warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/native/reduce.cu CHANGED
@@ -1,348 +1,348 @@
1
-
2
- #include "cuda_util.h"
3
- #include "warp.h"
4
-
5
- #include "temp_buffer.h"
6
-
7
- #define THRUST_IGNORE_CUB_VERSION_CHECK
8
- #include <cub/device/device_reduce.cuh>
9
- #include <cub/iterator/counting_input_iterator.cuh>
10
-
11
- namespace
12
- {
13
-
14
- template <typename T>
15
- __global__ void cwise_mult_kernel(int len, int stride_a, int stride_b, const T *a, const T *b, T *out)
16
- {
17
- int i = blockIdx.x * blockDim.x + threadIdx.x;
18
- if (i >= len)
19
- return;
20
- out[i] = a[i * stride_a] * b[i * stride_b];
21
- }
22
-
23
- /// Custom iterator for allowing strided access with CUB
24
- template <typename T> struct cub_strided_iterator
25
- {
26
- typedef cub_strided_iterator<T> self_type;
27
- typedef std::ptrdiff_t difference_type;
28
- typedef T value_type;
29
- typedef T *pointer;
30
- typedef T &reference;
31
-
32
- typedef std::random_access_iterator_tag iterator_category; ///< The iterator category
33
-
34
- T *ptr = nullptr;
35
- int stride = 1;
36
-
37
- CUDA_CALLABLE self_type operator++(int)
38
- {
39
- return ++(self_type(*this));
40
- }
41
-
42
- CUDA_CALLABLE self_type &operator++()
43
- {
44
- ptr += stride;
45
- return *this;
46
- }
47
-
48
- __host__ __device__ __forceinline__ reference operator*() const
49
- {
50
- return *ptr;
51
- }
52
-
53
- CUDA_CALLABLE self_type operator+(difference_type n) const
54
- {
55
- return self_type(*this) += n;
56
- }
57
-
58
- CUDA_CALLABLE self_type &operator+=(difference_type n)
59
- {
60
- ptr += n * stride;
61
- return *this;
62
- }
63
-
64
- CUDA_CALLABLE self_type operator-(difference_type n) const
65
- {
66
- return self_type(*this) -= n;
67
- }
68
-
69
- CUDA_CALLABLE self_type &operator-=(difference_type n)
70
- {
71
- ptr -= n * stride;
72
- return *this;
73
- }
74
-
75
- CUDA_CALLABLE difference_type operator-(const self_type &other) const
76
- {
77
- return (ptr - other.ptr) / stride;
78
- }
79
-
80
- CUDA_CALLABLE reference operator[](difference_type n) const
81
- {
82
- return *(ptr + n * stride);
83
- }
84
-
85
- CUDA_CALLABLE pointer operator->() const
86
- {
87
- return ptr;
88
- }
89
-
90
- CUDA_CALLABLE bool operator==(const self_type &rhs) const
91
- {
92
- return (ptr == rhs.ptr);
93
- }
94
-
95
- CUDA_CALLABLE bool operator!=(const self_type &rhs) const
96
- {
97
- return (ptr != rhs.ptr);
98
- }
99
- };
100
-
101
- template <typename T> void array_sum_device(const T *ptr_a, T *ptr_out, int count, int byte_stride, int type_length)
102
- {
103
- assert((byte_stride % sizeof(T)) == 0);
104
- const int stride = byte_stride / sizeof(T);
105
-
106
- ContextGuard guard(cuda_context_get_current());
107
- cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
108
-
109
- cub_strided_iterator<const T> ptr_strided{ptr_a, stride};
110
-
111
- size_t buff_size = 0;
112
- check_cuda(cub::DeviceReduce::Sum(nullptr, buff_size, ptr_strided, ptr_out, count, stream));
113
- void* temp_buffer = alloc_device(WP_CURRENT_CONTEXT, buff_size);
114
-
115
- for (int k = 0; k < type_length; ++k)
116
- {
117
- cub_strided_iterator<const T> ptr_strided{ptr_a + k, stride};
