warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/dlpack.py CHANGED
@@ -1,442 +1,442 @@
1
- # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- # Python specification for DLpack:
9
- # https://dmlc.github.io/dlpack/latest/python_spec.html
10
-
11
- import warp
12
- import ctypes
13
-
14
- from warp.thirdparty.dlpack import (
15
- DLManagedTensor,
16
- DLDevice,
17
- DLDeviceType,
18
- DLDataType,
19
- DLDataTypeCode,
20
- _c_str_dltensor,
21
- )
22
-
23
- _c_str_used_dltensor = b"used_dltensor"
24
-
25
- PyMem_RawMalloc = ctypes.pythonapi.PyMem_RawMalloc
26
- PyMem_RawMalloc.argtypes = [ctypes.c_size_t]
27
- PyMem_RawMalloc.restype = ctypes.c_void_p
28
-
29
- PyMem_RawFree = ctypes.pythonapi.PyMem_RawFree
30
- PyMem_RawFree.argtypes = [ctypes.c_void_p]
31
- PyMem_RawFree.restype = None
32
-
33
- Py_IncRef = ctypes.pythonapi.Py_IncRef
34
- Py_IncRef.argtypes = [ctypes.py_object]
35
- Py_IncRef.restype = None
36
-
37
- Py_DecRef = ctypes.pythonapi.Py_DecRef
38
- Py_DecRef.argtypes = [ctypes.py_object]
39
- Py_DecRef.restype = None
40
-
41
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
42
-
43
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
44
- PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
45
- PyCapsule_New.restype = ctypes.py_object
46
-
47
- PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
48
- PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
49
- PyCapsule_IsValid.restype = ctypes.c_int
50
-
51
- PyCapsule_GetPointer = ctypes.pythonapi.PyCapsule_GetPointer
52
- PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p]
53
- PyCapsule_GetPointer.restype = ctypes.c_void_p
54
-
55
- PyCapsule_SetName = ctypes.pythonapi.PyCapsule_SetName
56
- PyCapsule_SetName.argtypes = [ctypes.py_object, ctypes.c_char_p]
57
- PyCapsule_SetName.restype = ctypes.c_int
58
-
59
-
60
- class _DLPackTensorHolder:
61
- """Class responsible for deleting DLManagedTensor memory after ownership is transferred from a capsule."""
62
-
63
- def __init__(self, mem_ptr):
64
- self.mem_ptr = mem_ptr
65
-
66
- def __del__(self):
67
- managed_tensor = DLManagedTensor.from_address(self.mem_ptr)
68
- if managed_tensor.deleter:
69
- managed_tensor.deleter(self.mem_ptr)
70
-
71
-
72
- @ctypes.CFUNCTYPE(None, ctypes.c_void_p)
73
- def _dlpack_tensor_deleter(managed_ptr) -> None:
74
- """A function to deallocate a DLManagedTensor."""
75
-
76
- managed_tensor = DLManagedTensor.from_address(managed_ptr)
77
-
78
- # unreference the source array
79
- manager = ctypes.cast(managed_tensor.manager_ctx, ctypes.py_object)
80
- ctypes.pythonapi.Py_DecRef(manager)
81
-
82
- # free the DLManagedTensor memory, including shape and strides
83
- PyMem_RawFree(ctypes.c_void_p(managed_ptr))
84
-
85
-
86
- @PyCapsule_Destructor
87
- def _dlpack_capsule_deleter(ptr) -> None:
88
- """Destructor for a capsule holding a DLManagedTensor."""
89
-
90
- capsule = ctypes.cast(ptr, ctypes.py_object)
91
-
92
- if ctypes.pythonapi.PyCapsule_IsValid(capsule, _c_str_dltensor):
93
- managed_ptr = ctypes.pythonapi.PyCapsule_GetPointer(capsule, _c_str_dltensor)
94
- managed_tensor = DLManagedTensor.from_address(managed_ptr)
95
- if managed_tensor.deleter:
96
- managed_tensor.deleter(managed_ptr)
97
-
98
-
99
- def _device_to_dlpack(wp_device: warp.context.Device) -> DLDevice:
100
- dl_device = DLDevice()
101
-
102
- if wp_device.is_cpu:
103
- dl_device.device_type = DLDeviceType.kDLCPU
104
- dl_device.device_id = 0
105
- elif wp_device.is_cuda:
106
- dl_device.device_type = DLDeviceType.kDLCUDA
107
- dl_device.device_id = wp_device.ordinal
108
- else:
109
- raise RuntimeError(f"Invalid device type converting to dlpack: {wp_device}")
110
-
111
- return dl_device
112
-
113
-
114
- def device_to_dlpack(wp_device) -> DLDevice:
115
- return _device_to_dlpack(warp.get_device(wp_device))
116
-
117
-
118
- def dtype_to_dlpack(wp_dtype) -> DLDataType:
119
- if wp_dtype == warp.int8:
120
- return (DLDataTypeCode.kDLInt, 8, 1)
121
- elif wp_dtype == warp.uint8:
122
- return (DLDataTypeCode.kDLUInt, 8, 1)
