warp-lang 1.0.2__py3-none-win_amd64.whl → 1.2.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
warp/tests/test_dlpack.py CHANGED
@@ -1,529 +1,528 @@
1
- # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- import ctypes
9
- import os
10
- import unittest
11
-
12
- import numpy as np
13
-
14
- import warp as wp
15
- from warp.tests.unittest_utils import *
16
-
17
- N = 1024 * 1024
18
-
19
- wp.init()
20
-
21
-
22
- def _jax_version():
23
- try:
24
- import jax
25
- return jax.__version_info__
26
- except ImportError:
27
- return (0, 0, 0)
28
-
29
-
30
- @wp.kernel
31
- def inc(a: wp.array(dtype=float)):
32
- tid = wp.tid()
33
- a[tid] = a[tid] + 1.0
34
-
35
-
36
- def test_dlpack_warp_to_warp(test, device):
37
- a1 = wp.array(data=np.arange(N, dtype=np.float32), device=device)
38
-
39
- a2 = wp.from_dlpack(wp.to_dlpack(a1))
40
-
41
- test.assertEqual(a1.ptr, a2.ptr)
42
- test.assertEqual(a1.device, a2.device)
43
- test.assertEqual(a1.dtype, a2.dtype)
44
- test.assertEqual(a1.shape, a2.shape)
45
- test.assertEqual(a1.strides, a2.strides)
46
-
47
- assert_np_equal(a1.numpy(), a2.numpy())
48
-
49
- wp.launch(inc, dim=a2.size, inputs=[a2], device=device)
50
-
51
- assert_np_equal(a1.numpy(), a2.numpy())
52
-
53
-
54
- def test_dlpack_dtypes_and_shapes(test, device):
55
- # automatically determine scalar dtype
56
- def wrap_scalar_tensor_implicit(dtype):
57
- a1 = wp.zeros(N, dtype=dtype, device=device)
58
- a2 = wp.from_dlpack(wp.to_dlpack(a1))
59
-
60
- test.assertEqual(a1.ptr, a2.ptr)
61
- test.assertEqual(a1.device, a2.device)
62
- test.assertEqual(a1.dtype, a2.dtype)
63
- test.assertEqual(a1.shape, a2.shape)
64
- test.assertEqual(a1.strides, a2.strides)
65
-
66
- # explicitly specify scalar dtype
67
- def wrap_scalar_tensor_explicit(dtype, target_dtype):
68
- a1 = wp.zeros(N, dtype=dtype, device=device)
69
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=target_dtype)
70
-
71
- test.assertEqual(a1.ptr, a2.ptr)
72
- test.assertEqual(a1.device, a2.device)
73
- test.assertEqual(a1.dtype, dtype)
74
- test.assertEqual(a2.dtype, target_dtype)
75
- test.assertEqual(a1.shape, a2.shape)
76
- test.assertEqual(a1.strides, a2.strides)
77
-
78
- # convert vector arrays to scalar arrays
79
- def wrap_vector_to_scalar_tensor(vec_dtype):
80
- scalar_type = vec_dtype._wp_scalar_type_
81
- scalar_size = ctypes.sizeof(vec_dtype._type_)
82
-
83
- a1 = wp.zeros(N, dtype=vec_dtype, device=device)
84
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
85
-
86
- test.assertEqual(a1.ptr, a2.ptr)
87
- test.assertEqual(a1.device, a2.device)
88
- test.assertEqual(a2.ndim, a1.ndim + 1)
89
- test.assertEqual(a1.dtype, vec_dtype)
90
- test.assertEqual(a2.dtype, scalar_type)
91
- test.assertEqual(a2.shape, (*a1.shape, vec_dtype._length_))
92
- test.assertEqual(a2.strides, (*a1.strides, scalar_size))
93
-
94
- # convert scalar arrays to vector arrays
95
- def wrap_scalar_to_vector_tensor(vec_dtype):
96
- scalar_type = vec_dtype._wp_scalar_type_
97
- scalar_size = ctypes.sizeof(vec_dtype._type_)
98
-
99
- a1 = wp.zeros((N, vec_dtype._length_), dtype=scalar_type, device=device)
100
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=vec_dtype)
101
-
102
- test.assertEqual(a1.ptr, a2.ptr)
103
- test.assertEqual(a1.device, a2.device)
104
- test.assertEqual(a2.ndim, a1.ndim - 1)
105
- test.assertEqual(a1.dtype, scalar_type)
106
- test.assertEqual(a2.dtype, vec_dtype)
107
- test.assertEqual(a1.shape, (*a2.shape, vec_dtype._length_))
108
- test.assertEqual(a1.strides, (*a2.strides, scalar_size))
109
-
110
- # convert matrix arrays to scalar arrays
111
- def wrap_matrix_to_scalar_tensor(mat_dtype):
112
- scalar_type = mat_dtype._wp_scalar_type_
113
- scalar_size = ctypes.sizeof(mat_dtype._type_)
114
-
115
- a1 = wp.zeros(N, dtype=mat_dtype, device=device)
116
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
117
-
118
- test.assertEqual(a1.ptr, a2.ptr)
119
- test.assertEqual(a1.device, a2.device)
120
- test.assertEqual(a2.ndim, a1.ndim + 2)
121
- test.assertEqual(a1.dtype, mat_dtype)
122
- test.assertEqual(a2.dtype, scalar_type)
123
- test.assertEqual(a2.shape, (*a1.shape, *mat_dtype._shape_))
124
- test.assertEqual(a2.strides, (*a1.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
125
-
126
- # convert scalar arrays to matrix arrays
127
- def wrap_scalar_to_matrix_tensor(mat_dtype):
128
- scalar_type = mat_dtype._wp_scalar_type_
129
- scalar_size = ctypes.sizeof(mat_dtype._type_)
130
-
131
- a1 = wp.zeros((N, *mat_dtype._shape_), dtype=scalar_type, device=device)
132
