warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/jax_experimental.py CHANGED
@@ -1,339 +1,341 @@
1
- # Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- import ctypes
9
- import warp as wp
10
- from warp.types import array_t, launch_bounds_t, strides_from_shape
11
- from warp.context import type_str
12
- import jax
13
- import jax.numpy as jp
14
-
15
- _jax_warp_p = None
16
-
17
- # Holder for the custom callback to keep it alive.
18
- _cc_callback = None
19
- _registered_kernels = [None]
20
- _registered_kernel_to_id = {}
21
-
22
-
23
- def jax_kernel(wp_kernel):
24
- """Create a Jax primitive from a Warp kernel.
25
-
26
- NOTE: This is an experimental feature under development.
27
-
28
- Current limitations:
29
- - All kernel arguments must be arrays.
30
- - Kernel launch dimensions are inferred from the shape of the first argument.
31
- - Input arguments are followed by output arguments in the Warp kernel definition.
32
- - There must be at least one input argument and at least one output argument.
33
- - Output shapes must match the launch dimensions (i.e., output shapes must match the shape of the first argument).
34
- - All arrays must be contiguous.
35
- - Only the CUDA backend is supported.
36
- """
37
-
38
- if _jax_warp_p == None:
39
- # Create and register the primitive
40
- _create_jax_warp_primitive()
41
- if not wp_kernel in _registered_kernel_to_id:
42
- id = len(_registered_kernels)
43
- _registered_kernels.append(wp_kernel)
44
- _registered_kernel_to_id[wp_kernel] = id
45
- else:
46
- id = _registered_kernel_to_id[wp_kernel]
47
-
48
- def bind(*args):
49
- return _jax_warp_p.bind(*args, kernel=id)
50
-
51
- return bind
52
-
53
-
54
- def _warp_custom_callback(stream, buffers, opaque, opaque_len):
55
- # The descriptor is the form
56
- # <kernel-id>|<launch-dims>|<arg-dims-list>
57
- # Example: 42|16,32|16,32;100;16,32
58
- kernel_id_str, dim_str, args_str = opaque.decode().split("|")
59
-
60
- # Get the kernel from the registry.
61
- kernel_id = int(kernel_id_str)
62
- kernel = _registered_kernels[kernel_id]
63
-
64
- # Parse launch dimensions.
65
- dims = [int(d) for d in dim_str.split(",")]
66
- bounds = launch_bounds_t(dims)
67
-
68
- # Parse arguments.
69
- arg_strings = args_str.split(";")
70
- num_args = len(arg_strings)
71
- assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
72
-
73
- # First param is the launch bounds.
74
- kernel_params = (ctypes.c_void_p * (1 + num_args))()
75
- kernel_params[0] = ctypes.addressof(bounds)
76
-
77
- # Parse array descriptors.
78
- args = []
79
- for i in range(num_args):
80
- dtype = kernel.adj.args[i].type.dtype
81
- shape = [int(d) for d in arg_strings[i].split(",")]
82
- strides = strides_from_shape(shape, dtype)
83
-
84
- arr = array_t(buffers[i], 0, len(shape), shape, strides)
85
- args.append(arr) # keep a reference
86
- arg_ptr = ctypes.addressof(arr)
87
-
88
- kernel_params[i + 1] = arg_ptr
89
-
90
- # Get current device.
91
- device = wp.device_from_jax(_get_jax_device())
92
-
93
- # Get kernel hooks.
94
- # Note: module was loaded during jit lowering.
95
- hooks = kernel.module.get_kernel_hooks(kernel, device)
96
- assert hooks.forward, "Failed to find kernel entry point"
97
-
98
- # Launch the kernel.
99
- wp.context.runtime.core.cuda_launch_kernel(
100
- device.context, hooks.forward, bounds.size, 0, kernel_params, stream
101
- )
102
-
103
-
104
- # TODO: is there a simpler way of getting the Jax "current" device?
105
- def _get_jax_device():
106
- # check if jax.default_device() context manager is active
107
- device = jax.config.jax_default_device
108
- # if default device is not set, use first device
109
- if device is None:
110
- device = jax.devices()[0]
111
- return device
112
-
113
-
114
- def _create_jax_warp_primitive():
115
- from functools import reduce
116
- import jax
117
- from jax._src.interpreters import batching
118
- from jax.interpreters import mlir
119
- from jax.interpreters.mlir import ir
120
- from jaxlib.hlo_helpers import custom_call
121
-
122
- global _jax_warp_p
123
- global _cc_callback
124
-
125
- # Create and register the primitive.