123
- elif wp_dtype == warp.int16:
124
- return (DLDataTypeCode.kDLInt, 16, 1)
125
- elif wp_dtype == warp.uint16:
126
- return (DLDataTypeCode.kDLUInt, 16, 1)
127
- elif wp_dtype == warp.int32:
128
- return (DLDataTypeCode.kDLInt, 32, 1)
129
- elif wp_dtype == warp.uint32:
130
- return (DLDataTypeCode.kDLUInt, 32, 1)
131
- elif wp_dtype == warp.int64:
132
- return (DLDataTypeCode.kDLInt, 64, 1)
133
- elif wp_dtype == warp.uint64:
134
- return (DLDataTypeCode.kDLUInt, 64, 1)
135
- elif wp_dtype == warp.float16:
136
- return (DLDataTypeCode.kDLFloat, 16, 1)
137
- elif wp_dtype == warp.float32:
138
- return (DLDataTypeCode.kDLFloat, 32, 1)
139
- elif wp_dtype == warp.float64:
140
- return (DLDataTypeCode.kDLFloat, 64, 1)
141
- else:
142
- raise RuntimeError(f"No conversion from Warp type {wp_dtype} to DLPack type")
143
-
144
-
145
- def dtype_from_dlpack(dl_dtype):
146
- # unpack to tuple for easier comparison
147
- dl_dtype = (dl_dtype.type_code.value, dl_dtype.bits)
148
-
149
- if dl_dtype == (DLDataTypeCode.kDLUInt, 1):
150
- raise RuntimeError("Warp does not support bit boolean types")
151
- elif dl_dtype == (DLDataTypeCode.kDLInt, 8):
152
- return warp.types.int8
153
- elif dl_dtype == (DLDataTypeCode.kDLInt, 16):
154
- return warp.types.int16
155
- elif dl_dtype == (DLDataTypeCode.kDLInt, 32):
156
- return warp.types.int32
157
- elif dl_dtype == (DLDataTypeCode.kDLInt, 64):
158
- return warp.types.int64
159
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 8):
160
- return warp.types.uint8
161
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 16):
162
- return warp.types.uint16
163
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 32):
164
- return warp.types.uint32
165
- elif dl_dtype == (DLDataTypeCode.kDLUInt, 64):
166
- return warp.types.uint64
167
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 16):
168
- return warp.types.float16
169
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 32):
170
- return warp.types.float32
171
- elif dl_dtype == (DLDataTypeCode.kDLFloat, 64):
172
- return warp.types.float64
173
- elif dl_dtype == (DLDataTypeCode.kDLComplex, 64):
174
- raise RuntimeError("Warp does not support complex types")
175
- elif dl_dtype == (DLDataTypeCode.kDLComplex, 128):
176
- raise RuntimeError("Warp does not support complex types")
177
- else:
178
- raise RuntimeError(f"Unknown dlpack datatype {dl_dtype}")
179
-
180
-
181
- def device_from_dlpack(dl_device):
182
- assert warp.context.runtime is not None, "Warp not initialized, call wp.init() before use"
183
-
184
- if dl_device.device_type.value == DLDeviceType.kDLCPU or dl_device.device_type.value == DLDeviceType.kDLCUDAHost:
185
- return warp.context.runtime.cpu_device
186
- elif (
187
- dl_device.device_type.value == DLDeviceType.kDLCUDA
188
- or dl_device.device_type.value == DLDeviceType.kDLCUDAManaged
189
- ):
190
- return warp.context.runtime.cuda_devices[dl_device.device_id]
191
- else:
192
- raise RuntimeError(f"Unknown device type from dlpack: {dl_device.device_type.value}")
193
-
194
-
195
- def shape_to_dlpack(shape):
196
- a = (ctypes.c_int64 * len(shape))(*shape)
197
- return a
198
-
199
-
200
- def strides_to_dlpack(strides, dtype):
201
- # convert from byte count to element count
202
- ndim = len(strides)
203
- a = (ctypes.c_int64 * ndim)()
204
- dtype_size = warp.types.type_size_in_bytes(dtype)
205
- for i in range(ndim):
206
- a[i] = strides[i] // dtype_size
207
- return a
208
-
209
-
210
- def to_dlpack(wp_array: warp.array):
211
- """Convert a Warp array to another type of dlpack compatible array.
212
-
213
- Args:
214
- wp_array: The source Warp array that will be converted.
215
-
216
- Returns:
217
- A capsule containing a DLManagedTensor that can be converted
218
- to another array type without copying the underlying memory.
219
- """
220
-
221
- # DLPack does not support structured arrays
222
- if isinstance(wp_array.dtype, warp.codegen.Struct):
223
- raise RuntimeError("Cannot convert structured Warp arrays to DLPack.")
