warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +88 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3693 -3354
- warp/codegen.py +2925 -2792
- warp/config.py +40 -36
- warp/constants.py +49 -45
- warp/context.py +5409 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +381 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -277
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
- warp/examples/benchmarks/benchmark_launches.py +293 -295
- warp/examples/browse.py +29 -29
- warp/examples/core/example_dem.py +232 -219
- warp/examples/core/example_fluid.py +291 -267
- warp/examples/core/example_graph_capture.py +142 -126
- warp/examples/core/example_marching_cubes.py +186 -174
- warp/examples/core/example_mesh.py +172 -155
- warp/examples/core/example_mesh_intersect.py +203 -193
- warp/examples/core/example_nvdb.py +174 -170
- warp/examples/core/example_raycast.py +103 -90
- warp/examples/core/example_raymarch.py +197 -178
- warp/examples/core/example_render_opengl.py +183 -141
- warp/examples/core/example_sph.py +403 -387
- warp/examples/core/example_torch.py +219 -181
- warp/examples/core/example_wave.py +261 -248
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +432 -389
- warp/examples/fem/example_burgers.py +262 -0
- warp/examples/fem/example_convection_diffusion.py +180 -168
- warp/examples/fem/example_convection_diffusion_dg.py +217 -209
- warp/examples/fem/example_deformed_geometry.py +175 -159
- warp/examples/fem/example_diffusion.py +199 -173
- warp/examples/fem/example_diffusion_3d.py +178 -152
- warp/examples/fem/example_diffusion_mgpu.py +219 -214
- warp/examples/fem/example_mixed_elasticity.py +242 -222
- warp/examples/fem/example_navier_stokes.py +257 -243
- warp/examples/fem/example_stokes.py +218 -192
- warp/examples/fem/example_stokes_transfer.py +263 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +258 -246
- warp/examples/optim/example_cloth_throw.py +220 -209
- warp/examples/optim/example_diffray.py +564 -536
- warp/examples/optim/example_drone.py +862 -835
- warp/examples/optim/example_inverse_kinematics.py +174 -168
- warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
- warp/examples/optim/example_spring_cage.py +237 -231
- warp/examples/optim/example_trajectory.py +221 -199
- warp/examples/optim/example_walker.py +304 -293
- warp/examples/sim/example_cartpole.py +137 -129
- warp/examples/sim/example_cloth.py +194 -186
- warp/examples/sim/example_granular.py +122 -111
- warp/examples/sim/example_granular_collision_sdf.py +195 -186
- warp/examples/sim/example_jacobian_ik.py +234 -214
- warp/examples/sim/example_particle_chain.py +116 -105
- warp/examples/sim/example_quadruped.py +191 -180
- warp/examples/sim/example_rigid_chain.py +195 -187
- warp/examples/sim/example_rigid_contact.py +187 -177
- warp/examples/sim/example_rigid_force.py +125 -125
- warp/examples/sim/example_rigid_gyroscopic.py +107 -95
- warp/examples/sim/example_rigid_soft_contact.py +132 -122
- warp/examples/sim/example_soft_body.py +188 -177
- warp/fabric.py +337 -335
- warp/fem/__init__.py +61 -27
- warp/fem/cache.py +403 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +16 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +748 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +437 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/nanogrid.py +455 -0
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1684 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +179 -292
- warp/fem/space/basis_space.py +522 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +148 -267
- warp/fem/space/grid_3d_function_space.py +167 -306
- warp/fem/space/hexmesh_function_space.py +253 -352
- warp/fem/space/nanogrid_function_space.py +202 -0
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +261 -369
- warp/fem/space/restriction.py +161 -160
- warp/fem/space/shape/__init__.py +90 -15
- warp/fem/space/shape/cube_shape_function.py +728 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +224 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +153 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1081 -1025
- warp/native/builtin.h +1603 -1560
- warp/native/bvh.cpp +402 -398
- warp/native/bvh.cu +533 -525
- warp/native/bvh.h +430 -429
- warp/native/clang/clang.cpp +496 -464
- warp/native/crt.cpp +42 -32
- warp/native/crt.h +352 -335
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/exports.h +187 -0
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1545 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +292 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -4782