- a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=mat_dtype)
133
-
134
- test.assertEqual(a1.ptr, a2.ptr)
135
- test.assertEqual(a1.device, a2.device)
136
- test.assertEqual(a2.ndim, a1.ndim - 2)
137
- test.assertEqual(a1.dtype, scalar_type)
138
- test.assertEqual(a2.dtype, mat_dtype)
139
- test.assertEqual(a1.shape, (*a2.shape, *mat_dtype._shape_))
140
- test.assertEqual(a1.strides, (*a2.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
141
-
142
- for t in wp.types.scalar_types:
143
- wrap_scalar_tensor_implicit(t)
144
-
145
- for t in wp.types.scalar_types:
146
- wrap_scalar_tensor_explicit(t, t)
147
-
148
- # test signed/unsigned conversions
149
- wrap_scalar_tensor_explicit(wp.int8, wp.uint8)
150
- wrap_scalar_tensor_explicit(wp.uint8, wp.int8)
151
- wrap_scalar_tensor_explicit(wp.int16, wp.uint16)
152
- wrap_scalar_tensor_explicit(wp.uint16, wp.int16)
153
- wrap_scalar_tensor_explicit(wp.int32, wp.uint32)
154
- wrap_scalar_tensor_explicit(wp.uint32, wp.int32)
155
- wrap_scalar_tensor_explicit(wp.int64, wp.uint64)
156
- wrap_scalar_tensor_explicit(wp.uint64, wp.int64)
157
-
158
- vec_types = []
159
- for t in wp.types.scalar_types:
160
- for vec_len in [2, 3, 4, 5]:
161
- vec_types.append(wp.types.vector(vec_len, t))
162
-
163
- vec_types.append(wp.quath)
164
- vec_types.append(wp.quatf)
165
- vec_types.append(wp.quatd)
166
- vec_types.append(wp.transformh)
167
- vec_types.append(wp.transformf)
168
- vec_types.append(wp.transformd)
169
- vec_types.append(wp.spatial_vectorh)
170
- vec_types.append(wp.spatial_vectorf)
171
- vec_types.append(wp.spatial_vectord)
172
-
173
- for vec_type in vec_types:
174
- wrap_vector_to_scalar_tensor(vec_type)
175
- wrap_scalar_to_vector_tensor(vec_type)
176
-
177
- mat_shapes = [(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 4), (4, 3)]
178
- mat_types = []
179
- for t in wp.types.scalar_types:
180
- for mat_shape in mat_shapes:
181
- mat_types.append(wp.types.matrix(mat_shape, t))
182
-
183
- mat_types.append(wp.spatial_matrixh)
184
- mat_types.append(wp.spatial_matrixf)
185
- mat_types.append(wp.spatial_matrixd)
186
-
187
- for mat_type in mat_types:
188
- wrap_matrix_to_scalar_tensor(mat_type)
189
- wrap_scalar_to_matrix_tensor(mat_type)
190
-
191
-
192
- def test_dlpack_warp_to_torch(test, device):
193
- import torch.utils.dlpack
194
-
195
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
196
-
197
- t = torch.utils.dlpack.from_dlpack(wp.to_dlpack(a))
198
-
199
- item_size = wp.types.type_size_in_bytes(a.dtype)
200
-
201
- test.assertEqual(a.ptr, t.data_ptr())
202
- test.assertEqual(a.device, wp.device_from_torch(t.device))
203
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
204
- test.assertEqual(a.shape, tuple(t.shape))
205
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
206
-
207
- assert_np_equal(a.numpy(), t.cpu().numpy())
208
-
209
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
210
-
211
- assert_np_equal(a.numpy(), t.cpu().numpy())
212
-
213
- t += 1
214
-
215
- assert_np_equal(a.numpy(), t.cpu().numpy())
216
-
217
-
218
- def test_dlpack_warp_to_torch_v2(test, device):
219
- # same as original test, but uses newer __dlpack__() method
220
-
221
- import torch.utils.dlpack
222
-
223
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
224
-
225
- # pass the array directly
226
- t = torch.utils.dlpack.from_dlpack(a)
227
-
228
- item_size = wp.types.type_size_in_bytes(a.dtype)
229
-
230
- test.assertEqual(a.ptr, t.data_ptr())
231
- test.assertEqual(a.device, wp.device_from_torch(t.device))
232
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
233
- test.assertEqual(a.shape, tuple(t.shape))
234
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
235
-
236
- assert_np_equal(a.numpy(), t.cpu().numpy())
237
-
238
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
239
-
240
- assert_np_equal(a.numpy(), t.cpu().numpy())
241
-
242
- t += 1
243
-
244
- assert_np_equal(a.numpy(), t.cpu().numpy())
245
-
246
-
247
- def test_dlpack_torch_to_warp(test, device):
248
- import torch
249
- import torch.utils.dlpack
250
-
251
- t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
252
-
253
- a = wp.from_dlpack(torch.utils.dlpack.to_dlpack(t))
254
-
255
- item_size = wp.types.type_size_in_bytes(a.dtype)
256
-
257
- test.assertEqual(a.ptr, t.data_ptr())
258
- test.assertEqual(a.device, wp.device_from_torch(t.device))
259
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
260
- test.assertEqual(a.shape, tuple(t.shape))
261
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
262
-
263
- assert_np_equal(a.numpy(), t.cpu().numpy())
264
