vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +983 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2863 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +18 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +391 -0
- vllm/attention/backends/registry.py +195 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +1052 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +121 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +414 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +105 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +178 -0
- vllm/attention/selector.py +231 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +109 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +38 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/serve.py +416 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +759 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +178 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +571 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +317 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +135 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +238 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +207 -0
- vllm/config/compilation.py +975 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +112 -0
- vllm/config/model.py +2162 -0
- vllm/config/multimodal.py +248 -0
- vllm/config/observability.py +123 -0
- vllm/config/parallel.py +655 -0
- vllm/config/pooler.py +122 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +654 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +92 -0
- vllm/config/utils.py +178 -0
- vllm/config/vllm.py +1166 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +660 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +107 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +837 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +431 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1759 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +543 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2144 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +170 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1690 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1768 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2096 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +3299 -0
- vllm/entrypoints/openai/run_batch.py +547 -0
- vllm/entrypoints/openai/serving_chat.py +1772 -0
- vllm/entrypoints/openai/serving_classification.py +235 -0
- vllm/entrypoints/openai/serving_completion.py +715 -0
- vllm/entrypoints/openai/serving_embedding.py +695 -0
- vllm/entrypoints/openai/serving_engine.py +1433 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_pooling.py +346 -0
- vllm/entrypoints/openai/serving_responses.py +2021 -0
- vllm/entrypoints/openai/serving_score.py +503 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +269 -0
- vllm/entrypoints/openai/serving_transcription.py +148 -0
- vllm/entrypoints/openai/speech_to_text.py +405 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +77 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +72 -0
- vllm/entrypoints/score_utils.py +242 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +209 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1659 -0
- vllm/forward_context.py +356 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +727 -0
- vllm/logger.py +267 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +77 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +208 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +41 -0
- vllm/lora/layers/base.py +67 -0
- vllm/lora/layers/base_linear.py +164 -0
- vllm/lora/layers/column_parallel_linear.py +578 -0
- vllm/lora/layers/fused_moe.py +472 -0
- vllm/lora/layers/logits_processor.py +252 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +181 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +166 -0
- vllm/lora/lora_weights.py +198 -0
- vllm/lora/models.py +890 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +492 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +411 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +359 -0
- vllm/lora/punica_wrapper/punica_xpu.py +279 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +293 -0
- vllm/lora/worker_manager.py +279 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +569 -0
- vllm/model_executor/layers/attention_layer_base.py +35 -0
- vllm/model_executor/layers/batch_invariant.py +854 -0
- vllm/model_executor/layers/conv.py +236 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +106 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +916 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
- vllm/model_executor/layers/fused_moe/layer.py +1944 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +448 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +729 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +71 -0
- vllm/model_executor/layers/mamba/linear_attn.py +402 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +264 -0
- vllm/model_executor/layers/mla.py +168 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +174 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +240 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1333 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +643 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1788 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
- vllm/model_executor/layers/quantization/petit.py +320 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +528 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +652 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
- vllm/model_executor/layers/rotary_embedding/base.py +235 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +148 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +327 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +176 -0
- vllm/model_executor/model_loader/online_quantization.py +224 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +288 -0
- vllm/model_executor/model_loader/weight_utils.py +1084 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +711 -0
- vllm/model_executor/models/aimv2.py +247 -0
- vllm/model_executor/models/apertus.py +587 -0
- vllm/model_executor/models/arcee.py +439 -0
- vllm/model_executor/models/arctic.py +635 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +496 -0
- vllm/model_executor/models/bailing_moe.py +646 -0
- vllm/model_executor/models/bamba.py +522 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +349 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1120 -0
- vllm/model_executor/models/chatglm.py +498 -0
- vllm/model_executor/models/clip.py +965 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +473 -0
- vllm/model_executor/models/config.py +503 -0
- vllm/model_executor/models/dbrx.py +482 -0
- vllm/model_executor/models/deepencoder.py +673 -0
- vllm/model_executor/models/deepseek_eagle.py +260 -0
- vllm/model_executor/models/deepseek_mtp.py +360 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1649 -0
- vllm/model_executor/models/deepseek_vl2.py +655 -0
- vllm/model_executor/models/dots1.py +574 -0
- vllm/model_executor/models/dots_ocr.py +900 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +759 -0
- vllm/model_executor/models/ernie45_vl.py +1742 -0
- vllm/model_executor/models/ernie45_vl_moe.py +803 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +545 -0
- vllm/model_executor/models/exaone4.py +531 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +545 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +439 -0
- vllm/model_executor/models/gemma3.py +571 -0
- vllm/model_executor/models/gemma3_mm.py +741 -0
- vllm/model_executor/models/gemma3n.py +1165 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1821 -0
- vllm/model_executor/models/glm4_moe.py +747 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +784 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +344 -0
- vllm/model_executor/models/gpt_oss.py +738 -0
- vllm/model_executor/models/granite.py +516 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +569 -0
- vllm/model_executor/models/granitemoehybrid.py +709 -0
- vllm/model_executor/models/granitemoeshared.py +333 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +558 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1053 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +426 -0
