warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/native/svd.h CHANGED
@@ -1,562 +1,562 @@
1
- /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
- * NVIDIA CORPORATION and its licensors retain all intellectual property
3
- * and proprietary rights in and to this software, related documentation
4
- * and any modifications thereto. Any use, reproduction, disclosure or
5
- * distribution of this software and related documentation without an express
6
- * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
- */
8
-
9
- // The MIT License (MIT)
10
-
11
- // Copyright (c) 2014 Eric V. Jang
12
-
13
- // Permission is hereby granted, free of charge, to any person obtaining a copy
14
- // of this software and associated documentation files (the "Software"), to deal
15
- // in the Software without restriction, including without limitation the rights
16
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
- // copies of the Software, and to permit persons to whom the Software is
18
- // furnished to do so, subject to the following conditions:
19
-
20
- // The above copyright notice and this permission notice shall be included in all
21
- // copies or substantial portions of the Software.
22
-
23
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
- // SOFTWARE.
30
-
31
- // Source: https://github.com/ericjang/svd3/blob/master/svd3_cuda/svd3_cuda.h
32
-
33
-
34
- #pragma once
35
-
36
- #include "builtin.h"
37
-
38
- namespace wp
39
- {
40
-
41
- #define _gamma 5.828427124 // FOUR_GAMMA_SQUARED = sqrt(8)+3;
42
- #define _cstar 0.923879532 // cos(pi/8)
43
- #define _sstar 0.3826834323 // sin(p/8)
44
- #define _EPSILON 1e-6
45
-
46
- // TODO: replace sqrt with rsqrt
47
-
48
- template<typename Type>
49
- inline CUDA_CALLABLE
50
- Type accurateSqrt(Type x)
51
- {
52
- return x / sqrt(x);
53
- }
54
-
55
- template<typename Type>
56
- inline CUDA_CALLABLE
57
- void condSwap(bool c, Type &X, Type &Y)
58
- {
59
- // used in step 2
60
- Type Z = X;
61
- X = c ? Y : X;
62
- Y = c ? Z : Y;
63
- }
64
-
65
- template<typename Type>
66
- inline CUDA_CALLABLE
67
- void condNegSwap(bool c, Type &X, Type &Y)
68
- {
69
- // used in step 2 and 3
70
- Type Z = -X;
71
- X = c ? Y : X;
72
- Y = c ? Z : Y;
73
- }
74
-
75
- // matrix multiplication M = A * B
76
- template<typename Type>
77
- inline CUDA_CALLABLE
78
- void multAB(Type a11, Type a12, Type a13,
79
- Type a21, Type a22, Type a23,
80
- Type a31, Type a32, Type a33,
81
- //
82
- Type b11, Type b12, Type b13,
83
- Type b21, Type b22, Type b23,
84
- Type b31, Type b32, Type b33,
85
- //
86
- Type &m11, Type &m12, Type &m13,
87
- Type &m21, Type &m22, Type &m23,
88
- Type &m31, Type &m32, Type &m33)
89
- {
90
-
91
- m11=a11*b11 + a12*b21 + a13*b31; m12=a11*b12 + a12*b22 + a13*b32; m13=a11*b13 + a12*b23 + a13*b33;
92
- m21=a21*b11 + a22*b21 + a23*b31; m22=a21*b12 + a22*b22 + a23*b32; m23=a21*b13 + a22*b23 + a23*b33;
93
- m31=a31*b11 + a32*b21 + a33*b31; m32=a31*b12 + a32*b22 + a33*b32; m33=a31*b13 + a32*b23 + a33*b33;
94
- }
95
-
96
- // matrix multiplication M = Transpose[A] * B
97
- template<typename Type>
98
- inline CUDA_CALLABLE
99
- void multAtB(Type a11, Type a12, Type a13,
100
- Type a21, Type a22, Type a23,
101
- Type a31, Type a32, Type a33,
102
- //
103
- Type b11, Type b12, Type b13,
104
- Type b21, Type b22, Type b23,
105
- Type b31, Type b32, Type b33,
106
- //
107
- Type &m11, Type &m12, Type &m13,
108
- Type &m21, Type &m22, Type &m23,
109
- Type &m31, Type &m32, Type &m33)
110
- {
111
- m11=a11*b11 + a21*b21 + a31*b31; m12=a11*b12 + a21*b22 + a31*b32; m13=a11*b13 + a21*b23 + a31*b33;
112
- m21=a12*b11 + a22*b21 + a32*b31; m22=a12*b12 + a22*b22 + a32*b32; m23=a12*b13 + a22*b23 + a32*b33;
113
- m31=a13*b11 + a23*b21 + a33*b31; m32=a13*b12 + a23*b22 + a33*b32; m33=a13*b13 + a23*b23 + a33*b33;
114
- }
115
-
116
- template<typename Type>
117
- inline CUDA_CALLABLE
118
- void quatToMat3(const Type * qV,
119
- Type &m11, Type &m12, Type &m13,
120
- Type &m21, Type &m22, Type &m23,
121
- Type &m31, Type &m32, Type &m33
122
- )
123
- {
124
- Type w = qV[3];
125
- Type x = qV[0];
126
- Type y = qV[1];
127
- Type z = qV[2];
128
-
129
- Type qxx = x*x;
130
- Type qyy = y*y;
131
- Type qzz = z*z;
132
- Type qxz = x*z;
133
- Type qxy = x*y;
134
- Type qyz = y*z;
135
- Type qwx = w*x;
136
- Type qwy = w*y;
137
- Type qwz = w*z;
138
-
139
- m11=Type(1) - Type(2)*(qyy + qzz); m12=Type(2)*(qxy - qwz); m13=Type(2)*(qxz + qwy);
140
- m21=Type(2)*(qxy + qwz); m22=Type(1) - Type(2)*(qxx + qzz); m23=Type(2)*(qyz - qwx);
141
- m31=Type(2)*(qxz - qwy); m32=Type(2)*(qyz + qwx); m33=Type(1) - Type(2)*(qxx + qyy);
142
- }
143
-
144
- template<typename Type>
145
- inline CUDA_CALLABLE
146
- void approximateGivensQuaternion(Type a11, Type a12, Type a22, Type &ch, Type &sh)
147
- {
148
- /*
149
- * Given givens angle computed by approximateGivensAngles,
150
- * compute the corresponding rotation quaternion.
