOLO model.
|
20
|
+
|
21
|
+
Examples:
|
22
|
+
>>> from ultralytics.models.yolo.obb import OBBTrainer
|
23
|
+
>>> args = dict(model="yolo11n-obb.pt", data="dota8.yaml", epochs=3)
|
24
|
+
>>> trainer = OBBTrainer(overrides=args)
|
25
|
+
>>> trainer.train()
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
29
|
+
"""
|
30
|
+
Initialize an OBBTrainer object for training Oriented Bounding Box (OBB) models.
|
31
|
+
|
32
|
+
This trainer extends the DetectionTrainer class to specialize in training models that detect oriented
|
33
|
+
bounding boxes. It automatically sets the task to 'obb' in the configuration.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
cfg (dict, optional): Configuration dictionary for the trainer. Contains training parameters and
|
37
|
+
model configuration.
|
38
|
+
overrides (dict, optional): Dictionary of parameter overrides for the configuration. Any values here
|
39
|
+
will take precedence over those in cfg.
|
40
|
+
_callbacks (list, optional): List of callback functions to be invoked during training.
|
41
|
+
|
42
|
+
Examples:
|
43
|
+
>>> from ultralytics.models.yolo.obb import OBBTrainer
|
44
|
+
>>> args = dict(model="yolo11n-obb.pt", data="dota8.yaml", epochs=3)
|
45
|
+
>>> trainer = OBBTrainer(overrides=args)
|
46
|
+
>>> trainer.train()
|
47
|
+
"""
|
48
|
+
if overrides is None:
|
49
|
+
overrides = {}
|
50
|
+
overrides["task"] = "obb"
|
51
|
+
super().__init__(cfg, overrides, _callbacks)
|
52
|
+
|
53
|
+
def get_model(self, cfg=None, weights=None, verbose=True):
|
54
|
+
"""
|
55
|
+
Return OBBModel initialized with specified config and weights.
|
56
|
+
|
57
|
+
Args:
|
58
|
+
cfg (str | dict | None): Model configuration. Can be a path to a YAML config file, a dictionary
|
59
|
+
containing configuration parameters, or None to use default configuration.
|
60
|
+
weights (str | Path | None): Path to pretrained weights file. If None, random initialization is used.
|
61
|
+
verbose (bool): Whether to display model information during initialization.
|
62
|
+
|
63
|
+
Returns:
|
64
|
+
(OBBModel): Initialized OBBModel with the specified configuration and weights.
|
65
|
+
|
66
|
+
Examples:
|
67
|
+
>>> trainer = OBBTrainer()
|
68
|
+
>>> model = trainer.get_model(cfg="yolo11n-obb.yaml", weights="yolo11n-obb.pt")
|
69
|
+
"""
|
70
|
+
model = OBBModel(cfg, nc=self.data["nc"], ch=self.data["channels"], verbose=verbose and RANK == -1)
|
71
|
+
if weights:
|
72
|
+
model.load(weights)
|
73
|
+
|
74
|
+
return model
|
75
|
+
|
76
|
+
def get_validator(self):
|
77
|
+
"""Return an instance of OBBValidator for validation of YOLO model."""
|
78
|
+
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
|
79
|
+
return yolo.obb.OBBValidator(
|
80
|
+
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
81
|
+
)
|