warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/native/noise.h CHANGED
@@ -1,850 +1,850 @@
1
- /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
- * NVIDIA CORPORATION and its licensors retain all intellectual property
3
- * and proprietary rights in and to this software, related documentation
4
- * and any modifications thereto. Any use, reproduction, disclosure or
5
- * distribution of this software and related documentation without an express
6
- * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
- */
8
-
9
- #pragma once
10
-
11
- #ifndef M_PI_F
12
- #define M_PI_F 3.14159265358979323846f
13
- #endif
14
-
15
- namespace wp
16
- {
17
-
18
- inline CUDA_CALLABLE float smootherstep(float t)
19
- {
20
- return t * t * t * (t * (t * 6.f - 15.f) + 10.f);
21
- }
22
-
23
- inline CUDA_CALLABLE float smootherstep_gradient(float t)
24
- {
25
- return 30.f * t * t * (t * (t - 2.f) + 1.f);
26
- }
27
-
28
- inline CUDA_CALLABLE float smoothstep(float t)
29
- {
30
- return t * t * (3.f - t * 2.f);
31
- }
32
-
33
- inline CUDA_CALLABLE float smoothstep_gradient(float t)
34
- {
35
- return 6.f * t * (1.f - t);
36
- }
37
-
38
- inline CUDA_CALLABLE float interpolate(float a0, float a1, float t)
39
- {
40
- return (a1 - a0) * smootherstep(t) + a0;
41
- // return (a1 - a0) * smoothstep(t) + a0;
42
- // return (a1 - a0) * t + a0;
43
- }
44
-
45
- inline CUDA_CALLABLE float interpolate_gradient(float a0, float a1, float t, float d_a0, float d_a1, float d_t)
46
- {
47
- return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
48
- // return (d_a1 - d_a0) * smoothstep(t) + (a1 - a0) * smoothstep_gradient(t) * d_t + d_a0;
49
- // return (d_a1 - d_a0) * t + (a1 - a0) * d_t + d_a0;
50
- }
51
-
52
- inline CUDA_CALLABLE vec2 interpolate_gradient_2d(float a0, float a1, float t, vec2& d_a0, vec2& d_a1, vec2& d_t)
53
- {
54
- return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
55
- }
56
-
57
- inline CUDA_CALLABLE vec3 interpolate_gradient_3d(float a0, float a1, float t, vec3& d_a0, vec3& d_a1, vec3& d_t)
58
- {
59
- return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
60
- }
61
-
62
- inline CUDA_CALLABLE vec4 interpolate_gradient_4d(float a0, float a1, float t, vec4& d_a0, vec4& d_a1, vec4& d_t)
63
- {
64
- return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
65
- }
66
-
67
- inline CUDA_CALLABLE float random_gradient_1d(uint32 state, int ix)
68
- {
69
- const uint32 p1 = 73856093;
70
- uint32 idx = ix*p1 + state;
71
- return randf(idx, -1.f, 1.f);
72
- }
73
-
74
- inline CUDA_CALLABLE vec2 random_gradient_2d(uint32 state, int ix, int iy)
75
- {
76
- const uint32 p1 = 73856093;
77
- const uint32 p2 = 19349663;
78
- uint32 idx = ix*p1 ^ iy*p2 + state;
79
-
80
- return normalize(sample_unit_square(idx));
81
- }
82
-
83
- inline CUDA_CALLABLE vec3 random_gradient_3d(uint32 state, int ix, int iy, int iz)
84
- {
85
- const uint32 p1 = 73856093;
86
- const uint32 p2 = 19349663;
87
- const uint32 p3 = 53471161;
88
- uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 + state;
89
-
90
- return normalize(sample_unit_cube(idx));
91
- }
92
-
93
- inline CUDA_CALLABLE vec4 random_gradient_4d(uint32 state, int ix, int iy, int iz, int it)
94
- {
95
- const uint32 p1 = 73856093;
96
- const uint32 p2 = 19349663;
97
- const uint32 p3 = 53471161;
98
- const uint32 p4 = 10000019;
99
- uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 ^ it*p4 + state;
100
-
101
- return normalize(sample_unit_hypercube(idx));
102
- }
103
-
104
- inline CUDA_CALLABLE float dot_grid_gradient_1d(uint32 state, int ix, float dx)
105
- {
106
- float gradient = random_gradient_1d(state, ix);
107
- return dx*gradient;
108
- }
109
-
110
- inline CUDA_CALLABLE float dot_grid_gradient_2d(uint32 state, int ix, int iy, float dx, float dy)
111
- {
112
- vec2 gradient = random_gradient_2d(state, ix, iy);
113
- return (dx*gradient[0] + dy*gradient[1]);
114
- }
115
-
116
- inline CUDA_CALLABLE float dot_grid_gradient_3d(uint32 state, int ix, int iy, int iz, float dx, float dy, float dz)
117
- {
118
- vec3 gradient = random_gradient_3d(state, ix, iy, iz);
119
- return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2]);
120
- }
121
-
122
- inline CUDA_CALLABLE float dot_grid_gradient_4d(uint32 state, int ix, int iy, int iz, int it, float dx, float dy, float dz, float dt)
123
- {
124
- vec4 gradient = random_gradient_4d(state, ix, iy, iz, it);
125
- return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2] + dt*gradient[3]);
126
- }
127
-
128
- inline CUDA_CALLABLE float noise_1d(uint32 state, int x0, int x1, float dx)
129
- {
130
- //vX
131
- float v0 = dot_grid_gradient_1d(state, x0, dx);
132
- float v1 = dot_grid_gradient_1d(state, x1, dx-1.f);
133
-
134
- return interpolate(v0, v1, dx);
135
- }
136
-
137
- inline CUDA_CALLABLE float noise_1d_gradient(uint32 state, int x0, int x1, float dx)
138
- {
139
- float gradient_x0 = random_gradient_1d(state, x0);
140
- float v0 = dx * gradient_x0;
141
-
142
- float gradient_x1 = random_gradient_1d(state, x1);
143
- float v1 = (dx-1.f) * gradient_x1;
144
-
145
- return interpolate_gradient(v0, v1, dx, gradient_x0, gradient_x1, 1.f);
146
- }
147
-
148
- inline CUDA_CALLABLE float noise_2d(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
149
- {
150
- //vXY
151
- float v00 = dot_grid_gradient_2d(state, x0, y0, dx, dy);
152
- float v10 = dot_grid_gradient_2d(state, x1, y0, dx-1.f, dy);
153
- float xi0 = interpolate(v00, v10, dx);
154
-
155
- float v01 = dot_grid_gradient_2d(state, x0, y1, dx, dy-1.f);
156
- float v11 = dot_grid_gradient_2d(state, x1, y1, dx-1.f, dy-1.f);
157
- float xi1 = interpolate(v01, v11, dx);
158
-
159
- return interpolate(xi0, xi1, dy);
160
- }
161
-
162
- inline CUDA_CALLABLE vec2 noise_2d_gradient(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
163
- {
164
- vec2 d00 = vec2(dx, dy);
165
- vec2 gradient_v00 = random_gradient_2d(state, x0, y0);
166
- float v00 = dot(d00, gradient_v00);
167
-
168
- vec2 d10 = vec2(dx-1.f, dy);
169
- vec2 gradient_v10 = random_gradient_2d(state, x1, y0);
170
- float v10 = dot(d10, gradient_v10);
171
-
172
- vec2 d01 = vec2(dx, dy-1.f);
173
- vec2 gradient_v01 = random_gradient_2d(state, x0, y1);
174
- float v01 = dot(d01, gradient_v01);
175
-
176
- vec2 d11 = vec2(dx-1.f, dy-1.f);
177
- vec2 gradient_v11 = random_gradient_2d(state, x1, y1);
178
- float v11 = dot(d11, gradient_v11);
179
-
180
- vec2 dx_dt = vec2(1.f, 0.f);
181
-
182
- float xi0 = interpolate(v00, v10, dx);
183
- vec2 gradient_xi0 = interpolate_gradient_2d(v00, v10, dx, gradient_v00, gradient_v10, dx_dt);
184
-
185
- float xi1 = interpolate(v01, v11, dx);
186
- vec2 gradient_xi1 = interpolate_gradient_2d(v01, v11, dx, gradient_v01, gradient_v11, dx_dt);
187
-
188
- vec2 dy_dt = vec2(0.f, 1.f);
189
-
190
- vec2 gradient = interpolate_gradient_2d(xi0, xi1, dy, gradient_xi0, gradient_xi1, dy_dt);
191
-
192
- return gradient;
193
- }
194
-
195
- inline CUDA_CALLABLE float noise_3d(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
196
- {
197
- //vXYZ
198
- float v000 = dot_grid_gradient_3d(state, x0, y0, z0, dx, dy, dz);
199
- float v100 = dot_grid_gradient_3d(state, x1, y0, z0, dx-1.f, dy, dz);
200
- float xi00 = interpolate(v000, v100, dx);
201
-
202
- float v010 = dot_grid_gradient_3d(state, x0, y1, z0, dx, dy-1.f, dz);
203
- float v110 = dot_grid_gradient_3d(state, x1, y1, z0, dx-1.f, dy-1.f, dz);
204
- float xi10 = interpolate(v010, v110, dx);
205
-
206
- float yi0 = interpolate(xi00, xi10, dy);
207
-
208
- float v001 = dot_grid_gradient_3d(state, x0, y0, z1, dx, dy, dz-1.f);
209
- float v101 = dot_grid_gradient_3d(state, x1, y0, z1, dx-1.f, dy, dz-1.f);
210
- float xi01 = interpolate(v001, v101, dx);
211
-
212
- float v011 = dot_grid_gradient_3d(state, x0, y1, z1, dx, dy-1.f, dz-1.f);
213