151
- */
152
- ch = Type(2)*(a11-a22);
153
- sh = a12;
154
- bool b = _gamma*sh*sh < ch*ch;
155
- Type w = Type(1) / sqrt(ch*ch+sh*sh);
156
- ch=b?w*ch:Type(_cstar);
157
- sh=b?w*sh:Type(_sstar);
158
- }
159
-
160
- template<typename Type>
161
- inline CUDA_CALLABLE
162
- void jacobiConjugation( const int x, const int y, const int z,
163
- Type &s11,
164
- Type &s21, Type &s22,
165
- Type &s31, Type &s32, Type &s33,
166
- Type * qV)
167
- {
168
- Type ch,sh;
169
- approximateGivensQuaternion(s11,s21,s22,ch,sh);
170
-
171
- Type scale = ch*ch+sh*sh;
172
- Type a = (ch*ch-sh*sh)/scale;
173
- Type b = (Type(2)*sh*ch)/scale;
174
-
175
- // make temp copy of S
176
- Type _s11 = s11;
177
- Type _s21 = s21; Type _s22 = s22;
178
- Type _s31 = s31; Type _s32 = s32; Type _s33 = s33;
179
-
180
- // perform conjugation S = Q'*S*Q
181
- // Q already implicitly solved from a, b
182
- s11 =a*(a*_s11 + b*_s21) + b*(a*_s21 + b*_s22);
183
- s21 =a*(-b*_s11 + a*_s21) + b*(-b*_s21 + a*_s22); s22=-b*(-b*_s11 + a*_s21) + a*(-b*_s21 + a*_s22);
184
- s31 =a*_s31 + b*_s32; s32=-b*_s31 + a*_s32; s33=_s33;
185
-
186
- // update cumulative rotation qV
187
- Type tmp[3];
188
- tmp[0]=qV[0]*sh;
189
- tmp[1]=qV[1]*sh;
190
- tmp[2]=qV[2]*sh;
191
- sh *= qV[3];
192
-
193
- qV[0] *= ch;
194
- qV[1] *= ch;
195
- qV[2] *= ch;
196
- qV[3] *= ch;
197
-
198
- // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1))
199
- // for (p,q) = ((0,1),(1,2),(0,2))
200
- qV[z] += sh;
201
- qV[3] -= tmp[z]; // w
202
- qV[x] += tmp[y];
203
- qV[y] -= tmp[x];
204
-
205
- // re-arrange matrix for next iteration
206
- _s11 = s22;
207
- _s21 = s32; _s22 = s33;
208
- _s31 = s21; _s32 = s31; _s33 = s11;
209
- s11 = _s11;
210
- s21 = _s21; s22 = _s22;
211
- s31 = _s31; s32 = _s32; s33 = _s33;
212
-
213
- }
214
-
215
- template<typename Type>
216
- inline CUDA_CALLABLE
217
- Type dist2(Type x, Type y, Type z)
218
- {
219
- return x*x+y*y+z*z;
220
- }
221
-
222
- // finds transformation that diagonalizes a symmetric matrix
223
- template<typename Type>
224
- inline CUDA_CALLABLE
225
- void jacobiEigenanlysis( // symmetric matrix
226
- Type &s11,
227
- Type &s21, Type &s22,
228
- Type &s31, Type &s32, Type &s33,
229
- // quaternion representation of V
230
- Type * qV)
231
- {
232
- qV[3]=1; qV[0]=0;qV[1]=0;qV[2]=0; // follow same indexing convention as GLM
233
- for (int i=0;i<4;i++)
234
- {
235
- // we wish to eliminate the maximum off-diagonal element
236
- // on every iteration, but cycling over all 3 possible rotations
237
- // in fixed order (p,q) = (1,2) , (2,3), (1,3) still retains
238
- // asymptotic convergence
239
- jacobiConjugation(0,1,2,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,1
240
- jacobiConjugation(1,2,0,s11,s21,s22,s31,s32,s33,qV); // p,q = 1,2
241
- jacobiConjugation(2,0,1,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,2
242
- }
243
- }
244
-
245
- template<typename Type>
246
- inline CUDA_CALLABLE
247
- void sortSingularValues(// matrix that we want to decompose
248
- Type &b11, Type &b12, Type &b13,
249
- Type &b21, Type &b22, Type &b23,
250
- Type &b31, Type &b32, Type &b33,
251
- // sort V simultaneously
252
- Type &v11, Type &v12, Type &v13,
253
- Type &v21, Type &v22, Type &v23,
254
- Type &v31, Type &v32, Type &v33)
255
- {
256
- Type rho1 = dist2(b11,b21,b31);
257
- Type rho2 = dist2(b12,b22,b32);
258
- Type rho3 = dist2(b13,b23,b33);
259
- bool c;
260
- c = rho1 < rho2;
261
- condNegSwap(c,b11,b12); condNegSwap(c,v11,v12);
262
- condNegSwap(c,b21,b22); condNegSwap(c,v21,v22);
263
- condNegSwap(c,b31,b32); condNegSwap(c,v31,v32);
264
- condSwap(c,rho1,rho2);
265
- c = rho1 < rho3;
266
- condNegSwap(c,b11,b13); condNegSwap(c,v11,v13);
267
- condNegSwap(c,b21,b23); condNegSwap(c,v21,v23);
268
- condNegSwap(c,b31,b33); condNegSwap(c,v31,v33);
269
- condSwap(c,rho1,rho3);
270
- c = rho2 < rho3;
271
- condNegSwap(c,b12,b13); condNegSwap(c,v12,v13);
272
- condNegSwap(c,b22,b23); condNegSwap(c,v22,v23);
273
- condNegSwap(c,b32,b33); condNegSwap(c,v32,v33);
274
- }
275
-
276
- template<typename Type>
277
- inline CUDA_CALLABLE
278
- void QRGivensQuaternion(Type a1, Type a2, Type &ch, Type &sh)
279
- {
280
- // a1 = pivot point on diagonal
281
- // a2 = lower triangular entry we want to annihilate
282
- Type epsilon = _EPSILON;
283
- Type rho = accurateSqrt(a1*a1 + a2*a2);
284
-
285
- sh = rho > epsilon ? a2 : Type(0);
286
- ch = abs(a1) + max(rho,epsilon);
287
- bool b = a1 < Type(0);
288
- condSwap(b,sh,ch);
289
- Type w = Type(1) / sqrt(ch*ch+sh*sh);
290
- ch *= w;
291
- sh *= w;
292
- }
293
-
294
- template<typename Type>
295
- inline CUDA_CALLABLE
296
- void QRDecomposition(// matrix that we want to decompose
297
- Type b11, Type b12, Type b13,
298
- Type b21, Type b22, Type b23,
299
- Type b31, Type b32, Type b33,
300
- // output Q
301
- Type &q11, Type &q12, Type &q13,
302
- Type &q21, Type &q22, Type &q23,
303
- Type &q31, Type &q32, Type &q33,
304
- // output R
305
- Type &r11, Type &r12, Type &r13,
306
- Type &r21, Type &r22, Type &r23,
307
- Type &r31, Type &r32, Type &r33)
308
- {
309
- Type ch1,sh1,ch2,sh2,ch3,sh3;
310
- Type a,b;
311
-
312
- // first givens rotation (ch,0,0,sh)
313
- QRGivensQuaternion(b11,b21,ch1,sh1);
314
- a=Type(1)-Type(2)*sh1*sh1;
315
- b=Type(2)*ch1*sh1;
316
- // apply B = Q' * B
317
- r11=a*b11+b*b21; r12=a*b12+b*b22; r13=a*b13+b*b23;
318
- r21=-b*b11+a*b21; r22=-b*b12+a*b22; r23=-b*b13+a*b23;
319
- r31=b31; r32=b32; r33=b33;
320
-
321
- // second givens rotation (ch,0,-sh,0)
322
- QRGivensQuaternion(r11,r31,ch2,sh2);
323
- a=Type(1)-Type(2)*sh2*sh2;
324
- b=Type(2)*ch2*sh2;
325
- // apply B = Q' * B;
326
- b11=a*r11+b*r31; b12=a*r12+b*r32; b13=a*r13+b*r33;
327
- b21=r21; b22=r22; b23=r23;
328
- b31=-b*r11+a*r31; b32=-b*r12+a*r32; b33=-b*r13+a*r33;
329
-
330
- // third givens rotation (ch,sh,0,0)
331
- QRGivensQuaternion(b22,b32,ch3,sh3);
332
- a=Type(1)-Type(2)*sh3*sh3;
333
- b=Type(2)*ch3*sh3;
334
- // R is now set to desired value
335
- r11=b11; r12=b12; r13=b13;
336
- r21=a*b21+b*b31; r22=a*b22+b*b32; r23=a*b23+b*b33;
337
- r31=-b*b21+a*b31; r32=-b*b22+a*b32; r33=-b*b23+a*b33;
338
-
339
- // construct the cumulative rotation Q=Q1 * Q2 * Q3
340
- // the number of floating point operations for three quaternion multiplications
341
- // is more or less comparable to the explicit form of the joined matrix.