- vllm/model_executor/models/idefics3.py +717 -0
- vllm/model_executor/models/interfaces.py +1092 -0
- vllm/model_executor/models/interfaces_base.py +214 -0
- vllm/model_executor/models/intern_vit.py +453 -0
- vllm/model_executor/models/internlm2.py +460 -0
- vllm/model_executor/models/internlm2_ve.py +142 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +432 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +610 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1761 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +663 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +532 -0
- vllm/model_executor/models/lfm2_moe.py +762 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +732 -0
- vllm/model_executor/models/llama4.py +859 -0
- vllm/model_executor/models/llama4_eagle.py +223 -0
- vllm/model_executor/models/llama_eagle.py +218 -0
- vllm/model_executor/models/llama_eagle3.py +367 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +749 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +289 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +827 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +664 -0
- vllm/model_executor/models/minicpm3.py +242 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1745 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1012 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mixtral.py +621 -0
- vllm/model_executor/models/mllama4.py +1147 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +450 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1555 -0
- vllm/model_executor/models/moonvit.py +677 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
- vllm/model_executor/models/nemotron.py +518 -0
- vllm/model_executor/models/nemotron_h.py +852 -0
- vllm/model_executor/models/nemotron_nas.py +491 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +414 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/openpangu.py +1062 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +372 -0
- vllm/model_executor/models/ouro.py +516 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1407 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +377 -0
- vllm/model_executor/models/phi.py +374 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +675 -0
- vllm/model_executor/models/pixtral.py +1352 -0
- vllm/model_executor/models/plamo2.py +981 -0
- vllm/model_executor/models/qwen.py +368 -0
- vllm/model_executor/models/qwen2.py +541 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
- vllm/model_executor/models/qwen2_5_vl.py +1613 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +596 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +336 -0
- vllm/model_executor/models/qwen3_moe.py +744 -0
- vllm/model_executor/models/qwen3_next.py +1395 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
- vllm/model_executor/models/qwen3_vl.py +1673 -0
- vllm/model_executor/models/qwen3_vl_moe.py +415 -0
- vllm/model_executor/models/qwen_vl.py +802 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1155 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +497 -0
- vllm/model_executor/models/siglip.py +1174 -0
- vllm/model_executor/models/siglip2navit.py +724 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +502 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +367 -0
- vllm/model_executor/models/step3_text.py +559 -0
- vllm/model_executor/models/step3_vl.py +1148 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +318 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +207 -0
- vllm/model_executor/models/ultravox.py +681 -0
- vllm/model_executor/models/utils.py +877 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +845 -0
- vllm/model_executor/models/whisper.py +959 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +118 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +755 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2186 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +360 -0
- vllm/multimodal/utils.py +512 -0
- vllm/multimodal/video.py +306 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +414 -0
- vllm/platforms/cuda.py +657 -0
- vllm/platforms/interface.py +639 -0
- vllm/platforms/rocm.py +466 -0
- vllm/platforms/tpu.py +276 -0
- vllm/platforms/xpu.py +274 -0
- vllm/plugins/__init__.py +78 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +228 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +37 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +26 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +669 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1203 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +70 -0
- vllm/transformers_utils/configs/afmoe.py +84 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +77 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +144 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +159 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +174 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +212 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +79 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +274 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +174 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/detokenizer_utils.py +198 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/processor.py +402 -0
- vllm/transformers_utils/processors/__init__.py +15 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +155 -0
- vllm/transformers_utils/tokenizers/__init__.py +16 -0
- vllm/transformers_utils/tokenizers/mistral.py +502 -0
- vllm/transformers_utils/utils.py +130 -0
- vllm/triton_utils/__init__.py +19 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +82 -0
- vllm/utils/argparse_utils.py +487 -0
- vllm/utils/async_utils.py +303 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +139 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +391 -0
- vllm/utils/flashinfer.py +490 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +147 -0
- vllm/utils/hashing.py +63 -0
- vllm/utils/import_utils.py +411 -0
- vllm/utils/jsontree.py +165 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +49 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +229 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +657 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +496 -0
- vllm/v1/attention/backends/flash_attn.py +1028 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +926 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +74 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +115 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +2031 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
- vllm/v1/attention/backends/mla/flashmla.py +314 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
- vllm/v1/attention/backends/mla/indexer.py +362 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
- vllm/v1/attention/backends/rocm_attn.py +362 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +425 -0
- vllm/v1/attention/backends/triton_attn.py +373 -0
- vllm/v1/attention/backends/utils.py +1116 -0
- vllm/v1/attention/backends/xformers.py +417 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +428 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +480 -0
- vllm/v1/core/kv_cache_manager.py +420 -0
- vllm/v1/core/kv_cache_utils.py +1340 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +62 -0
- vllm/v1/core/sched/interface.py +181 -0
- vllm/v1/core/sched/output.py +202 -0
- vllm/v1/core/sched/request_queue.py +221 -0
- vllm/v1/core/sched/scheduler.py +1617 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +736 -0
- vllm/v1/cudagraph_dispatcher.py +148 -0
- vllm/v1/engine/__init__.py +206 -0
- vllm/v1/engine/async_llm.py +797 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1420 -0
- vllm/v1/engine/core_client.py +1400 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/llm_engine.py +408 -0
- vllm/v1/engine/logprobs.py +182 -0
- vllm/v1/engine/output_processor.py +642 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +621 -0
- vllm/v1/engine/utils.py +1072 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +877 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +403 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +93 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +62 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1238 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +169 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +420 -0