118
- check_cuda(cub::DeviceReduce::Sum(temp_buffer, buff_size, ptr_strided, ptr_out + k, count, stream));
119
- }
120
-
121
- free_device(WP_CURRENT_CONTEXT, temp_buffer);
122
- }
123
-
124
- template <typename T>
125
- void array_sum_device_dispatch(const T *ptr_a, T *ptr_out, int count, int byte_stride, int type_length)
126
- {
127
- using vec2 = wp::vec_t<2, T>;
128
- using vec3 = wp::vec_t<3, T>;
129
- using vec4 = wp::vec_t<4, T>;
130
-
131
- // specialized calls for common vector types
132
-
133
- if ((type_length % 4) == 0 && (byte_stride % sizeof(vec4)) == 0)
134
- {
135
- return array_sum_device(reinterpret_cast<const vec4 *>(ptr_a), reinterpret_cast<vec4 *>(ptr_out), count,
136
- byte_stride, type_length / 4);
137
- }
138
-
139
- if ((type_length % 3) == 0 && (byte_stride % sizeof(vec3)) == 0)
140
- {
141
- return array_sum_device(reinterpret_cast<const vec3 *>(ptr_a), reinterpret_cast<vec3 *>(ptr_out), count,
142
- byte_stride, type_length / 3);
143
- }
144
-
145
- if ((type_length % 2) == 0 && (byte_stride % sizeof(vec2)) == 0)
146
- {
147
- return array_sum_device(reinterpret_cast<const vec2 *>(ptr_a), reinterpret_cast<vec2 *>(ptr_out), count,
148
- byte_stride, type_length / 2);
149
- }
150
-
151
- return array_sum_device(ptr_a, ptr_out, count, byte_stride, type_length);
152
- }
153
-
154
- template <typename T> CUDA_CALLABLE T element_inner_product(const T &a, const T &b)
155
- {
156
- return a * b;
157
- }
158
-
159
- template <unsigned Length, typename T>
160
- CUDA_CALLABLE T element_inner_product(const wp::vec_t<Length, T> &a, const wp::vec_t<Length, T> &b)
161
- {
162
- return wp::dot(a, b);
163
- }
164
-
165
- /// Custom iterator for allowing strided access with CUB
166
- template <typename ElemT, typename ScalarT> struct cub_inner_product_iterator
167
- {
168
- typedef cub_inner_product_iterator<ElemT, ScalarT> self_type;
169
- typedef std::ptrdiff_t difference_type;
170
- typedef ScalarT value_type;
171
- typedef ScalarT *pointer;
172
- typedef ScalarT reference;
173
-
174
- typedef std::random_access_iterator_tag iterator_category; ///< The iterator category
175
-
176
- const ElemT *ptr_a = nullptr;
177
- const ElemT *ptr_b = nullptr;
178
-
179
- int stride_a = 1;
180
- int stride_b = 1;
181
- int type_length = 1;
182
-
183
- CUDA_CALLABLE self_type operator++(int)
184
- {
185
- return ++(self_type(*this));
186
- }
187
-
188
- CUDA_CALLABLE self_type &operator++()
189
- {
190
- ptr_a += stride_a;
191
- ptr_b += stride_b;
192
- return *this;
193
- }
194
-
195
- __host__ __device__ __forceinline__ reference operator*() const
196
- {
197
- return compute_value(0);
198
- }
199
-
200
- CUDA_CALLABLE self_type operator+(difference_type n) const
201
- {
202
- return self_type(*this) += n;
203
- }
204
-
205
- CUDA_CALLABLE self_type &operator+=(difference_type n)
206
- {
207
- ptr_a += n * stride_a;
208
- ptr_b += n * stride_b;
209
- return *this;
210
- }
211
-
212
- CUDA_CALLABLE self_type operator-(difference_type n) const
213
- {
214
- return self_type(*this) -= n;
215
- }
216
-
217
- CUDA_CALLABLE self_type &operator-=(difference_type n)
218
- {
219
- ptr_a -= n * stride_a;
220
- ptr_b -= n * stride_b;
221
- return *this;