224
-
225
- # handle vector types
226
- if hasattr(wp_array.dtype, "_wp_scalar_type_"):
227
- # vector type, flatten the dimensions into one tuple
228
- target_dtype = wp_array.dtype._wp_scalar_type_
229
- target_ndim = wp_array.ndim + len(wp_array.dtype._shape_)
230
- target_shape = (*wp_array.shape, *wp_array.dtype._shape_)
231
- dtype_strides = warp.types.strides_from_shape(wp_array.dtype._shape_, wp_array.dtype._wp_scalar_type_)
232
- target_strides = (*wp_array.strides, *dtype_strides)
233
- else:
234
- # scalar type
235
- target_dtype = wp_array.dtype
236
- target_ndim = wp_array.ndim
237
- target_shape = wp_array.shape
238
- target_strides = wp_array.strides
239
-
240
- if wp_array.pinned:
241
- dl_device = DLDevice()
242
- dl_device.device_type = DLDeviceType.kDLCUDAHost
243
- dl_device.device_id = 0
244
- else:
245
- dl_device = _device_to_dlpack(wp_array.device)
246
-
247
- # allocate DLManagedTensor, shape, and strides together
248
- managed_tensor_size = ctypes.sizeof(DLManagedTensor)
249
- padding = managed_tensor_size & 7
250
- shape_size = target_ndim * 8
251
- mem_size = managed_tensor_size + padding + 2 * shape_size
252
- mem_ptr = PyMem_RawMalloc(mem_size)
253
- assert mem_ptr, "Failed to allocate memory for DLManagedTensor"
254
-
255
- # set managed tensor attributes
256
- managed_tensor = DLManagedTensor.from_address(mem_ptr)
257
- managed_tensor.dl_tensor.data = wp_array.ptr
258
- managed_tensor.dl_tensor.device = dl_device
259
- managed_tensor.dl_tensor.ndim = target_ndim
260
- managed_tensor.dl_tensor.dtype = dtype_to_dlpack(target_dtype)
261
- managed_tensor.dl_tensor.byte_offset = 0
262
-
263
- # shape
264
- shape_offset = managed_tensor_size + padding
265
- shape_ptr = ctypes.cast(mem_ptr + shape_offset, ctypes.POINTER(ctypes.c_int64))
266
- for i in range(target_ndim):
267
- shape_ptr[i] = target_shape[i]
268
- managed_tensor.dl_tensor.shape = shape_ptr
269
-
270
- # strides, if not contiguous
271
- if wp_array.is_contiguous:
272
- managed_tensor.dl_tensor.strides = None
273
- else:
274
- stride_offset = shape_offset + shape_size
275
- stride_ptr = ctypes.cast(mem_ptr + stride_offset, ctypes.POINTER(ctypes.c_int64))
276
- dtype_size = warp.types.type_size_in_bytes(target_dtype)
277
- for i in range(target_ndim):
278
- stride_ptr[i] = target_strides[i] // dtype_size
279
- managed_tensor.dl_tensor.strides = stride_ptr
280
-
281
- # DLManagedTensor holds a reference to the source array
282
- managed_tensor.manager_ctx = id(wp_array)
283
- Py_IncRef(wp_array)
284
-
285
- managed_tensor.deleter = _dlpack_tensor_deleter
286
-
287
- capsule = PyCapsule_New(
288
- ctypes.byref(managed_tensor),
289
- _c_str_dltensor,
290
- _dlpack_capsule_deleter,
291
- )
292
-
293
- return capsule
294
-
295
-
296
- def dtype_is_compatible(dl_dtype, wp_dtype):
297
- if dl_dtype.bits % 8 != 0:
298
- raise RuntimeError("Data types with less than 8 bits are not supported")
299
-
300
- if dl_dtype.type_code.value == DLDataTypeCode.kDLFloat:
301
- if dl_dtype.bits == 16:
302
- return wp_dtype == warp.float16
303
- elif dl_dtype.bits == 32:
304
- return wp_dtype == warp.float32
305
- elif dl_dtype.bits == 64:
306
- return wp_dtype == warp.float64
307
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLInt or dl_dtype.type_code.value == DLDataTypeCode.kDLUInt:
308
- if dl_dtype.bits == 8:
309
- return wp_dtype == warp.int8 or wp_dtype == warp.uint8
310
- elif dl_dtype.bits == 16:
311
- return wp_dtype == warp.int16 or wp_dtype == warp.uint16
312
- elif dl_dtype.bits == 32:
313
- return wp_dtype == warp.int32 or wp_dtype == warp.uint32
314
- elif dl_dtype.bits == 64:
315
- return wp_dtype == warp.int64 or wp_dtype == warp.uint64
316
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLBfloat:
317
- raise RuntimeError("Bfloat data type is not supported")
318
- elif dl_dtype.type_code.value == DLDataTypeCode.kDLComplex:
319
- raise RuntimeError("Complex data types are not supported")
320
- else:
321
- raise RuntimeError(f"Unsupported dlpack dtype {(str(dl_dtype.type_code), dl_dtype.bits)}")
322
-
323
-
324
- def _from_dlpack(capsule, dtype=None) -> warp.array:
325
- """Convert a DLPack capsule into a Warp array without copying.
326
-
327
- Args:
328
- capsule: A DLPack capsule wrapping an external array or tensor.
329
- dtype: An optional Warp data type to interpret the source data.
330
-
331
- Returns:
332
- A new Warp array that uses the same underlying memory as the input capsule.