- vllm/v1/outputs.py +249 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +259 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +274 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
- vllm/v1/sample/rejection_sampler.py +793 -0
- vllm/v1/sample/sampler.py +316 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1225 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +224 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +103 -0
- vllm/v1/spec_decode/utils.py +16 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +327 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +206 -0
- vllm/v1/worker/dp_utils.py +230 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +975 -0
- vllm/v1/worker/gpu_model_runner.py +5102 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
- vllm/v1/worker/gpu_worker.py +894 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
- vllm/v1/worker/lora_model_runner_mixin.py +213 -0
- vllm/v1/worker/tpu_input_batch.py +593 -0
- vllm/v1/worker/tpu_model_runner.py +2173 -0
- vllm/v1/worker/tpu_worker.py +355 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +366 -0
- vllm/v1/worker/worker_base.py +375 -0
- vllm/v1/worker/xpu_model_runner.py +55 -0
- vllm/v1/worker/xpu_worker.py +189 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
vllm/engine/arg_utils.py
ADDED
|
@@ -0,0 +1,2144 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
import argparse
|
|
5
|
+
import copy
|
|
6
|
+
import dataclasses
|
|
7
|
+
import functools
|
|
8
|
+
import json
|
|
9
|
+
import sys
|
|
10
|
+
from collections.abc import Callable
|
|
11
|
+
from dataclasses import MISSING, dataclass, fields, is_dataclass
|
|
12
|
+
from itertools import permutations
|
|
13
|
+
from types import UnionType
|
|
14
|
+
from typing import (
|
|
15
|
+
TYPE_CHECKING,
|
|
16
|
+
Annotated,
|
|
17
|
+
Any,
|
|
18
|
+
Literal,
|
|
19
|
+
TypeAlias,
|
|
20
|
+
TypeVar,
|
|
21
|
+
Union,
|
|
22
|
+
cast,
|
|
23
|
+
get_args,
|
|
24
|
+
get_origin,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
import huggingface_hub
|
|
28
|
+
import regex as re
|
|
29
|
+
import torch
|
|
30
|
+
from pydantic import TypeAdapter, ValidationError
|
|
31
|
+
from pydantic.fields import FieldInfo
|
|
32
|
+
from typing_extensions import TypeIs, deprecated
|
|
33
|
+
|
|
34
|
+
import vllm.envs as envs
|
|
35
|
+
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
36
|
+
from vllm.config import (
|
|
37
|
+
CacheConfig,
|
|
38
|
+
CompilationConfig,
|
|
39
|
+
ConfigType,
|
|
40
|
+
DeviceConfig,
|
|
41
|
+
ECTransferConfig,
|
|
42
|
+
EPLBConfig,
|
|
43
|
+
KVEventsConfig,
|
|
44
|
+
KVTransferConfig,
|
|
45
|
+
LoadConfig,
|
|
46
|
+
LoRAConfig,
|
|
47
|
+
ModelConfig,
|
|
48
|
+
MultiModalConfig,
|
|
49
|
+
ObservabilityConfig,
|
|
50
|
+
ParallelConfig,
|
|
51
|
+
PoolerConfig,
|
|
52
|
+
SchedulerConfig,
|
|
53
|
+
SpeculativeConfig,
|
|
54
|
+
StructuredOutputsConfig,
|
|
55
|
+
VllmConfig,
|
|
56
|
+
get_attr_docs,
|
|
57
|
+
)
|
|
58
|
+
from vllm.config.cache import (
|
|
59
|
+
BlockSize,
|
|
60
|
+
CacheDType,
|
|
61
|
+
KVOffloadingBackend,
|
|
62
|
+
MambaDType,
|
|
63
|
+
PrefixCachingHashAlgo,
|
|
64
|
+
)
|
|
65
|
+
from vllm.config.device import Device
|
|
66
|
+
from vllm.config.model import (
|
|
67
|
+
ConvertOption,
|
|
68
|
+
HfOverrides,
|
|
69
|
+
LogprobsMode,
|
|
70
|
+
ModelDType,
|
|
71
|
+
RunnerOption,
|
|
72
|
+
TaskOption,
|
|
73
|
+
TokenizerMode,
|
|
74
|
+
)
|
|
75
|
+
from vllm.config.multimodal import MMCacheType, MMEncoderTPMode
|
|
76
|
+
from vllm.config.observability import DetailedTraceModules
|
|
77
|
+
from vllm.config.parallel import DistributedExecutorBackend, ExpertPlacementStrategy
|
|
78
|
+
from vllm.config.scheduler import SchedulerPolicy
|
|
79
|
+
from vllm.config.utils import get_field
|
|
80
|
+
from vllm.logger import init_logger
|
|
81
|
+
from vllm.platforms import CpuArchEnum, current_platform
|
|
82
|
+
from vllm.plugins import load_general_plugins
|
|
83
|
+
from vllm.ray.lazy_utils import is_in_ray_actor, is_ray_initialized
|
|
84
|
+
from vllm.transformers_utils.config import (
|
|
85
|
+
get_model_path,
|
|
86
|
+
is_interleaved,
|
|
87
|
+
maybe_override_with_speculators,
|
|
88
|
+
)
|
|
89
|
+
from vllm.transformers_utils.utils import check_gguf_file, is_cloud_storage
|
|
90
|
+
from vllm.utils.argparse_utils import FlexibleArgumentParser
|
|
91
|
+
from vllm.utils.mem_constants import GiB_bytes
|
|
92
|
+
from vllm.utils.network_utils import get_ip
|
|
93
|
+
from vllm.v1.sample.logits_processor import LogitsProcessor
|
|
94
|
+
|
|
95
|
+
if TYPE_CHECKING:
|
|
96
|
+
from vllm.model_executor.layers.quantization import QuantizationMethods
|
|
97
|
+
from vllm.model_executor.model_loader import LoadFormats
|
|
98
|
+
from vllm.usage.usage_lib import UsageContext
|
|
99
|
+
from vllm.v1.executor import Executor
|
|
100
|
+
else:
|
|
101
|
+
Executor = Any
|
|
102
|
+
QuantizationMethods = Any
|
|
103
|
+
LoadFormats = Any
|
|
104
|
+
UsageContext = Any
|
|
105
|
+
|
|
106
|
+
logger = init_logger(__name__)
|
|
107
|
+
|
|
108
|
+
# object is used to allow for special typing forms
|
|
109
|
+
T = TypeVar("T")
|
|
110
|
+
TypeHint: TypeAlias = type[Any] | object
|
|
111
|
+
TypeHintT: TypeAlias = type[T] | object
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def parse_type(return_type: Callable[[str], T]) -> Callable[[str], T]:
|
|
115
|
+
def _parse_type(val: str) -> T:
|
|
116
|
+
try:
|
|
117
|
+
return return_type(val)
|
|
118
|
+
except ValueError as e:
|
|
119
|
+
raise argparse.ArgumentTypeError(
|
|
120
|
+
f"Value {val} cannot be converted to {return_type}."
|
|
121
|
+
) from e
|
|
122
|
+
|
|
123
|
+
return _parse_type
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def optional_type(return_type: Callable[[str], T]) -> Callable[[str], T | None]:
|
|
127
|
+
def _optional_type(val: str) -> T | None:
|
|
128
|
+
if val == "" or val == "None":
|
|
129
|
+
return None
|
|
130
|
+
return parse_type(return_type)(val)
|
|
131
|
+
|
|
132
|
+
return _optional_type
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def union_dict_and_str(val: str) -> str | dict[str, str] | None:
|
|
136
|
+
if not re.match(r"(?s)^\s*{.*}\s*$", val):
|
|
137
|
+
return str(val)
|
|
138
|
+
return optional_type(json.loads)(val)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def is_type(type_hint: TypeHint, type: TypeHintT) -> TypeIs[TypeHintT]:
|
|
142
|
+
"""Check if the type hint is a specific type."""
|
|
143
|
+
return type_hint is type or get_origin(type_hint) is type
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def contains_type(type_hints: set[TypeHint], type: TypeHintT) -> bool:
|
|
147
|
+
"""Check if the type hints contain a specific type."""
|
|
148
|
+
return any(is_type(type_hint, type) for type_hint in type_hints)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def get_type(type_hints: set[TypeHint], type: TypeHintT) -> TypeHintT:
|
|
152
|
+
"""Get the specific type from the type hints."""
|
|
153
|
+
return next((th for th in type_hints if is_type(th, type)), None)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def literal_to_kwargs(type_hints: set[TypeHint]) -> dict[str, Any]:
|
|
157
|
+
"""Get the `type` and `choices` from a `Literal` type hint in `type_hints`.
|
|
158
|
+
|
|
159
|
+
If `type_hints` also contains `str`, we use `metavar` instead of `choices`.
|
|
160
|
+
"""
|
|
161
|
+
type_hint = get_type(type_hints, Literal)
|
|
162
|
+
options = get_args(type_hint)
|
|
163
|
+
option_type = type(options[0])
|
|
164
|
+
if not all(isinstance(option, option_type) for option in options):
|
|
165
|
+
raise ValueError(
|
|
166
|
+
"All options must be of the same type. "
|
|
167
|
+
f"Got {options} with types {[type(c) for c in options]}"
|
|
168
|
+
)
|
|
169
|
+
kwarg = "metavar" if contains_type(type_hints, str) else "choices"
|
|
170
|
+
return {"type": option_type, kwarg: sorted(options)}
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def collection_to_kwargs(type_hints: set[TypeHint], type: TypeHint) -> dict[str, Any]:
|
|
174
|
+
type_hint = get_type(type_hints, type)
|
|
175
|
+
types = get_args(type_hint)
|
|
176
|
+
elem_type = types[0]
|
|
177
|
+
|
|
178
|
+
# Handle Ellipsis
|
|
179
|
+
assert all(t is elem_type for t in types if t is not Ellipsis), (
|
|
180
|
+
f"All non-Ellipsis elements must be of the same type. Got {types}."