- warp/native/nanovdb/PNanoVDB.h +3390 -2553
- warp/native/noise.h +850 -850
- warp/native/quat.h +1112 -1085
- warp/native/rand.h +303 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1177 -1133
- warp/native/volume.cpp +529 -297
- warp/native/volume.cu +58 -32
- warp/native/volume.h +960 -538
- warp/native/volume_builder.cu +446 -425
- warp/native/volume_builder.h +34 -19
- warp/native/volume_impl.h +61 -0
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2949 -2828
- warp/native/warp.h +321 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3356 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1917 -1991
- warp/sim/integrator_xpbd.py +3288 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1289 -1227
- warp/stubs.py +2192 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +20 -22
- warp/tests/aux_test_grad_customs.py +21 -23
- warp/tests/aux_test_reference.py +9 -11
- warp/tests/aux_test_reference_reference.py +8 -10
- warp/tests/aux_test_square.py +15 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +237 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +155 -157
- warp/tests/test_arithmetic.py +1088 -1124
- warp/tests/test_array.py +2415 -2326
- warp/tests/test_array_reduce.py +148 -150
- warp/tests/test_async.py +666 -656
- warp/tests/test_atomic.py +139 -141
- warp/tests/test_bool.py +212 -149
- warp/tests/test_builtins_resolution.py +1290 -1292
- warp/tests/test_bvh.py +162 -171
- warp/tests/test_closest_point_edge_edge.py +227 -228
- warp/tests/test_codegen.py +562 -553
- warp/tests/test_compile_consts.py +217 -101
- warp/tests/test_conditional.py +244 -246
- warp/tests/test_copy.py +230 -215
- warp/tests/test_ctypes.py +630 -632
- warp/tests/test_dense.py +65 -67
- warp/tests/test_devices.py +89 -98
- warp/tests/test_dlpack.py +528 -529
- warp/tests/test_examples.py +403 -378
- warp/tests/test_fabricarray.py +952 -955
- warp/tests/test_fast_math.py +60 -54
- warp/tests/test_fem.py +1298 -1278
- warp/tests/test_fp16.py +128 -130
- warp/tests/test_func.py +336 -337
- warp/tests/test_generics.py +596 -571
- warp/tests/test_grad.py +885 -640
- warp/tests/test_grad_customs.py +331 -336
- warp/tests/test_hash_grid.py +208 -164
- warp/tests/test_import.py +37 -39
- warp/tests/test_indexedarray.py +1132 -1134
- warp/tests/test_intersect.py +65 -67
- warp/tests/test_jax.py +305 -307
- warp/tests/test_large.py +169 -164
- warp/tests/test_launch.py +352 -354
- warp/tests/test_lerp.py +217 -261
- warp/tests/test_linear_solvers.py +189 -171
- warp/tests/test_lvalue.py +419 -493
- warp/tests/test_marching_cubes.py +63 -65
- warp/tests/test_mat.py +1799 -1827
- warp/tests/test_mat_lite.py +113 -115
- warp/tests/test_mat_scalar_ops.py +2905 -2889
- warp/tests/test_math.py +124 -193
- warp/tests/test_matmul.py +498 -499
- warp/tests/test_matmul_lite.py +408 -410
- warp/tests/test_mempool.py +186 -190
- warp/tests/test_mesh.py +281 -324
- warp/tests/test_mesh_query_aabb.py +226 -241
- warp/tests/test_mesh_query_point.py +690 -702
- warp/tests/test_mesh_query_ray.py +290 -303
- warp/tests/test_mlp.py +274 -276
- warp/tests/test_model.py +108 -110
- warp/tests/test_module_hashing.py +111 -0
- warp/tests/test_modules_lite.py +36 -39
- warp/tests/test_multigpu.py +161 -163
- warp/tests/test_noise.py +244 -248
- warp/tests/test_operators.py +248 -250
- warp/tests/test_options.py +121 -125
- warp/tests/test_peer.py +131 -137
- warp/tests/test_pinned.py +76 -78
- warp/tests/test_print.py +52 -54
- warp/tests/test_quat.py +2084 -2086
- warp/tests/test_rand.py +324 -288
- warp/tests/test_reload.py +207 -217
- warp/tests/test_rounding.py +177 -179
- warp/tests/test_runlength_encode.py +188 -190
- warp/tests/test_sim_grad.py +241 -0
- warp/tests/test_sim_kinematics.py +89 -97
- warp/tests/test_smoothstep.py +166 -168
- warp/tests/test_snippet.py +303 -266
- warp/tests/test_sparse.py +466 -460
- warp/tests/test_spatial.py +2146 -2148
- warp/tests/test_special_values.py +362 -0
- warp/tests/test_streams.py +484 -473
- warp/tests/test_struct.py +708 -675
- warp/tests/test_tape.py +171 -148
- warp/tests/test_torch.py +741 -743
- warp/tests/test_transient_module.py +85 -87
- warp/tests/test_types.py +554 -659
- warp/tests/test_utils.py +488 -499
- warp/tests/test_vec.py +1262 -1268
- warp/tests/test_vec_lite.py +71 -73
- warp/tests/test_vec_scalar_ops.py +2097 -2099
- warp/tests/test_verify_fp.py +92 -94
- warp/tests/test_volume.py +961 -736
- warp/tests/test_volume_write.py +338 -265
- warp/tests/unittest_serial.py +38 -37
- warp/tests/unittest_suites.py +367 -359
