warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
@@ -1,400 +1,365 @@
1
- Metadata-Version: 2.1
2
- Name: warp-lang
3
- Version: 1.0.2
4
- Summary: A Python framework for high-performance simulation and graphics programming
5
- Author-email: NVIDIA <mmacklin@nvidia.com>
6
- License: NVIDIA Software License
7
- Project-URL: GitHub, https://github.com/NVIDIA/warp
8
- Project-URL: Documentation, https://nvidia.github.io/warp
9
- Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
10
- Classifier: Programming Language :: Python :: 3.7
11
- Classifier: Programming Language :: Python :: 3.8
12
- Classifier: Programming Language :: Python :: 3.9
13
- Classifier: Programming Language :: Python :: 3.10
14
- Classifier: Programming Language :: Python :: 3.11
15
- Classifier: License :: Other/Proprietary License
16
- Classifier: Operating System :: OS Independent
17
- Requires-Python: >=3.7
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE.md
20
- Requires-Dist: numpy
21
- Provides-Extra: dev
22
- Requires-Dist: flake8 ; extra == 'dev'
23
- Requires-Dist: black ; extra == 'dev'
24
- Requires-Dist: isort ; extra == 'dev'
25
- Requires-Dist: nvtx ; extra == 'dev'
26
- Requires-Dist: furo ; extra == 'dev'
27
- Requires-Dist: sphinx-copybutton ; extra == 'dev'
28
- Requires-Dist: coverage[toml] ; extra == 'dev'
29
-
30
- # NVIDIA Warp
31
-
32
- Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
33
- regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
34
-
35
- Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
36
- programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
37
- are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
38
-
39
- Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
40
-
41
- <div align="center">
42
- <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
43
- <p><i>A selection of physical simulations computed with Warp</i></p>
44
- </div>
45
-
46
-
47
- ## Installing
48
-
49
- Warp supports Python versions 3.7 onwards. It can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS. GPU support requires a CUDA capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
50
-
51
- The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
52
-
53
- pip install warp-lang
54
-
55
- Pre-built binary packages are also available on the [Releases](https://github.com/NVIDIA/warp/releases) page. To install in your local Python environment run the following command from the download directory:
56
-
57
- pip install warp_lang-<version and platform>.whl
58
-
59
- ## Getting Started
60
-
61
- An example first program that computes the lengths of random 3D vectors is given below:
62
-
63
- ```python
64
- import warp as wp
65
- import numpy as np
66
-
67
- wp.init()
68
-
69
- num_points = 1024
70
-
71
- @wp.kernel
72
- def length(points: wp.array(dtype=wp.vec3),
73
- lengths: wp.array(dtype=float)):
74
-
75
- # thread index
76
- tid = wp.tid()
77
-
78
- # compute distance of each point from origin
79
- lengths[tid] = wp.length(points[tid])
80
-
81
-
82
- # allocate an array of 3d points
83
- points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
84
- lengths = wp.zeros(num_points, dtype=float)
85
-
86
- # launch kernel
87
- wp.launch(kernel=length,
88
- dim=len(points),
89
- inputs=[points, lengths])
90
-
91
- print(lengths)
92
- ```
93
-
94
- ## Running Examples
95
-
96
- The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations (stored in the current working directory). Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
97
-
98
- pip install usd-core matplotlib pyglet
99
-
100
- Examples can be run from the command-line as follows:
101
-
102
- python -m warp.examples.<example_subdir>.<example>
103
-
104
- To browse the example source code, you can open the directory where the files are located like this:
105
-
106
- python -m warp.examples.browse
107
-
108
- Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
109
-
110
- USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
111
-
112
- Built-in unit tests can be run from the command-line as follows:
113
-
114
- python -m warp.tests
115
-
116
-
117
- ### examples/core
118
-
119
- <table>
120
- <tbody>
121
- <tr>
122
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_dem.png"></a></td>
123
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_fluid.png"></a></td>
124
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_graph_capture.png"></a></td>
125
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_marching_cubes.png"></a></td>
126
- </tr>
127
- <tr>
128
- <td align="center">dem</td>
129
- <td align="center">fluid</td>
130
- <td align="center">graph capture</td>
131
- <td align="center">marching cubes</td>
132
- </tr>
133
- <tr>
134
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_mesh.png"></a></td>
135
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_nvdb.png"></a></td>
136
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raycast.png"></a></td>
137
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raymarch.png"></a></td>
138
- </tr>
139
- <tr>
140
- <td align="center">mesh</td>
141
- <td align="center">nvdb</td>
142
- <td align="center">raycast</td>
143
- <td align="center">raymarch</td>
144
- </tr>
145
- <tr>
146