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
# Handle Union types
|
|
184
|
+
if get_origin(elem_type) in {Union, UnionType}:
|
|
185
|
+
# Union for Union[X, Y] and UnionType for X | Y
|
|
186
|
+
assert str in get_args(elem_type), (
|
|
187
|
+
"If element can have multiple types, one must be 'str' "
|
|
188
|
+
f"(i.e. 'list[int | str]'). Got {elem_type}."
|
|
189
|
+
)
|
|
190
|
+
elem_type = str
|
|
191
|
+
|
|
192
|
+
return {
|
|
193
|
+
"type": elem_type,
|
|
194
|
+
"nargs": "+" if type is not tuple or Ellipsis in types else len(types),
|
|
195
|
+
}
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def is_not_builtin(type_hint: TypeHint) -> bool:
|
|
199
|
+
"""Check if the class is not a built-in type."""
|
|
200
|
+
return type_hint.__module__ != "builtins"
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def get_type_hints(type_hint: TypeHint) -> set[TypeHint]:
|
|
204
|
+
"""Extract type hints from Annotated or Union type hints."""
|
|
205
|
+
type_hints: set[TypeHint] = set()
|
|
206
|
+
origin = get_origin(type_hint)
|
|
207
|
+
args = get_args(type_hint)
|
|
208
|
+
|
|
209
|
+
if origin is Annotated:
|
|
210
|
+
type_hints.update(get_type_hints(args[0]))
|
|
211
|
+
elif origin in {Union, UnionType}:
|
|
212
|
+
# Union for Union[X, Y] and UnionType for X | Y
|
|
213
|
+
for arg in args:
|
|
214
|
+
type_hints.update(get_type_hints(arg))
|
|
215
|
+
else:
|
|
216
|
+
type_hints.add(type_hint)
|
|
217
|
+
|
|
218
|
+
return type_hints
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def is_online_quantization(quantization: Any) -> bool:
|
|
222
|
+
return quantization in ["inc"]
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
NEEDS_HELP = (
|
|
226
|
+
any("--help" in arg for arg in sys.argv) # vllm SUBCOMMAND --help
|
|
227
|
+
or (argv0 := sys.argv[0]).endswith("mkdocs") # mkdocs SUBCOMMAND
|
|
228
|
+
or argv0.endswith("mkdocs/__main__.py") # python -m mkdocs SUBCOMMAND
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
@functools.lru_cache(maxsize=30)
|
|
233
|
+
def _compute_kwargs(cls: ConfigType) -> dict[str, dict[str, Any]]:
|
|
234
|
+
# Save time only getting attr docs if we're generating help text
|
|
235
|
+
cls_docs = get_attr_docs(cls) if NEEDS_HELP else {}
|
|
236
|
+
kwargs = {}
|
|
237
|
+
for field in fields(cls):
|
|
238
|
+
# Get the set of possible types for the field
|
|
239
|
+
type_hints: set[TypeHint] = get_type_hints(field.type)
|
|
240
|
+
|
|
241
|
+
# If the field is a dataclass, we can use the model_validate_json
|
|
242
|
+
generator = (th for th in type_hints if is_dataclass(th))
|
|
243
|
+
dataclass_cls = next(generator, None)
|
|
244
|
+
|
|
245
|
+
# Get the default value of the field
|
|
246
|
+
if field.default is not MISSING:
|
|
247
|
+
default = field.default
|
|
248
|
+
# Handle pydantic.Field defaults
|
|
249
|
+
if isinstance(default, FieldInfo):
|
|
250
|
+
default = (
|
|
251
|
+
default.default
|
|
252
|
+
if default.default_factory is None
|
|
253
|
+
else default.default_factory()
|
|
254
|
+
)
|
|
255
|
+
elif field.default_factory is not MISSING:
|
|
256
|
+
default = field.default_factory()
|
|
257
|
+
|
|
258
|
+
# Get the help text for the field
|
|
259
|
+
name = field.name
|
|
260
|
+
help = cls_docs.get(name, "").strip()
|
|
261
|
+
# Escape % for argparse
|
|
262
|
+
help = help.replace("%", "%%")
|
|
263
|
+
|
|
264
|
+
# Initialise the kwargs dictionary for the field
|
|
265
|
+
kwargs[name] = {"default": default, "help": help}
|
|
266
|
+
|
|
267
|
+
# Set other kwargs based on the type hints
|
|
268
|
+
json_tip = (
|
|
269
|
+
"Should either be a valid JSON string or JSON keys passed individually."
|
|
270
|
+
)
|
|
271
|
+
if dataclass_cls is not None:
|
|
272
|
+
|
|
273
|
+
def parse_dataclass(val: str, cls=dataclass_cls) -> Any:
|
|
274
|
+
try:
|
|
275
|
+
return TypeAdapter(cls).validate_json(val)
|
|
276
|
+
except ValidationError as e:
|
|
277
|
+
raise argparse.ArgumentTypeError(repr(e)) from e
|
|
278
|
+
|
|
279
|
+
kwargs[name]["type"] = parse_dataclass
|
|
280
|
+
kwargs[name]["help"] += f"\n\n{json_tip}"
|
|
281
|
+
elif contains_type(type_hints, bool):
|
|
282
|
+
# Creates --no-<name> and --<name> flags
|
|
283
|
+
kwargs[name]["action"] = argparse.BooleanOptionalAction
|
|
284
|
+
elif contains_type(type_hints, Literal):
|
|
285
|
+
kwargs[name].update(literal_to_kwargs(type_hints))
|
|
286
|
+
elif contains_type(type_hints, tuple):
|
|
287
|
+
kwargs[name].update(collection_to_kwargs(type_hints, tuple))
|
|
288
|
+
elif contains_type(type_hints, list):
|
|
289
|
+
kwargs[name].update(collection_to_kwargs(type_hints, list))
|
|
290
|
+
elif contains_type(type_hints, set):
|
|
291
|
+
kwargs[name].update(collection_to_kwargs(type_hints, set))
|
|
292
|
+
elif contains_type(type_hints, int):
|
|
293
|
+
kwargs[name]["type"] = int
|
|
294
|
+
# Special case for large integers
|
|
295
|
+
human_readable_ints = {
|
|
296
|
+
"max_model_len",
|
|
297
|
+
"max_num_batched_tokens",
|
|
298
|
+
"kv_cache_memory_bytes",
|
|
299
|
+
}
|
|
300
|
+
if name in human_readable_ints:
|
|
301
|
+
kwargs[name]["type"] = human_readable_int
|
|
302
|
+
kwargs[name]["help"] += f"\n\n{human_readable_int.__doc__}"
|
|
303
|
+
elif contains_type(type_hints, float):
|
|
304
|
+
kwargs[name]["type"] = float
|
|
305
|
+
elif contains_type(type_hints, dict) and (
|
|
306
|
+
contains_type(type_hints, str)
|
|
307
|
+
or any(is_not_builtin(th) for th in type_hints)
|
|
308
|
+
):
|
|
309
|
+
kwargs[name]["type"] = union_dict_and_str
|
|
310
|
+
elif contains_type(type_hints, dict):
|
|
311
|
+
kwargs[name]["type"] = parse_type(json.loads)
|
|
312
|
+
kwargs[name]["help"] += f"\n\n{json_tip}"
|
|
313
|
+
elif contains_type(type_hints, str) or any(
|
|
314
|
+
is_not_builtin(th) for th in type_hints
|
|
315
|
+
):
|
|
316
|
+
kwargs[name]["type"] = str
|
|
317
|
+
else:
|
|
318
|
+
raise ValueError(f"Unsupported type {type_hints} for argument {name}.")