222
- }
223
-
224
- CUDA_CALLABLE difference_type operator-(const self_type &other) const
225
- {
226
- return (ptr_a - other.ptr_a) / stride_a;
227
- }
228
-
229
- CUDA_CALLABLE reference operator[](difference_type n) const
230
- {
231
- return compute_value(n);
232
- }
233
-
234
- CUDA_CALLABLE bool operator==(const self_type &rhs) const
235
- {
236
- return (ptr_a == rhs.ptr_a);
237
- }
238
-
239
- CUDA_CALLABLE bool operator!=(const self_type &rhs) const
240
- {
241
- return (ptr_a != rhs.ptr_a);
242
- }
243
-
244
- private:
245
- CUDA_CALLABLE ScalarT compute_value(difference_type n) const
246
- {
247
- ScalarT val(0);
248
- const ElemT *a = ptr_a + n * stride_a;
249
- const ElemT *b = ptr_b + n * stride_b;
250
- for (int k = 0; k < type_length; ++k)
251
- {
252
- val += element_inner_product(a[k], b[k]);
253
- }
254
- return val;
255
- }
256
- };
257
-
258
- template <typename ElemT, typename ScalarT>
259
- void array_inner_device(const ElemT *ptr_a, const ElemT *ptr_b, ScalarT *ptr_out, int count, int byte_stride_a,
260
- int byte_stride_b, int type_length)
261
- {
262
- assert((byte_stride_a % sizeof(ElemT)) == 0);
263
- assert((byte_stride_b % sizeof(ElemT)) == 0);
264
- const int stride_a = byte_stride_a / sizeof(ElemT);
265
- const int stride_b = byte_stride_b / sizeof(ElemT);
266
-
267
- ContextGuard guard(cuda_context_get_current());
268
- cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
269
-
270
- cub_inner_product_iterator<ElemT, ScalarT> inner_iterator{ptr_a, ptr_b, stride_a, stride_b, type_length};
271
-
272
- size_t buff_size = 0;
273
- check_cuda(cub::DeviceReduce::Sum(nullptr, buff_size, inner_iterator, ptr_out, count, stream));
274
- void* temp_buffer = alloc_device(WP_CURRENT_CONTEXT, buff_size);
275
-
276
- check_cuda(cub::DeviceReduce::Sum(temp_buffer, buff_size, inner_iterator, ptr_out, count, stream));
277
-
278
- free_device(WP_CURRENT_CONTEXT, temp_buffer);
279
- }
280
-
281
- template <typename T>
282
- void array_inner_device_dispatch(const T *ptr_a, const T *ptr_b, T *ptr_out, int count, int byte_stride_a,
283
- int byte_stride_b, int type_length)
284
- {
285
- using vec2 = wp::vec_t<2, T>;
286
- using vec3 = wp::vec_t<3, T>;
287
- using vec4 = wp::vec_t<4, T>;
288
-
289
- // specialized calls for common vector types
290
-
291
- if ((type_length % 4) == 0 && (byte_stride_a % sizeof(vec4)) == 0 && (byte_stride_b % sizeof(vec4)) == 0)
292
- {
293
- return array_inner_device(reinterpret_cast<const vec4 *>(ptr_a), reinterpret_cast<const vec4 *>(ptr_b), ptr_out,
294
- count, byte_stride_a, byte_stride_b, type_length / 4);
295
- }
296
-
297
- if ((type_length % 3) == 0 && (byte_stride_a % sizeof(vec3)) == 0 && (byte_stride_b % sizeof(vec3)) == 0)
298
- {
299
- return array_inner_device(reinterpret_cast<const vec3 *>(ptr_a), reinterpret_cast<const vec3 *>(ptr_b), ptr_out,
300
- count, byte_stride_a, byte_stride_b, type_length / 3);
301
- }
302
-
303
- if ((type_length % 2) == 0 && (byte_stride_a % sizeof(vec2)) == 0 && (byte_stride_b % sizeof(vec2)) == 0)
304
- {
305
- return array_inner_device(reinterpret_cast<const vec2 *>(ptr_a), reinterpret_cast<const vec2 *>(ptr_b), ptr_out,
306
- count, byte_stride_a, byte_stride_b, type_length / 2);