-
265
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
266
-
267
- assert_np_equal(a.numpy(), t.cpu().numpy())
268
-
269
- t += 1
270
-
271
- assert_np_equal(a.numpy(), t.cpu().numpy())
272
-
273
-
274
- def test_dlpack_torch_to_warp_v2(test, device):
275
- # same as original test, but uses newer __dlpack__() method
276
-
277
- import torch
278
-
279
- t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
280
-
281
- # pass tensor directly
282
- a = wp.from_dlpack(t)
283
-
284
- item_size = wp.types.type_size_in_bytes(a.dtype)
285
-
286
- test.assertEqual(a.ptr, t.data_ptr())
287
- test.assertEqual(a.device, wp.device_from_torch(t.device))
288
- test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
289
- test.assertEqual(a.shape, tuple(t.shape))
290
- test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
291
-
292
- assert_np_equal(a.numpy(), t.cpu().numpy())
293
-
294
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
295
-
296
- assert_np_equal(a.numpy(), t.cpu().numpy())
297
-
298
- t += 1
299
-
300
- assert_np_equal(a.numpy(), t.cpu().numpy())
301
-
302
-
303
- def test_dlpack_warp_to_jax(test, device):
304
- import jax
305
- import jax.dlpack
306
-
307
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
308
-
309
- # use generic dlpack conversion
310
- j1 = jax.dlpack.from_dlpack(wp.to_dlpack(a))
311
-
312
- # use jax wrapper
313
- j2 = wp.to_jax(a)
314
-
315
- test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
316
- test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
317
- test.assertEqual(a.device, wp.device_from_jax(j1.device()))
318
- test.assertEqual(a.device, wp.device_from_jax(j2.device()))
319
- test.assertEqual(a.shape, j1.shape)
320
- test.assertEqual(a.shape, j2.shape)
321
-
322
- assert_np_equal(a.numpy(), np.asarray(j1))
323
- assert_np_equal(a.numpy(), np.asarray(j2))
324
-
325
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
326
- wp.synchronize_device(device)
327
-
328
- # HACK? Run a no-op operation so that Jax flags the arrays as dirty
329
- # and gets the latest values, which were modified by Warp.
330
- j1 += 0
331
- j2 += 0
332
-
333
- assert_np_equal(a.numpy(), np.asarray(j1))
334
- assert_np_equal(a.numpy(), np.asarray(j2))
335
-
336
-
337
- @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
338
- def test_dlpack_warp_to_jax_v2(test, device):
339
- # same as original test, but uses newer __dlpack__() method
340
-
341
- import jax
342
- import jax.dlpack
343
-
344
- a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
345
-
346
- # pass warp array directly
347
- j1 = jax.dlpack.from_dlpack(a)
348
-
349
- # use jax wrapper
350
- j2 = wp.to_jax(a)
351
-
352
- test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
353
- test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
354
- test.assertEqual(a.device, wp.device_from_jax(j1.device()))
355
- test.assertEqual(a.device, wp.device_from_jax(j2.device()))
356
- test.assertEqual(a.shape, j1.shape)
357
- test.assertEqual(a.shape, j2.shape)
358
-
359
- assert_np_equal(a.numpy(), np.asarray(j1))
360
- assert_np_equal(a.numpy(), np.asarray(j2))
361
-
362
- wp.launch(inc, dim=a.size, inputs=[a], device=device)
363
- wp.synchronize_device(device)
364
-
365
- # HACK? Run a no-op operation so that Jax flags the arrays as dirty
366
- # and gets the latest values, which were modified by Warp.
367
- j1 += 0
368
- j2 += 0
369
-
370
- assert_np_equal(a.numpy(), np.asarray(j1))
371
- assert_np_equal(a.numpy(), np.asarray(j2))
372
-
373
-
374
- def test_dlpack_jax_to_warp(test, device):
375
- import jax
376
- import jax.dlpack
377
-
378
- with jax.default_device(wp.device_to_jax(device)):
379
- j = jax.numpy.arange(N, dtype=jax.numpy.float32)
380
-
381
- # use generic dlpack conversion
382
- a1 = wp.from_dlpack(jax.dlpack.to_dlpack(j))
383
-
384
- # use jax wrapper
385
- a2 = wp.from_jax(j)
386
-
387
- test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
388
- test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
389
- test.assertEqual(a1.device, wp.device_from_jax(j.device()))
390
- test.assertEqual(a2.device, wp.device_from_jax(j.device()))
391
- test.assertEqual(a1.shape, j.shape)
392
- test.assertEqual(a2.shape, j.shape)
393
-
394
- assert_np_equal(a1.numpy(), np.asarray(j))
395
- assert_np_equal(a2.numpy(), np.asarray(j))
396
-
397
- wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
398
- wp.synchronize_device(device)
399
-
400
- # HACK? Run a no-op operation so that Jax flags the array as dirty
401
- # and gets the latest values, which were modified by Warp.