- warp/tests/unittest_utils.py +434 -578
- warp/tests/unused_test_misc.py +69 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +563 -561
- warp/torch.py +321 -295
- warp/types.py +4941 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
- warp_lang-1.2.0.dist-info/RECORD +359 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
- warp/native/nanovdb/PNanoVDBWrite.h +0 -295
- warp_lang-1.0.2.dist-info/RECORD +0 -352
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -1,400 +1,365 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: warp-lang
|
|
3
|
-
Version: 1.0
|
|
4
|
-
Summary: A Python framework for high-performance simulation and graphics programming
|
|
5
|
-
Author-email: NVIDIA <mmacklin@nvidia.com>
|
|
6
|
-
License: NVIDIA Software License
|
|
7
|
-
Project-URL: GitHub, https://github.com/NVIDIA/warp
|
|
8
|
-
Project-URL: Documentation, https://nvidia.github.io/warp
|
|
9
|
-
Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
|
|
10
|
-
Classifier: Programming Language :: Python :: 3.7
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
12
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
-
Classifier: License :: Other/Proprietary License
|
|
16
|
-
Classifier: Operating System :: OS Independent
|
|
17
|
-
Requires-Python: >=3.7
|
|
18
|
-
Description-Content-Type: text/markdown
|
|
19
|
-
License-File: LICENSE.md
|
|
20
|
-
Requires-Dist: numpy
|
|
21
|
-
Provides-Extra: dev
|
|
22
|
-
Requires-Dist:
|
|
23
|
-
Requires-Dist:
|
|
24
|
-
Requires-Dist:
|
|
25
|
-
Requires-Dist:
|
|
26
|
-
Requires-Dist:
|
|
27
|
-
Requires-Dist:
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
wp.
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
<td
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
<td align="center">
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
<td
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
<td></td>
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
<td
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
<td align="center"
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
</
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
<
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
<td
|
|
168
|
-
<td
|
|
169
|
-
<td
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
<td
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
<td align="center">
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
</
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
<
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
<td
|
|
200
|
-
<td
|
|
201
|
-
<td
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
<td
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
<td align="center">
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
</
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
<
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
<td
|
|
232
|
-
<td
|
|
233
|
-
<td
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
<td
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
<td align="center">
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
<td
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
<td
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
<td align="center">
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
</
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
*
|
|
308
|
-
*
|
|
309
|
-
*
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
```
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
# ensure that the copies have finished
|
|
367
|
-
wp.synchronize()
|
|
368
|
-
|
|
369
|
-
# return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
|
|
370
|
-
a1 = cpu_array_1.numpy()
|
|
371
|
-
a2 = cpu_array_2.numpy()
|
|
372
|
-
a3 = cpu_array_3.numpy()
|
|
373
|
-
```
|
|
374
|
-
|
|
375
|
-
For more information about asynchronous operations, please refer to the [concurrency documentation](https://nvidia.github.io/warp/modules/concurrency.html) and [synchronization guidance](https://nvidia.github.io/warp/modules/concurrency.html#synchronization-guidance).
|
|
376
|
-
|
|
377
|
-
### What happens when you differentiate a function like `wp.abs(x)`?
|
|
378
|
-
-------
|
|
379
|
-
|
|
380
|
-
Non-smooth functions such as `y=|x|` do not have a single unique gradient at `x=0`, rather they have what is known as a `subgradient`, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation frameworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for `wp.abs()`, it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in `warp/native/builtin.h`.
