warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +88 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3693 -3354
- warp/codegen.py +2925 -2792
- warp/config.py +40 -36
- warp/constants.py +49 -45
- warp/context.py +5409 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +381 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -277
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
- warp/examples/benchmarks/benchmark_launches.py +293 -295
- warp/examples/browse.py +29 -29
- warp/examples/core/example_dem.py +232 -219
- warp/examples/core/example_fluid.py +291 -267
- warp/examples/core/example_graph_capture.py +142 -126
- warp/examples/core/example_marching_cubes.py +186 -174
- warp/examples/core/example_mesh.py +172 -155
- warp/examples/core/example_mesh_intersect.py +203 -193
- warp/examples/core/example_nvdb.py +174 -170
- warp/examples/core/example_raycast.py +103 -90
- warp/examples/core/example_raymarch.py +197 -178
- warp/examples/core/example_render_opengl.py +183 -141
- warp/examples/core/example_sph.py +403 -387
- warp/examples/core/example_torch.py +219 -181
- warp/examples/core/example_wave.py +261 -248
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +432 -389
- warp/examples/fem/example_burgers.py +262 -0
- warp/examples/fem/example_convection_diffusion.py +180 -168
- warp/examples/fem/example_convection_diffusion_dg.py +217 -209
- warp/examples/fem/example_deformed_geometry.py +175 -159
- warp/examples/fem/example_diffusion.py +199 -173
- warp/examples/fem/example_diffusion_3d.py +178 -152
- warp/examples/fem/example_diffusion_mgpu.py +219 -214
- warp/examples/fem/example_mixed_elasticity.py +242 -222
- warp/examples/fem/example_navier_stokes.py +257 -243
- warp/examples/fem/example_stokes.py +218 -192
- warp/examples/fem/example_stokes_transfer.py +263 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +258 -246
- warp/examples/optim/example_cloth_throw.py +220 -209
- warp/examples/optim/example_diffray.py +564 -536
- warp/examples/optim/example_drone.py +862 -835
- warp/examples/optim/example_inverse_kinematics.py +174 -168
- warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
- warp/examples/optim/example_spring_cage.py +237 -231
- warp/examples/optim/example_trajectory.py +221 -199
- warp/examples/optim/example_walker.py +304 -293
- warp/examples/sim/example_cartpole.py +137 -129
- warp/examples/sim/example_cloth.py +194 -186
- warp/examples/sim/example_granular.py +122 -111
- warp/examples/sim/example_granular_collision_sdf.py +195 -186
- warp/examples/sim/example_jacobian_ik.py +234 -214
- warp/examples/sim/example_particle_chain.py +116 -105
- warp/examples/sim/example_quadruped.py +191 -180
- warp/examples/sim/example_rigid_chain.py +195 -187
- warp/examples/sim/example_rigid_contact.py +187 -177
- warp/examples/sim/example_rigid_force.py +125 -125
- warp/examples/sim/example_rigid_gyroscopic.py +107 -95
- warp/examples/sim/example_rigid_soft_contact.py +132 -122
- warp/examples/sim/example_soft_body.py +188 -177
- warp/fabric.py +337 -335
- warp/fem/__init__.py +61 -27
- warp/fem/cache.py +403 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +16 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +748 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +437 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/nanogrid.py +455 -0
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1684 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +179 -292
- warp/fem/space/basis_space.py +522 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +148 -267
- warp/fem/space/grid_3d_function_space.py +167 -306
- warp/fem/space/hexmesh_function_space.py +253 -352
- warp/fem/space/nanogrid_function_space.py +202 -0
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +261 -369