402
- j += 0
403
-
404
- assert_np_equal(a1.numpy(), np.asarray(j))
405
- assert_np_equal(a2.numpy(), np.asarray(j))
406
-
407
-
408
- @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
409
- def test_dlpack_jax_to_warp_v2(test, device):
410
- # same as original test, but uses newer __dlpack__() method
411
-
412
- import jax
413
-
414
- with jax.default_device(wp.device_to_jax(device)):
415
- j = jax.numpy.arange(N, dtype=jax.numpy.float32)
416
-
417
- # pass jax array directly
418
- a1 = wp.from_dlpack(j)
419
-
420
- # use jax wrapper
421
- a2 = wp.from_jax(j)
422
-
423
- test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
424
- test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
425
- test.assertEqual(a1.device, wp.device_from_jax(j.device()))
426
- test.assertEqual(a2.device, wp.device_from_jax(j.device()))
427
- test.assertEqual(a1.shape, j.shape)
428
- test.assertEqual(a2.shape, j.shape)
429
-
430
- assert_np_equal(a1.numpy(), np.asarray(j))
431
- assert_np_equal(a2.numpy(), np.asarray(j))
432
-
433
- wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
434
- wp.synchronize_device(device)
435
-
436
- # HACK? Run a no-op operation so that Jax flags the array as dirty
437
- # and gets the latest values, which were modified by Warp.
438
- j += 0
439
-
440
- assert_np_equal(a1.numpy(), np.asarray(j))
441
- assert_np_equal(a2.numpy(), np.asarray(j))
442
-
443
-
444
- class TestDLPack(unittest.TestCase):
445
- pass
446
-
447
-
448
- devices = get_test_devices()
449
-
450
- add_function_test(TestDLPack, "test_dlpack_warp_to_warp", test_dlpack_warp_to_warp, devices=devices)
451
- add_function_test(TestDLPack, "test_dlpack_dtypes_and_shapes", test_dlpack_dtypes_and_shapes, devices=devices)
452
-
453
- # torch interop via dlpack
454
- try:
455
- import torch
456
- import torch.utils.dlpack
457
-
458
- # check which Warp devices work with Torch
459
- # CUDA devices may fail if Torch was not compiled with CUDA support
460
- test_devices = get_test_devices()
461
- torch_compatible_devices = []
462
- for d in test_devices:
463
- try:
464
- t = torch.arange(10, device=wp.device_to_torch(d))
465
- t += 1
466
- torch_compatible_devices.append(d)
467
- except Exception as e:
468
- print(f"Skipping Torch DLPack tests on device '{d}' due to exception: {e}")
469
-
470
- if torch_compatible_devices:
471
- add_function_test(
472
- TestDLPack, "test_dlpack_warp_to_torch", test_dlpack_warp_to_torch, devices=torch_compatible_devices
473
- )
474
- add_function_test(
475
- TestDLPack, "test_dlpack_warp_to_torch_v2", test_dlpack_warp_to_torch_v2, devices=torch_compatible_devices
476
- )
477
- add_function_test(
478
- TestDLPack, "test_dlpack_torch_to_warp", test_dlpack_torch_to_warp, devices=torch_compatible_devices
479
- )
480
- add_function_test(
481
- TestDLPack, "test_dlpack_torch_to_warp_v2", test_dlpack_torch_to_warp_v2, devices=torch_compatible_devices
482
- )
483
-
484
- except Exception as e:
485
- print(f"Skipping Torch DLPack tests due to exception: {e}")
486
-
487
- # jax interop via dlpack
488
- try:
489
- # prevent Jax from gobbling up GPU memory
490
- os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
491
- os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
492
-
493
- import jax
494
- import jax.dlpack
495
-
496
- # check which Warp devices work with Jax
497
- # CUDA devices may fail if Jax cannot find a CUDA Toolkit
498
- test_devices = get_test_devices()
499
- jax_compatible_devices = []
500
- for d in test_devices:
501
- try:
502
- with jax.default_device(wp.device_to_jax(d)):
503
- j = jax.numpy.arange(10, dtype=jax.numpy.float32)
504
- j += 1
505
- jax_compatible_devices.append(d)
506
- except Exception as e:
507
- print(f"Skipping Jax DLPack tests on device '{d}' due to exception: {e}")
508
-
509
- if jax_compatible_devices:
510
- add_function_test(
511
- TestDLPack, "test_dlpack_warp_to_jax", test_dlpack_warp_to_jax, devices=jax_compatible_devices
512
- )
513
- add_function_test(
514
- TestDLPack, "test_dlpack_warp_to_jax_v2", test_dlpack_warp_to_jax_v2, devices=jax_compatible_devices
515
- )
516
- add_function_test(
517
- TestDLPack, "test_dlpack_jax_to_warp", test_dlpack_jax_to_warp, devices=jax_compatible_devices
518
- )
519
- add_function_test(
520
- TestDLPack, "test_dlpack_jax_to_warp_v2", test_dlpack_jax_to_warp_v2, devices=jax_compatible_devices
521
- )
522
-
523
- except Exception as e:
524
- print(f"Skipping Jax DLPack tests due to exception: {e}")
525
-
526
-
527
- if __name__ == "__main__":
528
- wp.build.clear_kernel_cache()
529