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_sph.png"></a></td>
147
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_torch.png"></a></td>
148
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_wave.png"></a></td>
149
- <td></td>
150
- </tr>
151
- <tr>
152
- <td align="center">sph</td>
153
- <td align="center">torch</td>
154
- <td align="center">wave</td>
155
- <td align="center"></td>
156
- </tr>
157
- </tbody>
158
- </table>
159
-
160
-
161
- ### examples/fem
162
-
163
- <table>
164
- <tbody>
165
- <tr>
166
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_apic_fluid.png"></a></td>
167
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_convection_diffusion.png"></a></td>
168
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
169
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion.png"></a></td>
170
- </tr>
171
- <tr>
172
- <td align="center">apic fluid</td>
173
- <td align="center">convection diffusion</td>
174
- <td align="center">diffusion 3d</td>
175
- <td align="center">diffusion</td>
176
- </tr>
177
- <tr>
178
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
179
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_navier_stokes.png"></a></td>
180
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes_transfer.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes_transfer.png"></a></td>
181
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes.png"></a></td>
182
- </tr>
183
- <tr>
184
- <td align="center">mixed elasticity</td>
185
- <td align="center">navier stokes</td>
186
- <td align="center">stokes transfer</td>
187
- <td align="center">stokes</td>
188
- </tr>
189
- </tbody>
190
- </table>
191
-
192
-
193
- ### examples/optim
194
-
195
- <table>
196
- <tbody>
197
- <tr>
198
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_bounce.png"></a></td>
199
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_cloth_throw.png"></a></td>
200
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_diffray.png"></a></td>
201
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_drone.png"></a></td>
202
- </tr>
203
- <tr>
204
- <td align="center">bounce</td>
205
- <td align="center">cloth throw</td>
206
- <td align="center">diffray</td>
207
- <td align="center">drone</td>
208
- </tr>
209
- <tr>
210
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
211
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_spring_cage.png"></a></td>
212
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_trajectory.png"></a></td>
213
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_walker.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_walker.png"></a></td>
214
- </tr>
215
- <tr>
216
- <td align="center">inverse kinematics</td>
217
- <td align="center">spring cage</td>
218
- <td align="center">trajectory</td>
219
- <td align="center">walker</td>
220
- </tr>
221
- </tbody>
222
- </table>
223
-
224
-
225
- ### examples/sim
226
-
227
- <table>
228
- <tbody>
229
- <tr>
230
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cartpole.png"></a></td>
231
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cloth.png"></a></td>
232
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular.png"></a></td>
233
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
234
- </tr>
235
- <tr>
236
- <td align="center">cartpole</td>
237
- <td align="center">cloth</td>
238
- <td align="center">granular</td>
239
- <td align="center">granular collision sdf</td>
240
- </tr>
241
- <tr>
242
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
243
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_quadruped.png"></a></td>
244
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_chain.png"></a></td>
245
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_contact.png"></a></td>
246
- </tr>
247
- <tr>
248
- <td align="center">jacobian ik</td>
249
- <td align="center">quadruped</td>
250
- <td align="center">rigid chain</td>
251
- <td align="center">rigid contact</td>
252
- </tr>
253
- <tr>
254
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_force.png"></a></td>
255
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
256
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
257
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_soft_body.png"></a></td>
258
- </tr>
259
- <tr>
260
- <td align="center">rigid force</td>
261
- <td align="center">rigid gyroscopic</td>
262
- <td align="center">rigid soft contact</td>
263
- <td align="center">soft body</td>
264
- </tr>
265
- </tbody>
266
- </table>
267
-
268
-
269
- ## Building
270
-
271
- For developers who want to build the library themselves, the following tools are required:
272
-
273
- * Microsoft Visual Studio 2019 upwards (Windows)
274
- * GCC 7.2 upwards (Linux)
275
- * CUDA Toolkit 11.5 or higher
276
- * [Git LFS](https://git-lfs.github.com/) installed
277
-
278
- After cloning the repository, users should run:
279
-
280
- python build_lib.py
281
-
282
- This will generate the `warp.dll` / `warp.so` core library respectively. It will search for the CUDA Toolkit in the default install directory. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
283
-
284
- pip install -e .
285
-
286
- This ensures that subsequent modifications to the library will be reflected in the Python package.