- warp/fem/space/restriction.py +161 -160
- warp/fem/space/shape/__init__.py +90 -15
- warp/fem/space/shape/cube_shape_function.py +728 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +224 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +153 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1081 -1025
- warp/native/builtin.h +1603 -1560
- warp/native/bvh.cpp +402 -398
- warp/native/bvh.cu +533 -525
- warp/native/bvh.h +430 -429
- warp/native/clang/clang.cpp +496 -464
- warp/native/crt.cpp +42 -32
- warp/native/crt.h +352 -335
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/exports.h +187 -0
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1545 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +292 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -4782
- warp/native/nanovdb/PNanoVDB.h +3390 -2553
- warp/native/noise.h +850 -850
- warp/native/quat.h +1112 -1085
- warp/native/rand.h +303 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1177 -1133
- warp/native/volume.cpp +529 -297
- warp/native/volume.cu +58 -32
- warp/native/volume.h +960 -538
- warp/native/volume_builder.cu +446 -425
- warp/native/volume_builder.h +34 -19
- warp/native/volume_impl.h +61 -0
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2949 -2828
- warp/native/warp.h +321 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3356 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1917 -1991
- warp/sim/integrator_xpbd.py +3288 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1289 -1227
- warp/stubs.py +2192 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +20 -22
- warp/tests/aux_test_grad_customs.py +21 -23
- warp/tests/aux_test_reference.py +9 -11
- warp/tests/aux_test_reference_reference.py +8 -10
- warp/tests/aux_test_square.py +15 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +237 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +155 -157
- warp/tests/test_arithmetic.py +1088 -1124
- warp/tests/test_array.py +2415 -2326
- warp/tests/test_array_reduce.py +148 -150
- warp/tests/test_async.py +666 -656
- warp/tests/test_atomic.py +139 -141
- warp/tests/test_bool.py +212 -149
- warp/tests/test_builtins_resolution.py +1290 -1292
- warp/tests/test_bvh.py +162 -171
- warp/tests/test_closest_point_edge_edge.py +227 -228
- warp/tests/test_codegen.py +562 -553
- warp/tests/test_compile_consts.py +217 -101
- warp/tests/test_conditional.py +244 -246
- warp/tests/test_copy.py +230 -215
- warp/tests/test_ctypes.py +630 -632
- warp/tests/test_dense.py +65 -67
- warp/tests/test_devices.py +89 -98
- warp/tests/test_dlpack.py +528 -529
- warp/tests/test_examples.py +403 -378
- warp/tests/test_fabricarray.py +952 -955
- warp/tests/test_fast_math.py +60 -54
- warp/tests/test_fem.py +1298 -1278
- warp/tests/test_fp16.py +128 -130
- warp/tests/test_func.py +336 -337
- warp/tests/test_generics.py +596 -571
- warp/tests/test_grad.py +885 -640
- warp/tests/test_grad_customs.py +331 -336
- warp/tests/test_hash_grid.py +208 -164
- warp/tests/test_import.py +37 -39
- warp/tests/test_indexedarray.py +1132 -1134
- warp/tests/test_intersect.py +65 -67
- warp/tests/test_jax.py +305 -307
- warp/tests/test_large.py +169 -164
- warp/tests/test_launch.py +352 -354
- warp/tests/test_lerp.py +217 -261
- warp/tests/test_linear_solvers.py +189 -171
- warp/tests/test_lvalue.py +419 -493
- warp/tests/test_marching_cubes.py +63 -65
- warp/tests/test_mat.py +1799 -1827
- warp/tests/test_mat_lite.py +113 -115
- warp/tests/test_mat_scalar_ops.py +2905 -2889
- warp/tests/test_math.py +124 -193
- warp/tests/test_matmul.py +498 -499
- warp/tests/test_matmul_lite.py +408 -410
- warp/tests/test_mempool.py +186 -190
- warp/tests/test_mesh.py +281 -324
- warp/tests/test_mesh_query_aabb.py +226 -241