126
- # TODO add default implementation that calls the kernel via warp.
127
- _jax_warp_p = jax.core.Primitive("jax_warp")
128
- _jax_warp_p.multiple_results = True
129
-
130
- # TODO Just launch the kernel directly, but make sure the argument
131
- # shapes are massaged the same way as below so that vmap works.
132
- def impl(*args):
133
- raise Exception("Not implemented")
134
-
135
- _jax_warp_p.def_impl(impl)
136
-
137
- # Auto-batching. Make sure all the arguments are fully broadcasted
138
- # so that Warp is not confused about dimensions.
139
- def vectorized_multi_batcher(args, dims, **params):
140
- # Figure out the number of outputs.
141
- wp_kernel = _registered_kernels[params["kernel"]]
142
- output_count = len(wp_kernel.adj.args) - len(args)
143
- shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
144
- size = shape[dim]
145
- args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
146
- # Create the batched primitive.
147
- return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
148
-
149
- batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
150
-
151
- def get_vecmat_shape(warp_type):
152
- if hasattr(warp_type.dtype, "_shape_"):
153
- return warp_type.dtype._shape_
154
- return []
155
-
156
- def strip_vecmat_dimensions(warp_arg, actual_shape):
157
- shape = get_vecmat_shape(warp_arg.type)
158
- for i, s in enumerate(reversed(shape)):
159
- item = actual_shape[-i - 1]
160
- if s != item:
161
- raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
162
- return actual_shape[: len(actual_shape) - len(shape)]
163
-
164
- def collapse_into_leading_dimension(warp_arg, actual_shape):
165
- if len(actual_shape) < warp_arg.type.ndim:
166
- raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
167
- index_rest = len(actual_shape) - warp_arg.type.ndim + 1
168
- leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
169
- return [leading_size] + actual_shape[index_rest:]
170
-
171
- # Infer array dimensions from input type.
172
- def infer_dimensions(warp_arg, actual_shape):
173
- actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
174
- return collapse_into_leading_dimension(warp_arg, actual_shape)
175
-
176
- def base_type_to_jax(warp_dtype):
177
- if hasattr(warp_dtype, "_wp_scalar_type_"):
178
- return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
179
- return wp.dtype_to_jax(warp_dtype)
180
-
181
- def base_type_to_jax_ir(warp_dtype):
182
- warp_to_jax_dict = {
183
- wp.float16: ir.F16Type.get(),
184
- wp.float32: ir.F32Type.get(),
185
- wp.float64: ir.F64Type.get(),
186
- wp.int8: ir.IntegerType.get_signless(8),
187
- wp.int16: ir.IntegerType.get_signless(16),
188
- wp.int32: ir.IntegerType.get_signless(32),
189
- wp.int64: ir.IntegerType.get_signless(64),
190
- wp.uint8: ir.IntegerType.get_unsigned(8),
191
- wp.uint16: ir.IntegerType.get_unsigned(16),
192
- wp.uint32: ir.IntegerType.get_unsigned(32),
193
- wp.uint64: ir.IntegerType.get_unsigned(64),
194
- }
195
- if hasattr(warp_dtype, "_wp_scalar_type_"):
196
- warp_dtype = warp_dtype._wp_scalar_type_
197
- jax_dtype = warp_to_jax_dict.get(warp_dtype)
198
- if jax_dtype is None:
199
- raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
200
- return jax_dtype
201
-
202
- def base_type_is_compatible(warp_type, jax_ir_type):
203
- jax_ir_to_warp = {
204
- "f16": wp.float16,
205
- "f32": wp.float32,
206
- "f64": wp.float64,
207
- "i8": wp.int8,
208
- "i16": wp.int16,
209
- "i32": wp.int32,
210
- "i64": wp.int64,
211
- "ui8": wp.uint8,
212
- "ui16": wp.uint16,
213
- "ui32": wp.uint32,
214
- "ui64": wp.uint64,
215
- }
216
- expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
217
- if expected_warp_type is not None:
218
- if hasattr(warp_type, "_wp_scalar_type_"):
219
- return warp_type._wp_scalar_type_ == expected_warp_type
220
- else:
221
- return warp_type == expected_warp_type
222
- else:
223
- raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
224
-
225
- # Abstract evaluation.
226
- def jax_warp_abstract(*args, kernel=None):
227
- wp_kernel = _registered_kernels[kernel]
228
- # All the extra arguments to the warp kernel are outputs.