342
- // certainly more memory-efficient!
343
- Type sh12=sh1*sh1;
344
- Type sh22=sh2*sh2;
345
- Type sh32=sh3*sh3;
346
-
347
- q11=(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh22);
348
- q12=Type(4)*ch2*ch3*(Type(-1)+Type(2)*sh12)*sh2*sh3+Type(2)*ch1*sh1*(Type(-1)+Type(2)*sh32);
349
- q13=Type(4)*ch1*ch3*sh1*sh3-Type(2)*ch2*(Type(-1)+Type(2)*sh12)*sh2*(Type(-1)+Type(2)*sh32);
350
-
351
- q21=Type(2)*ch1*sh1*(Type(1)-Type(2)*sh22);
352
- q22=Type(-8)*ch1*ch2*ch3*sh1*sh2*sh3+(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh32);
353
- q23=Type(-2)*ch3*sh3+Type(4)*sh1*(ch3*sh1*sh3+ch1*ch2*sh2*(Type(-1)+Type(2)*sh32));
354
-
355
- q31=Type(2)*ch2*sh2;
356
- q32=Type(2)*ch3*(Type(1)-Type(2)*sh22)*sh3;
357
- q33=(Type(-1)+Type(2)*sh22)*(Type(-1)+Type(2)*sh32);
358
- }
359
-
360
- template<typename Type>
361
- inline CUDA_CALLABLE
362
- void _svd(// input A
363
- Type a11, Type a12, Type a13,
364
- Type a21, Type a22, Type a23,
365
- Type a31, Type a32, Type a33,
366
- // output U
367
- Type &u11, Type &u12, Type &u13,
368
- Type &u21, Type &u22, Type &u23,
369
- Type &u31, Type &u32, Type &u33,
370
- // output S
371
- Type &s11, Type &s12, Type &s13,
372
- Type &s21, Type &s22, Type &s23,
373
- Type &s31, Type &s32, Type &s33,
374
- // output V
375
- Type &v11, Type &v12, Type &v13,
376
- Type &v21, Type &v22, Type &v23,
377
- Type &v31, Type &v32, Type &v33)
378
- {
379
- // normal equations matrix
380
- Type ATA11, ATA12, ATA13;
381
- Type ATA21, ATA22, ATA23;
382
- Type ATA31, ATA32, ATA33;
383
-
384
- multAtB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
385
- a11,a12,a13,a21,a22,a23,a31,a32,a33,
386
- ATA11,ATA12,ATA13,ATA21,ATA22,ATA23,ATA31,ATA32,ATA33);
387
-
388
- // symmetric eigenalysis
389
- Type qV[4];
390
- jacobiEigenanlysis( ATA11,ATA21,ATA22, ATA31,ATA32,ATA33,qV);
391
- quatToMat3(qV,v11,v12,v13,v21,v22,v23,v31,v32,v33);
392
-
393
- Type b11, b12, b13;
394
- Type b21, b22, b23;
395
- Type b31, b32, b33;
396
- multAB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
397
- v11,v12,v13,v21,v22,v23,v31,v32,v33,
398
- b11, b12, b13, b21, b22, b23, b31, b32, b33);
399
-
400
- // sort singular values and find V
401
- sortSingularValues(b11, b12, b13, b21, b22, b23, b31, b32, b33,
402
- v11,v12,v13,v21,v22,v23,v31,v32,v33);
403
-
404
- // QR decomposition
405
- QRDecomposition(b11, b12, b13, b21, b22, b23, b31, b32, b33,
406
- u11, u12, u13, u21, u22, u23, u31, u32, u33,
407
- s11, s12, s13, s21, s22, s23, s31, s32, s33
408
- );
409
- }
410
-
411
- template<typename Type>
412
- inline CUDA_CALLABLE void svd3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& U, vec_t<3,Type>& sigma, mat_t<3,3,Type>& V) {
413
- Type s12, s13, s21, s23, s31, s32;
414
- _svd(A.data[0][0], A.data[0][1], A.data[0][2],
415
- A.data[1][0], A.data[1][1], A.data[1][2],
416
- A.data[2][0], A.data[2][1], A.data[2][2],
417
-
418
- U.data[0][0], U.data[0][1], U.data[0][2],
419
- U.data[1][0], U.data[1][1], U.data[1][2],
420
- U.data[2][0], U.data[2][1], U.data[2][2],
421
-
422
- sigma[0], s12, s13,
423
- s21, sigma[1], s23,
424
- s31, s32, sigma[2],
425
-
426
- V.data[0][0], V.data[0][1], V.data[0][2],
427
- V.data[1][0], V.data[1][1], V.data[1][2],
428
- V.data[2][0], V.data[2][1], V.data[2][2]);
429
- }
430
-
431
- template<typename Type>
432
- inline CUDA_CALLABLE void adj_svd3(const mat_t<3,3,Type>& A,
433
- const mat_t<3,3,Type>& U,
434
- const vec_t<3,Type>& sigma,
435
- const mat_t<3,3,Type>& V,
436
- mat_t<3,3,Type>& adj_A,
437
- const mat_t<3,3,Type>& adj_U,
438
- const vec_t<3,Type>& adj_sigma,
439
- const mat_t<3,3,Type>& adj_V) {
440
- Type sx2 = sigma[0] * sigma[0];
441
- Type sy2 = sigma[1] * sigma[1];
442
- Type sz2 = sigma[2] * sigma[2];
443
-
444
- Type F01 = Type(1) / min(sy2 - sx2, Type(-1e-6f));
445
- Type F02 = Type(1) / min(sz2 - sx2, Type(-1e-6f));
446
- Type F12 = Type(1) / min(sz2 - sy2, Type(-1e-6f));
447
-
448
- mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
449
- -F01, 0, F12,
450
- -F02, -F12, 0);
451
-
452
- mat_t<3,3,Type> adj_sigma_mat = mat_t<3,3,Type>(adj_sigma[0], 0, 0,
453
- 0, adj_sigma[1], 0,
454
- 0, 0, adj_sigma[2]);
455
- mat_t<3,3,Type> s_mat = mat_t<3,3,Type>(sigma[0], 0, 0,
456
- 0, sigma[1], 0,
457
- 0, 0, sigma[2]);
458
-
459
- // https://github.com/pytorch/pytorch/blob/d7ddae8e4fe66fa1330317673438d1eb5aa99ca4/torch/csrc/autograd/FunctionsManual.cpp
460
- mat_t<3,3,Type> UT = transpose(U);
461
- mat_t<3,3,Type> VT = transpose(V);
462
-
463
- mat_t<3,3,Type> sigma_term = mul(U, mul(adj_sigma_mat, VT));
464
-
465
- mat_t<3,3,Type> u_term = mul(mul(U, mul(cw_mul(F, (mul(UT, adj_U) - mul(transpose(adj_U), U))), s_mat)), VT);
466
- mat_t<3,3,Type> v_term = mul(U, mul(s_mat, mul(cw_mul(F, (mul(VT, adj_V) - mul(transpose(adj_V), V))), VT)));
467
-
468
- adj_A = adj_A + (u_term + v_term + sigma_term);
469
- }
470
-
471
-
472
- template<typename Type>
473
- inline CUDA_CALLABLE void qr3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, mat_t<3,3,Type>& R) {
474
- QRDecomposition(A.data[0][0], A.data[0][1], A.data[0][2],
475