- warp/tests/test_mesh_query_point.py +690 -702
- warp/tests/test_mesh_query_ray.py +290 -303
- warp/tests/test_mlp.py +274 -276
- warp/tests/test_model.py +108 -110
- warp/tests/test_module_hashing.py +111 -0
- warp/tests/test_modules_lite.py +36 -39
- warp/tests/test_multigpu.py +161 -163
- warp/tests/test_noise.py +244 -248
- warp/tests/test_operators.py +248 -250
- warp/tests/test_options.py +121 -125
- warp/tests/test_peer.py +131 -137
- warp/tests/test_pinned.py +76 -78
- warp/tests/test_print.py +52 -54
- warp/tests/test_quat.py +2084 -2086
- warp/tests/test_rand.py +324 -288
- warp/tests/test_reload.py +207 -217
- warp/tests/test_rounding.py +177 -179
- warp/tests/test_runlength_encode.py +188 -190
- warp/tests/test_sim_grad.py +241 -0
- warp/tests/test_sim_kinematics.py +89 -97
- warp/tests/test_smoothstep.py +166 -168
- warp/tests/test_snippet.py +303 -266
- warp/tests/test_sparse.py +466 -460
- warp/tests/test_spatial.py +2146 -2148
- warp/tests/test_special_values.py +362 -0
- warp/tests/test_streams.py +484 -473
- warp/tests/test_struct.py +708 -675
- warp/tests/test_tape.py +171 -148
- warp/tests/test_torch.py +741 -743
- warp/tests/test_transient_module.py +85 -87
- warp/tests/test_types.py +554 -659
- warp/tests/test_utils.py +488 -499
- warp/tests/test_vec.py +1262 -1268
- warp/tests/test_vec_lite.py +71 -73
- warp/tests/test_vec_scalar_ops.py +2097 -2099
- warp/tests/test_verify_fp.py +92 -94
- warp/tests/test_volume.py +961 -736
- warp/tests/test_volume_write.py +338 -265
- warp/tests/unittest_serial.py +38 -37
- warp/tests/unittest_suites.py +367 -359
- warp/tests/unittest_utils.py +434 -578
- warp/tests/unused_test_misc.py +69 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +563 -561
- warp/torch.py +321 -295
- warp/types.py +4941 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
- warp_lang-1.2.0.dist-info/RECORD +359 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
- warp/native/nanovdb/PNanoVDBWrite.h +0 -295
- warp_lang-1.0.2.dist-info/RECORD +0 -352
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -1,88 +1,88 @@
|
|
|
1
|
-
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import cupy as cp
|
|
9
|
-
import cupyx as cpx
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
13
|
-
i = indices[:, 0]
|
|
14
|
-
j = indices[:, 1]
|
|
15
|
-
|
|
16
|
-
xi = x[i]
|
|
17
|
-
xj = x[j]
|
|
18
|
-
|
|
19
|
-
vi = v[i]
|
|
20
|
-
vj = v[j]
|
|
21
|
-
|
|
22
|
-
xij = xi - xj
|
|
23
|
-
vij = vi - vj
|
|
24
|
-
|
|
25
|
-
l = cp.linalg.norm(xij, axis=1)
|
|
26
|
-
l_inv = 1.0 / l
|
|
27
|
-
|
|
28
|
-
# normalized spring direction
|
|
29
|
-
dir = (xij.T * l_inv).T
|
|
30
|
-
|
|
31
|
-
c = l - rest
|
|
32
|
-
dcdt = cp.sum(dir * vij, axis=1)
|
|
33
|
-
|
|
34
|
-
# damping based on relative velocity.
|
|
35
|
-
fs = dir.T * (ke * c + kd * dcdt)
|
|
36
|
-
|
|
37
|
-
cpx.scatter_add(f, i, -fs.T)
|
|
38
|
-
cpx.scatter_add(f, j, fs.T)
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
def integrate_particles(x, v, f, w, dt):
|
|
42
|
-
g = cp.array((0.0, 0.0 - 9.8, 0.0))
|
|
43
|
-
s = w > 0.0
|
|
44
|
-
|
|
45
|
-
a_ext = g * s[:, None]
|
|
46
|
-
|
|
47
|
-
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
48
|
-
v += ((f.T * w).T + a_ext) * dt
|
|
49
|
-
x += v * dt
|
|
50
|
-
|
|
51
|
-
# clear forces
|
|
52
|
-
f *= 0.0
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
class CpIntegrator:
|
|
56
|
-
def __init__(self, cloth):
|
|
57
|
-
self.cloth = cloth
|
|
58
|
-
|
|
59
|
-
self.positions = cp.array(self.cloth.positions)
|
|
60
|
-
self.velocities = cp.array(self.cloth.velocities)
|
|
61
|
-
self.inv_mass = cp.array(self.cloth.inv_masses)
|
|
62
|
-
|
|
63
|
-
self.spring_indices = cp.array(self.cloth.spring_indices)
|
|
64
|
-
self.spring_lengths = cp.array(self.cloth.spring_lengths)