- float v111 = dot_grid_gradient_3d(state, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f);
214
- float xi11 = interpolate(v011, v111, dx);
215
-
216
- float yi1 = interpolate(xi01, xi11, dy);
217
-
218
- return interpolate(yi0, yi1, dz);
219
- }
220
-
221
- inline CUDA_CALLABLE vec3 noise_3d_gradient(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
222
- {
223
- vec3 d000 = vec3(dx, dy, dz);
224
- vec3 gradient_v000 = random_gradient_3d(state, x0, y0, z0);
225
- float v000 = dot(d000, gradient_v000);
226
-
227
- vec3 d100 = vec3(dx-1.f, dy, dz);
228
- vec3 gradient_v100 = random_gradient_3d(state, x1, y0, z0);
229
- float v100 = dot(d100, gradient_v100);
230
-
231
- vec3 d010 = vec3(dx, dy-1.f, dz);
232
- vec3 gradient_v010 = random_gradient_3d(state, x0, y1, z0);
233
- float v010 = dot(d010, gradient_v010);
234
-
235
- vec3 d110 = vec3(dx-1.f, dy-1.f, dz);
236
- vec3 gradient_v110 = random_gradient_3d(state, x1, y1, z0);
237
- float v110 = dot(d110, gradient_v110);
238
-
239
- vec3 d001 = vec3(dx, dy, dz-1.f);
240
- vec3 gradient_v001 = random_gradient_3d(state, x0, y0, z1);
241
- float v001 = dot(d001, gradient_v001);
242
-
243
- vec3 d101 = vec3(dx-1.f, dy, dz-1.f);
244
- vec3 gradient_v101 = random_gradient_3d(state, x1, y0, z1);
245
- float v101 = dot(d101, gradient_v101);
246
-
247
- vec3 d011 = vec3(dx, dy-1.f, dz-1.f);
248
- vec3 gradient_v011 = random_gradient_3d(state, x0, y1, z1);
249
- float v011 = dot(d011, gradient_v011);
250
-
251
- vec3 d111 = vec3(dx-1.f, dy-1.f, dz-1.f);
252
- vec3 gradient_v111 = random_gradient_3d(state, x1, y1, z1);
253
- float v111 = dot(d111, gradient_v111);
254
-
255
- vec3 dx_dt = vec3(1.f, 0.f, 0.f);
256
-
257
- float xi00 = interpolate(v000, v100, dx);
258
- vec3 gradient_xi00 = interpolate_gradient_3d(v000, v100, dx, gradient_v000, gradient_v100, dx_dt);
259
-
260
- float xi10 = interpolate(v010, v110, dx);
261
- vec3 gradient_xi10 = interpolate_gradient_3d(v010, v110, dx, gradient_v010, gradient_v110, dx_dt);
262
-
263
- float xi01 = interpolate(v001, v101, dx);
264
- vec3 gradient_xi01 = interpolate_gradient_3d(v001, v101, dx, gradient_v001, gradient_v101, dx_dt);
265
-
266
- float xi11 = interpolate(v011, v111, dx);
267
- vec3 gradient_xi11 = interpolate_gradient_3d(v011, v111, dx, gradient_v011, gradient_v111, dx_dt);
268
-
269
- vec3 dy_dt = vec3(0.f, 1.f, 0.f);
270
-
271
- float yi0 = interpolate(xi00, xi10, dy);
272
- vec3 gradient_yi0 = interpolate_gradient_3d(xi00, xi10, dy, gradient_xi00, gradient_xi10, dy_dt);
273
-
274
- float yi1 = interpolate(xi01, xi11, dy);
275
- vec3 gradient_yi1 = interpolate_gradient_3d(xi01, xi11, dy, gradient_xi01, gradient_xi11, dy_dt);
276
-
277
- vec3 dz_dt = vec3(0.f, 0.f, 1.f);
278
-
279
- vec3 gradient = interpolate_gradient_3d(yi0, yi1, dz, gradient_yi0, gradient_yi1, dz_dt);
280
-
281
- return gradient;
282
- }
283
-
284
- inline CUDA_CALLABLE float noise_4d(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
285
- {
286
- //vXYZT
287
- float v0000 = dot_grid_gradient_4d(state, x0, y0, z0, t0, dx, dy, dz, dt);
288
- float v1000 = dot_grid_gradient_4d(state, x1, y0, z0, t0, dx-1.f, dy, dz, dt);
289
- float xi000 = interpolate(v0000, v1000, dx);
290
-
291
- float v0100 = dot_grid_gradient_4d(state, x0, y1, z0, t0, dx, dy-1.f, dz, dt);
292
- float v1100 = dot_grid_gradient_4d(state, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt);
293
- float xi100 = interpolate(v0100, v1100, dx);
294
-
295
- float yi00 = interpolate(xi000, xi100, dy);
296
-
297
- float v0010 = dot_grid_gradient_4d(state, x0, y0, z1, t0, dx, dy, dz-1.f, dt);
298
- float v1010 = dot_grid_gradient_4d(state, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt);
299
- float xi010 = interpolate(v0010, v1010, dx);
300
-
301
- float v0110 = dot_grid_gradient_4d(state, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt);
302
- float v1110 = dot_grid_gradient_4d(state, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt);
303
- float xi110 = interpolate(v0110, v1110, dx);
304
-
305
- float yi10 = interpolate(xi010, xi110, dy);
306
-
307
- float zi0 = interpolate(yi00, yi10, dz);
308
-
309
- float v0001 = dot_grid_gradient_4d(state, x0, y0, z0, t1, dx, dy, dz, dt-1.f);
310
- float v1001 = dot_grid_gradient_4d(state, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f);
311
- float xi001 = interpolate(v0001, v1001, dx);
312
-
313
- float v0101 = dot_grid_gradient_4d(state, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f);
314
- float v1101 = dot_grid_gradient_4d(state, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f);
315
- float xi101 = interpolate(v0101, v1101, dx);
316
-
317
- float yi01 = interpolate(xi001, xi101, dy);
318
-
319
- float v0011 = dot_grid_gradient_4d(state, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f);
320
- float v1011 = dot_grid_gradient_4d(state, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f);
321
- float xi011 = interpolate(v0011, v1011, dx);
322
-
323
- float v0111 = dot_grid_gradient_4d(state, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f);
324
- float v1111 = dot_grid_gradient_4d(state, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f);
325
- float xi111 = interpolate(v0111, v1111, dx);
326
-
327
- float yi11 = interpolate(xi011, xi111, dy);
328
-
329
- float zi1 = interpolate(yi01, yi11, dz);
330
-
331
- return interpolate(zi0, zi1, dt);
332
- }
333
-
334
- inline CUDA_CALLABLE vec4 noise_4d_gradient(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
335
- {
336
- vec4 d0000 = vec4(dx, dy, dz, dt);
337
- vec4 gradient_v0000 = random_gradient_4d(state, x0, y0, z0, t0);
338
- float v0000 = dot(d0000, gradient_v0000);
339
-
340
- vec4 d1000 = vec4(dx-1.f, dy, dz, dt);
341
- vec4 gradient_v1000 = random_gradient_4d(state, x1, y0, z0, t0);
342
- float v1000 = dot(d1000, gradient_v1000);
343
-
344
- vec4 d0100 = vec4(dx, dy-1.f, dz, dt);
345
- vec4 gradient_v0100 = random_gradient_4d(state, x0, y1, z0, t0);
346
- float v0100 = dot(d0100, gradient_v0100);
347
-
348
- vec4 d1100 = vec4(dx-1.f, dy-1.f, dz, dt);
349
- vec4 gradient_v1100 = random_gradient_4d(state, x1, y1, z0, t0);
350
- float v1100 = dot(d1100, gradient_v1100);
351
-
352
- vec4 d0010 = vec4(dx, dy, dz-1.f, dt);
353
- vec4 gradient_v0010 = random_gradient_4d(state, x0, y0, z1, t0);
354
- float v0010 = dot(d0010, gradient_v0010);
355
-
356
- vec4 d1010 = vec4(dx-1.f, dy, dz-1.f, dt);
357
- vec4 gradient_v1010 = random_gradient_4d(state, x1, y0, z1, t0);
358
- float v1010 = dot(d1010, gradient_v1010);
359
-
360
- vec4 d0110 = vec4(dx, dy-1.f, dz-1.f, dt);
361
- vec4 gradient_v0110 = random_gradient_4d(state, x0, y1, z1, t0);
362
- float v0110 = dot(d0110, gradient_v0110);
363
-
364
- vec4 d1110 = vec4(dx-1.f, dy-1.f, dz-1.f, dt);
365
- vec4 gradient_v1110 = random_gradient_4d(state, x1, y1, z1, t0);
366
- float v1110 = dot(d1110, gradient_v1110);
367
-
368
- vec4 d0001 = vec4(dx, dy, dz, dt-1.f);
369
- vec4 gradient_v0001 = random_gradient_4d(state, x0, y0, z0, t1);
370
- float v0001 = dot(d0001, gradient_v0001);
371
-
372
- vec4 d1001 = vec4(dx-1.f, dy, dz, dt-1.f);
373
- vec4 gradient_v1001 = random_gradient_4d(state, x1, y0, z0, t1);
374
- float v1001 = dot(d1001, gradient_v1001);
375
-
376
- vec4 d0101 = vec4(dx, dy-1.f, dz, dt-1.f);
377
- vec4 gradient_v0101 = random_gradient_4d(state, x0, y1, z0, t1);
378
- float v0101 = dot(d0101, gradient_v0101);
379
-
380
- vec4 d1101 = vec4(dx-1.f, dy-1.f, dz, dt-1.f);
381
- vec4 gradient_v1101 = random_gradient_4d(state, x1, y1, z0, t1);
382
- float v1101 = dot(d1101, gradient_v1101);
383
-
384
- vec4 d0011 = vec4(dx, dy, dz-1.f, dt-1.f);
385
- vec4 gradient_v0011 = random_gradient_4d(state, x0, y0, z1, t1);
386
- float v0011 = dot(d0011, gradient_v0011);
387
-
388
- vec4 d1011 = vec4(dx-1.f, dy, dz-1.f, dt-1.f);
389