|
|
381
|
-
|
|
382
|
-
Most optimizers (particularly ones that exploit stochasticity) are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.
|
|
383
|
-
|
|
384
|
-
### Does Warp support multi-GPU programming?
|
|
385
|
-
-------
|
|
386
|
-
|
|
387
|
-
Yes! Since version `0.4.0` we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as `cuda:0`, `cuda:1`, `cpu` to identify individual devices.
|
|
388
|
-
|
|
389
|
-
### Should I switch to Warp over IsaacGym / PhysX?
|
|
390
|
-
-------
|
|
391
|
-
|
|
392
|
-
Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.
|
|
393
|
-
|
|
394
|
-
## Discord
|
|
395
|
-
|
|
396
|
-
We have a **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
|
|
397
|
-
|
|
398
|
-
## License
|
|
399
|
-
|
|
400
|
-
Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: warp-lang
|
|
3
|
+
Version: 1.2.0
|
|
4
|
+
Summary: A Python framework for high-performance simulation and graphics programming
|
|
5
|
+
Author-email: NVIDIA <mmacklin@nvidia.com>
|
|
6
|
+
License: NVIDIA Software License
|
|
7
|
+
Project-URL: GitHub, https://github.com/NVIDIA/warp
|
|
8
|
+
Project-URL: Documentation, https://nvidia.github.io/warp
|
|
9
|
+
Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
+
Classifier: License :: Other/Proprietary License
|
|
16
|
+
Classifier: Operating System :: OS Independent
|
|
17
|
+
Requires-Python: >=3.7
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
License-File: LICENSE.md
|
|
20
|
+
Requires-Dist: numpy
|
|
21
|
+
Provides-Extra: dev
|
|
22
|
+
Requires-Dist: pre-commit ; extra == 'dev'
|
|
23
|
+
Requires-Dist: ruff ; extra == 'dev'
|
|
24
|
+
Requires-Dist: nvtx ; extra == 'dev'
|
|
25
|
+
Requires-Dist: furo ; extra == 'dev'
|
|
26
|
+
Requires-Dist: sphinx-copybutton ; extra == 'dev'
|
|
27
|
+
Requires-Dist: coverage[toml] ; extra == 'dev'
|
|
28
|
+
Provides-Extra: extras
|
|
29
|
+
Requires-Dist: usd-core ; extra == 'extras'
|
|
30
|
+
Requires-Dist: matplotlib ; extra == 'extras'
|
|
31
|
+
Requires-Dist: pyglet ; extra == 'extras'
|
|
32
|
+
|
|
33
|
+
[](https://badge.fury.io/py/warp-lang)
|
|
34
|
+

|
|
35
|
+
[](https://pepy.tech/project/warp-lang)
|
|
36
|
+
[](https://codecov.io/github/NVIDIA/warp)
|
|
37
|
+

|
|
38
|
+
[](https://discord.com/invite/nvidiaomniverse)
|
|
39
|
+
|
|
40
|
+
# NVIDIA Warp
|
|
41
|
+
|
|
42
|
+
Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
|
|
43
|
+
regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
|
|
44
|
+
|
|
45
|
+
Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
|
|
46
|
+
programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
|
|
47
|
+
are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
|
|
48
|
+
|
|
49
|
+
Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
|
|
50
|
+
|
|
51
|
+
<div align="center">
|
|
52
|
+
<img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
|
|
53
|
+
<p><i>A selection of physical simulations computed with Warp</i></p>
|
|
54
|
+
</div>
|
|
55
|
+
|
|
56
|
+
## Installing
|
|
57
|
+
|
|
58
|
+
Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS.
|
|
59
|
+
GPU support requires a CUDA-capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
|
|
60
|
+
|
|
61
|
+
The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
|
|
62
|
+
|
|
63
|
+
pip install warp-lang
|
|
64
|
+
|
|
65
|
+
You can also use `pip install warp-lang[extras]` to install additional dependencies for running examples and USD-related features.
|
|
66
|
+
|
|
67
|
+
The binaries hosted on PyPI are currently built with the CUDA 11.8 runtime.
|
|
68
|
+
We provide binaries built with the CUDA 12.5 runtime on the [GitHub Releases](https://github.com/NVIDIA/warp/releases) page.
|
|
69
|
+
Copy the URL of the appropriate wheel file (`warp-lang-{ver}+cu12-py3-none-{platform}.whl`) and pass it to
|
|
70
|
+
the `pip install` command, e.g.