307
- }
308
-
309
- return array_inner_device(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_length);
310
- }
311
-
312
- } // anonymous namespace
313
-
314
- void array_inner_float_device(uint64_t a, uint64_t b, uint64_t out, int count, int byte_stride_a, int byte_stride_b,
315
- int type_len)
316
- {
317
- void *context = cuda_context_get_current();
318
-
319
- const float *ptr_a = (const float *)(a);
320
- const float *ptr_b = (const float *)(b);
321
- float *ptr_out = (float *)(out);
322
-
323
- array_inner_device_dispatch(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_len);
324
- }
325
-
326
- void array_inner_double_device(uint64_t a, uint64_t b, uint64_t out, int count, int byte_stride_a, int byte_stride_b,
327
- int type_len)
328
- {
329
- const double *ptr_a = (const double *)(a);
330
- const double *ptr_b = (const double *)(b);
331
- double *ptr_out = (double *)(out);
332
-
333
- array_inner_device_dispatch(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_len);
334
- }
335
-
336
- void array_sum_float_device(uint64_t a, uint64_t out, int count, int byte_stride, int type_length)
337
- {
338
- const float *ptr_a = (const float *)(a);
339
- float *ptr_out = (float *)(out);
340
- array_sum_device_dispatch(ptr_a, ptr_out, count, byte_stride, type_length);
341
- }
342
-
343
- void array_sum_double_device(uint64_t a, uint64_t out, int count, int byte_stride, int type_length)
344
- {
345
- const double *ptr_a = (const double *)(a);
346
- double *ptr_out = (double *)(out);
347
- array_sum_device_dispatch(ptr_a, ptr_out, count, byte_stride, type_length);
348
- }
1
+
2
+ #include "cuda_util.h"
3
+ #include "warp.h"
4
+
5
+ #include "temp_buffer.h"
6
+
7
+ #define THRUST_IGNORE_CUB_VERSION_CHECK
8
+ #include <cub/device/device_reduce.cuh>
9
+ #include <cub/iterator/counting_input_iterator.cuh>
10
+
11
+ namespace
12
+ {
13
+
14
+ template <typename T>
15
+ __global__ void cwise_mult_kernel(int len, int stride_a, int stride_b, const T *a, const T *b, T *out)
16
+ {
17
+ int i = blockIdx.x * blockDim.x + threadIdx.x;
18
+ if (i >= len)
19
+ return;
20
+ out[i] = a[i * stride_a] * b[i * stride_b];
21
+ }
22
+
23
+ /// Custom iterator for allowing strided access with CUB
24
+ template <typename T> struct cub_strided_iterator
25
+ {
26
+ typedef cub_strided_iterator<T> self_type;
27
+ typedef std::ptrdiff_t difference_type;
28
+ typedef T value_type;
29
+ typedef T *pointer;
30
+ typedef T &reference;
31
+
32
+ typedef std::random_access_iterator_tag iterator_category; ///< The iterator category
33
+
34
+ T *ptr = nullptr;
35
+ int stride = 1;
36
+
37
+ CUDA_CALLABLE self_type operator++(int)
38
+ {
39
+ return ++(self_type(*this));
40
+ }
41
+
42
+ CUDA_CALLABLE self_type &operator++()
43
+ {
44
+ ptr += stride;
45
+ return *this;
46
+ }
47
+
48
+ __host__ __device__ __forceinline__ reference operator*() const
49
+ {
50
+ return *ptr;
51
+ }
52
+
53
+ CUDA_CALLABLE self_type operator+(difference_type n) const
54
+ {
55
+ return self_type(*this) += n;
56
+ }
57
+
58
+ CUDA_CALLABLE self_type &operator+=(difference_type n)
59
+ {
60
+ ptr += n * stride;
61
+ return *this;
62
+ }
63
+
64