|
|
319
|
+
|
|
320
|
+
# If the type hint was a sequence of literals, use the helper function
|
|
321
|
+
# to update the type and choices
|
|
322
|
+
if get_origin(kwargs[name].get("type")) is Literal:
|
|
323
|
+
kwargs[name].update(literal_to_kwargs({kwargs[name]["type"]}))
|
|
324
|
+
|
|
325
|
+
# If None is in type_hints, make the argument optional.
|
|
326
|
+
# But not if it's a bool, argparse will handle this better.
|
|
327
|
+
if type(None) in type_hints and not contains_type(type_hints, bool):
|
|
328
|
+
kwargs[name]["type"] = optional_type(kwargs[name]["type"])
|
|
329
|
+
if kwargs[name].get("choices"):
|
|
330
|
+
kwargs[name]["choices"].append("None")
|
|
331
|
+
return kwargs
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def get_kwargs(cls: ConfigType) -> dict[str, dict[str, Any]]:
|
|
335
|
+
"""Return argparse kwargs for the given Config dataclass.
|
|
336
|
+
|
|
337
|
+
If `--help` or `mkdocs` are not present in the command line command, the
|
|
338
|
+
attribute documentation will not be included in the help output.
|
|
339
|
+
|
|
340
|
+
The heavy computation is cached via functools.lru_cache, and a deep copy
|
|
341
|
+
is returned so callers can mutate the dictionary without affecting the
|
|
342
|
+
cached version.
|
|
343
|
+
"""
|
|
344
|
+
return copy.deepcopy(_compute_kwargs(cls))
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
@dataclass
|
|
348
|
+
class EngineArgs:
|
|
349
|
+
"""Arguments for vLLM engine."""
|
|
350
|
+
|
|
351
|
+
model: str = ModelConfig.model
|
|
352
|
+
served_model_name: str | list[str] | None = ModelConfig.served_model_name
|
|
353
|
+
tokenizer: str | None = ModelConfig.tokenizer
|
|
354
|
+
hf_config_path: str | None = ModelConfig.hf_config_path
|
|
355
|
+
runner: RunnerOption = ModelConfig.runner
|
|
356
|
+
convert: ConvertOption = ModelConfig.convert
|
|
357
|
+
task: TaskOption | None = ModelConfig.task
|
|
358
|
+
skip_tokenizer_init: bool = ModelConfig.skip_tokenizer_init
|
|
359
|
+
enable_prompt_embeds: bool = ModelConfig.enable_prompt_embeds
|
|
360
|
+
tokenizer_mode: TokenizerMode = ModelConfig.tokenizer_mode
|
|
361
|
+
trust_remote_code: bool = ModelConfig.trust_remote_code
|
|
362
|
+
allowed_local_media_path: str = ModelConfig.allowed_local_media_path
|
|
363
|
+
allowed_media_domains: list[str] | None = ModelConfig.allowed_media_domains
|
|
364
|
+
download_dir: str | None = LoadConfig.download_dir
|
|
365
|
+
safetensors_load_strategy: str = LoadConfig.safetensors_load_strategy
|
|
366
|
+
load_format: str | LoadFormats = LoadConfig.load_format
|
|
367
|
+
config_format: str = ModelConfig.config_format
|
|
368
|
+
dtype: ModelDType = ModelConfig.dtype
|
|
369
|
+
kv_cache_dtype: CacheDType = CacheConfig.cache_dtype
|
|
370
|
+
seed: int | None = ModelConfig.seed
|
|
371
|
+
max_model_len: int | None = ModelConfig.max_model_len
|
|
372
|
+
cuda_graph_sizes: list[int] | None = CompilationConfig.cudagraph_capture_sizes
|
|
373
|
+
cudagraph_capture_sizes: list[int] | None = (
|
|
374
|
+
CompilationConfig.cudagraph_capture_sizes
|
|
375
|
+
)
|
|
376
|
+
max_cudagraph_capture_size: int | None = get_field(
|
|
377
|
+
CompilationConfig, "max_cudagraph_capture_size"
|
|
378
|
+
)