287
-
288
- ## Omniverse
289
-
290
- A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or USD Composer:
291
-
292
- <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/omniverse.png" width=550px/>
293
-
294
- Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment.
295
- Please see the [Omniverse Warp Documentation](https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html) for more details on how to use Warp in Omniverse.
296
-
297
- ## Learn More
298
-
299
- Please see the following resources for additional background on Warp:
300
-
301
- * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
302
- * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
303
- * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
304
-
305
- The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
306
-
307
- * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
308
- * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
309
- * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
310
-
311
- ## Citing
312
-
313
- If you use Warp in your research please use the following citation:
314
-
315
- ```bibtex
316
- @misc{warp2022,
317
- title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
318
- author = {Miles Macklin},
319
- month = {March},
320
- year = {2022},
321
- note= {NVIDIA GPU Technology Conference (GTC)},
322
- howpublished = {\url{https://github.com/nvidia/warp}}
323
- }
324
- ```
325
-
326
- ## FAQ
327
-
328
- ### How does Warp relate to other Python projects for GPU programming, e.g.: Numba, Taichi, cuPy, PyTorch, etc?
329
- -------
330
-
331
- Warp is inspired by many of these projects and is closely related to Numba and Taichi, which both expose kernel programming to Python. These frameworks map to traditional GPU programming models, so many of the high-level concepts are similar, however there are some functionality and implementation differences.
332
-
333
- Compared to Numba, Warp supports a smaller subset of Python, but offers auto-differentiation of kernel programs, which is useful for machine learning. Compared to Taichi, Warp uses C++/CUDA as an intermediate representation, which makes it convenient to implement and expose low-level routines. In addition, we are building in data structures to support geometry processing (meshes, sparse volumes, point clouds, USD data) as first-class citizens that are not exposed in other runtimes.
334
-
335
- Warp does not offer a full tensor-based programming model like PyTorch and JAX, but is designed to work well with these frameworks through data sharing mechanisms like `__cuda_array_interface__`. For computations that map well to tensors (e.g.: neural-network inference) it makes sense to use these existing tools. For problems with a lot of e.g.: sparsity, conditional logic, heterogeneous workloads (like the ones we often find in simulation and graphics), then the kernel-based programming model like the one in Warp is often more convenient since users have control over individual threads.
336
-
337
- ### Does Warp support all of the Python language?
338
- -------
339
-
340
- No, Warp supports a subset of Python that maps well to the GPU. Our goal is to not have any performance cliffs so that users can expect consistently good behavior from kernels that is close to native code. Examples of unsupported concepts that don't map well to the GPU are dynamic types, list comprehensions, exceptions, garbage collection, etc.
341
-
342
- ### When should I call `wp.synchronize()`?
343
- -------
344
-
345
- One of the common sources of confusion for new users is when calls to `wp.synchronize()` are necessary. The answer is "almost never"! Synchronization is quite expensive, and should generally be avoided unless necessary. Warp naturally takes care of synchronization between operations (e.g.: kernel launches, device memory copies).
346
-
347
- For example, the following requires no manual synchronization, as the conversion to NumPy will automatically synchronize:
348
-
349
- ```python
350
- # run some kernels
351
- wp.launch(kernel_1, dim, [array_x, array_y], device="cuda")
352
- wp.launch(kernel_2, dim, [array_y, array_z], device="cuda")
353
-
354
- # bring data back to host (and implicitly synchronize)
355
- x = array_z.numpy()
356
- ```
357
-
358
- The _only_ case where manual synchronization is needed is when copies are being performed back to CPU asynchronously, e.g.:
359
-
360
- ```python
361
- # copy data back to cpu from gpu, all copies will happen asynchronously to Python
362
- wp.copy(cpu_array_1, gpu_array_1)
363
- wp.copy(cpu_array_2, gpu_array_2)
364
- wp.copy(cpu_array_3, gpu_array_3)
365
-
366
- # ensure that the copies have finished
367
- wp.synchronize()
368
-
369
- # return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
370
- a1 = cpu_array_1.numpy()
371
- a2 = cpu_array_2.numpy()
372
- a3 = cpu_array_3.numpy()
373
- ```
374
-
375
- For more information about asynchronous operations, please refer to the [concurrency documentation](https://nvidia.github.io/warp/modules/concurrency.html) and [synchronization guidance](https://nvidia.github.io/warp/modules/concurrency.html#synchronization-guidance).
376
-
377
- ### What happens when you differentiate a function like `wp.abs(x)`?