|
|
71
|
+
|
|
72
|
+
pip install https://github.com/NVIDIA/warp/releases/download/v1.2.0/warp_lang-1.2.0+cu12-py3-none-manylinux2014_x86_64.whl
|
|
73
|
+
|
|
74
|
+
The `--force-reinstall` option may need to be used to overwrite a previous installation.
|
|
75
|
+
|
|
76
|
+
## Getting Started
|
|
77
|
+
|
|
78
|
+
An example first program that computes the lengths of random 3D vectors is given below:
|
|
79
|
+
|
|
80
|
+
```python
|
|
81
|
+
import warp as wp
|
|
82
|
+
import numpy as np
|
|
83
|
+
|
|
84
|
+
num_points = 1024
|
|
85
|
+
|
|
86
|
+
@wp.kernel
|
|
87
|
+
def length(points: wp.array(dtype=wp.vec3),
|
|
88
|
+
lengths: wp.array(dtype=float)):
|
|
89
|
+
|
|
90
|
+
# thread index
|
|
91
|
+
tid = wp.tid()
|
|
92
|
+
|
|
93
|
+
# compute distance of each point from origin
|
|
94
|
+
lengths[tid] = wp.length(points[tid])
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
# allocate an array of 3d points
|
|
98
|
+
points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
|
|
99
|
+
lengths = wp.zeros(num_points, dtype=float)
|
|
100
|
+
|
|
101
|
+
# launch kernel
|
|
102
|
+
wp.launch(kernel=length,
|
|
103
|
+
dim=len(points),
|
|
104
|
+
inputs=[points, lengths])
|
|
105
|
+
|
|
106
|
+
print(lengths)
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
## Running Examples
|
|
110
|
+
|
|
111
|
+
The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations (stored in the current working directory). Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
|
|
112
|
+
|
|
113
|
+
pip install usd-core matplotlib pyglet
|
|
114
|
+
|
|
115
|
+
Examples can be run from the command-line as follows:
|
|
116
|
+
|
|
117
|
+
python -m warp.examples.<example_subdir>.<example>
|
|
118
|
+
|
|
119
|
+
To browse the example source code, you can open the directory where the files are located like this:
|
|
120
|
+
|
|
121
|
+
python -m warp.examples.browse
|
|
122
|
+
|
|
123
|
+
Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
|
|
124
|
+
|
|
125
|
+
USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
|
|
126
|
+
|
|
127
|
+
Built-in unit tests can be run from the command-line as follows:
|
|
128
|
+
|
|
129
|
+
python -m warp.tests
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
### examples/core
|
|
133
|
+
|
|
134
|
+
<table>
|
|
135
|
+
<tbody>
|
|
136
|
+
<tr>
|
|
137
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_dem.png"></a></td>
|
|
138
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_fluid.png"></a></td>
|
|
139
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_graph_capture.png"></a></td>
|
|
140
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_marching_cubes.png"></a></td>
|
|
141
|
+
</tr>
|
|
142
|
+
<tr>
|
|
143
|
+
<td align="center">dem</td>
|
|
144
|
+
<td align="center">fluid</td>
|
|
145
|
+
<td align="center">graph capture</td>
|
|
146
|
+
<td align="center">marching cubes</td>
|
|
147
|
+
</tr>
|
|
148
|
+
<tr>
|
|
149
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_mesh.png"></a></td>
|
|
150
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_nvdb.png"></a></td>
|
|
151
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raycast.png"></a></td>
|
|
152
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raymarch.png"></a></td>
|
|
153
|
+
</tr>
|
|
154
|
+
<tr>
|
|
155
|
+
<td align="center">mesh</td>
|
|
156
|
+
<td align="center">nvdb</td>
|
|
157
|
+
<td align="center">raycast</td>
|
|
158
|
+
<td align="center">raymarch</td>
|
|
159
|
+
</tr>
|
|
160
|
+
<tr>
|
|
161
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_sph.png"></a></td>
|
|
162
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_torch.png"></a></td>
|
|
163
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_wave.png"></a></td>
|
|
164
|
+
<td></td>
|
|
165
|
+
</tr>
|
|
166
|
+
<tr>
|
|
167
|
+
<td align="center">sph</td>
|
|
168
|
+
<td align="center">torch</td>
|
|
169
|
+
<td align="center">wave</td>
|
|
170
|
+
<td align="center"></td>
|
|
171
|
+
</tr>
|
|
172
|
+
</tbody>
|
|
173
|
+
</table>
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
### examples/fem
|
|
177
|
+
|
|
178
|
+
<table>
|
|
179
|
+
<tbody>
|
|
180
|
+
<tr>
|
|
181