+ CUDA_CALLABLE self_type operator-(difference_type n) const
65
+ {
66
+ return self_type(*this) -= n;
67
+ }
68
+
69
+ CUDA_CALLABLE self_type &operator-=(difference_type n)
70
+ {
71
+ ptr -= n * stride;
72
+ return *this;
73
+ }
74
+
75
+ CUDA_CALLABLE difference_type operator-(const self_type &other) const
76
+ {
77
+ return (ptr - other.ptr) / stride;
78
+ }
79
+
80
+ CUDA_CALLABLE reference operator[](difference_type n) const
81
+ {
82
+ return *(ptr + n * stride);
83
+ }
84
+
85
+ CUDA_CALLABLE pointer operator->() const
86
+ {
87
+ return ptr;
88
+ }
89
+
90
+ CUDA_CALLABLE bool operator==(const self_type &rhs) const
91
+ {
92
+ return (ptr == rhs.ptr);
93
+ }
94
+
95
+ CUDA_CALLABLE bool operator!=(const self_type &rhs) const
96
+ {
97
+ return (ptr != rhs.ptr);
98
+ }
99
+ };
100
+
101
+ template <typename T> void array_sum_device(const T *ptr_a, T *ptr_out, int count, int byte_stride, int type_length)
102
+ {
103
+ assert((byte_stride % sizeof(T)) == 0);
104
+ const int stride = byte_stride / sizeof(T);
105
+
106
+ ContextGuard guard(cuda_context_get_current());
107
+ cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
108
+
109
+ cub_strided_iterator<const T> ptr_strided{ptr_a, stride};
110
+
111
+ size_t buff_size = 0;
112
+ check_cuda(cub::DeviceReduce::Sum(nullptr, buff_size, ptr_strided, ptr_out, count, stream));
113
+ void* temp_buffer = alloc_device(WP_CURRENT_CONTEXT, buff_size);
114
+
115
+ for (int k = 0; k < type_length; ++k)
116
+ {
117
+ cub_strided_iterator<const T> ptr_strided{ptr_a + k, stride};
118
+ check_cuda(cub::DeviceReduce::Sum(temp_buffer, buff_size, ptr_strided, ptr_out + k, count, stream));
119
+ }
120
+
121
+ free_device(WP_CURRENT_CONTEXT, temp_buffer);
122
+ }
123
+
124
+ template <typename T>
125
+ void array_sum_device_dispatch(const T *ptr_a, T *ptr_out, int count, int byte_stride, int type_length)
126
+ {
127
+ using vec2 = wp::vec_t<2, T>;
128
+ using vec3 = wp::vec_t<3, T>;
129
+ using vec4 = wp::vec_t<4, T>;
130
+
131
+ // specialized calls for common vector types
132
+
133
+ if ((type_length % 4) == 0 && (byte_stride % sizeof(vec4)) == 0)
134
+ {
135
+ return array_sum_device(reinterpret_cast<const vec4 *>(ptr_a), reinterpret_cast<vec4 *>(ptr_out), count,
136
+ byte_stride, type_length / 4);
137
+ }
138
+
139
+ if ((type_length % 3) == 0 && (byte_stride % sizeof(vec3)) == 0)
140
+ {
141
+ return array_sum_device(reinterpret_cast<const vec3 *>(ptr_a), reinterpret_cast<vec3 *>(ptr_out), count,
142
+ byte_stride, type_length / 3);
143
+ }
144
+
145
+ if ((type_length % 2) == 0 && (byte_stride % sizeof(vec2)) == 0)
146
+ {
147
+ return array_sum_device(reinterpret_cast<const vec2 *>(ptr_a), reinterpret_cast<vec2 *>(ptr_out), count,
148
+ byte_stride, type_length / 2);
149
+ }
150
+
151
+ return array_sum_device(ptr_a, ptr_out, count, byte_stride, type_length);
152
+ }
153
+
154
+ template <typename T> CUDA_CALLABLE T element_inner_product(const T &a, const T &b)
155
+ {
156
+ return a * b;
157
+ }
158
+
159
+ template <unsigned Length, typename T>
160
+ CUDA_CALLABLE T element_inner_product(const wp::vec_t<Length, T> &a, const wp::vec_t<Length, T> &b)
161
+ {
162
+ return wp::dot(a, b);
163
+ }
164
+
165