- unittest.main(verbosity=2)
1
+ # Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ import ctypes
9
+ import os
10
+ import unittest
11
+
12
+ import numpy as np
13
+
14
+ import warp as wp
15
+ from warp.tests.unittest_utils import *
16
+
17
+ N = 1024 * 1024
18
+
19
+
20
+ def _jax_version():
21
+ try:
22
+ import jax
23
+
24
+ return jax.__version_info__
25
+ except (ImportError, AttributeError):
26
+ return (0, 0, 0)
27
+
28
+
29
+ @wp.kernel
30
+ def inc(a: wp.array(dtype=float)):
31
+ tid = wp.tid()
32
+ a[tid] = a[tid] + 1.0
33
+
34
+
35
+ def test_dlpack_warp_to_warp(test, device):
36
+ a1 = wp.array(data=np.arange(N, dtype=np.float32), device=device)
37
+
38
+ a2 = wp.from_dlpack(wp.to_dlpack(a1))
39
+
40
+ test.assertEqual(a1.ptr, a2.ptr)
41
+ test.assertEqual(a1.device, a2.device)
42
+ test.assertEqual(a1.dtype, a2.dtype)
43
+ test.assertEqual(a1.shape, a2.shape)
44
+ test.assertEqual(a1.strides, a2.strides)
45
+
46
+ assert_np_equal(a1.numpy(), a2.numpy())
47
+
48
+ wp.launch(inc, dim=a2.size, inputs=[a2], device=device)
49
+
50
+ assert_np_equal(a1.numpy(), a2.numpy())
51
+
52
+
53
+ def test_dlpack_dtypes_and_shapes(test, device):
54
+ # automatically determine scalar dtype
55
+ def wrap_scalar_tensor_implicit(dtype):
56
+ a1 = wp.zeros(N, dtype=dtype, device=device)
57
+ a2 = wp.from_dlpack(wp.to_dlpack(a1))
58
+
59
+ test.assertEqual(a1.ptr, a2.ptr)
60
+ test.assertEqual(a1.device, a2.device)
61
+ test.assertEqual(a1.dtype, a2.dtype)
62
+ test.assertEqual(a1.shape, a2.shape)
63
+ test.assertEqual(a1.strides, a2.strides)
64
+
65
+ # explicitly specify scalar dtype
66
+ def wrap_scalar_tensor_explicit(dtype, target_dtype):
67
+ a1 = wp.zeros(N, dtype=dtype, device=device)
68
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=target_dtype)
69
+
70
+ test.assertEqual(a1.ptr, a2.ptr)
71
+ test.assertEqual(a1.device, a2.device)
72
+ test.assertEqual(a1.dtype, dtype)
73
+ test.assertEqual(a2.dtype, target_dtype)
74
+ test.assertEqual(a1.shape, a2.shape)
75
+ test.assertEqual(a1.strides, a2.strides)
76
+
77
+ # convert vector arrays to scalar arrays
78
+ def wrap_vector_to_scalar_tensor(vec_dtype):
79
+ scalar_type = vec_dtype._wp_scalar_type_
80
+ scalar_size = ctypes.sizeof(vec_dtype._type_)
81
+
82
+ a1 = wp.zeros(N, dtype=vec_dtype, device=device)
83
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
84
+
85
+ test.assertEqual(a1.ptr, a2.ptr)
86
+ test.assertEqual(a1.device, a2.device)
87
+ test.assertEqual(a2.ndim, a1.ndim + 1)
88
+ test.assertEqual(a1.dtype, vec_dtype)
89
+ test.assertEqual(a2.dtype, scalar_type)
90
+ test.assertEqual(a2.shape, (*a1.shape, vec_dtype._length_))
91
+ test.assertEqual(a2.strides, (*a1.strides, scalar_size))
92
+
93
+ # convert scalar arrays to vector arrays
94
+ def wrap_scalar_to_vector_tensor(vec_dtype):
95
+ scalar_type = vec_dtype._wp_scalar_type_
96
+ scalar_size = ctypes.sizeof(vec_dtype._type_)
97
+
98
+ a1 = wp.zeros((N, vec_dtype._length_), dtype=scalar_type, device=device)
99
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=vec_dtype)
100
+
101
+ test.assertEqual(a1.ptr, a2.ptr)
102
+ test.assertEqual(a1.device, a2.device)
103
+ test.assertEqual(a2.ndim, a1.ndim - 1)
104
+ test.assertEqual(a1.dtype, scalar_type)
105
+ test.assertEqual(a2.dtype, vec_dtype)
106
+ test.assertEqual(a1.shape, (*a2.shape, vec_dtype._length_))
107
+ test.assertEqual(a1.strides, (*a2.strides, scalar_size))
108
+
109
+ # convert matrix arrays to scalar arrays
110
+ def wrap_matrix_to_scalar_tensor(mat_dtype):
111
+ scalar_type = mat_dtype._wp_scalar_type_
112
+ scalar_size = ctypes.sizeof(mat_dtype._type_)
113
+
114
+ a1 = wp.zeros(N, dtype=mat_dtype, device=device)
115
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=scalar_type)
116
+
117
+ test.assertEqual(a1.ptr, a2.ptr)
118
+ test.assertEqual(a1.device, a2.device)
119
+ test.assertEqual(a2.ndim, a1.ndim + 2)
120
+ test.assertEqual(a1.dtype, mat_dtype)
121
+ test.assertEqual(a2.dtype, scalar_type)
122
+ test.assertEqual(a2.shape, (*a1.shape, *mat_dtype._shape_))
123
+ test.assertEqual(a2.strides, (*a1.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
124
+
125
+ # convert scalar arrays to matrix arrays
126
+ def wrap_scalar_to_matrix_tensor(mat_dtype):
127
+ scalar_type = mat_dtype._wp_scalar_type_
128
+ scalar_size = ctypes.sizeof(mat_dtype._type_)
129
+
130
+ a1 = wp.zeros((N, *mat_dtype._shape_), dtype=scalar_type, device=device)
131
+ a2 = wp.from_dlpack(wp.to_dlpack(a1), dtype=mat_dtype)
132
+
133
+ test.assertEqual(a1.ptr, a2.ptr)
134