378
- -------
379
-
380
- Non-smooth functions such as `y=|x|` do not have a single unique gradient at `x=0`, rather they have what is known as a `subgradient`, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation frameworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for `wp.abs()`, it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in `warp/native/builtin.h`.
381
-
382
- Most optimizers (particularly ones that exploit stochasticity) are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.
383
-
384
- ### Does Warp support multi-GPU programming?
385
- -------
386
-
387
- Yes! Since version `0.4.0` we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as `cuda:0`, `cuda:1`, `cpu` to identify individual devices.
388
-
389
- ### Should I switch to Warp over IsaacGym / PhysX?
390
- -------
391
-
392
- Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.
393
-
394
- ## Discord
395
-
396
- We have a **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
397
-
398
- ## License
399
-
400
- Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.
1
+ Metadata-Version: 2.1
2
+ Name: warp-lang
3
+ Version: 1.2.0
4
+ Summary: A Python framework for high-performance simulation and graphics programming
5
+ Author-email: NVIDIA <mmacklin@nvidia.com>
6
+ License: NVIDIA Software License
7
+ Project-URL: GitHub, https://github.com/NVIDIA/warp
8
+ Project-URL: Documentation, https://nvidia.github.io/warp
9
+ Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
10
+ Classifier: Programming Language :: Python :: 3.7
11
+ Classifier: Programming Language :: Python :: 3.8
12
+ Classifier: Programming Language :: Python :: 3.9
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: License :: Other/Proprietary License
16
+ Classifier: Operating System :: OS Independent
17
+ Requires-Python: >=3.7
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE.md
20
+ Requires-Dist: numpy
21
+ Provides-Extra: dev
22
+ Requires-Dist: pre-commit ; extra == 'dev'
23
+ Requires-Dist: ruff ; extra == 'dev'
24
+ Requires-Dist: nvtx ; extra == 'dev'
25
+ Requires-Dist: furo ; extra == 'dev'
26
+ Requires-Dist: sphinx-copybutton ; extra == 'dev'
27
+ Requires-Dist: coverage[toml] ; extra == 'dev'
28
+ Provides-Extra: extras
29
+ Requires-Dist: usd-core ; extra == 'extras'
30
+ Requires-Dist: matplotlib ; extra == 'extras'
31
+ Requires-Dist: pyglet ; extra == 'extras'
32
+
33
+ [![PyPI version](https://badge.fury.io/py/warp-lang.svg)](https://badge.fury.io/py/warp-lang)
34
+ ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/NVIDIA/warp?link=https%3A%2F%2Fgithub.com%2FNVIDIA%2Fwarp%2Fcommits%2Fmain)
35
+ [![Downloads](https://static.pepy.tech/badge/warp-lang/month)](https://pepy.tech/project/warp-lang)
36
+ [![codecov](https://codecov.io/github/NVIDIA/warp/graph/badge.svg?token=7O1KSM79FG)](https://codecov.io/github/NVIDIA/warp)
37
+ ![GitHub - Build and Test](https://github.com/NVIDIA/warp/actions/workflows/build-and-test.yml/badge.svg)
38
+ [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?logo=discord&logoColor=white)](https://discord.com/invite/nvidiaomniverse)
39
+
40
+ # NVIDIA Warp
41
+
42
+ Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
43
+ regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
44
+
45
+ Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
46
+ programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
47
+ are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
48
+
49
+ Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
50
+
51
+ <div align="center">
52
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
53
+ <p><i>A selection of physical simulations computed with Warp</i></p>
54
+ </div>
55
+
56
+ ## Installing
57
+
58
+ Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS.
59
+ GPU support requires a CUDA-capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
60
+
61
+ The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
62
+
63
+ pip install warp-lang
64
+
65
+ You can also use `pip install warp-lang[extras]` to install additional dependencies for running examples and USD-related features.
66
+
67
+ The binaries hosted on PyPI are currently built with the CUDA 11.8 runtime.
68
+ We provide binaries built with the CUDA 12.5 runtime on the [GitHub Releases](https://github.com/NVIDIA/warp/releases) page.
69
+ Copy the URL of the appropriate wheel file (`warp-lang-{ver}+cu12-py3-none-{platform}.whl`) and pass it to
70
+ the `pip install` command, e.g.
71
+
72
+ pip install https://github.com/NVIDIA/warp/releases/download/v1.2.0/warp_lang-1.2.0+cu12-py3-none-manylinux2014_x86_64.whl
73
+
74
+ The `--force-reinstall` option may need to be used to overwrite a previous installation.