333
- """
334
-
335
- assert PyCapsule_IsValid(capsule, _c_str_dltensor), "Invalid capsule"
336
- mem_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
337
- managed_tensor = DLManagedTensor.from_address(mem_ptr)
338
-
339
- dlt = managed_tensor.dl_tensor
340
-
341
- device = device_from_dlpack(dlt.device)
342
- pinned = dlt.device.device_type.value == DLDeviceType.kDLCUDAHost
343
- shape = tuple(dlt.shape[dim] for dim in range(dlt.ndim))
344
-
345
- # strides, if not contiguous
346
- itemsize = dlt.dtype.bits // 8
347
- if dlt.strides:
348
- strides = tuple(dlt.strides[dim] * itemsize for dim in range(dlt.ndim))
349
- else:
350
- strides = None
351
-
352
- # handle multi-lane dtypes as another dimension
353
- if dlt.dtype.lanes > 1:
354
- shape = (*shape, dlt.dtype.lanes)
355
- if strides is not None:
356
- strides = (*strides, itemsize)
357
-
358
- if dtype is None:
359
- # automatically detect dtype
360
- dtype = dtype_from_dlpack(dlt.dtype)
361
-
362
- elif hasattr(dtype, "_wp_scalar_type_"):
363
- # handle vector/matrix types
364
-
365
- if not dtype_is_compatible(dlt.dtype, dtype._wp_scalar_type_):
366
- raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
367
-
368
- dtype_shape = dtype._shape_
369
- dtype_dims = len(dtype._shape_)
370
- if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
371
- raise RuntimeError(
372
- f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
373
- )
374
-
375
- if strides is not None:
376
- # ensure the inner strides are contiguous
377
- stride = itemsize
378
- for i in range(dtype_dims):
379
- if strides[-i - 1] != stride:
380
- raise RuntimeError(
381
- f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
382
- )
383
- stride *= dtype_shape[-i - 1]
384
- strides = tuple(strides[:-dtype_dims]) or (itemsize,)
385
-
386
- shape = tuple(shape[:-dtype_dims]) or (1,)
387
-
388
- elif not dtype_is_compatible(dlt.dtype, dtype):
389
- # incompatible dtype requested
390
- raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
391
-
392
- a = warp.types.array(
393
- ptr=dlt.data, dtype=dtype, shape=shape, strides=strides, copy=False, device=device, pinned=pinned
394
- )
395
-
396
- # take ownership of the DLManagedTensor
397
- a._dlpack_tensor_holder = _DLPackTensorHolder(mem_ptr)
398
-
399
- # rename the capsule so that it no longer owns the DLManagedTensor
400
- PyCapsule_SetName(capsule, _c_str_used_dltensor)
401
-
402
- return a
403
-
404
-
405
- def from_dlpack(source, dtype=None) -> warp.array:
406
- """Convert a source array or DLPack capsule into a Warp array without copying.
407
-
408
- Args:
409
- source: A DLPack-compatible array or PyCapsule
410
- dtype: An optional Warp data type to interpret the source data.
411
-
412
- Returns:
413
- A new Warp array that uses the same underlying memory as the input
414
- pycapsule.
415
- """
416
-
417
- # See https://data-apis.org/array-api/2022.12/API_specification/generated/array_api.array.__dlpack__.html
418
-
419
- if hasattr(source, "__dlpack__"):
420
- device_type, device_id = source.__dlpack_device__()
421
- # Check if the source lives on a CUDA device
422
- if device_type in (DLDeviceType.kDLCUDA, DLDeviceType.kDLCUDAManaged):
423
- # Assume that the caller will use the array on its device's current stream.
424
- # Note that we pass 1 for the null stream, per DLPack spec.
425
- cuda_stream = warp.get_cuda_device(device_id).stream.cuda_stream or 1
426
- elif device_type == DLDeviceType.kDLCPU:
427
- # No stream sync for CPU arrays.
428
- cuda_stream = None
429
- elif device_type == DLDeviceType.kDLCUDAHost:
430
- # For pinned memory, we sync with the current CUDA device's stream.
431
- # Note that we pass 1 for the null stream, per DLPack spec.