- A.data[1][0], A.data[1][1], A.data[1][2],
476
- A.data[2][0], A.data[2][1], A.data[2][2],
477
-
478
- Q.data[0][0], Q.data[0][1], Q.data[0][2],
479
- Q.data[1][0], Q.data[1][1], Q.data[1][2],
480
- Q.data[2][0], Q.data[2][1], Q.data[2][2],
481
-
482
- R.data[0][0], R.data[0][1], R.data[0][2],
483
- R.data[1][0], R.data[1][1], R.data[1][2],
484
- R.data[2][0], R.data[2][1], R.data[2][2]);
485
- }
486
-
487
-
488
- template<typename Type>
489
- inline CUDA_CALLABLE void adj_qr3(const mat_t<3,3,Type>& A,
490
- const mat_t<3,3,Type>& Q,
491
- const mat_t<3,3,Type>& R,
492
- mat_t<3,3,Type>& adj_A,
493
- const mat_t<3,3,Type>& adj_Q,
494
- const mat_t<3,3,Type>& adj_R) {
495
- // Eq 3 of https://arxiv.org/pdf/2009.10071.pdf
496
- mat_t<3,3,Type> M = mul(R,transpose(adj_R)) - mul(transpose(adj_Q), Q);
497
- mat_t<3,3,Type> copyltuM = mat_t<3,3,Type>(M.data[0][0], M.data[1][0], M.data[2][0],
498
- M.data[1][0], M.data[1][1], M.data[2][1],
499
- M.data[2][0], M.data[2][1], M.data[2][2]);
500
- adj_A = adj_A + mul(adj_Q + mul(Q,copyltuM), inverse(transpose(R)));
501
- }
502
-
503
-
504
- template<typename Type>
505
- inline CUDA_CALLABLE void eig3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, vec_t<3,Type>& d) {
506
- Type qV[4];
507
- Type s11 = A.data[0][0];
508
- Type s21 = A.data[1][0];
509
- Type s22 = A.data[1][1];
510
- Type s31 = A.data[2][0];
511
- Type s32 = A.data[2][1];
512
- Type s33 = A.data[2][2];
513
-
514
- jacobiEigenanlysis(s11, s21, s22, s31, s32, s33, qV);
515
- quatToMat3(qV, Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2]);
516
- mat_t<3,3,Type> t;
517
- multAtB(Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
518
- A.data[0][0], A.data[0][1], A.data[0][2], A.data[1][0], A.data[1][1], A.data[1][2], A.data[2][0], A.data[2][1], A.data[2][2],
519
- t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2]);
520
-
521
- mat_t<3,3,Type> u;
522
- multAB(t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2],
523
- Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
524
- u.data[0][0], u.data[0][1], u.data[0][2], u.data[1][0], u.data[1][1], u.data[1][2], u.data[2][0], u.data[2][1], u.data[2][2]
525
- );
526
- d = vec_t<3,Type>(u.data[0][0], u.data[1][1], u.data[2][2]);
527
- }
528
-
529
- template<typename Type>
530
- inline CUDA_CALLABLE void adj_eig3(const mat_t<3,3,Type>& A, const mat_t<3,3,Type>& Q, const vec_t<3,Type>& d,
531
- mat_t<3,3,Type>& adj_A, const mat_t<3,3,Type>& adj_Q, const vec_t<3,Type>& adj_d) {
532
- // Page 10 of https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
533
- mat_t<3,3,Type> D = mat_t<3,3,Type>(d[0], 0, 0,
534
- 0, d[1], 0,
535
- 0, 0, d[2]);
536
- mat_t<3,3,Type> D_bar = mat_t<3,3,Type>(adj_d[0], 0, 0,
537
- 0, adj_d[1], 0,
538
- 0, 0, adj_d[2]);
539
-
540
- Type dyx = d[1] - d[0];
541
- Type dzx = d[2] - d[0];
542
- Type dzy = d[2] - d[1];
543
-
544
- if ((dyx < Type(0)) && (dyx > Type(-1e-6))) dyx = -1e-6;
545
- if ((dyx > Type(0)) && (dyx < Type(1e-6))) dyx = 1e-6;
546
-
547
- if ((dzx < Type(0)) && (dzx > Type(-1e-6))) dzx = -1e-6;
548
- if ((dzx > Type(0)) && (dzx < Type(1e-6))) dzx = 1e-6;
549
-
550
- if ((dzy < Type(0)) && (dzy > Type(-1e-6))) dzy = -1e-6;
551
- if ((dzy > Type(0)) && (dzy < Type(1e-6))) dzy = 1e-6;
552
-
553
- Type F01 = Type(1) / dyx;
554
- Type F02 = Type(1) / dzx;
555
- Type F12 = Type(1) / dzy;
556
- mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
557
- -F01, 0, F12,
558
- -F02, -F12, 0);
559
- mat_t<3,3,Type> QT = transpose(Q);
560
- adj_A = adj_A + mul(Q, mul(D_bar + cw_mul(F, mul(QT, adj_Q)), QT));
561
- }
562
- }
1
+ /** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
2
+ * NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ * and proprietary rights in and to this software, related documentation
4
+ * and any modifications thereto. Any use, reproduction, disclosure or
5
+ * distribution of this software and related documentation without an express
6
+ * license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+ */
8
+
9
+ // The MIT License (MIT)
10
+
11
+ // Copyright (c) 2014 Eric V. Jang
12
+
13
+ // Permission is hereby granted, free of charge, to any person obtaining a copy
14
+ // of this software and associated documentation files (the "Software"), to deal
15
+ // in the Software without restriction, including without limitation the rights
16
+ // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
+ // copies of the Software, and to permit persons to whom the Software is
18
+ // furnished to do so, subject to the following conditions:
19
+
20
+ // The above copyright notice and this permission notice shall be included in all
21
+ // copies or substantial portions of the Software.
22
+
23
+ // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
+ // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
+ // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
+ // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
+ // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
+ // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
+ // SOFTWARE.