+ test.assertEqual(a1.device, a2.device)
135
+ test.assertEqual(a2.ndim, a1.ndim - 2)
136
+ test.assertEqual(a1.dtype, scalar_type)
137
+ test.assertEqual(a2.dtype, mat_dtype)
138
+ test.assertEqual(a1.shape, (*a2.shape, *mat_dtype._shape_))
139
+ test.assertEqual(a1.strides, (*a2.strides, scalar_size * mat_dtype._shape_[1], scalar_size))
140
+
141
+ for t in wp.types.scalar_types:
142
+ wrap_scalar_tensor_implicit(t)
143
+
144
+ for t in wp.types.scalar_types:
145
+ wrap_scalar_tensor_explicit(t, t)
146
+
147
+ # test signed/unsigned conversions
148
+ wrap_scalar_tensor_explicit(wp.int8, wp.uint8)
149
+ wrap_scalar_tensor_explicit(wp.uint8, wp.int8)
150
+ wrap_scalar_tensor_explicit(wp.int16, wp.uint16)
151
+ wrap_scalar_tensor_explicit(wp.uint16, wp.int16)
152
+ wrap_scalar_tensor_explicit(wp.int32, wp.uint32)
153
+ wrap_scalar_tensor_explicit(wp.uint32, wp.int32)
154
+ wrap_scalar_tensor_explicit(wp.int64, wp.uint64)
155
+ wrap_scalar_tensor_explicit(wp.uint64, wp.int64)
156
+
157
+ vec_types = []
158
+ for t in wp.types.scalar_types:
159
+ for vec_len in [2, 3, 4, 5]:
160
+ vec_types.append(wp.types.vector(vec_len, t))
161
+
162
+ vec_types.append(wp.quath)
163
+ vec_types.append(wp.quatf)
164
+ vec_types.append(wp.quatd)
165
+ vec_types.append(wp.transformh)
166
+ vec_types.append(wp.transformf)
167
+ vec_types.append(wp.transformd)
168
+ vec_types.append(wp.spatial_vectorh)
169
+ vec_types.append(wp.spatial_vectorf)
170
+ vec_types.append(wp.spatial_vectord)
171
+
172
+ for vec_type in vec_types:
173
+ wrap_vector_to_scalar_tensor(vec_type)
174
+ wrap_scalar_to_vector_tensor(vec_type)
175
+
176
+ mat_shapes = [(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 4), (4, 3)]
177
+ mat_types = []
178
+ for t in wp.types.scalar_types:
179
+ for mat_shape in mat_shapes:
180
+ mat_types.append(wp.types.matrix(mat_shape, t))
181
+
182
+ mat_types.append(wp.spatial_matrixh)
183
+ mat_types.append(wp.spatial_matrixf)
184
+ mat_types.append(wp.spatial_matrixd)
185
+
186
+ for mat_type in mat_types:
187
+ wrap_matrix_to_scalar_tensor(mat_type)
188
+ wrap_scalar_to_matrix_tensor(mat_type)
189
+
190
+
191
+ def test_dlpack_warp_to_torch(test, device):
192
+ import torch.utils.dlpack
193
+
194
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
195
+
196
+ t = torch.utils.dlpack.from_dlpack(wp.to_dlpack(a))
197
+
198
+ item_size = wp.types.type_size_in_bytes(a.dtype)
199
+
200
+ test.assertEqual(a.ptr, t.data_ptr())
201
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
202
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
203
+ test.assertEqual(a.shape, tuple(t.shape))
204
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
205
+
206
+ assert_np_equal(a.numpy(), t.cpu().numpy())
207
+
208
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
209
+
210
+ assert_np_equal(a.numpy(), t.cpu().numpy())
211
+
212
+ t += 1
213
+
214
+ assert_np_equal(a.numpy(), t.cpu().numpy())
215
+
216
+
217
+ def test_dlpack_warp_to_torch_v2(test, device):
218
+ # same as original test, but uses newer __dlpack__() method
219
+
220
+ import torch.utils.dlpack
221
+
222
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
223
+
224
+ # pass the array directly
225
+ t = torch.utils.dlpack.from_dlpack(a)
226
+
227
+ item_size = wp.types.type_size_in_bytes(a.dtype)
228
+
229
+ test.assertEqual(a.ptr, t.data_ptr())
230
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
231
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
232
+ test.assertEqual(a.shape, tuple(t.shape))
233
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
234
+
235
+ assert_np_equal(a.numpy(), t.cpu().numpy())
236
+
237
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
238
+
239
+ assert_np_equal(a.numpy(), t.cpu().numpy())
240
+
241
+ t += 1
242
+
243
+ assert_np_equal(a.numpy(), t.cpu().numpy())
244
+
245
+
246
+ def test_dlpack_torch_to_warp(test, device):
247
+ import torch
248
+ import torch.utils.dlpack
249
+
250
+ t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
251
+
252
+ a = wp.from_dlpack(torch.utils.dlpack.to_dlpack(t))
253
+
254
+ item_size = wp.types.type_size_in_bytes(a.dtype)
255
+
256
+ test.assertEqual(a.ptr, t.data_ptr())
257
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
258
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
259
+ test.assertEqual(a.shape, tuple(t.shape))
260
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
261
+
262
+ assert_np_equal(a.numpy(), t.cpu().numpy())
263
+
264
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
265
+
266
+ assert_np_equal(a.numpy(), t.cpu().numpy())