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_apic_fluid.png"></a></td>
|
|
182
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_convection_diffusion.png"></a></td>
|
|
183
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
|
|
184
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion.png"></a></td>
|
|
185
|
+
</tr>
|
|
186
|
+
<tr>
|
|
187
|
+
<td align="center">apic fluid</td>
|
|
188
|
+
<td align="center">convection diffusion</td>
|
|
189
|
+
<td align="center">diffusion 3d</td>
|
|
190
|
+
<td align="center">diffusion</td>
|
|
191
|
+
</tr>
|
|
192
|
+
<tr>
|
|
193
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
|
|
194
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_navier_stokes.png"></a></td>
|
|
195
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes_transfer.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes_transfer.png"></a></td>
|
|
196
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes.png"></a></td>
|
|
197
|
+
</tr>
|
|
198
|
+
<tr>
|
|
199
|
+
<td align="center">mixed elasticity</td>
|
|
200
|
+
<td align="center">navier stokes</td>
|
|
201
|
+
<td align="center">stokes transfer</td>
|
|
202
|
+
<td align="center">stokes</td>
|
|
203
|
+
</tr>
|
|
204
|
+
</tbody>
|
|
205
|
+
</table>
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
### examples/optim
|
|
209
|
+
|
|
210
|
+
<table>
|
|
211
|
+
<tbody>
|
|
212
|
+
<tr>
|
|
213
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_bounce.png"></a></td>
|
|
214
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_cloth_throw.png"></a></td>
|
|
215
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_diffray.png"></a></td>
|
|
216
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_drone.png"></a></td>
|
|
217
|
+
</tr>
|
|
218
|
+
<tr>
|
|
219
|
+
<td align="center">bounce</td>
|
|
220
|
+
<td align="center">cloth throw</td>
|
|
221
|
+
<td align="center">diffray</td>
|
|
222
|
+
<td align="center">drone</td>
|
|
223
|
+
</tr>
|
|
224
|
+
<tr>
|
|
225
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
|
|
226
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_spring_cage.png"></a></td>
|
|
227
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_trajectory.png"></a></td>
|
|
228
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_walker.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_walker.png"></a></td>
|
|
229
|
+
</tr>
|
|
230
|
+
<tr>
|
|
231
|
+
<td align="center">inverse kinematics</td>
|
|
232
|
+
<td align="center">spring cage</td>
|
|
233
|
+
<td align="center">trajectory</td>
|
|
234
|
+
<td align="center">walker</td>
|
|
235
|
+
</tr>
|
|
236
|
+
</tbody>
|
|
237
|
+
</table>
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
### examples/sim
|
|
241
|
+
|
|
242
|
+
<table>
|
|
243
|
+
<tbody>
|
|
244
|
+
<tr>
|
|
245
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cartpole.png"></a></td>
|
|
246
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cloth.png"></a></td>
|
|
247
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular.png"></a></td>
|
|
248
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
|
|
249
|
+
</tr>
|
|
250
|
+
<tr>
|
|
251
|
+
<td align="center">cartpole</td>
|
|
252
|
+
<td align="center">cloth</td>
|
|
253
|
+
<td align="center">granular</td>
|
|
254
|
+
<td align="center">granular collision sdf</td>
|
|
255
|
+
</tr>
|
|
256
|
+
<tr>
|
|
257
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
|
|
258
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_quadruped.png"></a></td>
|
|
259
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_chain.png"></a></td>
|
|
260
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_contact.png"></a></td>
|
|
261
|
+
</tr>
|
|
262
|
+
<tr>
|
|
263
|
+
<td align="center">jacobian ik</td>
|
|
264
|
+
<td align="center">quadruped</td>
|
|
265
|
+
<td align="center">rigid chain</td>
|
|
266
|
+
<td align="center">rigid contact</td>
|
|
267
|
+
</tr>
|
|
268
|
+
<tr>
|
|
269
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_force.png"></a></td>
|
|
270
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
|
|
271
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
|
|
272
|
+