+ /// Custom iterator for allowing strided access with CUB
166
+ template <typename ElemT, typename ScalarT> struct cub_inner_product_iterator
167
+ {
168
+ typedef cub_inner_product_iterator<ElemT, ScalarT> self_type;
169
+ typedef std::ptrdiff_t difference_type;
170
+ typedef ScalarT value_type;
171
+ typedef ScalarT *pointer;
172
+ typedef ScalarT reference;
173
+
174
+ typedef std::random_access_iterator_tag iterator_category; ///< The iterator category
175
+
176
+ const ElemT *ptr_a = nullptr;
177
+ const ElemT *ptr_b = nullptr;
178
+
179
+ int stride_a = 1;
180
+ int stride_b = 1;
181
+ int type_length = 1;
182
+
183
+ CUDA_CALLABLE self_type operator++(int)
184
+ {
185
+ return ++(self_type(*this));
186
+ }
187
+
188
+ CUDA_CALLABLE self_type &operator++()
189
+ {
190
+ ptr_a += stride_a;
191
+ ptr_b += stride_b;
192
+ return *this;
193
+ }
194
+
195
+ __host__ __device__ __forceinline__ reference operator*() const
196
+ {
197
+ return compute_value(0);
198
+ }
199
+
200
+ CUDA_CALLABLE self_type operator+(difference_type n) const
201
+ {
202
+ return self_type(*this) += n;
203
+ }
204
+
205
+ CUDA_CALLABLE self_type &operator+=(difference_type n)
206
+ {
207
+ ptr_a += n * stride_a;
208
+ ptr_b += n * stride_b;
209
+ return *this;
210
+ }
211
+
212
+ CUDA_CALLABLE self_type operator-(difference_type n) const
213
+ {
214
+ return self_type(*this) -= n;
215
+ }
216
+
217
+ CUDA_CALLABLE self_type &operator-=(difference_type n)
218
+ {
219
+ ptr_a -= n * stride_a;
220
+ ptr_b -= n * stride_b;
221
+ return *this;
222
+ }
223
+
224
+ CUDA_CALLABLE difference_type operator-(const self_type &other) const
225
+ {
226
+ return (ptr_a - other.ptr_a) / stride_a;
227
+ }
228
+
229
+ CUDA_CALLABLE reference operator[](difference_type n) const
230
+ {
231
+ return compute_value(n);
232
+ }
233
+
234
+ CUDA_CALLABLE bool operator==(const self_type &rhs) const
235
+ {
236
+ return (ptr_a == rhs.ptr_a);
237
+ }
238
+
239
+ CUDA_CALLABLE bool operator!=(const self_type &rhs) const
240
+ {
241
+ return (ptr_a != rhs.ptr_a);
242
+ }
243
+
244
+ private:
245
+ CUDA_CALLABLE ScalarT compute_value(difference_type n) const
246
+ {
247
+ ScalarT val(0);
248
+ const ElemT *a = ptr_a + n * stride_a;
249
+ const ElemT *b = ptr_b + n * stride_b;
250
+ for (int k = 0; k < type_length; ++k)
251
+ {
252
+ val += element_inner_product(a[k], b[k]);
253
+ }
254
+ return val;
255
+ }
256
+ };
257
+
258
+ template <typename ElemT, typename ScalarT>
259
+ void array_inner_device(const ElemT *ptr_a, const ElemT *ptr_b, ScalarT *ptr_out, int count, int byte_stride_a,
260
+ int byte_stride_b, int type_length)
261
+ {
262
+ assert((byte_stride_a % sizeof(ElemT)) == 0);
263
+ assert((byte_stride_b % sizeof(ElemT)) == 0);
264
+ const int stride_a = byte_stride_a / sizeof(ElemT);
265
+ const int stride_b = byte_stride_b / sizeof(ElemT);
266
+
267
+ ContextGuard guard(cuda_context_get_current());
268
+ cudaStream_t stream = static_cast<cudaStream_t>(cuda_stream_get_current());
269
+
270
+ cub_inner_product_iterator<ElemT, ScalarT> inner_iterator{ptr_a, ptr_b, stride_a, stride_b, type_length};
271
+
272
+ size_t buff_size = 0;
273
+ check_cuda(cub::DeviceReduce::Sum(nullptr, buff_size, inner_iterator, ptr_out, count, stream));