|
|
379
|
+
# Note: Specifying a custom executor backend by passing a class
|
|
380
|
+
# is intended for expert use only. The API may change without
|
|
381
|
+
# notice.
|
|
382
|
+
distributed_executor_backend: (
|
|
383
|
+
str | DistributedExecutorBackend | type[Executor] | None
|
|
384
|
+
) = ParallelConfig.distributed_executor_backend
|
|
385
|
+
# number of P/D disaggregation (or other disaggregation) workers
|
|
386
|
+
pipeline_parallel_size: int = ParallelConfig.pipeline_parallel_size
|
|
387
|
+
master_addr: str = ParallelConfig.master_addr
|
|
388
|
+
master_port: int = ParallelConfig.master_port
|
|
389
|
+
nnodes: int = ParallelConfig.nnodes
|
|
390
|
+
node_rank: int = ParallelConfig.node_rank
|
|
391
|
+
tensor_parallel_size: int = ParallelConfig.tensor_parallel_size
|
|
392
|
+
decode_context_parallel_size: int = ParallelConfig.decode_context_parallel_size
|
|
393
|
+
dcp_kv_cache_interleave_size: int = ParallelConfig.dcp_kv_cache_interleave_size
|
|
394
|
+
data_parallel_size: int = ParallelConfig.data_parallel_size
|
|
395
|
+
data_parallel_rank: int | None = None
|
|
396
|
+
data_parallel_start_rank: int | None = None
|
|
397
|
+
data_parallel_size_local: int | None = None
|
|
398
|
+
data_parallel_address: str | None = None
|
|
399
|
+
data_parallel_rpc_port: int | None = None
|
|
400
|
+
data_parallel_hybrid_lb: bool = False
|
|
401
|
+
data_parallel_external_lb: bool = False
|
|
402
|
+
data_parallel_backend: str = ParallelConfig.data_parallel_backend
|
|
403
|
+
enable_expert_parallel: bool = ParallelConfig.enable_expert_parallel
|
|
404
|
+
all2all_backend: str | None = ParallelConfig.all2all_backend
|
|
405
|
+
enable_dbo: bool = ParallelConfig.enable_dbo
|
|
406
|
+
dbo_decode_token_threshold: int = ParallelConfig.dbo_decode_token_threshold
|
|
407
|
+
dbo_prefill_token_threshold: int = ParallelConfig.dbo_prefill_token_threshold
|
|
408
|
+
disable_nccl_for_dp_synchronization: bool = (
|
|
409
|
+
ParallelConfig.disable_nccl_for_dp_synchronization
|
|
410
|
+
)
|
|
411
|
+
eplb_config: EPLBConfig = get_field(ParallelConfig, "eplb_config")
|
|
412
|
+
enable_eplb: bool = ParallelConfig.enable_eplb
|
|
413
|
+
expert_placement_strategy: ExpertPlacementStrategy = (
|
|
414
|
+
ParallelConfig.expert_placement_strategy
|
|
415
|
+
)
|
|
416
|
+
_api_process_count: int = ParallelConfig._api_process_count
|
|
417
|
+
_api_process_rank: int = ParallelConfig._api_process_rank
|
|
418
|
+
num_redundant_experts: int = EPLBConfig.num_redundant_experts
|
|
419
|
+
eplb_window_size: int = EPLBConfig.window_size
|
|
420
|
+
eplb_step_interval: int = EPLBConfig.step_interval
|
|
421
|
+
eplb_log_balancedness: bool = EPLBConfig.log_balancedness
|
|
422
|
+
max_parallel_loading_workers: int | None = (
|
|
423
|
+
ParallelConfig.max_parallel_loading_workers
|
|
424
|
+
)
|
|
425
|
+
block_size: BlockSize | None = CacheConfig.block_size
|
|
426
|
+
enable_prefix_caching: bool | None = CacheConfig.enable_prefix_caching
|
|
427
|
+
prefix_caching_hash_algo: PrefixCachingHashAlgo = (
|
|
428
|
+
CacheConfig.prefix_caching_hash_algo
|
|
429
|
+
)
|
|
430
|
+
disable_sliding_window: bool = ModelConfig.disable_sliding_window
|
|
431
|
+
disable_cascade_attn: bool = ModelConfig.disable_cascade_attn
|
|
432
|
+
swap_space: float = CacheConfig.swap_space
|
|
433
|
+
cpu_offload_gb: float = CacheConfig.cpu_offload_gb
|
|
434
|
+
gpu_memory_utilization: float = CacheConfig.gpu_memory_utilization
|
|
435
|
+
kv_cache_memory_bytes: int | None = CacheConfig.kv_cache_memory_bytes
|
|
436
|
+
max_num_batched_tokens: int | None = None
|
|
437
|
+
max_num_partial_prefills: int = SchedulerConfig.max_num_partial_prefills
|
|
438
|
+
max_long_partial_prefills: int = SchedulerConfig.max_long_partial_prefills
|
|
439
|
+
long_prefill_token_threshold: int = SchedulerConfig.long_prefill_token_threshold
|
|
440
|
+
max_num_seqs: int | None = None
|
|
441
|
+
max_logprobs: int = ModelConfig.max_logprobs
|
|
442
|
+
logprobs_mode: LogprobsMode = ModelConfig.logprobs_mode
|
|
443
|
+
disable_log_stats: bool = False
|
|
444
|
+
aggregate_engine_logging: bool = False
|
|
445
|
+
revision: str | None = ModelConfig.revision
|
|
446
|
+
code_revision: str | None = ModelConfig.code_revision
|
|
447
|
+
hf_token: bool | str | None = ModelConfig.hf_token
|
|
448
|
+
hf_overrides: HfOverrides = get_field(ModelConfig, "hf_overrides")
|
|
449
|
+
tokenizer_revision: str | None = ModelConfig.tokenizer_revision
|
|
450
|
+
quantization: QuantizationMethods | None = ModelConfig.quantization
|
|
451
|
+
enforce_eager: bool = ModelConfig.enforce_eager
|
|
452
|
+
disable_custom_all_reduce: bool = ParallelConfig.disable_custom_all_reduce
|
|
453
|
+
limit_mm_per_prompt: dict[str, int | dict[str, int]] = get_field(
|
|
454
|
+
MultiModalConfig, "limit_per_prompt"
|
|
455
|
+
)
|
|
456
|
+
enable_mm_embeds: bool = MultiModalConfig.enable_mm_embeds
|
|
457
|
+
interleave_mm_strings: bool = MultiModalConfig.interleave_mm_strings
|
|
458
|
+
media_io_kwargs: dict[str, dict[str, Any]] = get_field(
|
|
459
|
+
MultiModalConfig, "media_io_kwargs"
|
|
460
|
+
)
|
|
461
|
+
mm_processor_kwargs: dict[str, Any] | None = MultiModalConfig.mm_processor_kwargs
|
|
462
|
+
disable_mm_preprocessor_cache: bool = False # DEPRECATED
|
|
463
|
+
mm_processor_cache_gb: float = MultiModalConfig.mm_processor_cache_gb
|
|
464
|
+
mm_processor_cache_type: MMCacheType | None = (
|
|
465
|
+
MultiModalConfig.mm_processor_cache_type
|
|
466
|
+
)
|
|
467
|
+
mm_shm_cache_max_object_size_mb: int = (
|
|
468
|
+
MultiModalConfig.mm_shm_cache_max_object_size_mb
|
|
469
|
+
)
|
|
470
|
+
mm_encoder_tp_mode: MMEncoderTPMode = MultiModalConfig.mm_encoder_tp_mode
|
|
471
|
+
mm_encoder_attn_backend: AttentionBackendEnum | str | None = (
|
|
472
|
+
MultiModalConfig.mm_encoder_attn_backend
|
|
473
|
+
)
|
|
474
|
+
io_processor_plugin: str | None = None
|
|
475
|
+
skip_mm_profiling: bool = MultiModalConfig.skip_mm_profiling
|
|
476
|
+
video_pruning_rate: float = MultiModalConfig.video_pruning_rate
|
|
477
|
+
# LoRA fields
|
|
478
|
+
enable_lora: bool = False
|
|
479
|
+