267
+
268
+ t += 1
269
+
270
+ assert_np_equal(a.numpy(), t.cpu().numpy())
271
+
272
+
273
+ def test_dlpack_torch_to_warp_v2(test, device):
274
+ # same as original test, but uses newer __dlpack__() method
275
+
276
+ import torch
277
+
278
+ t = torch.arange(N, dtype=torch.float32, device=wp.device_to_torch(device))
279
+
280
+ # pass tensor directly
281
+ a = wp.from_dlpack(t)
282
+
283
+ item_size = wp.types.type_size_in_bytes(a.dtype)
284
+
285
+ test.assertEqual(a.ptr, t.data_ptr())
286
+ test.assertEqual(a.device, wp.device_from_torch(t.device))
287
+ test.assertEqual(a.dtype, wp.dtype_from_torch(t.dtype))
288
+ test.assertEqual(a.shape, tuple(t.shape))
289
+ test.assertEqual(a.strides, tuple(s * item_size for s in t.stride()))
290
+
291
+ assert_np_equal(a.numpy(), t.cpu().numpy())
292
+
293
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
294
+
295
+ assert_np_equal(a.numpy(), t.cpu().numpy())
296
+
297
+ t += 1
298
+
299
+ assert_np_equal(a.numpy(), t.cpu().numpy())
300
+
301
+
302
+ def test_dlpack_warp_to_jax(test, device):
303
+ import jax
304
+ import jax.dlpack
305
+
306
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
307
+
308
+ # use generic dlpack conversion
309
+ j1 = jax.dlpack.from_dlpack(wp.to_dlpack(a))
310
+
311
+ # use jax wrapper
312
+ j2 = wp.to_jax(a)
313
+
314
+ test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
315
+ test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
316
+ test.assertEqual(a.device, wp.device_from_jax(list(j1.devices())[0]))
317
+ test.assertEqual(a.device, wp.device_from_jax(list(j2.devices())[0]))
318
+ test.assertEqual(a.shape, j1.shape)
319
+ test.assertEqual(a.shape, j2.shape)
320
+
321
+ assert_np_equal(a.numpy(), np.asarray(j1))
322
+ assert_np_equal(a.numpy(), np.asarray(j2))
323
+
324
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
325
+ wp.synchronize_device(device)
326
+
327
+ # HACK? Run a no-op operation so that Jax flags the arrays as dirty
328
+ # and gets the latest values, which were modified by Warp.
329
+ j1 += 0
330
+ j2 += 0
331
+
332
+ assert_np_equal(a.numpy(), np.asarray(j1))
333
+ assert_np_equal(a.numpy(), np.asarray(j2))
334
+
335
+
336
+ @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
337
+ def test_dlpack_warp_to_jax_v2(test, device):
338
+ # same as original test, but uses newer __dlpack__() method
339
+
340
+ import jax
341
+ import jax.dlpack
342
+
343
+ a = wp.array(data=np.arange(N, dtype=np.float32), device=device)
344
+
345
+ # pass warp array directly
346
+ j1 = jax.dlpack.from_dlpack(a)
347
+
348
+ # use jax wrapper
349
+ j2 = wp.to_jax(a)
350
+
351
+ test.assertEqual(a.ptr, j1.unsafe_buffer_pointer())
352
+ test.assertEqual(a.ptr, j2.unsafe_buffer_pointer())
353
+ test.assertEqual(a.device, wp.device_from_jax(list(j1.devices())[0]))
354
+ test.assertEqual(a.device, wp.device_from_jax(list(j2.devices())[0]))
355
+ test.assertEqual(a.shape, j1.shape)
356
+ test.assertEqual(a.shape, j2.shape)
357
+
358
+ assert_np_equal(a.numpy(), np.asarray(j1))
359
+ assert_np_equal(a.numpy(), np.asarray(j2))
360
+
361
+ wp.launch(inc, dim=a.size, inputs=[a], device=device)
362
+ wp.synchronize_device(device)
363
+
364
+ # HACK? Run a no-op operation so that Jax flags the arrays as dirty
365
+ # and gets the latest values, which were modified by Warp.
366
+ j1 += 0
367
+ j2 += 0
368
+
369
+ assert_np_equal(a.numpy(), np.asarray(j1))
370
+ assert_np_equal(a.numpy(), np.asarray(j2))
371
+
372
+
373
+ def test_dlpack_jax_to_warp(test, device):
374
+ import jax
375
+ import jax.dlpack
376
+
377
+ with jax.default_device(wp.device_to_jax(device)):
378
+ j = jax.numpy.arange(N, dtype=jax.numpy.float32)
379
+
380
+ # use generic dlpack conversion
381
+ a1 = wp.from_dlpack(jax.dlpack.to_dlpack(j))
382
+
383
+ # use jax wrapper
384
+ a2 = wp.from_jax(j)
385
+
386
+ test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
387
+ test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
388
+ test.assertEqual(a1.device, wp.device_from_jax(list(j.devices())[0]))
389
+ test.assertEqual(a2.device, wp.device_from_jax(list(j.devices())[0]))
390
+ test.assertEqual(a1.shape, j.shape)
391
+ test.assertEqual(a2.shape, j.shape)
392
+
393
+ assert_np_equal(a1.numpy(), np.asarray(j))
394
+ assert_np_equal(a2.numpy(), np.asarray(j))
395
+
396
+ wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
397
+ wp.synchronize_device(device)
398
+
399
+ # HACK? Run a no-op operation so that Jax flags the array as dirty
400
+ # and gets the latest values, which were modified by Warp.