- vec4 gradient_v1011 = random_gradient_4d(state, x1, y0, z1, t1);
390
- float v1011 = dot(d1011, gradient_v1011);
391
-
392
- vec4 d0111 = vec4(dx, dy-1.f, dz-1.f, dt-1.f);
393
- vec4 gradient_v0111 = random_gradient_4d(state, x0, y1, z1, t1);
394
- float v0111 = dot(d0111, gradient_v0111);
395
-
396
- vec4 d1111 = vec4(dx-1.f, dy-1.f, dz-1.f, dt-1.f);
397
- vec4 gradient_v1111 = random_gradient_4d(state, x1, y1, z1, t1);
398
- float v1111 = dot(d1111, gradient_v1111);
399
-
400
- vec4 dx_dt = vec4(1.f, 0.f, 0.f, 0.f);
401
-
402
- float xi000 = interpolate(v0000, v1000, dx);
403
- vec4 gradient_xi000 = interpolate_gradient_4d(v0000, v1000, dx, gradient_v0000, gradient_v1000, dx_dt);
404
-
405
- float xi100 = interpolate(v0100, v1100, dx);
406
- vec4 gradient_xi100 = interpolate_gradient_4d(v0100, v1100, dx, gradient_v0100, gradient_v1100, dx_dt);
407
-
408
- float xi010 = interpolate(v0010, v1010, dx);
409
- vec4 gradient_xi010 = interpolate_gradient_4d(v0010, v1010, dx, gradient_v0010, gradient_v1010, dx_dt);
410
-
411
- float xi110 = interpolate(v0110, v1110, dx);
412
- vec4 gradient_xi110 = interpolate_gradient_4d(v0110, v1110, dx, gradient_v0110, gradient_v1110, dx_dt);
413
-
414
- float xi001 = interpolate(v0001, v1001, dx);
415
- vec4 gradient_xi001 = interpolate_gradient_4d(v0001, v1001, dx, gradient_v0001, gradient_v1001, dx_dt);
416
-
417
- float xi101 = interpolate(v0101, v1101, dx);
418
- vec4 gradient_xi101 = interpolate_gradient_4d(v0101, v1101, dx, gradient_v0101, gradient_v1101, dx_dt);
419
-
420
- float xi011 = interpolate(v0011, v1011, dx);
421
- vec4 gradient_xi011 = interpolate_gradient_4d(v0011, v1011, dx, gradient_v0011, gradient_v1011, dx_dt);
422
-
423
- float xi111 = interpolate(v0111, v1111, dx);
424
- vec4 gradient_xi111 = interpolate_gradient_4d(v0111, v1111, dx, gradient_v0111, gradient_v1111, dx_dt);
425
-
426
- vec4 dy_dt = vec4(0.f, 1.f, 0.f, 0.f);
427
-
428
- float yi00 = interpolate(xi000, xi100, dy);
429
- vec4 gradient_yi00 = interpolate_gradient_4d(xi000, xi100, dy, gradient_xi000, gradient_xi100, dy_dt);
430
-
431
- float yi10 = interpolate(xi010, xi110, dy);
432
- vec4 gradient_yi10 = interpolate_gradient_4d(xi010, xi110, dy, gradient_xi010, gradient_xi110, dy_dt);
433
-
434
- float yi01 = interpolate(xi001, xi101, dy);
435
- vec4 gradient_yi01 = interpolate_gradient_4d(xi001, xi101, dy, gradient_xi001, gradient_xi101, dy_dt);
436
-
437
- float yi11 = interpolate(xi011, xi111, dy);
438
- vec4 gradient_yi11 = interpolate_gradient_4d(xi011, xi111, dy, gradient_xi011, gradient_xi111, dy_dt);
439
-
440
- vec4 dz_dt = vec4(0.f, 0.f, 1.f, 0.f);
441
-
442
- float zi0 = interpolate(yi00, yi10, dz);
443
- vec4 gradient_zi0 = interpolate_gradient_4d(yi00, yi10, dz, gradient_yi00, gradient_yi10, dz_dt);
444
-
445
- float zi1 = interpolate(yi01, yi11, dz);
446
- vec4 gradient_zi1 = interpolate_gradient_4d(yi01, yi11, dz, gradient_yi01, gradient_yi11, dz_dt);
447
-
448
- vec4 dt_dt = vec4(0.f, 0.f, 0.f, 1.f);
449
-
450
- vec4 gradient = interpolate_gradient_4d(zi0, zi1, dt, gradient_zi0, gradient_zi1, dt_dt);
451
-
452
- return gradient;
453
- }
454
-
455
- // non-periodic Perlin noise
456
-
457
- inline CUDA_CALLABLE float noise(uint32 state, float x)
458
- {
459
- float dx = x - floor(x);
460
-
461
- int x0 = (int)floor(x);
462
- int x1 = x0 + 1;
463
-
464
- return noise_1d(state, x0, x1, dx);
465
- }
466
-
467
- inline CUDA_CALLABLE void adj_noise(uint32 state, float x, uint32& adj_state, float& adj_x, const float adj_ret)
468
- {
469
- float dx = x - floor(x);
470
-
471
- int x0 = (int)floor(x);
472
- int x1 = x0 + 1;
473
-
474
- float gradient = noise_1d_gradient(state, x0, x1, dx);
475
- adj_x += gradient * adj_ret;
476
- }
477
-
478
- inline CUDA_CALLABLE float noise(uint32 state, const vec2& xy)
479
- {
480
- float dx = xy[0] - floor(xy[0]);
481
- float dy = xy[1] - floor(xy[1]);
482
-
483
- int x0 = (int)floor(xy[0]);
484
- int y0 = (int)floor(xy[1]);
485
-
486
- int x1 = x0 + 1;
487
- int y1 = y0 + 1;
488
-
489
- return noise_2d(state, x0, y0, x1, y1, dx, dy);
490
- }
491
-
492
- inline CUDA_CALLABLE void adj_noise(uint32 state, const vec2& xy, uint32& adj_state, vec2& adj_xy, const float adj_ret)
493
- {
494
- float dx = xy[0] - floor(xy[0]);
495
- float dy = xy[1] - floor(xy[1]);
496
-
497
- int x0 = (int)floor(xy[0]);
498
- int y0 = (int)floor(xy[1]);
499
-
500
- int x1 = x0 + 1;
501
- int y1 = y0 + 1;
502
-
503
- vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
504
-
505
- adj_xy[0] += gradient[0] * adj_ret;
506
- adj_xy[1] += gradient[1] * adj_ret;
507
- }
508
-
509
- inline CUDA_CALLABLE float noise(uint32 state, const vec3& xyz)
510
- {
511
- float dx = xyz[0] - floor(xyz[0]);
512
- float dy = xyz[1] - floor(xyz[1]);
513
- float dz = xyz[2] - floor(xyz[2]);
514
-
515
- int x0 = (int)floor(xyz[0]);
516
- int y0 = (int)floor(xyz[1]);
517
- int z0 = (int)floor(xyz[2]);
518
-
519
- int x1 = x0 + 1;
520
- int y1 = y0 + 1;
521
- int z1 = z0 + 1;
522
-
523
- return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
524
- }
525
-
526
- inline CUDA_CALLABLE void adj_noise(uint32 state, const vec3& xyz, uint32& adj_state, vec3& adj_xyz, const float adj_ret)
527
- {
528
- float dx = xyz[0] - floor(xyz[0]);
529
- float dy = xyz[1] - floor(xyz[1]);
530
- float dz = xyz[2] - floor(xyz[2]);
531
-
532
- int x0 = (int)floor(xyz[0]);
533
- int y0 = (int)floor(xyz[1]);
534
- int z0 = (int)floor(xyz[2]);
535
-
536
- int x1 = x0 + 1;
537
- int y1 = y0 + 1;
538
- int z1 = z0 + 1;
539
-
540
- vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
541
- adj_xyz[0] += gradient[0] * adj_ret;
542
- adj_xyz[1] += gradient[1] * adj_ret;
543
- adj_xyz[2] += gradient[2] * adj_ret;
544
- }
545
-
546
- inline CUDA_CALLABLE float noise(uint32 state, const vec4& xyzt)
547
- {
548
- float dx = xyzt[0] - floor(xyzt[0]);
549
- float dy = xyzt[1] - floor(xyzt[1]);
550
- float dz = xyzt[2] - floor(xyzt[2]);
551
- float dt = xyzt[3] - floor(xyzt[3]);
552
-
553
- int x0 = (int)floor(xyzt[0]);
554
- int y0 = (int)floor(xyzt[1]);
555
- int z0 = (int)floor(xyzt[2]);
556
- int t0 = (int)floor(xyzt[3]);
557
-
558
- int x1 = x0 + 1;
559
- int y1 = y0 + 1;
560
- int z1 = z0 + 1;
561
- int t1 = t0 + 1;
562
-
563
- return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
564
- }
565
-
566
- inline CUDA_CALLABLE void adj_noise(uint32 state, const vec4& xyzt, uint32& adj_state, vec4& adj_xyzt, const float adj_ret)
567
- {
568
- float dx = xyzt[0] - floor(xyzt[0]);
569
- float dy = xyzt[1] - floor(xyzt[1]);
570
- float dz = xyzt[2] - floor(xyzt[2]);
571
- float dt = xyzt[3] - floor(xyzt[3]);
572
-
573
- int x0 = (int)floor(xyzt[0]);
574
- int y0 = (int)floor(xyzt[1]);
575
- int z0 = (int)floor(xyzt[2]);
576
- int t0 = (int)floor(xyzt[3]);
577
-
578
- int x1 = x0 + 1;
579
- int y1 = y0 + 1;
580
- int z1 = z0 + 1;
581
- int t1 = t0 + 1;
582
-
583
- vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
584
-
585
- adj_xyzt[0] += gradient[0] * adj_ret;
586
- adj_xyzt[1] += gradient[1] * adj_ret;
587
- adj_xyzt[2] += gradient[2] * adj_ret;
588
- adj_xyzt[3] += gradient[3] * adj_ret;
589
- }
590
-
591
- // periodic Perlin noise
592
-
593
- inline CUDA_CALLABLE float pnoise(uint32 state, float x, int px)
594
- {
595
- float dx = x - floor(x);
596
-
597
- int x0 = mod(((int)floor(x)), px);
598
- int x1 = mod((x0 + 1), px);
599
-
600
- return noise_1d(state, x0, x1, dx);
601
- }
602
-
603
- inline CUDA_CALLABLE void adj_pnoise(uint32 state, float x, int px, uint32& adj_state, float& adj_x, int& adj_px, const float adj_ret)
604
- {
605
- float dx = x - floor(x);
606
-
607
- int x0 = mod(((int)floor(x)), px);
608
- int x1 = mod((x0 + 1), px);
609
-
610
- float gradient = noise_1d_gradient(state, x0, x1, dx);
611
- adj_x += gradient * adj_ret;
612
- }
613
-
614