30
+
31
+ // Source: https://github.com/ericjang/svd3/blob/master/svd3_cuda/svd3_cuda.h
32
+
33
+
34
+ #pragma once
35
+
36
+ #include "builtin.h"
37
+
38
+ namespace wp
39
+ {
40
+
41
+ #define _gamma 5.828427124 // FOUR_GAMMA_SQUARED = sqrt(8)+3;
42
+ #define _cstar 0.923879532 // cos(pi/8)
43
+ #define _sstar 0.3826834323 // sin(p/8)
44
+ #define _EPSILON 1e-6
45
+
46
+ // TODO: replace sqrt with rsqrt
47
+
48
+ template<typename Type>
49
+ inline CUDA_CALLABLE
50
+ Type accurateSqrt(Type x)
51
+ {
52
+ return x / sqrt(x);
53
+ }
54
+
55
+ template<typename Type>
56
+ inline CUDA_CALLABLE
57
+ void condSwap(bool c, Type &X, Type &Y)
58
+ {
59
+ // used in step 2
60
+ Type Z = X;
61
+ X = c ? Y : X;
62
+ Y = c ? Z : Y;
63
+ }
64
+
65
+ template<typename Type>
66
+ inline CUDA_CALLABLE
67
+ void condNegSwap(bool c, Type &X, Type &Y)
68
+ {
69
+ // used in step 2 and 3
70
+ Type Z = -X;
71
+ X = c ? Y : X;
72
+ Y = c ? Z : Y;
73
+ }
74
+
75
+ // matrix multiplication M = A * B
76
+ template<typename Type>
77
+ inline CUDA_CALLABLE
78
+ void multAB(Type a11, Type a12, Type a13,
79
+ Type a21, Type a22, Type a23,
80
+ Type a31, Type a32, Type a33,
81
+ //
82
+ Type b11, Type b12, Type b13,
83
+ Type b21, Type b22, Type b23,
84
+ Type b31, Type b32, Type b33,
85
+ //
86
+ Type &m11, Type &m12, Type &m13,
87
+ Type &m21, Type &m22, Type &m23,
88
+ Type &m31, Type &m32, Type &m33)
89
+ {
90
+
91
+ m11=a11*b11 + a12*b21 + a13*b31; m12=a11*b12 + a12*b22 + a13*b32; m13=a11*b13 + a12*b23 + a13*b33;
92
+ m21=a21*b11 + a22*b21 + a23*b31; m22=a21*b12 + a22*b22 + a23*b32; m23=a21*b13 + a22*b23 + a23*b33;
93
+ m31=a31*b11 + a32*b21 + a33*b31; m32=a31*b12 + a32*b22 + a33*b32; m33=a31*b13 + a32*b23 + a33*b33;
94
+ }
95
+
96
+ // matrix multiplication M = Transpose[A] * B
97
+ template<typename Type>
98
+ inline CUDA_CALLABLE
99
+ void multAtB(Type a11, Type a12, Type a13,
100
+ Type a21, Type a22, Type a23,
101
+ Type a31, Type a32, Type a33,
102
+ //
103
+ Type b11, Type b12, Type b13,
104
+ Type b21, Type b22, Type b23,
105
+ Type b31, Type b32, Type b33,
106
+ //
107
+ Type &m11, Type &m12, Type &m13,
108
+ Type &m21, Type &m22, Type &m23,
109
+ Type &m31, Type &m32, Type &m33)
110
+ {
111
+ m11=a11*b11 + a21*b21 + a31*b31; m12=a11*b12 + a21*b22 + a31*b32; m13=a11*b13 + a21*b23 + a31*b33;
112
+ m21=a12*b11 + a22*b21 + a32*b31; m22=a12*b12 + a22*b22 + a32*b32; m23=a12*b13 + a22*b23 + a32*b33;
113
+ m31=a13*b11 + a23*b21 + a33*b31; m32=a13*b12 + a23*b22 + a33*b32; m33=a13*b13 + a23*b23 + a33*b33;
114
+ }
115
+
116
+ template<typename Type>
117
+ inline CUDA_CALLABLE
118
+ void quatToMat3(const Type * qV,
119
+ Type &m11, Type &m12, Type &m13,
120
+ Type &m21, Type &m22, Type &m23,
121
+ Type &m31, Type &m32, Type &m33
122
+ )
123
+ {
124
+ Type w = qV[3];
125
+ Type x = qV[0];
126
+ Type y = qV[1];
127
+ Type z = qV[2];
128
+
129
+ Type qxx = x*x;
130
+ Type qyy = y*y;
131
+ Type qzz = z*z;
132
+ Type qxz = x*z;
133
+ Type qxy = x*y;
134
+ Type qyz = y*z;
135
+ Type qwx = w*x;
136
+ Type qwy = w*y;
137
+ Type qwz = w*z;
138
+
139
+ m11=Type(1) - Type(2)*(qyy + qzz); m12=Type(2)*(qxy - qwz); m13=Type(2)*(qxz + qwy);
140
+ m21=Type(2)*(qxy + qwz); m22=Type(1) - Type(2)*(qxx + qzz); m23=Type(2)*(qyz - qwx);
141
+ m31=Type(2)*(qxz - qwy); m32=Type(2)*(qyz + qwx); m33=Type(1) - Type(2)*(qxx + qyy);
142
+ }
143
+
144
+ template<typename Type>
145
+ inline CUDA_CALLABLE
146
+ void approximateGivensQuaternion(Type a11, Type a12, Type a22, Type &ch, Type &sh)
147
+ {
148
+ /*
149
+ * Given givens angle computed by approximateGivensAngles,
150
+ * compute the corresponding rotation quaternion.