229
- warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
230
- # TODO. Let's just use the first input dimension to infer the output's dimensions.
231
- dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
232
- jax_outputs = []
233
- for o in warp_outputs:
234
- shape = list(dims) + list(get_vecmat_shape(o))
235
- dtype = base_type_to_jax(o.dtype)
236
- jax_outputs.append(jax.core.ShapedArray(shape, dtype))
237
- return jax_outputs
238
-
239
- _jax_warp_p.def_abstract_eval(jax_warp_abstract)
240
-
241
- # Lowering to MLIR.
242
-
243
- # Create python-land custom call target.
244
- CCALLFUNC = ctypes.CFUNCTYPE(
245
- ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
246
- )
247
- _cc_callback = CCALLFUNC(_warp_custom_callback)
248
- ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
249
-
250
- # Put the custom call into a capsule, as required by XLA.
251
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
252
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
253
- PyCapsule_New.restype = ctypes.py_object
254
- PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
255
- capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
256
-
257
- # Register the callback in XLA.
258
- jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
259
-
260
- def default_layout(shape):
261
- return range(len(shape) - 1, -1, -1)
262
-
263
- def warp_call_lowering(ctx, *args, kernel=None):
264
- if not kernel:
265
- raise Exception("Unknown kernel id " + str(kernel))
266
- wp_kernel = _registered_kernels[kernel]
267
-
268
- # TODO This may not be necessary, but it is perhaps better not to be
269
- # mucking with kernel loading while already running the workload.
270
- module = wp_kernel.module
271
- device = wp.device_from_jax(_get_jax_device())
272
- if not module.load(device):
273
- raise Exception("Could not load kernel on device")
274
-
275
- # Infer dimensions from the first input.
276
- warp_arg0 = wp_kernel.adj.args[0]
277
- actual_shape0 = ir.RankedTensorType(args[0].type).shape
278
- dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
279
- warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
280
-
281
- # Figure out the types and shapes of the input arrays.
282
- arg_strings = []
283
- operand_layouts = []
284
- for actual, warg in zip(args, wp_kernel.adj.args):
285
- wtype = warg.type
286
- rtt = ir.RankedTensorType(actual.type)
287
-
288
- if not isinstance(wtype, wp.array):
289
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
290
-
291
- if not base_type_is_compatible(wtype.dtype, rtt.element_type):
292
- raise TypeError(f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}")
293
-
294
- # Infer array dimension (by removing the vector/matrix dimensions and
295
- # collapsing the initial dimensions).
296
- shape = infer_dimensions(warg, rtt.shape)
297
-
298
- if len(shape) != wtype.ndim:
299
- raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
300
-
301
- arg_strings.append(",".join([str(d) for d in shape]))
302
- operand_layouts.append(default_layout(rtt.shape))
303
-
304
- # Figure out the types and shapes of the output arrays.
305
- result_types = []
306
- result_layouts = []
307
- for warg in wp_kernel.adj.args[len(args) :]:
308
- wtype = warg.type
309
-
310
- if not isinstance(wtype, wp.array):
311
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
312
-
313
- # Infer dimensions from the first input.
314
- arg_strings.append(",".join([str(d) for d in warp_dims]))
315
-
316
- result_shape = list(dims) + list(get_vecmat_shape(wtype))
317
- result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
318
- result_layouts.append(default_layout(result_shape))
319
-
320
- # Build opaque descriptor for callback.
321
- shape_str = ",".join([str(d) for d in warp_dims])
322
- args_str = ";".join(arg_strings)
323
- descriptor = f"{kernel}|{shape_str}|{args_str}"
324
-
325
- out = custom_call(
326
- b"warp_call",
327
- result_types=result_types,
328
- operands=args,
329
- backend_config=descriptor.encode("utf-8"),
330
- operand_layouts=operand_layouts,
331
- result_layouts=result_layouts,
332
- ).results
333
- return out
334
-
335
- mlir.register_lowering(
336
- _jax_warp_p,
337
- warp_call_lowering,
338
- platform="gpu",
339
- )
1
+ # Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ import ctypes
9
+
10
+ import jax
11
+
12
+ import warp as wp
13
+ from warp.context import type_str
14
+ from warp.types import array_t, launch_bounds_t, strides_from_shape
15
+
16
+ _jax_warp_p = None
17
+
18
+ # Holder for the custom callback to keep it alive.