432
- cuda_stream = warp.get_cuda_device().stream.cuda_stream or 1
433
- else:
434
- raise TypeError("Unsupported source device")
435
-
436
- capsule = source.__dlpack__(stream=cuda_stream)
437
-
438
- else:
439
- # legacy behaviour, assume source is a capsule
440
- capsule = source
441
-
442
- return _from_dlpack(capsule, dtype=dtype)
1
+ # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ # Python specification for DLpack:
9
+ # https://dmlc.github.io/dlpack/latest/python_spec.html
10
+
11
+ import ctypes
12
+
13
+ import warp
14
+ from warp.thirdparty.dlpack import (
15
+ DLDataType,
16
+ DLDataTypeCode,
17
+ DLDevice,
18
+ DLDeviceType,
19
+ DLManagedTensor,
20
+ _c_str_dltensor,
21
+ )
22
+
23
+ _c_str_used_dltensor = b"used_dltensor"
24
+
25
+ PyMem_RawMalloc = ctypes.pythonapi.PyMem_RawMalloc
26
+ PyMem_RawMalloc.argtypes = [ctypes.c_size_t]
27
+ PyMem_RawMalloc.restype = ctypes.c_void_p
28
+
29
+ PyMem_RawFree = ctypes.pythonapi.PyMem_RawFree
30
+ PyMem_RawFree.argtypes = [ctypes.c_void_p]
31
+ PyMem_RawFree.restype = None
32
+
33
+ Py_IncRef = ctypes.pythonapi.Py_IncRef
34
+ Py_IncRef.argtypes = [ctypes.py_object]
35
+ Py_IncRef.restype = None
36
+
37
+ Py_DecRef = ctypes.pythonapi.Py_DecRef
38
+ Py_DecRef.argtypes = [ctypes.py_object]
39
+ Py_DecRef.restype = None
40
+
41
+ PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
42
+
43
+ PyCapsule_New = ctypes.pythonapi.PyCapsule_New
44
+ PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
45
+ PyCapsule_New.restype = ctypes.py_object
46
+
47
+ PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
48
+ PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
49
+ PyCapsule_IsValid.restype = ctypes.c_int
50
+
51
+ PyCapsule_GetPointer = ctypes.pythonapi.PyCapsule_GetPointer
52
+ PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p]
53
+ PyCapsule_GetPointer.restype = ctypes.c_void_p
54
+
55
+ PyCapsule_SetName = ctypes.pythonapi.PyCapsule_SetName
56
+ PyCapsule_SetName.argtypes = [ctypes.py_object, ctypes.c_char_p]
57
+ PyCapsule_SetName.restype = ctypes.c_int
58
+
59
+
60
+ class _DLPackTensorHolder:
61
+ """Class responsible for deleting DLManagedTensor memory after ownership is transferred from a capsule."""
62
+
63
+ def __init__(self, mem_ptr):
64
+ self.mem_ptr = mem_ptr
65
+
66
+ def __del__(self):
67
+ managed_tensor = DLManagedTensor.from_address(self.mem_ptr)
68
+ if managed_tensor.deleter:
69
+ managed_tensor.deleter(self.mem_ptr)
70
+
71
+
72
+ @ctypes.CFUNCTYPE(None, ctypes.c_void_p)
73
+ def _dlpack_tensor_deleter(managed_ptr) -> None:
74
+ """A function to deallocate a DLManagedTensor."""
75
+
76
+ managed_tensor = DLManagedTensor.from_address(managed_ptr)
77
+
78
+ # unreference the source array
79
+ manager = ctypes.cast(managed_tensor.manager_ctx, ctypes.py_object)
80
+ ctypes.pythonapi.Py_DecRef(manager)
81
+
82
+ # free the DLManagedTensor memory, including shape and strides
83
+ PyMem_RawFree(ctypes.c_void_p(managed_ptr))
84
+
85
+
86
+ @PyCapsule_Destructor
87
+ def _dlpack_capsule_deleter(ptr) -> None:
88
+ """Destructor for a capsule holding a DLManagedTensor."""
89
+
90
+ capsule = ctypes.cast(ptr, ctypes.py_object)
91
+
92
+ if ctypes.pythonapi.PyCapsule_IsValid(capsule, _c_str_dltensor):
93
+ managed_ptr = ctypes.pythonapi.PyCapsule_GetPointer(capsule, _c_str_dltensor)
94
+ managed_tensor = DLManagedTensor.from_address(managed_ptr)
95
+ if managed_tensor.deleter:
96
+ managed_tensor.deleter(managed_ptr)
97
+
98
+
99
+ def _device_to_dlpack(wp_device: warp.context.Device) -> DLDevice:
100
+ dl_device = DLDevice()
101
+
102
+ if wp_device.is_cpu:
103
+ dl_device.device_type = DLDeviceType.kDLCPU
104
+ dl_device.device_id = 0
105
+ elif wp_device.is_cuda:
106
+ dl_device.device_type = DLDeviceType.kDLCUDA
107
+ dl_device.device_id = wp_device.ordinal
108
+ else:
109
+ raise RuntimeError(f"Invalid device type converting to DLPack: {wp_device}")
110
+
111
+ return dl_device
112
+
113
+
114
+ def device_to_dlpack(wp_device) -> DLDevice:
115
+ return _device_to_dlpack(warp.get_device(wp_device))
116
+
117
+
118
+ def dtype_to_dlpack(wp_dtype) -> DLDataType:
119
+ if wp_dtype == warp.int8:
120
+ return (DLDataTypeCode.kDLInt, 8, 1)
121
+ elif wp_dtype == warp.uint8:
122
+ return (DLDataTypeCode.kDLUInt, 8, 1)
123
+ elif wp_dtype == warp.int16:
124
+ return (DLDataTypeCode.kDLInt, 16, 1)
125
+ elif wp_dtype == warp.uint16:
126
+ return (DLDataTypeCode.kDLUInt, 16, 1)
127
+ elif wp_dtype == warp.int32:
128
+ return (DLDataTypeCode.kDLInt, 32, 1)
129
+ elif wp_dtype == warp.uint32:
130
+ return (DLDataTypeCode.kDLUInt, 32, 1)
131
+ elif wp_dtype == warp.int64:
132
+ return (DLDataTypeCode.kDLInt, 64, 1)
133
+ elif wp_dtype == warp.uint64:
134
+ return (DLDataTypeCode.kDLUInt, 64, 1)
135
+ elif wp_dtype == warp.float16:
136
+ return (DLDataTypeCode.kDLFloat, 16, 1)
137
+ elif wp_dtype == warp.float32:
138
+ return (DLDataTypeCode.kDLFloat, 32, 1)
139
+ elif wp_dtype == warp.float64:
140
+ return (DLDataTypeCode.kDLFloat, 64, 1)
141
+ else:
142
+ raise RuntimeError(f"No conversion from Warp type {wp_dtype} to DLPack type")
143
+
144
+
145
+ def dtype_from_dlpack(dl_dtype):
146
+ # unpack to tuple for easier comparison
147
+ dl_dtype = (dl_dtype.type_code.value, dl_dtype.bits)
148
+
149
+ if dl_dtype == (DLDataTypeCode.kDLUInt, 1):
150
+ raise RuntimeError("Warp does not support bit boolean types")
151
+ elif dl_dtype == (DLDataTypeCode.kDLInt, 8):
152
+ return warp.types.int8
153
+ elif dl_dtype == (DLDataTypeCode.kDLInt, 16):
154
+ return warp.types.int16
155
+ elif dl_dtype == (DLDataTypeCode.kDLInt, 32):
156
+ return warp.types.int32
157
+ elif dl_dtype == (DLDataTypeCode.kDLInt, 64):
158
+ return warp.types.int64
159
+ elif dl_dtype == (DLDataTypeCode.kDLUInt, 8):
160
+ return warp.types.uint8
161
+ elif dl_dtype == (DLDataTypeCode.kDLUInt, 16):
162
+ return warp.types.uint16
163
+ elif dl_dtype == (DLDataTypeCode.kDLUInt, 32):
164
+ return warp.types.uint32
165
+ elif dl_dtype == (DLDataTypeCode.kDLUInt, 64):
166
+ return warp.types.uint64
167
+ elif dl_dtype == (DLDataTypeCode.kDLFloat, 16):
168
+ return warp.types.float16
169
+ elif dl_dtype == (DLDataTypeCode.kDLFloat, 32):
170
+ return warp.types.float32
171
+ elif dl_dtype == (DLDataTypeCode.kDLFloat, 64):
172
+ return warp.types.float64
173
+ elif dl_dtype == (DLDataTypeCode.kDLComplex, 64):
174
+ raise RuntimeError("Warp does not support complex types")
175
+ elif dl_dtype == (DLDataTypeCode.kDLComplex, 128):
176
+ raise RuntimeError("Warp does not support complex types")
177
+ else:
178
+ raise RuntimeError(f"Unknown DLPack datatype {dl_dtype}")
179
+
180
+
181
+ def device_from_dlpack(dl_device):
182
+ assert warp.context.runtime is not None, "Warp not initialized, call wp.init() before use"
183
+
184
+ if dl_device.device_type.value == DLDeviceType.kDLCPU or dl_device.device_type.value == DLDeviceType.kDLCUDAHost:
185
+ return warp.context.runtime.cpu_device
186
+ elif (
187
+ dl_device.device_type.value == DLDeviceType.kDLCUDA
188
+ or dl_device.device_type.value == DLDeviceType.kDLCUDAManaged
189
+ ):
190
+ return warp.context.runtime.cuda_devices[dl_device.device_id]
191
+ else:
192
+ raise RuntimeError(f"Unknown device type from DLPack: {dl_device.device_type.value}")
193
+
194
+
195
+ def shape_to_dlpack(shape):
196
+ a = (ctypes.c_int64 * len(shape))(*shape)
197
+ return a
198
+
199
+
200
+ def strides_to_dlpack(strides, dtype):
201
+ # convert from byte count to element count
202
+ ndim = len(strides)
203
+ a = (ctypes.c_int64 * ndim)()
204
+ dtype_size = warp.types.type_size_in_bytes(dtype)
205
+ for i in range(ndim):
206
+ a[i] = strides[i] // dtype_size
207
+ return a
208
+
209
+
210
+ def to_dlpack(wp_array: warp.array):
211
+ """Convert a Warp array to another type of DLPack-compatible array.
212
+
213
+ Args:
214
+ wp_array: The source Warp array that will be converted.
215
+
216
+ Returns:
217
+ A capsule containing a DLManagedTensor that can be converted
218
+ to another array type without copying the underlying memory.
219
+ """
220
+
221
+ # DLPack does not support structured arrays
222
+ if isinstance(wp_array.dtype, warp.codegen.Struct):
223
+ raise RuntimeError("Cannot convert structured Warp arrays to DLPack.")