max_loras: int = LoRAConfig.max_loras
|
|
480
|
+
max_lora_rank: int = LoRAConfig.max_lora_rank
|
|
481
|
+
default_mm_loras: dict[str, str] | None = LoRAConfig.default_mm_loras
|
|
482
|
+
fully_sharded_loras: bool = LoRAConfig.fully_sharded_loras
|
|
483
|
+
max_cpu_loras: int | None = LoRAConfig.max_cpu_loras
|
|
484
|
+
lora_dtype: str | torch.dtype | None = LoRAConfig.lora_dtype
|
|
485
|
+
lora_extra_vocab_size: int = LoRAConfig.lora_extra_vocab_size
|
|
486
|
+
|
|
487
|
+
ray_workers_use_nsight: bool = ParallelConfig.ray_workers_use_nsight
|
|
488
|
+
num_gpu_blocks_override: int | None = CacheConfig.num_gpu_blocks_override
|
|
489
|
+
num_lookahead_slots: int = SchedulerConfig.num_lookahead_slots
|
|
490
|
+
model_loader_extra_config: dict = get_field(LoadConfig, "model_loader_extra_config")
|
|
491
|
+
ignore_patterns: str | list[str] = get_field(LoadConfig, "ignore_patterns")
|
|
492
|
+
|
|
493
|
+
enable_chunked_prefill: bool | None = None
|
|
494
|
+
disable_chunked_mm_input: bool = SchedulerConfig.disable_chunked_mm_input
|
|
495
|
+
|
|
496
|
+
disable_hybrid_kv_cache_manager: bool = (
|
|
497
|
+
SchedulerConfig.disable_hybrid_kv_cache_manager
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
structured_outputs_config: StructuredOutputsConfig = get_field(
|
|
501
|
+
VllmConfig, "structured_outputs_config"
|
|
502
|
+
)
|
|
503
|
+
reasoning_parser: str = StructuredOutputsConfig.reasoning_parser
|
|
504
|
+
reasoning_parser_plugin: str | None = None
|
|
505
|
+
# Deprecated guided decoding fields
|
|
506
|
+
guided_decoding_backend: str | None = None
|
|
507
|
+
guided_decoding_disable_fallback: bool | None = None
|
|
508
|
+
guided_decoding_disable_any_whitespace: bool | None = None
|
|
509
|
+
guided_decoding_disable_additional_properties: bool | None = None
|
|
510
|
+
|
|
511
|
+
logits_processor_pattern: str | None = ModelConfig.logits_processor_pattern
|
|
512
|
+
|
|
513
|
+
speculative_config: dict[str, Any] | None = None
|
|
514
|
+
|
|
515
|
+
show_hidden_metrics_for_version: str | None = (
|
|
516
|
+
ObservabilityConfig.show_hidden_metrics_for_version
|
|
517
|
+
)
|
|
518
|
+
otlp_traces_endpoint: str | None = ObservabilityConfig.otlp_traces_endpoint
|
|
519
|
+
collect_detailed_traces: list[DetailedTraceModules] | None = (
|
|
520
|
+
ObservabilityConfig.collect_detailed_traces
|
|
521
|
+
)
|
|
522
|
+
scheduling_policy: SchedulerPolicy = SchedulerConfig.policy
|
|
523
|
+
scheduler_cls: str | type[object] | None = SchedulerConfig.scheduler_cls
|
|
524
|
+
|
|
525
|
+
pooler_config: PoolerConfig | None = ModelConfig.pooler_config
|
|
526
|
+
override_pooler_config: dict | PoolerConfig | None = (
|
|
527
|
+
ModelConfig.override_pooler_config
|
|
528
|
+
)
|
|
529
|
+
compilation_config: CompilationConfig = get_field(VllmConfig, "compilation_config")
|
|
530
|
+
worker_cls: str = ParallelConfig.worker_cls
|
|
531
|
+
worker_extension_cls: str = ParallelConfig.worker_extension_cls
|
|
532
|
+
|
|
533
|
+
kv_transfer_config: KVTransferConfig | None = None
|
|
534
|
+
kv_events_config: KVEventsConfig | None = None
|
|
535
|
+
|
|
536
|
+
ec_transfer_config: ECTransferConfig | None = None
|
|
537
|
+
|
|
538
|
+
generation_config: str = ModelConfig.generation_config
|
|
539
|
+
enable_sleep_mode: bool = ModelConfig.enable_sleep_mode
|
|
540
|
+
override_generation_config: dict[str, Any] = get_field(
|
|
541
|
+
ModelConfig, "override_generation_config"
|
|
542
|
+
)
|
|
543
|
+
model_impl: str = ModelConfig.model_impl
|
|
544
|
+
override_attention_dtype: str = ModelConfig.override_attention_dtype
|
|
545
|
+
|
|
546
|
+
calculate_kv_scales: bool = CacheConfig.calculate_kv_scales
|
|
547
|
+
mamba_cache_dtype: MambaDType = CacheConfig.mamba_cache_dtype
|
|
548
|
+
mamba_ssm_cache_dtype: MambaDType = CacheConfig.mamba_ssm_cache_dtype
|
|
549
|
+
mamba_block_size: int | None = get_field(CacheConfig, "mamba_block_size")
|
|
550
|
+
|
|
551
|
+
additional_config: dict[str, Any] = get_field(VllmConfig, "additional_config")
|
|
552
|
+
|
|
553
|
+
use_tqdm_on_load: bool = LoadConfig.use_tqdm_on_load
|
|
554
|
+
pt_load_map_location: str = LoadConfig.pt_load_map_location
|
|
555
|
+
|
|
556
|
+
# DEPRECATED
|
|
557
|
+
enable_multimodal_encoder_data_parallel: bool = False
|
|
558
|
+
|
|
559
|
+
logits_processors: list[str | type[LogitsProcessor]] | None = (
|
|
560
|
+
ModelConfig.logits_processors
|
|
561
|
+
)
|
|
562
|
+
"""Custom logitproc types"""
|
|
563
|
+
|
|
564
|
+
async_scheduling: bool | None = SchedulerConfig.async_scheduling
|
|
565
|
+
|
|
566
|
+
stream_interval: int = SchedulerConfig.stream_interval
|
|
567
|
+
|
|
568
|
+
kv_sharing_fast_prefill: bool = CacheConfig.kv_sharing_fast_prefill
|
|
569
|
+
|
|
570
|
+
kv_offloading_size: float | None = CacheConfig.kv_offloading_size
|
|
571
|
+
kv_offloading_backend: KVOffloadingBackend | None = (
|
|
572
|
+
CacheConfig.kv_offloading_backend
|
|
573
|
+
)
|
|
574
|
+
tokens_only: bool = False
|
|
575
|
+
|
|
576
|
+
def __post_init__(self):
|
|
577
|
+
# support `EngineArgs(compilation_config={...})`
|
|
578
|
+
# without having to manually construct a
|
|
579
|
+
# CompilationConfig object
|
|
580
|
+
if isinstance(self.compilation_config, dict):
|
|
581
|
+
self.compilation_config = CompilationConfig(**self.compilation_config)
|
|
582
|
+
if isinstance(self.eplb_config, dict):
|
|
583
|
+
self.eplb_config = EPLBConfig(**self.eplb_config)
|
|
584
|
+
# Setup plugins
|
|
585
|
+
from vllm.plugins import load_general_plugins
|
|
586
|
+
|
|
587
|
+
load_general_plugins()
|
|
588
|
+
# when use hf offline,replace model id to local model path
|
|
589
|
+
if huggingface_hub.constants.HF_HUB_OFFLINE:
|
|
590
|
+
model_id = self.model
|
|
591
|
+
self.model = get_model_path(self.model, self.revision)
|
|
592
|
+
logger.info(
|
|
593
|
+
"HF_HUB_OFFLINE is True, replace model_id [%s] to model_path [%s]",
|
|
594
|
+
model_id,
|
|
595
|
+
self.model,
|
|
596
|
+
)
|
|
597
|
+
|
|
598
|
+
@staticmethod
|
|
599
|
+
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
|
600
|
+
"""Shared CLI arguments for vLLM engine."""