- inline CUDA_CALLABLE float pnoise(uint32 state, const vec2& xy, int px, int py)
615
- {
616
- float dx = xy[0] - floor(xy[0]);
617
- float dy = xy[1] - floor(xy[1]);
618
-
619
- int x0 = mod(((int)floor(xy[0])), px);
620
- int y0 = mod(((int)floor(xy[1])), py);
621
-
622
- int x1 = mod((x0 + 1), px);
623
- int y1 = mod((y0 + 1), py);
624
-
625
- return noise_2d(state, x0, y0, x1, y1, dx, dy);
626
- }
627
-
628
- inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec2& xy, int px, int py, uint32& adj_state, vec2& adj_xy, int& adj_px, int& adj_py, const float adj_ret)
629
- {
630
- float dx = xy[0] - floor(xy[0]);
631
- float dy = xy[1] - floor(xy[1]);
632
-
633
- int x0 = mod(((int)floor(xy[0])), px);
634
- int y0 = mod(((int)floor(xy[1])), py);
635
-
636
- int x1 = mod((x0 + 1), px);
637
- int y1 = mod((y0 + 1), py);
638
-
639
- vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
640
-
641
- adj_xy[0] += gradient[0] * adj_ret;
642
- adj_xy[1] += gradient[1] * adj_ret;
643
- }
644
-
645
- inline CUDA_CALLABLE float pnoise(uint32 state, const vec3& xyz, int px, int py, int pz)
646
- {
647
- float dx = xyz[0] - floor(xyz[0]);
648
- float dy = xyz[1] - floor(xyz[1]);
649
- float dz = xyz[2] - floor(xyz[2]);
650
-
651
- int x0 = mod(((int)floor(xyz[0])), px);
652
- int y0 = mod(((int)floor(xyz[1])), py);
653
- int z0 = mod(((int)floor(xyz[2])), pz);
654
-
655
- int x1 = mod((x0 + 1), px);
656
- int y1 = mod((y0 + 1), py);
657
- int z1 = mod((z0 + 1), pz);
658
-
659
- return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
660
- }
661
-
662
- inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec3& xyz, int px, int py, int pz, uint32& adj_state, vec3& adj_xyz, int& adj_px, int& adj_py, int& adj_pz, const float adj_ret)
663
- {
664
- float dx = xyz[0] - floor(xyz[0]);
665
- float dy = xyz[1] - floor(xyz[1]);
666
- float dz = xyz[2] - floor(xyz[2]);
667
-
668
- int x0 = mod(((int)floor(xyz[0])), px);
669
- int y0 = mod(((int)floor(xyz[1])), py);
670
- int z0 = mod(((int)floor(xyz[2])), pz);
671
-
672
- int x1 = mod((x0 + 1), px);
673
- int y1 = mod((y0 + 1), py);
674
- int z1 = mod((z0 + 1), pz);
675
-
676
- vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
677
- adj_xyz[0] += gradient[0] * adj_ret;
678
- adj_xyz[1] += gradient[1] * adj_ret;
679
- adj_xyz[2] += gradient[2] * adj_ret;
680
- }
681
-
682
- inline CUDA_CALLABLE float pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt)
683
- {
684
- float dx = xyzt[0] - floor(xyzt[0]);
685
- float dy = xyzt[1] - floor(xyzt[1]);
686
- float dz = xyzt[2] - floor(xyzt[2]);
687
- float dt = xyzt[3] - floor(xyzt[3]);
688
-
689
- int x0 = mod(((int)floor(xyzt[0])), px);
690
- int y0 = mod(((int)floor(xyzt[1])), py);
691
- int z0 = mod(((int)floor(xyzt[2])), pz);
692
- int t0 = mod(((int)floor(xyzt[3])), pt);
693
-
694
- int x1 = mod((x0 + 1), px);
695
- int y1 = mod((y0 + 1), py);
696
- int z1 = mod((z0 + 1), pz);
697
- int t1 = mod((t0 + 1), pt);
698
-
699
- return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
700
- }
701
-
702
- inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt, uint32& adj_state, vec4& adj_xyzt, int& adj_px, int& adj_py, int& adj_pz, int& adj_pt, const float adj_ret)
703
- {
704
- float dx = xyzt[0] - floor(xyzt[0]);
705
- float dy = xyzt[1] - floor(xyzt[1]);
706
- float dz = xyzt[2] - floor(xyzt[2]);
707
- float dt = xyzt[3] - floor(xyzt[3]);
708
-
709
- int x0 = mod(((int)floor(xyzt[0])), px);
710
- int y0 = mod(((int)floor(xyzt[1])), py);
711
- int z0 = mod(((int)floor(xyzt[2])), pz);
712
- int t0 = mod(((int)floor(xyzt[3])), pt);
713
-
714
- int x1 = mod((x0 + 1), px);
715
- int y1 = mod((y0 + 1), py);
716
- int z1 = mod((z0 + 1), pz);
717
- int t1 = mod((t0 + 1), pt);
718
-
719
- vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
720
-
721
- adj_xyzt[0] += gradient[0] * adj_ret;
722
- adj_xyzt[1] += gradient[1] * adj_ret;
723
- adj_xyzt[2] += gradient[2] * adj_ret;
724
- adj_xyzt[3] += gradient[3] * adj_ret;
725
- }
726
-
727
- // curl noise
728
-
729
- inline CUDA_CALLABLE vec2 curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain)
730
- {
731
- vec2 curl_sum = vec2(0.f);
732
- float freq = 1.f;
733
- float amplitude = 1.f;
734
-
735
- for (int i = 0; i < octaves; i++)
736
- {
737
- vec2 pt = freq * xy;
738
- float dx = pt[0] - floor(pt[0]);
739
- float dy = pt[1] - floor(pt[1]);
740
-
741
- int x0 = (int)floor(pt[0]);
742
- int y0 = (int)floor(pt[1]);
743
-
744
- int x1 = x0 + 1;
745
- int y1 = y0 + 1;
746
-
747
- vec2 grad_field = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
748
- curl_sum += amplitude * grad_field;
749
-
750
- amplitude *= gain;
751
- freq *= lacunarity;
752
- }
753
- return vec2(-curl_sum[1], curl_sum[0]);
754
- }
755
- inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec2& adj_xy, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec2& adj_ret) {}
756
-
757
- inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain)
758
- {
759
- vec3 curl_sum_1 = vec3(0.f);
760
- vec3 curl_sum_2 = vec3(0.f);
761
- vec3 curl_sum_3 = vec3(0.f);
762
-
763
- float freq = 1.f;
764
- float amplitude = 1.f;
765
-
766
- for(int i = 0; i < octaves; i++)
767
- {
768
- vec3 pt = freq * xyz;
769
- float dx = pt[0] - floor(pt[0]);
770
- float dy = pt[1] - floor(pt[1]);
771
- float dz = pt[2] - floor(pt[2]);
772
-
773
- int x0 = (int)floor(pt[0]);
774
- int y0 = (int)floor(pt[1]);
775
- int z0 = (int)floor(pt[2]);
776
-
777
- int x1 = x0 + 1;
778
- int y1 = y0 + 1;
779
- int z1 = z0 + 1;
780
-
781
- vec3 grad_field_1 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
782
- state = rand_init(state, 10019689);
783
- vec3 grad_field_2 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
784
- state = rand_init(state, 13112221);
785
- vec3 grad_field_3 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
786
-
787
- curl_sum_1 += amplitude * grad_field_1;
788
- curl_sum_2 += amplitude * grad_field_2;
789
- curl_sum_3 += amplitude * grad_field_3;
790
-
791
- amplitude *= gain;
792
- freq *= lacunarity;
793
- }
794
-
795
- return vec3(
796
- curl_sum_3[1] - curl_sum_2[2],
797
- curl_sum_1[2] - curl_sum_3[0],
798
- curl_sum_2[0] - curl_sum_1[1]);
799
- }
800
- inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec3& adj_xyz, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, vec3& adj_ret) {}
801
-
802
- inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain)
803
- {
804
- vec4 curl_sum_1 = vec4(0.f);
805
- vec4 curl_sum_2 = vec4(0.f);
806
- vec4 curl_sum_3 = vec4(0.f);
807
-
808
- float freq = 1.f;
809
- float amplitude = 1.f;
810
-
811
- for(int i = 0; i < octaves; i++)
812
- {
813
- vec4 pt = freq * xyzt;
814
- float dx = pt[0] - floor(pt[0]);
815
- float dy = pt[1] - floor(pt[1]);
816
- float dz = pt[2] - floor(pt[2]);
817
- float dt = pt[3] - floor(pt[3]);
818
-
819
- int x0 = (int)floor(pt[0]);
820
- int y0 = (int)floor(pt[1]);
821
- int z0 = (int)floor(pt[2]);
822
- int t0 = (int)floor(pt[3]);
823
-
824
- int x1 = x0 + 1;
825
- int y1 = y0 + 1;
826
- int z1 = z0 + 1;
827
- int t1 = t0 + 1;
828
-
829
- vec4 grad_field_1 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
830
- state = rand_init(state, 10019689);
831
- vec4 grad_field_2 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
832
- state = rand_init(state, 13112221);
833
- vec4 grad_field_3 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
834
-
835
- curl_sum_1 += amplitude * grad_field_1;
836
- curl_sum_2 += amplitude * grad_field_2;
837
- curl_sum_3 += amplitude * grad_field_3;
838
-
839
- amplitude *= gain;
840
- freq *= lacunarity;
841
- }
842
-
843
- return vec3(
844
- curl_sum_3[1] - curl_sum_2[2],
845
- curl_sum_1[2] - curl_sum_3[0],
846
- curl_sum_2[0] - curl_sum_1[1]);
847
- }
848
- inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec4& adj_xyzt, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec3& adj_ret) {}