274
+ void* temp_buffer = alloc_device(WP_CURRENT_CONTEXT, buff_size);
275
+
276
+ check_cuda(cub::DeviceReduce::Sum(temp_buffer, buff_size, inner_iterator, ptr_out, count, stream));
277
+
278
+ free_device(WP_CURRENT_CONTEXT, temp_buffer);
279
+ }
280
+
281
+ template <typename T>
282
+ void array_inner_device_dispatch(const T *ptr_a, const T *ptr_b, T *ptr_out, int count, int byte_stride_a,
283
+ int byte_stride_b, int type_length)
284
+ {
285
+ using vec2 = wp::vec_t<2, T>;
286
+ using vec3 = wp::vec_t<3, T>;
287
+ using vec4 = wp::vec_t<4, T>;
288
+
289
+ // specialized calls for common vector types
290
+
291
+ if ((type_length % 4) == 0 && (byte_stride_a % sizeof(vec4)) == 0 && (byte_stride_b % sizeof(vec4)) == 0)
292
+ {
293
+ return array_inner_device(reinterpret_cast<const vec4 *>(ptr_a), reinterpret_cast<const vec4 *>(ptr_b), ptr_out,
294
+ count, byte_stride_a, byte_stride_b, type_length / 4);
295
+ }
296
+
297
+ if ((type_length % 3) == 0 && (byte_stride_a % sizeof(vec3)) == 0 && (byte_stride_b % sizeof(vec3)) == 0)
298
+ {
299
+ return array_inner_device(reinterpret_cast<const vec3 *>(ptr_a), reinterpret_cast<const vec3 *>(ptr_b), ptr_out,
300
+ count, byte_stride_a, byte_stride_b, type_length / 3);
301
+ }
302
+
303
+ if ((type_length % 2) == 0 && (byte_stride_a % sizeof(vec2)) == 0 && (byte_stride_b % sizeof(vec2)) == 0)
304
+ {
305
+ return array_inner_device(reinterpret_cast<const vec2 *>(ptr_a), reinterpret_cast<const vec2 *>(ptr_b), ptr_out,
306
+ count, byte_stride_a, byte_stride_b, type_length / 2);
307
+ }
308
+
309
+ return array_inner_device(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_length);
310
+ }
311
+
312
+ } // anonymous namespace
313
+
314
+ void array_inner_float_device(uint64_t a, uint64_t b, uint64_t out, int count, int byte_stride_a, int byte_stride_b,
315
+ int type_len)
316
+ {
317
+ void *context = cuda_context_get_current();
318
+
319
+ const float *ptr_a = (const float *)(a);
320
+ const float *ptr_b = (const float *)(b);
321
+ float *ptr_out = (float *)(out);
322
+
323
+ array_inner_device_dispatch(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_len);
324
+ }
325
+
326
+ void array_inner_double_device(uint64_t a, uint64_t b, uint64_t out, int count, int byte_stride_a, int byte_stride_b,
327
+ int type_len)
328
+ {
329
+ const double *ptr_a = (const double *)(a);
330
+ const double *ptr_b = (const double *)(b);
331
+ double *ptr_out = (double *)(out);
332
+
333
+ array_inner_device_dispatch(ptr_a, ptr_b, ptr_out, count, byte_stride_a, byte_stride_b, type_len);
334
+ }
335
+
336
+ void array_sum_float_device(uint64_t a, uint64_t out, int count, int byte_stride, int type_length)
337
+ {
338
+ const float *ptr_a = (const float *)(a);
339
+ float *ptr_out = (float *)(out);
340
+ array_sum_device_dispatch(ptr_a, ptr_out, count, byte_stride, type_length);
341
+ }
342
+
343
+ void array_sum_double_device(uint64_t a, uint64_t out, int count, int byte_stride, int type_length)
344
+ {
345
+ const double *ptr_a = (const double *)(a);
346
+ double *ptr_out = (double *)(out);
347
+ array_sum_device_dispatch(ptr_a, ptr_out, count, byte_stride, type_length);
348
+ }