19
+ _cc_callback = None
20
+ _registered_kernels = [None]
21
+ _registered_kernel_to_id = {}
22
+
23
+
24
+ def jax_kernel(wp_kernel):
25
+ """Create a Jax primitive from a Warp kernel.
26
+
27
+ NOTE: This is an experimental feature under development.
28
+
29
+ Current limitations:
30
+ - All kernel arguments must be arrays.
31
+ - Kernel launch dimensions are inferred from the shape of the first argument.
32
+ - Input arguments are followed by output arguments in the Warp kernel definition.
33
+ - There must be at least one input argument and at least one output argument.
34
+ - Output shapes must match the launch dimensions (i.e., output shapes must match the shape of the first argument).
35
+ - All arrays must be contiguous.
36
+ - Only the CUDA backend is supported.
37
+ """
38
+
39
+ if _jax_warp_p is None:
40
+ # Create and register the primitive
41
+ _create_jax_warp_primitive()
42
+ if wp_kernel not in _registered_kernel_to_id:
43
+ id = len(_registered_kernels)
44
+ _registered_kernels.append(wp_kernel)
45
+ _registered_kernel_to_id[wp_kernel] = id
46
+ else:
47
+ id = _registered_kernel_to_id[wp_kernel]
48
+
49
+ def bind(*args):
50
+ return _jax_warp_p.bind(*args, kernel=id)
51
+
52
+ return bind
53
+
54
+
55
+ def _warp_custom_callback(stream, buffers, opaque, opaque_len):
56
+ # The descriptor is the form
57
+ # <kernel-id>|<launch-dims>|<arg-dims-list>
58
+ # Example: 42|16,32|16,32;100;16,32
59
+ kernel_id_str, dim_str, args_str = opaque.decode().split("|")
60
+
61
+ # Get the kernel from the registry.
62
+ kernel_id = int(kernel_id_str)
63
+ kernel = _registered_kernels[kernel_id]
64
+
65
+ # Parse launch dimensions.
66
+ dims = [int(d) for d in dim_str.split(",")]
67
+ bounds = launch_bounds_t(dims)
68
+
69
+ # Parse arguments.
70
+ arg_strings = args_str.split(";")
71
+ num_args = len(arg_strings)
72
+ assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
73
+
74
+ # First param is the launch bounds.
75
+ kernel_params = (ctypes.c_void_p * (1 + num_args))()
76
+ kernel_params[0] = ctypes.addressof(bounds)
77
+
78
+ # Parse array descriptors.
79
+ args = []
80
+ for i in range(num_args):
81
+ dtype = kernel.adj.args[i].type.dtype
82
+ shape = [int(d) for d in arg_strings[i].split(",")]
83
+ strides = strides_from_shape(shape, dtype)
84
+
85
+ arr = array_t(buffers[i], 0, len(shape), shape, strides)
86
+ args.append(arr) # keep a reference
87
+ arg_ptr = ctypes.addressof(arr)
88
+
89
+ kernel_params[i + 1] = arg_ptr
90
+
91
+ # Get current device.
92
+ device = wp.device_from_jax(_get_jax_device())
93
+
94
+ # Get kernel hooks.
95
+ # Note: module was loaded during jit lowering.
96
+ hooks = kernel.module.get_kernel_hooks(kernel, device)
97
+ assert hooks.forward, "Failed to find kernel entry point"
98
+
99
+ # Launch the kernel.
100
+ wp.context.runtime.core.cuda_launch_kernel(device.context, hooks.forward, bounds.size, 0, kernel_params, stream)
101
+
102
+
103
+ # TODO: is there a simpler way of getting the Jax "current" device?
104
+ def _get_jax_device():
105
+ # check if jax.default_device() context manager is active
106
+ device = jax.config.jax_default_device
107
+ # if default device is not set, use first device
108
+ if device is None:
109
+ device = jax.devices()[0]
110
+ return device
111
+
112
+
113
+ def _create_jax_warp_primitive():
114
+ from functools import reduce
115
+
116
+ import jax
117
+ from jax._src.interpreters import batching
118
+ from jax.interpreters import mlir
119
+ from jax.interpreters.mlir import ir
120
+ from jaxlib.hlo_helpers import custom_call
121
+
122
+ global _jax_warp_p
123
+ global _cc_callback
124
+
125
+ # Create and register the primitive.
126
+ # TODO add default implementation that calls the kernel via warp.