849
-
850
- } // namespace wp
1
+ /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
+ * NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ * and proprietary rights in and to this software, related documentation
4
+ * and any modifications thereto. Any use, reproduction, disclosure or
5
+ * distribution of this software and related documentation without an express
6
+ * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+ */
8
+
9
+ #pragma once
10
+
11
+ #ifndef M_PI_F
12
+ #define M_PI_F 3.14159265358979323846f
13
+ #endif
14
+
15
+ namespace wp
16
+ {
17
+
18
+ inline CUDA_CALLABLE float smootherstep(float t)
19
+ {
20
+ return t * t * t * (t * (t * 6.f - 15.f) + 10.f);
21
+ }
22
+
23
+ inline CUDA_CALLABLE float smootherstep_gradient(float t)
24
+ {
25
+ return 30.f * t * t * (t * (t - 2.f) + 1.f);
26
+ }
27
+
28
+ inline CUDA_CALLABLE float smoothstep(float t)
29
+ {
30
+ return t * t * (3.f - t * 2.f);
31
+ }
32
+
33
+ inline CUDA_CALLABLE float smoothstep_gradient(float t)
34
+ {
35
+ return 6.f * t * (1.f - t);
36
+ }
37
+
38
+ inline CUDA_CALLABLE float interpolate(float a0, float a1, float t)
39
+ {
40
+ return (a1 - a0) * smootherstep(t) + a0;
41
+ // return (a1 - a0) * smoothstep(t) + a0;
42
+ // return (a1 - a0) * t + a0;
43
+ }
44
+
45
+ inline CUDA_CALLABLE float interpolate_gradient(float a0, float a1, float t, float d_a0, float d_a1, float d_t)
46
+ {
47
+ return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
48
+ // return (d_a1 - d_a0) * smoothstep(t) + (a1 - a0) * smoothstep_gradient(t) * d_t + d_a0;
49
+ // return (d_a1 - d_a0) * t + (a1 - a0) * d_t + d_a0;
50
+ }
51
+
52
+ inline CUDA_CALLABLE vec2 interpolate_gradient_2d(float a0, float a1, float t, vec2& d_a0, vec2& d_a1, vec2& d_t)
53
+ {
54
+ return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
55
+ }
56
+
57
+ inline CUDA_CALLABLE vec3 interpolate_gradient_3d(float a0, float a1, float t, vec3& d_a0, vec3& d_a1, vec3& d_t)
58
+ {
59
+ return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
60
+ }
61
+
62
+ inline CUDA_CALLABLE vec4 interpolate_gradient_4d(float a0, float a1, float t, vec4& d_a0, vec4& d_a1, vec4& d_t)
63
+ {
64
+ return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
65
+ }
66
+
67
+ inline CUDA_CALLABLE float random_gradient_1d(uint32 state, int ix)
68
+ {
69
+ const uint32 p1 = 73856093;
70
+ uint32 idx = ix*p1 + state;
71
+ return randf(idx, -1.f, 1.f);
72
+ }
73
+
74
+ inline CUDA_CALLABLE vec2 random_gradient_2d(uint32 state, int ix, int iy)
75
+ {
76
+ const uint32 p1 = 73856093;
77
+ const uint32 p2 = 19349663;
78
+ uint32 idx = ix*p1 ^ iy*p2 + state;
79
+
80
+ return normalize(sample_unit_square(idx));
81
+ }
82
+
83
+ inline CUDA_CALLABLE vec3 random_gradient_3d(uint32 state, int ix, int iy, int iz)
84
+ {
85
+ const uint32 p1 = 73856093;
86
+ const uint32 p2 = 19349663;
87
+ const uint32 p3 = 53471161;
88
+ uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 + state;
89
+
90
+ return normalize(sample_unit_cube(idx));
91
+ }
92
+
93
+ inline CUDA_CALLABLE vec4 random_gradient_4d(uint32 state, int ix, int iy, int iz, int it)
94
+ {
95
+ const uint32 p1 = 73856093;
96
+ const uint32 p2 = 19349663;
97
+ const uint32 p3 = 53471161;
98
+ const uint32 p4 = 10000019;
99
+ uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 ^ it*p4 + state;
100
+
101
+ return normalize(sample_unit_hypercube(idx));
102
+ }
103
+
104
+ inline CUDA_CALLABLE float dot_grid_gradient_1d(uint32 state, int ix, float dx)
105
+ {
106
+ float gradient = random_gradient_1d(state, ix);
107
+ return dx*gradient;
108
+ }
109
+
110
+ inline CUDA_CALLABLE float dot_grid_gradient_2d(uint32 state, int ix, int iy, float dx, float dy)
111
+ {
112
+ vec2 gradient = random_gradient_2d(state, ix, iy);
113
+ return (dx*gradient[0] + dy*gradient[1]);
114
+ }
115
+
116
+ inline CUDA_CALLABLE float dot_grid_gradient_3d(uint32 state, int ix, int iy, int iz, float dx, float dy, float dz)
117
+ {
118
+ vec3 gradient = random_gradient_3d(state, ix, iy, iz);
119
+ return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2]);
120
+ }
121
+
122
+ inline CUDA_CALLABLE float dot_grid_gradient_4d(uint32 state, int ix, int iy, int iz, int it, float dx, float dy, float dz, float dt)
123
+ {
124
+ vec4 gradient = random_gradient_4d(state, ix, iy, iz, it);
125
+ return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2] + dt*gradient[3]);
126
+ }
127
+
128
+ inline CUDA_CALLABLE float noise_1d(uint32 state, int x0, int x1, float dx)
129
+ {
130
+ //vX
131
+ float v0 = dot_grid_gradient_1d(state, x0, dx);
132
+ float v1 = dot_grid_gradient_1d(state, x1, dx-1.f);
133
+
134
+ return interpolate(v0, v1, dx);
135
+ }
136
+
137
+ inline CUDA_CALLABLE float noise_1d_gradient(uint32 state, int x0, int x1, float dx)
138
+ {
139
+ float gradient_x0 = random_gradient_1d(state, x0);
140
+ float v0 = dx * gradient_x0;
141
+
142
+ float gradient_x1 = random_gradient_1d(state, x1);
143
+ float v1 = (dx-1.f) * gradient_x1;
144
+
145
+ return interpolate_gradient(v0, v1, dx, gradient_x0, gradient_x1, 1.f);
146
+ }
147
+
148
+ inline CUDA_CALLABLE float noise_2d(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
149
+ {
150
+ //vXY
151
+ float v00 = dot_grid_gradient_2d(state, x0, y0, dx, dy);
152
+ float v10 = dot_grid_gradient_2d(state, x1, y0, dx-1.f, dy);
153
+ float xi0 = interpolate(v00, v10, dx);
154
+
155
+ float v01 = dot_grid_gradient_2d(state, x0, y1, dx, dy-1.f);
156
+ float v11 = dot_grid_gradient_2d(state, x1, y1, dx-1.f, dy-1.f);
157
+ float xi1 = interpolate(v01, v11, dx);
158
+
159
+ return interpolate(xi0, xi1, dy);
160
+ }
161
+
162
+ inline CUDA_CALLABLE vec2 noise_2d_gradient(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
163
+ {
164
+ vec2 d00 = vec2(dx, dy);
165
+ vec2 gradient_v00 = random_gradient_2d(state, x0, y0);
166
+ float v00 = dot(d00, gradient_v00);
167
+
168
+ vec2 d10 = vec2(dx-1.f, dy);
169
+ vec2 gradient_v10 = random_gradient_2d(state, x1, y0);
170
+ float v10 = dot(d10, gradient_v10);
171
+
172
+ vec2 d01 = vec2(dx, dy-1.f);
173
+ vec2 gradient_v01 = random_gradient_2d(state, x0, y1);
174
+ float v01 = dot(d01, gradient_v01);
175
+
176
+ vec2 d11 = vec2(dx-1.f, dy-1.f);
177
+ vec2 gradient_v11 = random_gradient_2d(state, x1, y1);
178
+ float v11 = dot(d11, gradient_v11);
179
+
180
+ vec2 dx_dt = vec2(1.f, 0.f);
181
+
182
+ float xi0 = interpolate(v00, v10, dx);
183
+ vec2 gradient_xi0 = interpolate_gradient_2d(v00, v10, dx, gradient_v00, gradient_v10, dx_dt);
184
+
185
+ float xi1 = interpolate(v01, v11, dx);
186
+ vec2 gradient_xi1 = interpolate_gradient_2d(v01, v11, dx, gradient_v01, gradient_v11, dx_dt);
187
+
188
+ vec2 dy_dt = vec2(0.f, 1.f);
189
+
190
+ vec2 gradient = interpolate_gradient_2d(xi0, xi1, dy, gradient_xi0, gradient_xi1, dy_dt);
191
+
192
+ return gradient;
193
+ }
194
+
195
+ inline CUDA_CALLABLE float noise_3d(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
196
+ {
197
+ //vXYZ
198
+ float v000 = dot_grid_gradient_3d(state, x0, y0, z0, dx, dy, dz);
199
+ float v100 = dot_grid_gradient_3d(state, x1, y0, z0, dx-1.f, dy, dz);
200
+ float xi00 = interpolate(v000, v100, dx);
201
+
202
+ float v010 = dot_grid_gradient_3d(state, x0, y1, z0, dx, dy-1.f, dz);
203
+ float v110 = dot_grid_gradient_3d(state, x1, y1, z0, dx-1.f, dy-1.f, dz);
204
+ float xi10 = interpolate(v010, v110, dx);
205
+
206
+ float yi0 = interpolate(xi00, xi10, dy);
207
+
208
+ float v001 = dot_grid_gradient_3d(state, x0, y0, z1, dx, dy, dz-1.f);
209
+ float v101 = dot_grid_gradient_3d(state, x1, y0, z1, dx-1.f, dy, dz-1.f);
210
+ float xi01 = interpolate(v001, v101, dx);
211
+
212
+ float v011 = dot_grid_gradient_3d(state, x0, y1, z1, dx, dy-1.f, dz-1.f);
213
+ float v111 = dot_grid_gradient_3d(state, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f);