|
|
65
|
-
self.spring_stiffness = cp.array(self.cloth.spring_stiffness)
|
|
66
|
-
self.spring_damping = cp.array(self.cloth.spring_damping)
|
|
67
|
-
|
|
68
|
-
self.forces = cp.zeros((self.cloth.num_particles, 3), dtype=cp.float32)
|
|
69
|
-
|
|
70
|
-
def simulate(self, dt, substeps):
|
|
71
|
-
sim_dt = dt / substeps
|
|
72
|
-
|
|
73
|
-
for
|
|
74
|
-
eval_springs(
|
|
75
|
-
self.positions,
|
|
76
|
-
self.velocities,
|
|
77
|
-
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
78
|
-
self.spring_lengths,
|
|
79
|
-
self.spring_stiffness,
|
|
80
|
-
self.spring_damping,
|
|
81
|
-
self.forces,
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
# integrate
|
|
85
|
-
integrate_particles(self.positions, self.velocities, self.forces, self.inv_mass, sim_dt)
|
|
86
|
-
|
|
87
|
-
# return np.array(self.positions)
|
|
88
|
-
return self.positions.get()
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import cupy as cp
|
|
9
|
+
import cupyx as cpx
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
13
|
+
i = indices[:, 0]
|
|
14
|
+
j = indices[:, 1]
|
|
15
|
+
|
|
16
|
+
xi = x[i]
|
|
17
|
+
xj = x[j]
|
|
18
|
+
|
|
19
|
+
vi = v[i]
|
|
20
|
+
vj = v[j]
|
|
21
|
+
|
|
22
|
+
xij = xi - xj
|
|
23
|
+
vij = vi - vj
|
|
24
|
+
|
|
25
|
+
l = cp.linalg.norm(xij, axis=1)
|
|
26
|
+
l_inv = 1.0 / l
|
|
27
|
+
|
|
28
|
+
# normalized spring direction
|
|
29
|
+
dir = (xij.T * l_inv).T
|
|
30
|
+
|
|
31
|
+
c = l - rest
|
|
32
|
+
dcdt = cp.sum(dir * vij, axis=1)
|
|
33
|
+
|
|
34
|
+
# damping based on relative velocity.
|
|
35
|
+
fs = dir.T * (ke * c + kd * dcdt)
|
|
36
|
+
|
|
37
|
+
cpx.scatter_add(f, i, -fs.T)
|
|
38
|
+
cpx.scatter_add(f, j, fs.T)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def integrate_particles(x, v, f, w, dt):
|
|
42
|
+
g = cp.array((0.0, 0.0 - 9.8, 0.0))
|
|
43
|
+
s = w > 0.0
|
|
44
|
+
|
|
45
|
+
a_ext = g * s[:, None]
|
|
46
|
+
|
|
47
|
+
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
48
|
+
v += ((f.T * w).T + a_ext) * dt
|
|
49
|
+
x += v * dt
|
|
50
|
+
|
|
51
|
+
# clear forces
|
|
52
|
+
f *= 0.0
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class CpIntegrator:
|
|
56
|
+
def __init__(self, cloth):
|
|
57
|
+
self.cloth = cloth
|
|
58
|
+
|
|
59
|
+
self.positions = cp.array(self.cloth.positions)
|
|
60
|
+
self.velocities = cp.array(self.cloth.velocities)
|
|
61
|
+
self.inv_mass = cp.array(self.cloth.inv_masses)
|
|
62
|
+
|
|
63
|
+
self.spring_indices = cp.array(self.cloth.spring_indices)
|
|
64
|
+
self.spring_lengths = cp.array(self.cloth.spring_lengths)
|
|
65
|
+
self.spring_stiffness = cp.array(self.cloth.spring_stiffness)
|
|
66
|
+
self.spring_damping = cp.array(self.cloth.spring_damping)
|
|
67
|
+
|
|
68
|
+
self.forces = cp.zeros((self.cloth.num_particles, 3), dtype=cp.float32)
|
|
69
|
+
|
|
70
|
+
def simulate(self, dt, substeps):
|
|
71
|
+
sim_dt = dt / substeps
|
|
72
|
+
|
|
73
|
+
for _s in range(substeps):
|
|
74
|
+
eval_springs(
|
|
75
|
+
self.positions,
|
|
76
|
+
self.velocities,
|
|
77
|
+
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
78
|
+
self.spring_lengths,
|
|
79
|
+
self.spring_stiffness,
|
|
80
|
+
self.spring_damping,
|
|
81
|
+
self.forces,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# integrate
|
|
85
|
+
integrate_particles(self.positions, self.velocities, self.forces, self.inv_mass, sim_dt)
|
|
86
|
+
|
|
87
|
+
# return np.array(self.positions)
|
|
88
|
+
return self.positions.get()
|
|
@@ -1,100 +1,97 @@
|
|
|
1
|
-
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import
|
|
9
|
-
|
|
10
|
-
import
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
f =
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
f
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
self.