224
+
225
+ # handle vector types
226
+ if hasattr(wp_array.dtype, "_wp_scalar_type_"):
227
+ # vector type, flatten the dimensions into one tuple
228
+ target_dtype = wp_array.dtype._wp_scalar_type_
229
+ target_ndim = wp_array.ndim + len(wp_array.dtype._shape_)
230
+ target_shape = (*wp_array.shape, *wp_array.dtype._shape_)
231
+ dtype_strides = warp.types.strides_from_shape(wp_array.dtype._shape_, wp_array.dtype._wp_scalar_type_)
232
+ target_strides = (*wp_array.strides, *dtype_strides)
233
+ else:
234
+ # scalar type
235
+ target_dtype = wp_array.dtype
236
+ target_ndim = wp_array.ndim
237
+ target_shape = wp_array.shape
238
+ target_strides = wp_array.strides
239
+
240
+ if wp_array.pinned:
241
+ dl_device = DLDevice()
242
+ dl_device.device_type = DLDeviceType.kDLCUDAHost
243
+ dl_device.device_id = 0
244
+ else:
245
+ dl_device = _device_to_dlpack(wp_array.device)
246
+
247
+ # allocate DLManagedTensor, shape, and strides together
248
+ managed_tensor_size = ctypes.sizeof(DLManagedTensor)
249
+ padding = managed_tensor_size & 7
250
+ shape_size = target_ndim * 8
251
+ mem_size = managed_tensor_size + padding + 2 * shape_size
252
+ mem_ptr = PyMem_RawMalloc(mem_size)
253
+ assert mem_ptr, "Failed to allocate memory for DLManagedTensor"
254
+
255
+ # set managed tensor attributes
256
+ managed_tensor = DLManagedTensor.from_address(mem_ptr)
257
+ managed_tensor.dl_tensor.data = wp_array.ptr
258
+ managed_tensor.dl_tensor.device = dl_device
259
+ managed_tensor.dl_tensor.ndim = target_ndim
260
+ managed_tensor.dl_tensor.dtype = dtype_to_dlpack(target_dtype)
261
+ managed_tensor.dl_tensor.byte_offset = 0
262
+
263
+ # shape
264
+ shape_offset = managed_tensor_size + padding
265
+ shape_ptr = ctypes.cast(mem_ptr + shape_offset, ctypes.POINTER(ctypes.c_int64))
266
+ for i in range(target_ndim):
267
+ shape_ptr[i] = target_shape[i]
268
+ managed_tensor.dl_tensor.shape = shape_ptr
269
+
270
+ # strides, if not contiguous
271
+ if wp_array.is_contiguous:
272
+ managed_tensor.dl_tensor.strides = None
273
+ else:
274
+ stride_offset = shape_offset + shape_size
275
+ stride_ptr = ctypes.cast(mem_ptr + stride_offset, ctypes.POINTER(ctypes.c_int64))
276
+ dtype_size = warp.types.type_size_in_bytes(target_dtype)
277
+ for i in range(target_ndim):
278
+ stride_ptr[i] = target_strides[i] // dtype_size
279
+ managed_tensor.dl_tensor.strides = stride_ptr
280
+
281
+ # DLManagedTensor holds a reference to the source array
282
+ managed_tensor.manager_ctx = id(wp_array)
283
+ Py_IncRef(wp_array)
284
+
285
+ managed_tensor.deleter = _dlpack_tensor_deleter
286
+
287
+ capsule = PyCapsule_New(
288
+ ctypes.byref(managed_tensor),
289
+ _c_str_dltensor,
290
+ _dlpack_capsule_deleter,
291
+ )
292
+
293
+ return capsule
294
+
295
+
296
+ def dtype_is_compatible(dl_dtype, wp_dtype):
297
+ if dl_dtype.bits % 8 != 0:
298
+ raise RuntimeError("Data types with less than 8 bits are not supported")
299
+
300
+ if dl_dtype.type_code.value == DLDataTypeCode.kDLFloat:
301
+ if dl_dtype.bits == 16:
302
+ return wp_dtype == warp.float16
303
+ elif dl_dtype.bits == 32:
304
+ return wp_dtype == warp.float32
305
+ elif dl_dtype.bits == 64:
306
+ return wp_dtype == warp.float64
307
+ elif dl_dtype.type_code.value == DLDataTypeCode.kDLInt or dl_dtype.type_code.value == DLDataTypeCode.kDLUInt:
308
+ if dl_dtype.bits == 8:
309
+ return wp_dtype == warp.int8 or wp_dtype == warp.uint8
310
+ elif dl_dtype.bits == 16:
311
+ return wp_dtype == warp.int16 or wp_dtype == warp.uint16
312
+ elif dl_dtype.bits == 32:
313
+ return wp_dtype == warp.int32 or wp_dtype == warp.uint32
314
+ elif dl_dtype.bits == 64:
315
+ return wp_dtype == warp.int64 or wp_dtype == warp.uint64
316
+ elif dl_dtype.type_code.value == DLDataTypeCode.kDLBfloat:
317
+ raise RuntimeError("Bfloat data type is not supported")
318
+ elif dl_dtype.type_code.value == DLDataTypeCode.kDLComplex:
319
+ raise RuntimeError("Complex data types are not supported")
320
+ else:
321
+ raise RuntimeError(f"Unsupported DLPack dtype {(str(dl_dtype.type_code), dl_dtype.bits)}")
322
+
323
+
324
+ def _from_dlpack(capsule, dtype=None) -> warp.array:
325
+ """Convert a DLPack capsule into a Warp array without copying.