<td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_soft_body.png"></a></td>
|
|
273
|
+
</tr>
|
|
274
|
+
<tr>
|
|
275
|
+
<td align="center">rigid force</td>
|
|
276
|
+
<td align="center">rigid gyroscopic</td>
|
|
277
|
+
<td align="center">rigid soft contact</td>
|
|
278
|
+
<td align="center">soft body</td>
|
|
279
|
+
</tr>
|
|
280
|
+
</tbody>
|
|
281
|
+
</table>
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
## Building
|
|
285
|
+
|
|
286
|
+
For developers who want to build the library themselves, the following tools are required:
|
|
287
|
+
|
|
288
|
+
* Microsoft Visual Studio 2019 upwards (Windows)
|
|
289
|
+
* GCC 9.4 upwards (Linux)
|
|
290
|
+
* CUDA Toolkit 11.5 or higher
|
|
291
|
+
* [Git LFS](https://git-lfs.github.com/) installed
|
|
292
|
+
|
|
293
|
+
After cloning the repository, users should run:
|
|
294
|
+
|
|
295
|
+
python build_lib.py
|
|
296
|
+
|
|
297
|
+
This will generate the `warp.dll` / `warp.so` core library respectively. It will search for the CUDA Toolkit in the default install directory. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
|
|
298
|
+
|
|
299
|
+
pip install -e .
|
|
300
|
+
|
|
301
|
+
This ensures that subsequent modifications to the library will be reflected in the Python package.
|
|
302
|
+
|
|
303
|
+
## Learn More
|
|
304
|
+
|
|
305
|
+
Please see the following resources for additional background on Warp:
|
|
306
|
+
|
|
307
|
+
* [Product Page](https://developer.nvidia.com/warp-python)
|
|
308
|
+
* [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
|
|
309
|
+
* [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
|
|
310
|
+
* [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
|
|
311
|
+
* [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/)
|
|
312
|
+
|
|
313
|
+
The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
|
|
314
|
+
|
|
315
|
+
* Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
|
|
316
|
+
* DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
|
|
317
|
+
* gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
|
|
318
|
+
|
|
319
|
+
## Frequently Asked Questions
|
|
320
|
+
|
|
321
|
+
See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation.
|
|
322
|
+
|
|
323
|
+
## Support
|
|
324
|
+
|
|
325
|
+
Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues).
|
|
326
|
+
|
|
327
|
+
The Warp team also monitors the **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
|
|
328
|
+
|
|
329
|
+
## Versioning
|
|
330
|
+
|
|
331
|
+
Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle):
|
|
332
|
+
|
|
333
|
+
* Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone).
|
|
334
|
+
* Increments in Y are for regular releases with a new set of features.
|
|
335
|
+
* Increments in Z are for bug fixes. In principle there are no new features. Can be omitted if 0 or not relevant.
|
|
336
|
+
|
|
337
|
+
This is similar to [Semantic Versioning](https://semver.org/) but less strict around backward compatibility.
|
|
338
|
+
Like with Python, some breaking changes can be present between minor versions if well documented and gradually introduced.
|
|
339
|
+
|
|
340
|
+
Note that prior to 0.11.0 this schema was not strictly adhered to.
|
|
341
|
+
|
|
342
|
+
## License
|
|
343
|
+
|
|
344
|
+
Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.
|
|
345
|
+
|
|
346
|
+
## Contributing
|
|
347
|
+
|
|
348
|
+
Contributions and pull requests from the community are welcome and are taken under the
|
|
349
|
+
terms described in the **9. Feedback** section of the [license](LICENSE.md).
|
|
350
|
+
[CONTRIBUTING.md](./CONTRIBUTING.md) provides additional information on how to open a pull request for Warp.
|
|
351
|
+
|
|
352
|
+
## Citing
|
|
353
|
+
|
|
354
|
+
If you use Warp in your research please use the following citation:
|
|
355
|
+
|
|
356
|
+
```bibtex
|
|
357
|
+
@misc{warp2022,
|
|
358
|
+
title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
|
|
359
|
+
author = {Miles Macklin},
|
|
360
|
+
month = {March},
|
|
361
|
+
year = {2022},
|
|
362
|
+
note= {NVIDIA GPU Technology Conference (GTC)},
|
|
363
|
+
howpublished = {\url{https://github.com/nvidia/warp}}
|
|
364
|
+
}
|
|
365
|
+
```
|