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
self.
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
self.
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
self.
|
|
88
|
-
self.
|
|
89
|
-
self.
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
)
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
)
|
|
99
|
-
|
|
100
|
-
return np.array(self.positions)
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import jax.lax
|
|
9
|
+
import jax.numpy as jnp
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@jax.jit
|
|
14
|
+
def eval_springs(x, v, indices, rest, ke, kd):
|
|
15
|
+
i = indices[:, 0]
|
|
16
|
+
j = indices[:, 1]
|
|
17
|
+
|
|
18
|
+
xi = x[i]
|
|
19
|
+
xj = x[j]
|
|
20
|
+
|
|
21
|
+
vi = v[i]
|
|
22
|
+
vj = v[j]
|
|
23
|
+
|
|
24
|
+
xij = xi - xj
|
|
25
|
+
vij = vi - vj
|
|
26
|
+
|
|
27
|
+
l = jnp.linalg.norm(xij, axis=1)
|
|
28
|
+
l_inv = 1.0 / l
|
|
29
|
+
|
|
30
|
+
# normalized spring direction
|
|
31
|
+
dir = (xij.T * l_inv).T
|
|
32
|
+
|
|
33
|
+
c = l - rest
|
|
34
|
+
dcdt = jnp.sum(dir * vij, axis=1)
|
|
35
|
+
|
|
36
|
+
# damping based on relative velocity.
|
|
37
|
+
fs = dir.T * (ke * c + kd * dcdt)
|
|
38
|
+
|
|
39
|
+
f = jnp.zeros_like(v)
|
|
40
|
+
|
|
41
|
+
# f = jax.ops.index_add(f, i, -fs.T, indices_are_sorted=False, unique_indices=False)
|
|
42
|
+
# f = jax.ops.index_add(f, j, fs.T, indices_are_sorted=False, unique_indices=False)
|
|
43
|
+
|
|
44
|
+
f.at[i].add(-fs.T)
|
|
45
|
+
f.at[j].add(fs.T)
|
|
46
|
+
|
|
47
|
+
return f
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@jax.jit
|
|
51
|
+
def integrate_particles(x, v, f, w, dt):
|
|
52
|
+
g = jnp.array((0.0, 0.0 - 9.8, 0.0))
|
|
53
|
+
s = w > 0.0
|
|
54
|
+
|
|
55
|
+
a_ext = g * s[:, None]
|
|
56
|
+
|
|
57
|
+
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
58
|
+
v += ((f.T * w).T + a_ext) * dt
|
|
59
|
+
x += v * dt
|
|
60
|
+
|
|
61
|
+
return (x, v)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class JxIntegrator:
|
|
65
|
+
def __init__(self, cloth):
|
|
66
|
+
self.cloth = cloth
|
|
67
|
+
|
|
68
|
+
self.positions = jnp.array(self.cloth.positions)
|
|
69
|
+
self.velocities = jnp.array(self.cloth.velocities)
|
|
70
|
+
self.inv_mass = jnp.array(self.cloth.inv_masses)
|
|
71
|
+
|
|
72
|
+
print(self.positions.device_buffer.device())
|
|
73
|
+
|
|
74
|
+
self.spring_indices = jnp.array(self.cloth.spring_indices)
|
|
75
|
+
self.spring_lengths = jnp.array(self.cloth.spring_lengths)
|
|
76
|
+
self.spring_stiffness = jnp.array(self.cloth.spring_stiffness)
|
|
77
|
+
self.spring_damping = jnp.array(self.cloth.spring_damping)
|
|
78
|
+
|
|
79
|
+
def simulate(self, dt, substeps):
|
|
80
|
+
sim_dt = dt / substeps
|
|
81
|
+
|
|
82
|
+
for _s in range(substeps):
|
|
83
|
+
f = eval_springs(
|
|
84
|
+