127
+ _jax_warp_p = jax.core.Primitive("jax_warp")
128
+ _jax_warp_p.multiple_results = True
129
+
130
+ # TODO Just launch the kernel directly, but make sure the argument
131
+ # shapes are massaged the same way as below so that vmap works.
132
+ def impl(*args):
133
+ raise Exception("Not implemented")
134
+
135
+ _jax_warp_p.def_impl(impl)
136
+
137
+ # Auto-batching. Make sure all the arguments are fully broadcasted
138
+ # so that Warp is not confused about dimensions.
139
+ def vectorized_multi_batcher(args, dims, **params):
140
+ # Figure out the number of outputs.
141
+ wp_kernel = _registered_kernels[params["kernel"]]
142
+ output_count = len(wp_kernel.adj.args) - len(args)
143
+ shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
144
+ size = shape[dim]
145
+ args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
146
+ # Create the batched primitive.
147
+ return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
148
+
149
+ batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
150
+
151
+ def get_vecmat_shape(warp_type):
152
+ if hasattr(warp_type.dtype, "_shape_"):
153
+ return warp_type.dtype._shape_
154
+ return []
155
+
156
+ def strip_vecmat_dimensions(warp_arg, actual_shape):
157
+ shape = get_vecmat_shape(warp_arg.type)
158
+ for i, s in enumerate(reversed(shape)):
159
+ item = actual_shape[-i - 1]
160
+ if s != item:
161
+ raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
162
+ return actual_shape[: len(actual_shape) - len(shape)]
163
+
164
+ def collapse_into_leading_dimension(warp_arg, actual_shape):
165
+ if len(actual_shape) < warp_arg.type.ndim:
166
+ raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
167
+ index_rest = len(actual_shape) - warp_arg.type.ndim + 1
168
+ leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
169
+ return [leading_size] + actual_shape[index_rest:]
170
+
171
+ # Infer array dimensions from input type.
172
+ def infer_dimensions(warp_arg, actual_shape):
173
+ actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
174
+ return collapse_into_leading_dimension(warp_arg, actual_shape)
175
+
176
+ def base_type_to_jax(warp_dtype):
177
+ if hasattr(warp_dtype, "_wp_scalar_type_"):
178
+ return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
179
+ return wp.dtype_to_jax(warp_dtype)
180
+
181
+ def base_type_to_jax_ir(warp_dtype):
182
+ warp_to_jax_dict = {
183
+ wp.float16: ir.F16Type.get(),
184
+ wp.float32: ir.F32Type.get(),
185
+ wp.float64: ir.F64Type.get(),
186
+ wp.int8: ir.IntegerType.get_signless(8),
187
+ wp.int16: ir.IntegerType.get_signless(16),
188
+ wp.int32: ir.IntegerType.get_signless(32),
189
+ wp.int64: ir.IntegerType.get_signless(64),
190
+ wp.uint8: ir.IntegerType.get_unsigned(8),
191
+ wp.uint16: ir.IntegerType.get_unsigned(16),
192
+ wp.uint32: ir.IntegerType.get_unsigned(32),
193
+ wp.uint64: ir.IntegerType.get_unsigned(64),
194
+ }
195
+ if hasattr(warp_dtype, "_wp_scalar_type_"):
196
+ warp_dtype = warp_dtype._wp_scalar_type_
197
+ jax_dtype = warp_to_jax_dict.get(warp_dtype)
198
+ if jax_dtype is None:
199
+ raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
200
+ return jax_dtype
201
+
202
+ def base_type_is_compatible(warp_type, jax_ir_type):
203
+ jax_ir_to_warp = {
204
+ "f16": wp.float16,
205
+ "f32": wp.float32,
206
+ "f64": wp.float64,
207
+ "i8": wp.int8,
208
+ "i16": wp.int16,
209
+ "i32": wp.int32,
210
+ "i64": wp.int64,
211
+ "ui8": wp.uint8,
212
+ "ui16": wp.uint16,
213
+ "ui32": wp.uint32,
214
+ "ui64": wp.uint64,
215
+ }
216
+ expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
217
+ if expected_warp_type is not None:
218
+ if hasattr(warp_type, "_wp_scalar_type_"):
219
+ return warp_type._wp_scalar_type_ == expected_warp_type
220
+ else:
221
+ return warp_type == expected_warp_type
222
+ else:
223
+ raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
224
+
225
+ # Abstract evaluation.
226
+ def jax_warp_abstract(*args, kernel=None):
227
+ wp_kernel = _registered_kernels[kernel]
228
+ # All the extra arguments to the warp kernel are outputs.