151
+ */
152
+ ch = Type(2)*(a11-a22);
153
+ sh = a12;
154
+ bool b = _gamma*sh*sh < ch*ch;
155
+ Type w = Type(1) / sqrt(ch*ch+sh*sh);
156
+ ch=b?w*ch:Type(_cstar);
157
+ sh=b?w*sh:Type(_sstar);
158
+ }
159
+
160
+ template<typename Type>
161
+ inline CUDA_CALLABLE
162
+ void jacobiConjugation( const int x, const int y, const int z,
163
+ Type &s11,
164
+ Type &s21, Type &s22,
165
+ Type &s31, Type &s32, Type &s33,
166
+ Type * qV)
167
+ {
168
+ Type ch,sh;
169
+ approximateGivensQuaternion(s11,s21,s22,ch,sh);
170
+
171
+ Type scale = ch*ch+sh*sh;
172
+ Type a = (ch*ch-sh*sh)/scale;
173
+ Type b = (Type(2)*sh*ch)/scale;
174
+
175
+ // make temp copy of S
176
+ Type _s11 = s11;
177
+ Type _s21 = s21; Type _s22 = s22;
178
+ Type _s31 = s31; Type _s32 = s32; Type _s33 = s33;
179
+
180
+ // perform conjugation S = Q'*S*Q
181
+ // Q already implicitly solved from a, b
182
+ s11 =a*(a*_s11 + b*_s21) + b*(a*_s21 + b*_s22);
183
+ s21 =a*(-b*_s11 + a*_s21) + b*(-b*_s21 + a*_s22); s22=-b*(-b*_s11 + a*_s21) + a*(-b*_s21 + a*_s22);
184
+ s31 =a*_s31 + b*_s32; s32=-b*_s31 + a*_s32; s33=_s33;
185
+
186
+ // update cumulative rotation qV
187
+ Type tmp[3];
188
+ tmp[0]=qV[0]*sh;
189
+ tmp[1]=qV[1]*sh;
190
+ tmp[2]=qV[2]*sh;
191
+ sh *= qV[3];
192
+
193
+ qV[0] *= ch;
194
+ qV[1] *= ch;
195
+ qV[2] *= ch;
196
+ qV[3] *= ch;
197
+
198
+ // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1))
199
+ // for (p,q) = ((0,1),(1,2),(0,2))
200
+ qV[z] += sh;
201
+ qV[3] -= tmp[z]; // w
202
+ qV[x] += tmp[y];
203
+ qV[y] -= tmp[x];
204
+
205
+ // re-arrange matrix for next iteration
206
+ _s11 = s22;
207
+ _s21 = s32; _s22 = s33;
208
+ _s31 = s21; _s32 = s31; _s33 = s11;
209
+ s11 = _s11;
210
+ s21 = _s21; s22 = _s22;
211
+ s31 = _s31; s32 = _s32; s33 = _s33;
212
+
213
+ }
214
+
215
+ template<typename Type>
216
+ inline CUDA_CALLABLE
217
+ Type dist2(Type x, Type y, Type z)
218
+ {
219
+ return x*x+y*y+z*z;
220
+ }
221
+
222
+ // finds transformation that diagonalizes a symmetric matrix
223
+ template<typename Type>
224
+ inline CUDA_CALLABLE
225
+ void jacobiEigenanlysis( // symmetric matrix
226
+ Type &s11,
227
+ Type &s21, Type &s22,
228
+ Type &s31, Type &s32, Type &s33,
229
+ // quaternion representation of V
230
+ Type * qV)
231
+ {
232
+ qV[3]=1; qV[0]=0;qV[1]=0;qV[2]=0; // follow same indexing convention as GLM
233
+ for (int i=0;i<4;i++)
234
+ {
235
+ // we wish to eliminate the maximum off-diagonal element
236
+ // on every iteration, but cycling over all 3 possible rotations
237
+ // in fixed order (p,q) = (1,2) , (2,3), (1,3) still retains
238
+ // asymptotic convergence
239
+ jacobiConjugation(0,1,2,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,1
240
+ jacobiConjugation(1,2,0,s11,s21,s22,s31,s32,s33,qV); // p,q = 1,2
241
+ jacobiConjugation(2,0,1,s11,s21,s22,s31,s32,s33,qV); // p,q = 0,2
242
+ }
243
+ }
244
+
245
+ template<typename Type>
246
+ inline CUDA_CALLABLE
247
+ void sortSingularValues(// matrix that we want to decompose
248
+ Type &b11, Type &b12, Type &b13,
249
+ Type &b21, Type &b22, Type &b23,
250
+ Type &b31, Type &b32, Type &b33,
251
+ // sort V simultaneously
252
+ Type &v11, Type &v12, Type &v13,
253
+ Type &v21, Type &v22, Type &v23,
254
+ Type &v31, Type &v32, Type &v33)
255
+ {
256
+ Type rho1 = dist2(b11,b21,b31);
257
+ Type rho2 = dist2(b12,b22,b32);
258
+ Type rho3 = dist2(b13,b23,b33);
259
+ bool c;
260
+ c = rho1 < rho2;
261
+ condNegSwap(c,b11,b12); condNegSwap(c,v11,v12);
262
+ condNegSwap(c,b21,b22); condNegSwap(c,v21,v22);
263
+ condNegSwap(c,b31,b32); condNegSwap(c,v31,v32);
264
+ condSwap(c,rho1,rho2);
265
+ c = rho1 < rho3;
266
+ condNegSwap(c,b11,b13); condNegSwap(c,v11,v13);
267
+ condNegSwap(c,b21,b23); condNegSwap(c,v21,v23);
268
+ condNegSwap(c,b31,b33); condNegSwap(c,v31,v33);
269
+ condSwap(c,rho1,rho3);
270
+ c = rho2 < rho3;
271
+ condNegSwap(c,b12,b13); condNegSwap(c,v12,v13);
272
+ condNegSwap(c,b22,b23); condNegSwap(c,v22,v23);
273
+ condNegSwap(c,b32,b33); condNegSwap(c,v32,v33);
274
+ }
275
+
276
+ template<typename Type>
277
+ inline CUDA_CALLABLE
278
+ void QRGivensQuaternion(Type a1, Type a2, Type &ch, Type &sh)
279
+ {
280
+ // a1 = pivot point on diagonal
281
+ // a2 = lower triangular entry we want to annihilate
282
+ Type epsilon = _EPSILON;
283
+ Type rho = accurateSqrt(a1*a1 + a2*a2);
284
+
285
+ sh = rho > epsilon ? a2 : Type(0);
286
+ ch = abs(a1) + max(rho,epsilon);
287
+ bool b = a1 < Type(0);
288
+ condSwap(b,sh,ch);
289
+ Type w = Type(1) / sqrt(ch*ch+sh*sh);
290
+ ch *= w;
291
+ sh *= w;
292
+ }
293
+
294
+ template<typename Type>
295
+ inline CUDA_CALLABLE
296
+ void QRDecomposition(// matrix that we want to decompose
297
+ Type b11, Type b12, Type b13,
298
+ Type b21, Type b22, Type b23,
299
+ Type b31, Type b32, Type b33,
300
+ // output Q
301
+ Type &q11, Type &q12, Type &q13,
302
+ Type &q21, Type &q22, Type &q23,
303
+ Type &q31, Type &q32, Type &q33,
304
+ // output R
305
+ Type &r11, Type &r12, Type &r13,
306
+ Type &r21, Type &r22, Type &r23,
307
+ Type &r31, Type &r32, Type &r33)
308
+ {
309
+ Type ch1,sh1,ch2,sh2,ch3,sh3;
310
+ Type a,b;
311
+
312
+ // first givens rotation (ch,0,0,sh)
313
+ QRGivensQuaternion(b11,b21,ch1,sh1);
314
+ a=Type(1)-Type(2)*sh1*sh1;
315
+ b=Type(2)*ch1*sh1;
316
+ // apply B = Q' * B
317
+ r11=a*b11+b*b21; r12=a*b12+b*b22; r13=a*b13+b*b23;
318
+ r21=-b*b11+a*b21; r22=-b*b12+a*b22; r23=-b*b13+a*b23;
319
+ r31=b31; r32=b32; r33=b33;
320
+
321
+ // second givens rotation (ch,0,-sh,0)
322
+ QRGivensQuaternion(r11,r31,ch2,sh2);
323
+ a=Type(1)-Type(2)*sh2*sh2;
324
+ b=Type(2)*ch2*sh2;
325
+ // apply B = Q' * B;
326
+ b11=a*r11+b*r31; b12=a*r12+b*r32; b13=a*r13+b*r33;
327
+ b21=r21; b22=r22; b23=r23;
328
+ b31=-b*r11+a*r31; b32=-b*r12+a*r32; b33=-b*r13+a*r33;
329
+
330
+ // third givens rotation (ch,sh,0,0)
331
+ QRGivensQuaternion(b22,b32,ch3,sh3);
332
+ a=Type(1)-Type(2)*sh3*sh3;
333
+ b=Type(2)*ch3*sh3;
334
+ // R is now set to desired value
335
+ r11=b11; r12=b12; r13=b13;
336
+ r21=a*b21+b*b31; r22=a*b22+b*b32; r23=a*b23+b*b33;
337
+ r31=-b*b21+a*b31; r32=-b*b22+a*b32; r33=-b*b23+a*b33;
338
+
339
+ // construct the cumulative rotation Q=Q1 * Q2 * Q3
340
+ // the number of floating point operations for three quaternion multiplications
341
+ // is more or less comparable to the explicit form of the joined matrix.