self.positions,
|
|
85
|
+
self.velocities,
|
|
86
|
+
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
87
|
+
self.spring_lengths,
|
|
88
|
+
self.spring_stiffness,
|
|
89
|
+
self.spring_damping,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# integrate
|
|
93
|
+
(self.positions, self.velocities) = integrate_particles(
|
|
94
|
+
self.positions, self.velocities, f, self.inv_mass, sim_dt
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
return np.array(self.positions)
|
|
@@ -1,142 +1,146 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
import cupy as cp
|
|
4
|
-
|
|
5
|
-
import
|
|
6
|
-
|
|
7
|
-
# Notes:
|
|
8
|
-
#
|
|
9
|
-
# Current implementation requires some familarity of writing custom cuda kernels
|
|
10
|
-
# May be improved with cuda ufuncs and/or writing custom numba type extensions.
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
@cuda.jit(device=True)
|
|
14
|
-
def norm(x):
|
|
15
|
-
s = float32(0.0)
|
|
16
|
-
for i in range(3):
|
|
17
|
-
s += x[i] * x[i]
|
|
18
|
-
return math.sqrt(s)
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
@cuda.jit(device=True)
|
|
22
|
-
def dot(x, y):
|
|
23
|
-
s = float32(0.0)
|
|
24
|
-
for i in range(3):
|
|
25
|
-
s += x[i] * y[i]
|
|
26
|
-
return s
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
@cuda.jit
|
|
30
|
-
def eval_springs_cuda(
|
|
31
|
-
num_springs, # (1,)
|
|
32
|
-
xs, # position (N, 3)
|
|
33
|
-
vs, # velocities (N, 3)
|
|
34
|
-
indices, # spring indices (S, 2)
|
|
35
|
-
rests, # spring rest length (S,)
|
|
36
|
-
kes, # stiffness (S,)
|
|
37
|
-
kds, # damping (S,)
|
|
38
|
-
fs,
|
|
39
|
-
): # forces (N, 3)
|
|
40
|
-
tidx = cuda.grid(1)
|
|
41
|
-
|
|
42
|
-
if tidx < num_springs:
|
|
43
|
-
i, j = indices[tidx][0], indices[tidx][1]
|
|
44
|
-
xi, xj = xs[i], xs[j]
|
|
45
|
-
vi, vj = vs[i], vs[j]
|
|
46
|
-
rest, ke, kd = rests[tidx], kes[tidx], kds[tidx]
|
|
47
|
-
|
|
48
|
-
xij = cuda.local.array(3, dtype=cp.float32)
|
|
49
|
-
vij = cuda.local.array(3, dtype=cp.float32)
|
|
50
|
-
for k in range(3):
|
|
51
|
-
xij[k] = xi[k] - xj[k]
|
|
52
|
-
for k in range(3):
|
|
53
|
-
vij[k] = vi[k] - vj[k]
|
|
54
|
-
|
|
55
|
-
l = norm(xij)
|
|
56
|
-
|
|
57
|
-
l_inv = float32(1.0) / l
|
|
58
|
-
|
|
59
|
-
# normalized spring direction
|
|
60
|
-
xij_unit = cuda.local.array(3, dtype=cp.float32)
|
|
61
|
-
for k in range(3):
|
|
62
|
-
xij_unit[k] = xij[k] * l_inv
|
|
63
|
-
c = l - rest
|
|
64
|
-
dcdt = dot(xij_unit, vij)
|
|
65
|
-
|
|
66
|
-
# mass-spring-damper model
|
|
67
|
-
fac = ke * c + kd * dcdt
|
|
68
|
-
df = cuda.local.array(3, dtype=cp.float32)
|
|
69
|
-
for k in range(3):
|
|
70
|
-
df[k] = xij_unit[k] * fac
|
|
71
|
-
|
|
72
|
-
for k in range(3):
|
|
73
|
-
cuda.atomic.add(fs[i], k, -df[k])
|
|
74
|
-
cuda.atomic.add(fs[j], k, df[k])