229
+ warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
230
+ # TODO. Let's just use the first input dimension to infer the output's dimensions.
231
+ dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
232
+ jax_outputs = []
233
+ for o in warp_outputs:
234
+ shape = list(dims) + list(get_vecmat_shape(o))
235
+ dtype = base_type_to_jax(o.dtype)
236
+ jax_outputs.append(jax.core.ShapedArray(shape, dtype))
237
+ return jax_outputs
238
+
239
+ _jax_warp_p.def_abstract_eval(jax_warp_abstract)
240
+
241
+ # Lowering to MLIR.
242
+
243
+ # Create python-land custom call target.
244
+ CCALLFUNC = ctypes.CFUNCTYPE(
245
+ ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
246
+ )
247
+ _cc_callback = CCALLFUNC(_warp_custom_callback)
248
+ ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
249
+
250
+ # Put the custom call into a capsule, as required by XLA.
251
+ PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
252
+ PyCapsule_New = ctypes.pythonapi.PyCapsule_New
253
+ PyCapsule_New.restype = ctypes.py_object
254
+ PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
255
+ capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
256
+
257
+ # Register the callback in XLA.
258
+ jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
259
+
260
+ def default_layout(shape):
261
+ return range(len(shape) - 1, -1, -1)
262
+
263
+ def warp_call_lowering(ctx, *args, kernel=None):
264
+ if not kernel:
265
+ raise Exception("Unknown kernel id " + str(kernel))
266
+ wp_kernel = _registered_kernels[kernel]
267
+
268
+ # TODO This may not be necessary, but it is perhaps better not to be
269
+ # mucking with kernel loading while already running the workload.
270
+ module = wp_kernel.module
271
+ device = wp.device_from_jax(_get_jax_device())
272
+ if not module.load(device):
273
+ raise Exception("Could not load kernel on device")
274
+
275
+ # Infer dimensions from the first input.
276
+ warp_arg0 = wp_kernel.adj.args[0]
277
+ actual_shape0 = ir.RankedTensorType(args[0].type).shape
278
+ dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
279
+ warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
280
+
281
+ # Figure out the types and shapes of the input arrays.
282
+ arg_strings = []
283
+ operand_layouts = []
284
+ for actual, warg in zip(args, wp_kernel.adj.args):
285
+ wtype = warg.type
286
+ rtt = ir.RankedTensorType(actual.type)
287
+
288
+ if not isinstance(wtype, wp.array):
289
+ raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
290
+
291
+ if not base_type_is_compatible(wtype.dtype, rtt.element_type):
292
+ raise TypeError(
293
+ f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}"
294
+ )
295
+
296
+ # Infer array dimension (by removing the vector/matrix dimensions and
297
+ # collapsing the initial dimensions).
298
+ shape = infer_dimensions(warg, rtt.shape)
299
+
300
+ if len(shape) != wtype.ndim:
301
+ raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
302
+
303
+ arg_strings.append(",".join([str(d) for d in shape]))
304
+ operand_layouts.append(default_layout(rtt.shape))
305
+
306
+ # Figure out the types and shapes of the output arrays.
307
+ result_types = []
308
+ result_layouts = []
309
+ for warg in wp_kernel.adj.args[len(args) :]:
310
+ wtype = warg.type
311
+
312
+ if not isinstance(wtype, wp.array):
313
+ raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
314
+
315
+ # Infer dimensions from the first input.
316
+ arg_strings.append(",".join([str(d) for d in warp_dims]))
317
+
318
+ result_shape = list(dims) + list(get_vecmat_shape(wtype))
319
+ result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
320
+ result_layouts.append(default_layout(result_shape))
321
+
322
+ # Build opaque descriptor for callback.
323
+ shape_str = ",".join([str(d) for d in warp_dims])
324
+ args_str = ";".join(arg_strings)
325
+ descriptor = f"{kernel}|{shape_str}|{args_str}"
326
+
327
+ out = custom_call(
328
+ b"warp_call",
329
+ result_types=result_types,
330
+ operands=args,
331
+ backend_config=descriptor.encode("utf-8"),
332
+ operand_layouts=operand_layouts,
333
+ result_layouts=result_layouts,
334
+ ).results
335
+ return out
336
+
337
+ mlir.register_lowering(
338
+ _jax_warp_p,
339
+ warp_call_lowering,
340
+ platform="gpu",
341
+ )