342
+ // certainly more memory-efficient!
343
+ Type sh12=sh1*sh1;
344
+ Type sh22=sh2*sh2;
345
+ Type sh32=sh3*sh3;
346
+
347
+ q11=(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh22);
348
+ q12=Type(4)*ch2*ch3*(Type(-1)+Type(2)*sh12)*sh2*sh3+Type(2)*ch1*sh1*(Type(-1)+Type(2)*sh32);
349
+ q13=Type(4)*ch1*ch3*sh1*sh3-Type(2)*ch2*(Type(-1)+Type(2)*sh12)*sh2*(Type(-1)+Type(2)*sh32);
350
+
351
+ q21=Type(2)*ch1*sh1*(Type(1)-Type(2)*sh22);
352
+ q22=Type(-8)*ch1*ch2*ch3*sh1*sh2*sh3+(Type(-1)+Type(2)*sh12)*(Type(-1)+Type(2)*sh32);
353
+ q23=Type(-2)*ch3*sh3+Type(4)*sh1*(ch3*sh1*sh3+ch1*ch2*sh2*(Type(-1)+Type(2)*sh32));
354
+
355
+ q31=Type(2)*ch2*sh2;
356
+ q32=Type(2)*ch3*(Type(1)-Type(2)*sh22)*sh3;
357
+ q33=(Type(-1)+Type(2)*sh22)*(Type(-1)+Type(2)*sh32);
358
+ }
359
+
360
+ template<typename Type>
361
+ inline CUDA_CALLABLE
362
+ void _svd(// input A
363
+ Type a11, Type a12, Type a13,
364
+ Type a21, Type a22, Type a23,
365
+ Type a31, Type a32, Type a33,
366
+ // output U
367
+ Type &u11, Type &u12, Type &u13,
368
+ Type &u21, Type &u22, Type &u23,
369
+ Type &u31, Type &u32, Type &u33,
370
+ // output S
371
+ Type &s11, Type &s12, Type &s13,
372
+ Type &s21, Type &s22, Type &s23,
373
+ Type &s31, Type &s32, Type &s33,
374
+ // output V
375
+ Type &v11, Type &v12, Type &v13,
376
+ Type &v21, Type &v22, Type &v23,
377
+ Type &v31, Type &v32, Type &v33)
378
+ {
379
+ // normal equations matrix
380
+ Type ATA11, ATA12, ATA13;
381
+ Type ATA21, ATA22, ATA23;
382
+ Type ATA31, ATA32, ATA33;
383
+
384
+ multAtB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
385
+ a11,a12,a13,a21,a22,a23,a31,a32,a33,
386
+ ATA11,ATA12,ATA13,ATA21,ATA22,ATA23,ATA31,ATA32,ATA33);
387
+
388
+ // symmetric eigenalysis
389
+ Type qV[4];
390
+ jacobiEigenanlysis( ATA11,ATA21,ATA22, ATA31,ATA32,ATA33,qV);
391
+ quatToMat3(qV,v11,v12,v13,v21,v22,v23,v31,v32,v33);
392
+
393
+ Type b11, b12, b13;
394
+ Type b21, b22, b23;
395
+ Type b31, b32, b33;
396
+ multAB(a11,a12,a13,a21,a22,a23,a31,a32,a33,
397
+ v11,v12,v13,v21,v22,v23,v31,v32,v33,
398
+ b11, b12, b13, b21, b22, b23, b31, b32, b33);
399
+
400
+ // sort singular values and find V
401
+ sortSingularValues(b11, b12, b13, b21, b22, b23, b31, b32, b33,
402
+ v11,v12,v13,v21,v22,v23,v31,v32,v33);
403
+
404
+ // QR decomposition
405
+ QRDecomposition(b11, b12, b13, b21, b22, b23, b31, b32, b33,
406
+ u11, u12, u13, u21, u22, u23, u31, u32, u33,
407
+ s11, s12, s13, s21, s22, s23, s31, s32, s33
408
+ );
409
+ }
410
+
411
+ template<typename Type>
412
+ inline CUDA_CALLABLE void svd3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& U, vec_t<3,Type>& sigma, mat_t<3,3,Type>& V) {
413
+ Type s12, s13, s21, s23, s31, s32;
414
+ _svd(A.data[0][0], A.data[0][1], A.data[0][2],
415
+ A.data[1][0], A.data[1][1], A.data[1][2],
416
+ A.data[2][0], A.data[2][1], A.data[2][2],
417
+
418
+ U.data[0][0], U.data[0][1], U.data[0][2],
419
+ U.data[1][0], U.data[1][1], U.data[1][2],
420
+ U.data[2][0], U.data[2][1], U.data[2][2],
421
+
422
+ sigma[0], s12, s13,
423
+ s21, sigma[1], s23,
424
+ s31, s32, sigma[2],
425
+
426
+ V.data[0][0], V.data[0][1], V.data[0][2],
427
+ V.data[1][0], V.data[1][1], V.data[1][2],
428
+ V.data[2][0], V.data[2][1], V.data[2][2]);
429
+ }
430
+
431
+ template<typename Type>
432
+ inline CUDA_CALLABLE void adj_svd3(const mat_t<3,3,Type>& A,
433
+ const mat_t<3,3,Type>& U,
434
+ const vec_t<3,Type>& sigma,
435
+ const mat_t<3,3,Type>& V,
436
+ mat_t<3,3,Type>& adj_A,
437
+ const mat_t<3,3,Type>& adj_U,
438
+ const vec_t<3,Type>& adj_sigma,
439
+ const mat_t<3,3,Type>& adj_V) {
440
+ Type sx2 = sigma[0] * sigma[0];
441
+ Type sy2 = sigma[1] * sigma[1];
442
+ Type sz2 = sigma[2] * sigma[2];
443
+
444
+ Type F01 = Type(1) / min(sy2 - sx2, Type(-1e-6f));
445
+ Type F02 = Type(1) / min(sz2 - sx2, Type(-1e-6f));
446
+ Type F12 = Type(1) / min(sz2 - sy2, Type(-1e-6f));
447
+
448
+ mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
449
+ -F01, 0, F12,
450
+ -F02, -F12, 0);
451
+
452
+ mat_t<3,3,Type> adj_sigma_mat = mat_t<3,3,Type>(adj_sigma[0], 0, 0,
453
+ 0, adj_sigma[1], 0,
454
+ 0, 0, adj_sigma[2]);
455
+ mat_t<3,3,Type> s_mat = mat_t<3,3,Type>(sigma[0], 0, 0,
456
+ 0, sigma[1], 0,
457
+ 0, 0, sigma[2]);
458
+
459
+ // https://github.com/pytorch/pytorch/blob/d7ddae8e4fe66fa1330317673438d1eb5aa99ca4/torch/csrc/autograd/FunctionsManual.cpp
460