214
+ float xi11 = interpolate(v011, v111, dx);
215
+
216
+ float yi1 = interpolate(xi01, xi11, dy);
217
+
218
+ return interpolate(yi0, yi1, dz);
219
+ }
220
+
221
+ inline CUDA_CALLABLE vec3 noise_3d_gradient(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
222
+ {
223
+ vec3 d000 = vec3(dx, dy, dz);
224
+ vec3 gradient_v000 = random_gradient_3d(state, x0, y0, z0);
225
+ float v000 = dot(d000, gradient_v000);
226
+
227
+ vec3 d100 = vec3(dx-1.f, dy, dz);
228
+ vec3 gradient_v100 = random_gradient_3d(state, x1, y0, z0);
229
+ float v100 = dot(d100, gradient_v100);
230
+
231
+ vec3 d010 = vec3(dx, dy-1.f, dz);
232
+ vec3 gradient_v010 = random_gradient_3d(state, x0, y1, z0);
233
+ float v010 = dot(d010, gradient_v010);
234
+
235
+ vec3 d110 = vec3(dx-1.f, dy-1.f, dz);
236
+ vec3 gradient_v110 = random_gradient_3d(state, x1, y1, z0);
237
+ float v110 = dot(d110, gradient_v110);
238
+
239
+ vec3 d001 = vec3(dx, dy, dz-1.f);
240
+ vec3 gradient_v001 = random_gradient_3d(state, x0, y0, z1);
241
+ float v001 = dot(d001, gradient_v001);
242
+
243
+ vec3 d101 = vec3(dx-1.f, dy, dz-1.f);
244
+ vec3 gradient_v101 = random_gradient_3d(state, x1, y0, z1);
245
+ float v101 = dot(d101, gradient_v101);
246
+
247
+ vec3 d011 = vec3(dx, dy-1.f, dz-1.f);
248
+ vec3 gradient_v011 = random_gradient_3d(state, x0, y1, z1);
249
+ float v011 = dot(d011, gradient_v011);
250
+
251
+ vec3 d111 = vec3(dx-1.f, dy-1.f, dz-1.f);
252
+ vec3 gradient_v111 = random_gradient_3d(state, x1, y1, z1);
253
+ float v111 = dot(d111, gradient_v111);
254
+
255
+ vec3 dx_dt = vec3(1.f, 0.f, 0.f);
256
+
257
+ float xi00 = interpolate(v000, v100, dx);
258
+ vec3 gradient_xi00 = interpolate_gradient_3d(v000, v100, dx, gradient_v000, gradient_v100, dx_dt);
259
+
260
+ float xi10 = interpolate(v010, v110, dx);
261
+ vec3 gradient_xi10 = interpolate_gradient_3d(v010, v110, dx, gradient_v010, gradient_v110, dx_dt);
262
+
263
+ float xi01 = interpolate(v001, v101, dx);
264
+ vec3 gradient_xi01 = interpolate_gradient_3d(v001, v101, dx, gradient_v001, gradient_v101, dx_dt);
265
+
266
+ float xi11 = interpolate(v011, v111, dx);
267
+ vec3 gradient_xi11 = interpolate_gradient_3d(v011, v111, dx, gradient_v011, gradient_v111, dx_dt);
268
+
269
+ vec3 dy_dt = vec3(0.f, 1.f, 0.f);
270
+
271
+ float yi0 = interpolate(xi00, xi10, dy);
272
+ vec3 gradient_yi0 = interpolate_gradient_3d(xi00, xi10, dy, gradient_xi00, gradient_xi10, dy_dt);
273
+
274
+ float yi1 = interpolate(xi01, xi11, dy);
275
+ vec3 gradient_yi1 = interpolate_gradient_3d(xi01, xi11, dy, gradient_xi01, gradient_xi11, dy_dt);
276
+
277
+ vec3 dz_dt = vec3(0.f, 0.f, 1.f);
278
+
279
+ vec3 gradient = interpolate_gradient_3d(yi0, yi1, dz, gradient_yi0, gradient_yi1, dz_dt);
280
+
281
+ return gradient;
282
+ }
283
+
284
+ inline CUDA_CALLABLE float noise_4d(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
285
+ {
286
+ //vXYZT
287
+ float v0000 = dot_grid_gradient_4d(state, x0, y0, z0, t0, dx, dy, dz, dt);
288
+ float v1000 = dot_grid_gradient_4d(state, x1, y0, z0, t0, dx-1.f, dy, dz, dt);
289
+ float xi000 = interpolate(v0000, v1000, dx);
290
+
291
+ float v0100 = dot_grid_gradient_4d(state, x0, y1, z0, t0, dx, dy-1.f, dz, dt);
292
+ float v1100 = dot_grid_gradient_4d(state, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt);
293
+ float xi100 = interpolate(v0100, v1100, dx);
294
+
295
+ float yi00 = interpolate(xi000, xi100, dy);
296
+
297
+ float v0010 = dot_grid_gradient_4d(state, x0, y0, z1, t0, dx, dy, dz-1.f, dt);
298
+ float v1010 = dot_grid_gradient_4d(state, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt);
299
+ float xi010 = interpolate(v0010, v1010, dx);
300
+
301
+ float v0110 = dot_grid_gradient_4d(state, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt);
302
+ float v1110 = dot_grid_gradient_4d(state, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt);
303
+ float xi110 = interpolate(v0110, v1110, dx);
304
+
305
+ float yi10 = interpolate(xi010, xi110, dy);
306
+
307
+ float zi0 = interpolate(yi00, yi10, dz);
308
+
309
+ float v0001 = dot_grid_gradient_4d(state, x0, y0, z0, t1, dx, dy, dz, dt-1.f);
310
+ float v1001 = dot_grid_gradient_4d(state, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f);
311
+ float xi001 = interpolate(v0001, v1001, dx);
312
+
313
+ float v0101 = dot_grid_gradient_4d(state, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f);
314
+ float v1101 = dot_grid_gradient_4d(state, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f);
315
+ float xi101 = interpolate(v0101, v1101, dx);
316
+
317
+ float yi01 = interpolate(xi001, xi101, dy);
318
+
319
+ float v0011 = dot_grid_gradient_4d(state, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f);
320
+ float v1011 = dot_grid_gradient_4d(state, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f);
321
+ float xi011 = interpolate(v0011, v1011, dx);
322
+
323
+ float v0111 = dot_grid_gradient_4d(state, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f);
324
+ float v1111 = dot_grid_gradient_4d(state, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f);
325
+ float xi111 = interpolate(v0111, v1111, dx);
326
+
327
+ float yi11 = interpolate(xi011, xi111, dy);
328
+
329
+ float zi1 = interpolate(yi01, yi11, dz);
330
+
331
+ return interpolate(zi0, zi1, dt);
332
+ }
333
+
334
+ inline CUDA_CALLABLE vec4 noise_4d_gradient(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
335
+ {
336
+ vec4 d0000 = vec4(dx, dy, dz, dt);
337
+ vec4 gradient_v0000 = random_gradient_4d(state, x0, y0, z0, t0);
338
+ float v0000 = dot(d0000, gradient_v0000);
339
+
340
+ vec4 d1000 = vec4(dx-1.f, dy, dz, dt);
341
+ vec4 gradient_v1000 = random_gradient_4d(state, x1, y0, z0, t0);
342
+ float v1000 = dot(d1000, gradient_v1000);
343
+
344
+ vec4 d0100 = vec4(dx, dy-1.f, dz, dt);
345
+ vec4 gradient_v0100 = random_gradient_4d(state, x0, y1, z0, t0);
346
+ float v0100 = dot(d0100, gradient_v0100);
347
+
348
+ vec4 d1100 = vec4(dx-1.f, dy-1.f, dz, dt);
349
+ vec4 gradient_v1100 = random_gradient_4d(state, x1, y1, z0, t0);
350
+ float v1100 = dot(d1100, gradient_v1100);
351
+
352
+ vec4 d0010 = vec4(dx, dy, dz-1.f, dt);
353
+ vec4 gradient_v0010 = random_gradient_4d(state, x0, y0, z1, t0);
354
+ float v0010 = dot(d0010, gradient_v0010);
355
+
356
+ vec4 d1010 = vec4(dx-1.f, dy, dz-1.f, dt);
357
+ vec4 gradient_v1010 = random_gradient_4d(state, x1, y0, z1, t0);
358
+ float v1010 = dot(d1010, gradient_v1010);
359
+
360
+ vec4 d0110 = vec4(dx, dy-1.f, dz-1.f, dt);
361
+ vec4 gradient_v0110 = random_gradient_4d(state, x0, y1, z1, t0);
362
+ float v0110 = dot(d0110, gradient_v0110);
363
+
364
+ vec4 d1110 = vec4(dx-1.f, dy-1.f, dz-1.f, dt);
365
+ vec4 gradient_v1110 = random_gradient_4d(state, x1, y1, z1, t0);
366
+ float v1110 = dot(d1110, gradient_v1110);
367
+
368
+ vec4 d0001 = vec4(dx, dy, dz, dt-1.f);
369
+ vec4 gradient_v0001 = random_gradient_4d(state, x0, y0, z0, t1);
370
+ float v0001 = dot(d0001, gradient_v0001);
371
+
372
+ vec4 d1001 = vec4(dx-1.f, dy, dz, dt-1.f);
373
+ vec4 gradient_v1001 = random_gradient_4d(state, x1, y0, z0, t1);
374
+ float v1001 = dot(d1001, gradient_v1001);
375
+
376
+ vec4 d0101 = vec4(dx, dy-1.f, dz, dt-1.f);
377
+ vec4 gradient_v0101 = random_gradient_4d(state, x0, y1, z0, t1);
378
+ float v0101 = dot(d0101, gradient_v0101);
379
+
380
+ vec4 d1101 = vec4(dx-1.f, dy-1.f, dz, dt-1.f);
381
+ vec4 gradient_v1101 = random_gradient_4d(state, x1, y1, z0, t1);
382
+ float v1101 = dot(d1101, gradient_v1101);
383
+
384
+ vec4 d0011 = vec4(dx, dy, dz-1.f, dt-1.f);
385
+ vec4 gradient_v0011 = random_gradient_4d(state, x0, y0, z1, t1);
386
+ float v0011 = dot(d0011, gradient_v0011);
387
+
388
+ vec4 d1011 = vec4(dx-1.f, dy, dz-1.f, dt-1.f);
389
+ vec4 gradient_v1011 = random_gradient_4d(state, x1, y0, z1, t1);
390