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
# Support const array with cp array?
|
|
78
|
-
g = np.array([0.0, 0.0 - 9.8, 0.0], dtype=np.float32)
|
|
79
|
-
z = np.array([0.0, 0.0, 0.0], dtype=np.float32)
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
@cuda.jit
|
|
83
|
-
def integrate_particles_cuda(
|
|
84
|
-
xs,
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
self.
|
|
107
|
-
|
|
108
|
-
self.
|
|
109
|
-
self.
|
|
110
|
-
self.
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
self.
|
|
114
|
-
|
|
115
|
-
self.
|
|
116
|
-
|
|
117
|
-
self.
|
|
118
|
-
|
|
119
|
-
self.
|
|
120
|
-
self.
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
self.
|
|
132
|
-
self.
|
|
133
|
-
self.
|
|
134
|
-
self.
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
import cupy as cp
|
|
4
|
+
import numpy as np
|
|
5
|
+
from numba import cuda, float32
|
|
6
|
+
|
|
7
|
+
# Notes:
|
|
8
|
+
#
|
|
9
|
+
# Current implementation requires some familarity of writing custom cuda kernels
|
|
10
|
+
# May be improved with cuda ufuncs and/or writing custom numba type extensions.
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@cuda.jit(device=True)
|
|
14
|
+
def norm(x):
|
|
15
|
+
s = float32(0.0)
|
|
16
|
+
for i in range(3):
|
|
17
|
+
s += x[i] * x[i]
|
|
18
|
+
return math.sqrt(s)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@cuda.jit(device=True)
|
|
22
|
+
def dot(x, y):
|
|
23
|
+
s = float32(0.0)
|
|
24
|
+
for i in range(3):
|
|
25
|
+
s += x[i] * y[i]
|
|
26
|
+
return s
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@cuda.jit
|
|
30
|
+
def eval_springs_cuda(
|
|
31
|
+
num_springs, # (1,)
|
|
32
|
+
xs, # position (N, 3)
|
|
33
|
+
vs, # velocities (N, 3)
|
|
34
|
+
indices, # spring indices (S, 2)
|
|
35
|
+
rests, # spring rest length (S,)
|
|
36
|
+
kes, # stiffness (S,)
|
|
37
|
+
kds, # damping (S,)
|
|
38
|
+
fs,
|
|
39
|
+
): # forces (N, 3)
|
|
40
|
+
tidx = cuda.grid(1)
|
|
41
|
+
|
|
42
|
+
if tidx < num_springs:
|
|
43
|
+
i, j = indices[tidx][0], indices[tidx][1]
|
|
44
|
+
xi, xj = xs[i], xs[j]
|
|
45
|
+
vi, vj = vs[i], vs[j]
|
|
46
|
+
rest, ke, kd = rests[tidx], kes[tidx], kds[tidx]
|
|
47
|
+
|
|
48
|
+
xij = cuda.local.array(3, dtype=cp.float32)
|
|
49
|
+
vij = cuda.local.array(3, dtype=cp.float32)
|
|
50
|
+
for k in range(3):
|
|
51
|
+
xij[k] = xi[k] - xj[k]
|
|
52
|
+
for k in range(3):
|
|
53
|
+
vij[k] = vi[k] - vj[k]
|
|
54
|
+
|
|
55
|
+
l = norm(xij)
|
|
56
|
+
|
|
57
|
+
l_inv = float32(1.0) / l
|
|
58
|
+
|
|
59
|
+
# normalized spring direction
|
|
60
|
+
xij_unit = cuda.local.array(3, dtype=cp.float32)
|
|
61
|
+
for k in range(3):
|
|
62
|
+
xij_unit[k] = xij[k] * l_inv
|
|
63
|
+
c = l - rest
|
|
64
|
+
dcdt = dot(xij_unit, vij)
|
|
65
|
+
|
|
66
|
+
# mass-spring-damper model
|
|
67
|
+
fac = ke * c + kd * dcdt
|
|
68
|
+
df = cuda.local.array(3, dtype=cp.float32)
|
|
69
|
+
for k in range(3):
|
|
70
|
+
df[k] = xij_unit[k] * fac
|
|
71
|
+
|
|
72
|
+
for k in range(3):
|
|
73
|
+
cuda.atomic.add(fs[i], k, -df[k])
|
|
74
|
+
cuda.atomic.add(fs[j], k, df[k])