+ mat_t<3,3,Type> UT = transpose(U);
461
+ mat_t<3,3,Type> VT = transpose(V);
462
+
463
+ mat_t<3,3,Type> sigma_term = mul(U, mul(adj_sigma_mat, VT));
464
+
465
+ mat_t<3,3,Type> u_term = mul(mul(U, mul(cw_mul(F, (mul(UT, adj_U) - mul(transpose(adj_U), U))), s_mat)), VT);
466
+ mat_t<3,3,Type> v_term = mul(U, mul(s_mat, mul(cw_mul(F, (mul(VT, adj_V) - mul(transpose(adj_V), V))), VT)));
467
+
468
+ adj_A = adj_A + (u_term + v_term + sigma_term);
469
+ }
470
+
471
+
472
+ template<typename Type>
473
+ inline CUDA_CALLABLE void qr3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, mat_t<3,3,Type>& R) {
474
+ QRDecomposition(A.data[0][0], A.data[0][1], A.data[0][2],
475
+ A.data[1][0], A.data[1][1], A.data[1][2],
476
+ A.data[2][0], A.data[2][1], A.data[2][2],
477
+
478
+ Q.data[0][0], Q.data[0][1], Q.data[0][2],
479
+ Q.data[1][0], Q.data[1][1], Q.data[1][2],
480
+ Q.data[2][0], Q.data[2][1], Q.data[2][2],
481
+
482
+ R.data[0][0], R.data[0][1], R.data[0][2],
483
+ R.data[1][0], R.data[1][1], R.data[1][2],
484
+ R.data[2][0], R.data[2][1], R.data[2][2]);
485
+ }
486
+
487
+
488
+ template<typename Type>
489
+ inline CUDA_CALLABLE void adj_qr3(const mat_t<3,3,Type>& A,
490
+ const mat_t<3,3,Type>& Q,
491
+ const mat_t<3,3,Type>& R,
492
+ mat_t<3,3,Type>& adj_A,
493
+ const mat_t<3,3,Type>& adj_Q,
494
+ const mat_t<3,3,Type>& adj_R) {
495
+ // Eq 3 of https://arxiv.org/pdf/2009.10071.pdf
496
+ mat_t<3,3,Type> M = mul(R,transpose(adj_R)) - mul(transpose(adj_Q), Q);
497
+ mat_t<3,3,Type> copyltuM = mat_t<3,3,Type>(M.data[0][0], M.data[1][0], M.data[2][0],
498
+ M.data[1][0], M.data[1][1], M.data[2][1],
499
+ M.data[2][0], M.data[2][1], M.data[2][2]);
500
+ adj_A = adj_A + mul(adj_Q + mul(Q,copyltuM), inverse(transpose(R)));
501
+ }
502
+
503
+
504
+ template<typename Type>
505
+ inline CUDA_CALLABLE void eig3(const mat_t<3,3,Type>& A, mat_t<3,3,Type>& Q, vec_t<3,Type>& d) {
506
+ Type qV[4];
507
+ Type s11 = A.data[0][0];
508
+ Type s21 = A.data[1][0];
509
+ Type s22 = A.data[1][1];
510
+ Type s31 = A.data[2][0];
511
+ Type s32 = A.data[2][1];
512
+ Type s33 = A.data[2][2];
513
+
514
+ jacobiEigenanlysis(s11, s21, s22, s31, s32, s33, qV);
515
+ quatToMat3(qV, Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2]);
516
+ mat_t<3,3,Type> t;
517
+ multAtB(Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
518
+ A.data[0][0], A.data[0][1], A.data[0][2], A.data[1][0], A.data[1][1], A.data[1][2], A.data[2][0], A.data[2][1], A.data[2][2],
519
+ t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2]);
520
+
521
+ mat_t<3,3,Type> u;
522
+ multAB(t.data[0][0], t.data[0][1], t.data[0][2], t.data[1][0], t.data[1][1], t.data[1][2], t.data[2][0], t.data[2][1], t.data[2][2],
523
+ Q.data[0][0], Q.data[0][1], Q.data[0][2], Q.data[1][0], Q.data[1][1], Q.data[1][2], Q.data[2][0], Q.data[2][1], Q.data[2][2],
524
+ u.data[0][0], u.data[0][1], u.data[0][2], u.data[1][0], u.data[1][1], u.data[1][2], u.data[2][0], u.data[2][1], u.data[2][2]
525
+ );
526
+ d = vec_t<3,Type>(u.data[0][0], u.data[1][1], u.data[2][2]);
527
+ }
528
+
529
+ template<typename Type>
530
+ inline CUDA_CALLABLE void adj_eig3(const mat_t<3,3,Type>& A, const mat_t<3,3,Type>& Q, const vec_t<3,Type>& d,
531
+ mat_t<3,3,Type>& adj_A, const mat_t<3,3,Type>& adj_Q, const vec_t<3,Type>& adj_d) {
532
+ // Page 10 of https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
533
+ mat_t<3,3,Type> D = mat_t<3,3,Type>(d[0], 0, 0,
534
+ 0, d[1], 0,
535
+ 0, 0, d[2]);
536
+ mat_t<3,3,Type> D_bar = mat_t<3,3,Type>(adj_d[0], 0, 0,
537
+ 0, adj_d[1], 0,
538
+ 0, 0, adj_d[2]);
539
+
540
+ Type dyx = d[1] - d[0];
541
+ Type dzx = d[2] - d[0];
542
+ Type dzy = d[2] - d[1];
543
+
544
+ if ((dyx < Type(0)) && (dyx > Type(-1e-6))) dyx = -1e-6;
545
+ if ((dyx > Type(0)) && (dyx < Type(1e-6))) dyx = 1e-6;
546
+
547
+ if ((dzx < Type(0)) && (dzx > Type(-1e-6))) dzx = -1e-6;
548
+ if ((dzx > Type(0)) && (dzx < Type(1e-6))) dzx = 1e-6;
549
+
550
+ if ((dzy < Type(0)) && (dzy > Type(-1e-6))) dzy = -1e-6;
551
+ if ((dzy > Type(0)) && (dzy < Type(1e-6))) dzy = 1e-6;
552
+
553
+ Type F01 = Type(1) / dyx;
554
+ Type F02 = Type(1) / dzx;
555
+ Type F12 = Type(1) / dzy;
556
+ mat_t<3,3,Type> F = mat_t<3,3,Type>(0, F01, F02,
557
+ -F01, 0, F12,
558
+ -F02, -F12, 0);
559
+ mat_t<3,3,Type> QT = transpose(Q);
560
+ adj_A = adj_A + mul(Q, mul(D_bar + cw_mul(F, mul(QT, adj_Q)), QT));
561
+ }
562
+ }