75
+
76
+ ## Getting Started
77
+
78
+ An example first program that computes the lengths of random 3D vectors is given below:
79
+
80
+ ```python
81
+ import warp as wp
82
+ import numpy as np
83
+
84
+ num_points = 1024
85
+
86
+ @wp.kernel
87
+ def length(points: wp.array(dtype=wp.vec3),
88
+ lengths: wp.array(dtype=float)):
89
+
90
+ # thread index
91
+ tid = wp.tid()
92
+
93
+ # compute distance of each point from origin
94
+ lengths[tid] = wp.length(points[tid])
95
+
96
+
97
+ # allocate an array of 3d points
98
+ points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
99
+ lengths = wp.zeros(num_points, dtype=float)
100
+
101
+ # launch kernel
102
+ wp.launch(kernel=length,
103
+ dim=len(points),
104
+ inputs=[points, lengths])
105
+
106
+ print(lengths)
107
+ ```
108
+
109
+ ## Running Examples
110
+
111
+ The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations (stored in the current working directory). Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
112
+
113
+ pip install usd-core matplotlib pyglet
114
+
115
+ Examples can be run from the command-line as follows:
116
+
117
+ python -m warp.examples.<example_subdir>.<example>
118
+
119
+ To browse the example source code, you can open the directory where the files are located like this:
120
+
121
+ python -m warp.examples.browse
122
+
123
+ Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
124
+
125
+ USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
126
+
127
+ Built-in unit tests can be run from the command-line as follows:
128
+
129
+ python -m warp.tests
130
+
131
+
132
+ ### examples/core
133
+
134
+ <table>
135
+ <tbody>
136
+ <tr>
137
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_dem.png"></a></td>
138
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_fluid.png"></a></td>
139
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_graph_capture.png"></a></td>
140
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_marching_cubes.png"></a></td>
141
+ </tr>
142
+ <tr>
143
+ <td align="center">dem</td>
144
+ <td align="center">fluid</td>
145
+ <td align="center">graph capture</td>
146
+ <td align="center">marching cubes</td>
147
+ </tr>
148
+ <tr>
149
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_mesh.png"></a></td>
150
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_nvdb.png"></a></td>
151
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raycast.png"></a></td>
152
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raymarch.png"></a></td>
153
+ </tr>
154
+ <tr>
155
+ <td align="center">mesh</td>
156
+ <td align="center">nvdb</td>
157
+ <td align="center">raycast</td>
158
+ <td align="center">raymarch</td>
159
+ </tr>
160
+ <tr>
161
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_sph.png"></a></td>
162
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_torch.png"></a></td>
163
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_wave.png"></a></td>
164
+ <td></td>
165
+ </tr>
166
+ <tr>
167
+ <td align="center">sph</td>
168
+ <td align="center">torch</td>
169
+ <td align="center">wave</td>
170
+ <td align="center"></td>
171
+ </tr>
172
+ </tbody>
173
+ </table>
174
+
175
+
176
+ ### examples/fem
177
+
178
+ <table>
179
+ <tbody>
180
+ <tr>
181
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_apic_fluid.png"></a></td>
182
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_convection_diffusion.png"></a></td>
183
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
184
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion.png"></a></td>
185
+ </tr>
186
+ <tr>
187
+ <td align="center">apic fluid</td>
188
+ <td align="center">convection diffusion</td>
189
+ <td align="center">diffusion 3d</td>
190
+ <td align="center">diffusion</td>
191
+ </tr>
192
+ <tr>
193
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
194
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_navier_stokes.png"></a></td>
195
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes_transfer.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes_transfer.png"></a></td>
196
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes.png"></a></td>
197
+ </tr>
198
+ <tr>
199
+ <td align="center">mixed elasticity</td>
200
+ <td align="center">navier stokes</td>
201
+ <td align="center">stokes transfer</td>
202
+ <td align="center">stokes</td>
203
+ </tr>
204
+ </tbody>
205
+ </table>
206
+
207
+
208
+ ### examples/optim
209
+
210
+ <table>
211
+ <tbody>
212
+ <tr>
213
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_bounce.png"></a></td>
214
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_cloth_throw.png"></a></td>
215
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_diffray.png"></a></td>
216
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_drone.png"></a></td>
217
+ </tr>
218
+ <tr>
219
+ <td align="center">bounce</td>
220
+ <td align="center">cloth throw</td>
221
+ <td align="center">diffray</td>
222
+ <td align="center">drone</td>
223
+ </tr>
224
+ <tr>
225
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
226
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_spring_cage.png"></a></td>
227
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_trajectory.png"></a></td>
228