+ float v1011 = dot(d1011, gradient_v1011);
391
+
392
+ vec4 d0111 = vec4(dx, dy-1.f, dz-1.f, dt-1.f);
393
+ vec4 gradient_v0111 = random_gradient_4d(state, x0, y1, z1, t1);
394
+ float v0111 = dot(d0111, gradient_v0111);
395
+
396
+ vec4 d1111 = vec4(dx-1.f, dy-1.f, dz-1.f, dt-1.f);
397
+ vec4 gradient_v1111 = random_gradient_4d(state, x1, y1, z1, t1);
398
+ float v1111 = dot(d1111, gradient_v1111);
399
+
400
+ vec4 dx_dt = vec4(1.f, 0.f, 0.f, 0.f);
401
+
402
+ float xi000 = interpolate(v0000, v1000, dx);
403
+ vec4 gradient_xi000 = interpolate_gradient_4d(v0000, v1000, dx, gradient_v0000, gradient_v1000, dx_dt);
404
+
405
+ float xi100 = interpolate(v0100, v1100, dx);
406
+ vec4 gradient_xi100 = interpolate_gradient_4d(v0100, v1100, dx, gradient_v0100, gradient_v1100, dx_dt);
407
+
408
+ float xi010 = interpolate(v0010, v1010, dx);
409
+ vec4 gradient_xi010 = interpolate_gradient_4d(v0010, v1010, dx, gradient_v0010, gradient_v1010, dx_dt);
410
+
411
+ float xi110 = interpolate(v0110, v1110, dx);
412
+ vec4 gradient_xi110 = interpolate_gradient_4d(v0110, v1110, dx, gradient_v0110, gradient_v1110, dx_dt);
413
+
414
+ float xi001 = interpolate(v0001, v1001, dx);
415
+ vec4 gradient_xi001 = interpolate_gradient_4d(v0001, v1001, dx, gradient_v0001, gradient_v1001, dx_dt);
416
+
417
+ float xi101 = interpolate(v0101, v1101, dx);
418
+ vec4 gradient_xi101 = interpolate_gradient_4d(v0101, v1101, dx, gradient_v0101, gradient_v1101, dx_dt);
419
+
420
+ float xi011 = interpolate(v0011, v1011, dx);
421
+ vec4 gradient_xi011 = interpolate_gradient_4d(v0011, v1011, dx, gradient_v0011, gradient_v1011, dx_dt);
422
+
423
+ float xi111 = interpolate(v0111, v1111, dx);
424
+ vec4 gradient_xi111 = interpolate_gradient_4d(v0111, v1111, dx, gradient_v0111, gradient_v1111, dx_dt);
425
+
426
+ vec4 dy_dt = vec4(0.f, 1.f, 0.f, 0.f);
427
+
428
+ float yi00 = interpolate(xi000, xi100, dy);
429
+ vec4 gradient_yi00 = interpolate_gradient_4d(xi000, xi100, dy, gradient_xi000, gradient_xi100, dy_dt);
430
+
431
+ float yi10 = interpolate(xi010, xi110, dy);
432
+ vec4 gradient_yi10 = interpolate_gradient_4d(xi010, xi110, dy, gradient_xi010, gradient_xi110, dy_dt);
433
+
434
+ float yi01 = interpolate(xi001, xi101, dy);
435
+ vec4 gradient_yi01 = interpolate_gradient_4d(xi001, xi101, dy, gradient_xi001, gradient_xi101, dy_dt);
436
+
437
+ float yi11 = interpolate(xi011, xi111, dy);
438
+ vec4 gradient_yi11 = interpolate_gradient_4d(xi011, xi111, dy, gradient_xi011, gradient_xi111, dy_dt);
439
+
440
+ vec4 dz_dt = vec4(0.f, 0.f, 1.f, 0.f);
441
+
442
+ float zi0 = interpolate(yi00, yi10, dz);
443
+ vec4 gradient_zi0 = interpolate_gradient_4d(yi00, yi10, dz, gradient_yi00, gradient_yi10, dz_dt);
444
+
445
+ float zi1 = interpolate(yi01, yi11, dz);
446
+ vec4 gradient_zi1 = interpolate_gradient_4d(yi01, yi11, dz, gradient_yi01, gradient_yi11, dz_dt);
447
+
448
+ vec4 dt_dt = vec4(0.f, 0.f, 0.f, 1.f);
449
+
450
+ vec4 gradient = interpolate_gradient_4d(zi0, zi1, dt, gradient_zi0, gradient_zi1, dt_dt);
451
+
452
+ return gradient;
453
+ }
454
+
455
+ // non-periodic Perlin noise
456
+
457
+ inline CUDA_CALLABLE float noise(uint32 state, float x)
458
+ {
459
+ float dx = x - floor(x);
460
+
461
+ int x0 = (int)floor(x);
462
+ int x1 = x0 + 1;
463
+
464
+ return noise_1d(state, x0, x1, dx);
465
+ }
466
+
467
+ inline CUDA_CALLABLE void adj_noise(uint32 state, float x, uint32& adj_state, float& adj_x, const float adj_ret)
468
+ {
469
+ float dx = x - floor(x);
470
+
471
+ int x0 = (int)floor(x);
472
+ int x1 = x0 + 1;
473
+
474
+ float gradient = noise_1d_gradient(state, x0, x1, dx);
475
+ adj_x += gradient * adj_ret;
476
+ }
477
+
478
+ inline CUDA_CALLABLE float noise(uint32 state, const vec2& xy)
479
+ {
480
+ float dx = xy[0] - floor(xy[0]);
481
+ float dy = xy[1] - floor(xy[1]);
482
+
483
+ int x0 = (int)floor(xy[0]);
484
+ int y0 = (int)floor(xy[1]);
485
+
486
+ int x1 = x0 + 1;
487
+ int y1 = y0 + 1;
488
+
489
+ return noise_2d(state, x0, y0, x1, y1, dx, dy);
490
+ }
491
+
492
+ inline CUDA_CALLABLE void adj_noise(uint32 state, const vec2& xy, uint32& adj_state, vec2& adj_xy, const float adj_ret)
493
+ {
494
+ float dx = xy[0] - floor(xy[0]);
495
+ float dy = xy[1] - floor(xy[1]);
496
+
497
+ int x0 = (int)floor(xy[0]);
498
+ int y0 = (int)floor(xy[1]);
499
+
500
+ int x1 = x0 + 1;
501
+ int y1 = y0 + 1;
502
+
503
+ vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
504
+
505
+ adj_xy[0] += gradient[0] * adj_ret;
506
+ adj_xy[1] += gradient[1] * adj_ret;
507
+ }
508
+
509
+ inline CUDA_CALLABLE float noise(uint32 state, const vec3& xyz)
510
+ {
511
+ float dx = xyz[0] - floor(xyz[0]);
512
+ float dy = xyz[1] - floor(xyz[1]);
513
+ float dz = xyz[2] - floor(xyz[2]);
514
+
515
+ int x0 = (int)floor(xyz[0]);
516
+ int y0 = (int)floor(xyz[1]);
517
+ int z0 = (int)floor(xyz[2]);
518
+
519
+ int x1 = x0 + 1;
520
+ int y1 = y0 + 1;
521
+ int z1 = z0 + 1;
522
+
523
+ return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
524
+ }
525
+
526
+ inline CUDA_CALLABLE void adj_noise(uint32 state, const vec3& xyz, uint32& adj_state, vec3& adj_xyz, const float adj_ret)
527
+ {
528
+ float dx = xyz[0] - floor(xyz[0]);
529
+ float dy = xyz[1] - floor(xyz[1]);
530
+ float dz = xyz[2] - floor(xyz[2]);
531
+
532
+ int x0 = (int)floor(xyz[0]);
533
+ int y0 = (int)floor(xyz[1]);
534
+ int z0 = (int)floor(xyz[2]);
535
+
536
+ int x1 = x0 + 1;
537
+ int y1 = y0 + 1;
538
+ int z1 = z0 + 1;
539
+
540
+ vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
541
+ adj_xyz[0] += gradient[0] * adj_ret;
542
+ adj_xyz[1] += gradient[1] * adj_ret;
543
+ adj_xyz[2] += gradient[2] * adj_ret;
544
+ }
545
+
546
+ inline CUDA_CALLABLE float noise(uint32 state, const vec4& xyzt)
547
+ {
548
+ float dx = xyzt[0] - floor(xyzt[0]);
549
+ float dy = xyzt[1] - floor(xyzt[1]);
550
+ float dz = xyzt[2] - floor(xyzt[2]);
551
+ float dt = xyzt[3] - floor(xyzt[3]);
552
+
553
+ int x0 = (int)floor(xyzt[0]);
554
+ int y0 = (int)floor(xyzt[1]);
555
+ int z0 = (int)floor(xyzt[2]);
556
+ int t0 = (int)floor(xyzt[3]);
557
+
558
+ int x1 = x0 + 1;
559
+ int y1 = y0 + 1;
560
+ int z1 = z0 + 1;
561
+ int t1 = t0 + 1;
562
+
563
+ return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
564
+ }
565
+
566
+ inline CUDA_CALLABLE void adj_noise(uint32 state, const vec4& xyzt, uint32& adj_state, vec4& adj_xyzt, const float adj_ret)
567
+ {
568
+ float dx = xyzt[0] - floor(xyzt[0]);
569
+ float dy = xyzt[1] - floor(xyzt[1]);
570
+ float dz = xyzt[2] - floor(xyzt[2]);
571
+ float dt = xyzt[3] - floor(xyzt[3]);
572
+
573
+ int x0 = (int)floor(xyzt[0]);
574
+ int y0 = (int)floor(xyzt[1]);
575
+ int z0 = (int)floor(xyzt[2]);
576
+ int t0 = (int)floor(xyzt[3]);
577
+
578
+ int x1 = x0 + 1;
579
+ int y1 = y0 + 1;
580
+ int z1 = z0 + 1;
581
+ int t1 = t0 + 1;
582
+
583
+ vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
584
+
585
+ adj_xyzt[0] += gradient[0] * adj_ret;
586
+ adj_xyzt[1] += gradient[1] * adj_ret;
587
+ adj_xyzt[2] += gradient[2] * adj_ret;
588
+ adj_xyzt[3] += gradient[3] * adj_ret;
589
+ }
590
+
591
+ // periodic Perlin noise
592
+
593
+ inline CUDA_CALLABLE float pnoise(uint32 state, float x, int px)
594
+ {
595
+ float dx = x - floor(x);
596
+
597
+ int x0 = mod(((int)floor(x)), px);
598
+ int x1 = mod((x0 + 1), px);
599
+
600
+ return noise_1d(state, x0, x1, dx);
601
+ }
602
+
603
+ inline CUDA_CALLABLE void adj_pnoise(uint32 state, float x, int px, uint32& adj_state, float& adj_x, int& adj_px, const float adj_ret)
604
+ {
605
+ float dx = x - floor(x);
606
+
607
+ int x0 = mod(((int)floor(x)), px);
608
+ int x1 = mod((x0 + 1), px);
609
+
610
+ float gradient = noise_1d_gradient(state, x0, x1, dx);
611
+ adj_x += gradient * adj_ret;
612
+ }
613
+
614
+ inline CUDA_CALLABLE float pnoise(uint32 state, const vec2& xy, int px, int py)
615
+ {
616