326
+
327
+ Args:
328
+ capsule: A DLPack capsule wrapping an external array or tensor.
329
+ dtype: An optional Warp data type to interpret the source data.
330
+
331
+ Returns:
332
+ A new Warp array that uses the same underlying memory as the input capsule.
333
+ """
334
+
335
+ assert PyCapsule_IsValid(capsule, _c_str_dltensor), "Invalid capsule"
336
+ mem_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
337
+ managed_tensor = DLManagedTensor.from_address(mem_ptr)
338
+
339
+ dlt = managed_tensor.dl_tensor
340
+
341
+ device = device_from_dlpack(dlt.device)
342
+ pinned = dlt.device.device_type.value == DLDeviceType.kDLCUDAHost
343
+ shape = tuple(dlt.shape[dim] for dim in range(dlt.ndim))
344
+
345
+ # strides, if not contiguous
346
+ itemsize = dlt.dtype.bits // 8
347
+ if dlt.strides:
348
+ strides = tuple(dlt.strides[dim] * itemsize for dim in range(dlt.ndim))
349
+ else:
350
+ strides = None
351
+
352
+ # handle multi-lane dtypes as another dimension
353
+ if dlt.dtype.lanes > 1:
354
+ shape = (*shape, dlt.dtype.lanes)
355
+ if strides is not None:
356
+ strides = (*strides, itemsize)
357
+
358
+ if dtype is None:
359
+ # automatically detect dtype
360
+ dtype = dtype_from_dlpack(dlt.dtype)
361
+
362
+ elif hasattr(dtype, "_wp_scalar_type_"):
363
+ # handle vector/matrix types
364
+
365
+ if not dtype_is_compatible(dlt.dtype, dtype._wp_scalar_type_):
366
+ raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
367
+
368
+ dtype_shape = dtype._shape_
369
+ dtype_dims = len(dtype._shape_)
370
+ if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
371
+ raise RuntimeError(
372
+ f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
373
+ )
374
+
375
+ if strides is not None:
376
+ # ensure the inner strides are contiguous
377
+ stride = itemsize
378
+ for i in range(dtype_dims):
379
+ if strides[-i - 1] != stride:
380
+ raise RuntimeError(
381
+ f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
382
+ )
383
+ stride *= dtype_shape[-i - 1]
384
+ strides = tuple(strides[:-dtype_dims]) or (itemsize,)
385
+
386
+ shape = tuple(shape[:-dtype_dims]) or (1,)
387
+
388
+ elif not dtype_is_compatible(dlt.dtype, dtype):
389
+ # incompatible dtype requested
390
+ raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
391
+
392
+ a = warp.types.array(
393
+ ptr=dlt.data, dtype=dtype, shape=shape, strides=strides, copy=False, device=device, pinned=pinned
394
+ )
395
+
396
+ # take ownership of the DLManagedTensor
397
+ a._dlpack_tensor_holder = _DLPackTensorHolder(mem_ptr)
398
+
399
+ # rename the capsule so that it no longer owns the DLManagedTensor
400
+ PyCapsule_SetName(capsule, _c_str_used_dltensor)
401
+
402
+ return a
403
+
404
+
405
+ def from_dlpack(source, dtype=None) -> warp.array:
406
+ """Convert a source array or DLPack capsule into a Warp array without copying.
407
+
408
+ Args:
409
+ source: A DLPack-compatible array or PyCapsule
410
+ dtype: An optional Warp data type to interpret the source data.
411
+
412
+ Returns:
413
+ A new Warp array that uses the same underlying memory as the input
414
+ pycapsule.
415
+ """
416
+
417
+ # See https://data-apis.org/array-api/2022.12/API_specification/generated/array_api.array.__dlpack__.html
418
+
419
+ if hasattr(source, "__dlpack__"):
420
+ device_type, device_id = source.__dlpack_device__()
421
+ # Check if the source lives on a CUDA device
422
+ if device_type in (DLDeviceType.kDLCUDA, DLDeviceType.kDLCUDAManaged):
423
+ # Assume that the caller will use the array on its device's current stream.
424
+ # Note that we pass 1 for the null stream, per DLPack spec.
425
+ cuda_stream = warp.get_cuda_device(device_id).stream.cuda_stream or 1
426
+ elif device_type == DLDeviceType.kDLCPU:
427
+ # No stream sync for CPU arrays.
428
+ cuda_stream = None
429
+ elif device_type == DLDeviceType.kDLCUDAHost:
430
+ # For pinned memory, we sync with the current CUDA device's stream.
431
+ # Note that we pass 1 for the null stream, per DLPack spec.
432
+ cuda_stream = warp.get_cuda_device().stream.cuda_stream or 1
433
+ else:
434
+ raise TypeError("Unsupported source device")
435
+
436
+ capsule = source.__dlpack__(stream=cuda_stream)
437
+
438
+ else:
439
+ # legacy behaviour, assume source is a capsule
440
+ capsule = source
441
+
442
+ return _from_dlpack(capsule, dtype=dtype)