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_walker.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_walker.png"></a></td>
229
+ </tr>
230
+ <tr>
231
+ <td align="center">inverse kinematics</td>
232
+ <td align="center">spring cage</td>
233
+ <td align="center">trajectory</td>
234
+ <td align="center">walker</td>
235
+ </tr>
236
+ </tbody>
237
+ </table>
238
+
239
+
240
+ ### examples/sim
241
+
242
+ <table>
243
+ <tbody>
244
+ <tr>
245
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cartpole.png"></a></td>
246
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cloth.png"></a></td>
247
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular.png"></a></td>
248
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
249
+ </tr>
250
+ <tr>
251
+ <td align="center">cartpole</td>
252
+ <td align="center">cloth</td>
253
+ <td align="center">granular</td>
254
+ <td align="center">granular collision sdf</td>
255
+ </tr>
256
+ <tr>
257
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
258
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_quadruped.png"></a></td>
259
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_chain.png"></a></td>
260
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_contact.png"></a></td>
261
+ </tr>
262
+ <tr>
263
+ <td align="center">jacobian ik</td>
264
+ <td align="center">quadruped</td>
265
+ <td align="center">rigid chain</td>
266
+ <td align="center">rigid contact</td>
267
+ </tr>
268
+ <tr>
269
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_force.png"></a></td>
270
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
271
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
272
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_soft_body.png"></a></td>
273
+ </tr>
274
+ <tr>
275
+ <td align="center">rigid force</td>
276
+ <td align="center">rigid gyroscopic</td>
277
+ <td align="center">rigid soft contact</td>
278
+ <td align="center">soft body</td>
279
+ </tr>
280
+ </tbody>
281
+ </table>
282
+
283
+
284
+ ## Building
285
+
286
+ For developers who want to build the library themselves, the following tools are required:
287
+
288
+ * Microsoft Visual Studio 2019 upwards (Windows)
289
+ * GCC 9.4 upwards (Linux)
290
+ * CUDA Toolkit 11.5 or higher
291
+ * [Git LFS](https://git-lfs.github.com/) installed
292
+
293
+ After cloning the repository, users should run:
294
+
295
+ python build_lib.py
296
+
297
+ This will generate the `warp.dll` / `warp.so` core library respectively. It will search for the CUDA Toolkit in the default install directory. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
298
+
299
+ pip install -e .
300
+
301
+ This ensures that subsequent modifications to the library will be reflected in the Python package.
302
+
303
+ ## Learn More
304
+
305
+ Please see the following resources for additional background on Warp:
306
+
307
+ * [Product Page](https://developer.nvidia.com/warp-python)
308
+ * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
309
+ * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
310
+ * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
311
+ * [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/)
312
+
313
+ The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
314
+
315
+ * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
316
+ * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
317
+ * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
318
+
319
+ ## Frequently Asked Questions
320
+
321
+ See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation.
322
+
323
+ ## Support
324
+
325
+ Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues).
326
+
327
+ The Warp team also monitors the **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
328
+
329
+ ## Versioning
330
+
331
+ Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle):
332
+
333
+ * Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone).
334
+ * Increments in Y are for regular releases with a new set of features.
335
+ * Increments in Z are for bug fixes. In principle there are no new features. Can be omitted if 0 or not relevant.
336
+
337
+ This is similar to [Semantic Versioning](https://semver.org/) but less strict around backward compatibility.
338
+ Like with Python, some breaking changes can be present between minor versions if well documented and gradually introduced.
339
+
340
+ Note that prior to 0.11.0 this schema was not strictly adhered to.
341
+
342
+ ## License
343
+
344
+ Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.
345
+
346
+ ## Contributing
347
+
348
+ Contributions and pull requests from the community are welcome and are taken under the
349
+ terms described in the **9. Feedback** section of the [license](LICENSE.md).
350
+ [CONTRIBUTING.md](./CONTRIBUTING.md) provides additional information on how to open a pull request for Warp.
351
+
352
+ ## Citing
353
+
354
+ If you use Warp in your research please use the following citation:
355
+
356
+ ```bibtex
357
+ @misc{warp2022,
358
+ title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
359
+ author = {Miles Macklin},
360
+ month = {March},
361
+ year = {2022},
362
+ note= {NVIDIA GPU Technology Conference (GTC)},
363
+ howpublished = {\url{https://github.com/nvidia/warp}}
364
+ }
365
+ ```