+ float dx = xy[0] - floor(xy[0]);
617
+ float dy = xy[1] - floor(xy[1]);
618
+
619
+ int x0 = mod(((int)floor(xy[0])), px);
620
+ int y0 = mod(((int)floor(xy[1])), py);
621
+
622
+ int x1 = mod((x0 + 1), px);
623
+ int y1 = mod((y0 + 1), py);
624
+
625
+ return noise_2d(state, x0, y0, x1, y1, dx, dy);
626
+ }
627
+
628
+ inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec2& xy, int px, int py, uint32& adj_state, vec2& adj_xy, int& adj_px, int& adj_py, const float adj_ret)
629
+ {
630
+ float dx = xy[0] - floor(xy[0]);
631
+ float dy = xy[1] - floor(xy[1]);
632
+
633
+ int x0 = mod(((int)floor(xy[0])), px);
634
+ int y0 = mod(((int)floor(xy[1])), py);
635
+
636
+ int x1 = mod((x0 + 1), px);
637
+ int y1 = mod((y0 + 1), py);
638
+
639
+ vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
640
+
641
+ adj_xy[0] += gradient[0] * adj_ret;
642
+ adj_xy[1] += gradient[1] * adj_ret;
643
+ }
644
+
645
+ inline CUDA_CALLABLE float pnoise(uint32 state, const vec3& xyz, int px, int py, int pz)
646
+ {
647
+ float dx = xyz[0] - floor(xyz[0]);
648
+ float dy = xyz[1] - floor(xyz[1]);
649
+ float dz = xyz[2] - floor(xyz[2]);
650
+
651
+ int x0 = mod(((int)floor(xyz[0])), px);
652
+ int y0 = mod(((int)floor(xyz[1])), py);
653
+ int z0 = mod(((int)floor(xyz[2])), pz);
654
+
655
+ int x1 = mod((x0 + 1), px);
656
+ int y1 = mod((y0 + 1), py);
657
+ int z1 = mod((z0 + 1), pz);
658
+
659
+ return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
660
+ }
661
+
662
+ inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec3& xyz, int px, int py, int pz, uint32& adj_state, vec3& adj_xyz, int& adj_px, int& adj_py, int& adj_pz, const float adj_ret)
663
+ {
664
+ float dx = xyz[0] - floor(xyz[0]);
665
+ float dy = xyz[1] - floor(xyz[1]);
666
+ float dz = xyz[2] - floor(xyz[2]);
667
+
668
+ int x0 = mod(((int)floor(xyz[0])), px);
669
+ int y0 = mod(((int)floor(xyz[1])), py);
670
+ int z0 = mod(((int)floor(xyz[2])), pz);
671
+
672
+ int x1 = mod((x0 + 1), px);
673
+ int y1 = mod((y0 + 1), py);
674
+ int z1 = mod((z0 + 1), pz);
675
+
676
+ vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
677
+ adj_xyz[0] += gradient[0] * adj_ret;
678
+ adj_xyz[1] += gradient[1] * adj_ret;
679
+ adj_xyz[2] += gradient[2] * adj_ret;
680
+ }
681
+
682
+ inline CUDA_CALLABLE float pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt)
683
+ {
684
+ float dx = xyzt[0] - floor(xyzt[0]);
685
+ float dy = xyzt[1] - floor(xyzt[1]);
686
+ float dz = xyzt[2] - floor(xyzt[2]);
687
+ float dt = xyzt[3] - floor(xyzt[3]);
688
+
689
+ int x0 = mod(((int)floor(xyzt[0])), px);
690
+ int y0 = mod(((int)floor(xyzt[1])), py);
691
+ int z0 = mod(((int)floor(xyzt[2])), pz);
692
+ int t0 = mod(((int)floor(xyzt[3])), pt);
693
+
694
+ int x1 = mod((x0 + 1), px);
695
+ int y1 = mod((y0 + 1), py);
696
+ int z1 = mod((z0 + 1), pz);
697
+ int t1 = mod((t0 + 1), pt);
698
+
699
+ return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
700
+ }
701
+
702
+ inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt, uint32& adj_state, vec4& adj_xyzt, int& adj_px, int& adj_py, int& adj_pz, int& adj_pt, const float adj_ret)
703
+ {
704
+ float dx = xyzt[0] - floor(xyzt[0]);
705
+ float dy = xyzt[1] - floor(xyzt[1]);
706
+ float dz = xyzt[2] - floor(xyzt[2]);
707
+ float dt = xyzt[3] - floor(xyzt[3]);
708
+
709
+ int x0 = mod(((int)floor(xyzt[0])), px);
710
+ int y0 = mod(((int)floor(xyzt[1])), py);
711
+ int z0 = mod(((int)floor(xyzt[2])), pz);
712
+ int t0 = mod(((int)floor(xyzt[3])), pt);
713
+
714
+ int x1 = mod((x0 + 1), px);
715
+ int y1 = mod((y0 + 1), py);
716
+ int z1 = mod((z0 + 1), pz);
717
+ int t1 = mod((t0 + 1), pt);
718
+
719
+ vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
720
+
721
+ adj_xyzt[0] += gradient[0] * adj_ret;
722
+ adj_xyzt[1] += gradient[1] * adj_ret;
723
+ adj_xyzt[2] += gradient[2] * adj_ret;
724
+ adj_xyzt[3] += gradient[3] * adj_ret;
725
+ }
726
+
727
+ // curl noise
728
+
729
+ inline CUDA_CALLABLE vec2 curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain)
730
+ {
731
+ vec2 curl_sum = vec2(0.f);
732
+ float freq = 1.f;
733
+ float amplitude = 1.f;
734
+
735
+ for (int i = 0; i < octaves; i++)
736
+ {
737
+ vec2 pt = freq * xy;
738
+ float dx = pt[0] - floor(pt[0]);
739
+ float dy = pt[1] - floor(pt[1]);
740
+
741
+ int x0 = (int)floor(pt[0]);
742
+ int y0 = (int)floor(pt[1]);
743
+
744
+ int x1 = x0 + 1;
745
+ int y1 = y0 + 1;
746
+
747
+ vec2 grad_field = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
748
+ curl_sum += amplitude * grad_field;
749
+
750
+ amplitude *= gain;
751
+ freq *= lacunarity;
752
+ }
753
+ return vec2(-curl_sum[1], curl_sum[0]);
754
+ }
755
+ inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec2& adj_xy, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec2& adj_ret) {}
756
+
757
+ inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain)
758
+ {
759
+ vec3 curl_sum_1 = vec3(0.f);
760
+ vec3 curl_sum_2 = vec3(0.f);
761
+ vec3 curl_sum_3 = vec3(0.f);
762
+
763
+ float freq = 1.f;
764
+ float amplitude = 1.f;
765
+
766
+ for(int i = 0; i < octaves; i++)
767
+ {
768
+ vec3 pt = freq * xyz;
769
+ float dx = pt[0] - floor(pt[0]);
770
+ float dy = pt[1] - floor(pt[1]);
771
+ float dz = pt[2] - floor(pt[2]);
772
+
773
+ int x0 = (int)floor(pt[0]);
774
+ int y0 = (int)floor(pt[1]);
775
+ int z0 = (int)floor(pt[2]);
776
+
777
+ int x1 = x0 + 1;
778
+ int y1 = y0 + 1;
779
+ int z1 = z0 + 1;
780
+
781
+ vec3 grad_field_1 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
782
+ state = rand_init(state, 10019689);
783
+ vec3 grad_field_2 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
784
+ state = rand_init(state, 13112221);
785
+ vec3 grad_field_3 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
786
+
787
+ curl_sum_1 += amplitude * grad_field_1;
788
+ curl_sum_2 += amplitude * grad_field_2;
789
+ curl_sum_3 += amplitude * grad_field_3;
790
+
791
+ amplitude *= gain;
792
+ freq *= lacunarity;
793
+ }
794
+
795
+ return vec3(
796
+ curl_sum_3[1] - curl_sum_2[2],
797
+ curl_sum_1[2] - curl_sum_3[0],
798
+ curl_sum_2[0] - curl_sum_1[1]);
799
+ }
800
+ inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec3& adj_xyz, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, vec3& adj_ret) {}
801
+
802
+ inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain)
803
+ {
804
+ vec4 curl_sum_1 = vec4(0.f);
805
+ vec4 curl_sum_2 = vec4(0.f);
806
+ vec4 curl_sum_3 = vec4(0.f);
807
+
808
+ float freq = 1.f;
809
+ float amplitude = 1.f;
810
+
811
+ for(int i = 0; i < octaves; i++)
812
+ {
813
+ vec4 pt = freq * xyzt;
814
+ float dx = pt[0] - floor(pt[0]);
815
+ float dy = pt[1] - floor(pt[1]);
816
+ float dz = pt[2] - floor(pt[2]);
817
+ float dt = pt[3] - floor(pt[3]);
818
+
819
+ int x0 = (int)floor(pt[0]);
820
+ int y0 = (int)floor(pt[1]);
821
+ int z0 = (int)floor(pt[2]);
822
+ int t0 = (int)floor(pt[3]);
823
+
824
+ int x1 = x0 + 1;
825
+ int y1 = y0 + 1;
826
+ int z1 = z0 + 1;
827
+ int t1 = t0 + 1;
828
+
829
+ vec4 grad_field_1 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
830
+ state = rand_init(state, 10019689);
831
+ vec4 grad_field_2 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
832
+ state = rand_init(state, 13112221);
833
+ vec4 grad_field_3 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
834
+
835
+ curl_sum_1 += amplitude * grad_field_1;
836
+ curl_sum_2 += amplitude * grad_field_2;
837
+ curl_sum_3 += amplitude * grad_field_3;
838
+
839
+ amplitude *= gain;
840
+ freq *= lacunarity;
841
+ }
842
+
843
+ return vec3(
844
+ curl_sum_3[1] - curl_sum_2[2],
845
+ curl_sum_1[2] - curl_sum_3[0],
846
+ curl_sum_2[0] - curl_sum_1[1]);
847
+ }
848
+ inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec4& adj_xyzt, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec3& adj_ret) {}
849
+
850
+ } // namespace wp