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
# Support const array with cp array?
|
|
78
|
+
g = np.array([0.0, 0.0 - 9.8, 0.0], dtype=np.float32)
|
|
79
|
+
z = np.array([0.0, 0.0, 0.0], dtype=np.float32)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@cuda.jit
|
|
83
|
+
def integrate_particles_cuda(
|
|
84
|
+
xs, # position (N, 3)
|
|
85
|
+
vs, # velocity (N, 3)
|
|
86
|
+
fs, # force (N, 3)
|
|
87
|
+
ws, # inverse of mass (N,)
|
|
88
|
+
dt,
|
|
89
|
+
): # dt (1,)
|
|
90
|
+
i = cuda.grid(1)
|
|
91
|
+
|
|
92
|
+
if i < xs.shape[0]:
|
|
93
|
+
w = ws[i]
|
|
94
|
+
a = cuda.const.array_like(g) if w > 0.0 else cuda.const.array_like(z)
|
|
95
|
+
|
|
96
|
+
for j in range(3):
|
|
97
|
+
# vs[i] += ((f * w) + a) * dt (ideally)
|
|
98
|
+
vs[i][j] = vs[i][j] + ((fs[i][j] * w) + a[j]) * dt
|
|
99
|
+
xs[i][j] = xs[i][j] + vs[i][j] * dt
|
|
100
|
+
|
|
101
|
+
fs[i] = 0.0
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
class NbIntegrator:
|
|
105
|
+
def __init__(self, cloth):
|
|
106
|
+
self.cloth = cloth
|
|
107
|
+
|
|
108
|
+
self.positions = cp.array(self.cloth.positions)
|
|
109
|
+
self.velocities = cp.array(self.cloth.velocities)
|
|
110
|
+
self.inv_mass = cp.array(self.cloth.inv_masses)
|
|
111
|
+
|
|
112
|
+
self.spring_indices = cp.array(self.cloth.spring_indices)
|
|
113
|
+
self.spring_lengths = cp.array(self.cloth.spring_lengths)
|
|
114
|
+
self.spring_stiffness = cp.array(self.cloth.spring_stiffness)
|
|
115
|
+
self.spring_damping = cp.array(self.cloth.spring_damping)
|
|
116
|
+
|
|
117
|
+
self.forces = cp.zeros((self.cloth.num_particles, 3), dtype=cp.float32)
|
|
118
|
+
|
|
119
|
+
self.num_particles = self.positions.shape[0]
|
|
120
|
+
self.integrate_tpb = 4
|
|
121
|
+
self.integrate_nb = self.num_particles // self.integrate_tpb + 1
|
|
122
|
+
|
|
123
|
+
self.spring_tpb = 4
|
|
124
|
+
self.spring_nb = self.cloth.num_springs // self.spring_tpb + 1
|
|
125
|
+
|
|
126
|
+
def simulate(self, dt, substeps):
|
|
127
|
+
sim_dt = dt / substeps
|
|
128
|
+
|
|
129
|
+
for _s in range(substeps):
|
|
130
|
+
eval_springs_cuda[self.spring_nb, self.spring_tpb](
|
|
131
|
+
self.cloth.num_springs,
|
|
132
|
+
self.positions,
|
|
133
|
+
self.velocities,
|
|
134
|
+
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
135
|
+
self.spring_lengths,
|
|
136
|
+
self.spring_stiffness,
|
|
137
|
+
self.spring_damping,
|
|
138
|
+
self.forces,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# integrate
|
|
142
|
+
integrate_particles_cuda[self.integrate_nb, self.integrate_tpb](
|
|
143
|
+
self.positions, self.velocities, self.forces, self.inv_mass, sim_dt
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
return self.positions.get()
|