401
+ j += 0
402
+
403
+ assert_np_equal(a1.numpy(), np.asarray(j))
404
+ assert_np_equal(a2.numpy(), np.asarray(j))
405
+
406
+
407
+ @unittest.skipUnless(_jax_version() >= (0, 4, 15), "Jax version too old")
408
+ def test_dlpack_jax_to_warp_v2(test, device):
409
+ # same as original test, but uses newer __dlpack__() method
410
+
411
+ import jax
412
+
413
+ with jax.default_device(wp.device_to_jax(device)):
414
+ j = jax.numpy.arange(N, dtype=jax.numpy.float32)
415
+
416
+ # pass jax array directly
417
+ a1 = wp.from_dlpack(j)
418
+
419
+ # use jax wrapper
420
+ a2 = wp.from_jax(j)
421
+
422
+ test.assertEqual(a1.ptr, j.unsafe_buffer_pointer())
423
+ test.assertEqual(a2.ptr, j.unsafe_buffer_pointer())
424
+ test.assertEqual(a1.device, wp.device_from_jax(list(j.devices())[0]))
425
+ test.assertEqual(a2.device, wp.device_from_jax(list(j.devices())[0]))
426
+ test.assertEqual(a1.shape, j.shape)
427
+ test.assertEqual(a2.shape, j.shape)
428
+
429
+ assert_np_equal(a1.numpy(), np.asarray(j))
430
+ assert_np_equal(a2.numpy(), np.asarray(j))
431
+
432
+ wp.launch(inc, dim=a1.size, inputs=[a1], device=device)
433
+ wp.synchronize_device(device)
434
+
435
+ # HACK? Run a no-op operation so that Jax flags the array as dirty
436
+ # and gets the latest values, which were modified by Warp.
437
+ j += 0
438
+
439
+ assert_np_equal(a1.numpy(), np.asarray(j))
440
+ assert_np_equal(a2.numpy(), np.asarray(j))
441
+
442
+
443
+ class TestDLPack(unittest.TestCase):
444
+ pass
445
+
446
+
447
+ devices = get_test_devices()
448
+
449
+ add_function_test(TestDLPack, "test_dlpack_warp_to_warp", test_dlpack_warp_to_warp, devices=devices)
450
+ add_function_test(TestDLPack, "test_dlpack_dtypes_and_shapes", test_dlpack_dtypes_and_shapes, devices=devices)
451
+
452
+ # torch interop via dlpack
453
+ try:
454
+ import torch
455
+ import torch.utils.dlpack
456
+
457
+ # check which Warp devices work with Torch
458
+ # CUDA devices may fail if Torch was not compiled with CUDA support
459
+ test_devices = get_test_devices()
460
+ torch_compatible_devices = []
461
+ for d in test_devices:
462
+ try:
463
+ t = torch.arange(10, device=wp.device_to_torch(d))
464
+ t += 1
465
+ torch_compatible_devices.append(d)
466
+ except Exception as e:
467
+ print(f"Skipping Torch DLPack tests on device '{d}' due to exception: {e}")
468
+
469
+ if torch_compatible_devices:
470
+ add_function_test(
471
+ TestDLPack, "test_dlpack_warp_to_torch", test_dlpack_warp_to_torch, devices=torch_compatible_devices
472
+ )
473
+ add_function_test(
474
+ TestDLPack, "test_dlpack_warp_to_torch_v2", test_dlpack_warp_to_torch_v2, devices=torch_compatible_devices
475
+ )
476
+ add_function_test(
477
+ TestDLPack, "test_dlpack_torch_to_warp", test_dlpack_torch_to_warp, devices=torch_compatible_devices
478
+ )
479
+ add_function_test(
480
+ TestDLPack, "test_dlpack_torch_to_warp_v2", test_dlpack_torch_to_warp_v2, devices=torch_compatible_devices
481
+ )
482
+
483
+ except Exception as e:
484
+ print(f"Skipping Torch DLPack tests due to exception: {e}")
485
+
486
+ # jax interop via dlpack
487
+ try:
488
+ # prevent Jax from gobbling up GPU memory
489
+ os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
490
+ os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
491
+
492
+ import jax
493
+ import jax.dlpack
494
+
495
+ # check which Warp devices work with Jax
496
+ # CUDA devices may fail if Jax cannot find a CUDA Toolkit
497
+ test_devices = get_test_devices()
498
+ jax_compatible_devices = []
499
+ for d in test_devices:
500
+ try:
501
+ with jax.default_device(wp.device_to_jax(d)):
502
+ j = jax.numpy.arange(10, dtype=jax.numpy.float32)
503
+ j += 1
504
+ jax_compatible_devices.append(d)
505
+ except Exception as e:
506
+ print(f"Skipping Jax DLPack tests on device '{d}' due to exception: {e}")
507
+
508
+ if jax_compatible_devices:
509
+ add_function_test(
510
+ TestDLPack, "test_dlpack_warp_to_jax", test_dlpack_warp_to_jax, devices=jax_compatible_devices
511
+ )
512
+ add_function_test(
513
+ TestDLPack, "test_dlpack_warp_to_jax_v2", test_dlpack_warp_to_jax_v2, devices=jax_compatible_devices
514
+ )
515
+ add_function_test(
516
+ TestDLPack, "test_dlpack_jax_to_warp", test_dlpack_jax_to_warp, devices=jax_compatible_devices
517
+ )
518
+ add_function_test(
519
+ TestDLPack, "test_dlpack_jax_to_warp_v2", test_dlpack_jax_to_warp_v2, devices=jax_compatible_devices
520
+ )
521
+
522
+ except Exception as e:
523
+ print(f"Skipping Jax DLPack tests due to exception: {e}")
524
+
525
+
526
+ if __name__ == "__main__":
527
+ wp.build.clear_kernel_cache()
528
+ unittest.main(verbosity=2)