|
|
601
|
+
|
|
602
|
+
# Model arguments
|
|
603
|
+
model_kwargs = get_kwargs(ModelConfig)
|
|
604
|
+
model_group = parser.add_argument_group(
|
|
605
|
+
title="ModelConfig",
|
|
606
|
+
description=ModelConfig.__doc__,
|
|
607
|
+
)
|
|
608
|
+
if not ("serve" in sys.argv[1:] and "--help" in sys.argv[1:]):
|
|
609
|
+
model_group.add_argument("--model", **model_kwargs["model"])
|
|
610
|
+
model_group.add_argument("--runner", **model_kwargs["runner"])
|
|
611
|
+
model_group.add_argument("--convert", **model_kwargs["convert"])
|
|
612
|
+
model_group.add_argument("--task", **model_kwargs["task"], deprecated=True)
|
|
613
|
+
model_group.add_argument("--tokenizer", **model_kwargs["tokenizer"])
|
|
614
|
+
model_group.add_argument("--tokenizer-mode", **model_kwargs["tokenizer_mode"])
|
|
615
|
+
model_group.add_argument(
|
|
616
|
+
"--trust-remote-code", **model_kwargs["trust_remote_code"]
|
|
617
|
+
)
|
|
618
|
+
model_group.add_argument("--dtype", **model_kwargs["dtype"])
|
|
619
|
+
model_group.add_argument("--seed", **model_kwargs["seed"])
|
|
620
|
+
model_group.add_argument("--hf-config-path", **model_kwargs["hf_config_path"])
|
|
621
|
+
model_group.add_argument(
|
|
622
|
+
"--allowed-local-media-path", **model_kwargs["allowed_local_media_path"]
|
|
623
|
+
)
|
|
624
|
+
model_group.add_argument(
|
|
625
|
+
"--allowed-media-domains", **model_kwargs["allowed_media_domains"]
|
|
626
|
+
)
|
|
627
|
+
model_group.add_argument("--revision", **model_kwargs["revision"])
|
|
628
|
+
model_group.add_argument("--code-revision", **model_kwargs["code_revision"])
|
|
629
|
+
model_group.add_argument(
|
|
630
|
+
"--tokenizer-revision", **model_kwargs["tokenizer_revision"]
|
|
631
|
+
)
|
|
632
|
+
model_group.add_argument("--max-model-len", **model_kwargs["max_model_len"])
|
|
633
|
+
model_group.add_argument("--quantization", "-q", **model_kwargs["quantization"])
|
|
634
|
+
model_group.add_argument("--enforce-eager", **model_kwargs["enforce_eager"])
|
|
635
|
+
model_group.add_argument("--max-logprobs", **model_kwargs["max_logprobs"])
|
|
636
|
+
model_group.add_argument("--logprobs-mode", **model_kwargs["logprobs_mode"])
|
|
637
|
+
model_group.add_argument(
|
|
638
|
+
"--disable-sliding-window", **model_kwargs["disable_sliding_window"]
|
|
639
|
+
)
|
|
640
|
+
model_group.add_argument(
|
|
641
|
+
"--disable-cascade-attn", **model_kwargs["disable_cascade_attn"]
|
|
642
|
+
)
|
|
643
|
+
model_group.add_argument(
|
|
644
|
+
"--skip-tokenizer-init", **model_kwargs["skip_tokenizer_init"]
|
|
645
|
+
)
|
|
646
|
+
model_group.add_argument(
|
|
647
|
+
"--enable-prompt-embeds", **model_kwargs["enable_prompt_embeds"]
|
|
648
|
+
)
|
|
649
|
+
model_group.add_argument(
|
|
650
|
+
"--served-model-name", **model_kwargs["served_model_name"]
|
|
651
|
+
)
|
|
652
|
+
model_group.add_argument("--config-format", **model_kwargs["config_format"])
|
|
653
|
+
# This one is a special case because it can bool
|
|
654
|
+
# or str. TODO: Handle this in get_kwargs
|
|
655
|
+
model_group.add_argument(
|
|
656
|
+
"--hf-token",
|
|
657
|
+
type=str,
|
|
658
|
+
nargs="?",
|
|
659
|
+
const=True,
|
|
660
|
+
default=model_kwargs["hf_token"]["default"],
|
|
661
|
+
help=model_kwargs["hf_token"]["help"],
|
|
662
|
+
)
|
|
663
|
+
model_group.add_argument("--hf-overrides", **model_kwargs["hf_overrides"])
|
|
664
|
+
model_group.add_argument("--pooler-config", **model_kwargs["pooler_config"])
|
|
665
|
+
model_group.add_argument(
|
|
666
|
+
"--override-pooler-config",
|
|
667
|
+
**model_kwargs["override_pooler_config"],
|
|
668
|
+
deprecated=True,
|
|
669
|
+
)
|
|
670
|
+
model_group.add_argument(
|
|
671
|
+
"--logits-processor-pattern", **model_kwargs["logits_processor_pattern"]
|
|
672
|
+
)
|
|
673
|
+
model_group.add_argument(
|
|
674
|
+
"--generation-config", **model_kwargs["generation_config"]
|
|
675
|
+
)
|
|
676
|
+
model_group.add_argument(
|
|
677
|
+
"--override-generation-config", **model_kwargs["override_generation_config"]
|
|
678
|
+
)
|
|
679
|
+
model_group.add_argument(
|
|
680
|
+
"--enable-sleep-mode", **model_kwargs["enable_sleep_mode"]
|
|
681
|
+
)
|
|
682
|
+
model_group.add_argument("--model-impl", **model_kwargs["model_impl"])
|
|
683
|
+
model_group.add_argument(
|
|
684
|
+
"--override-attention-dtype", **model_kwargs["override_attention_dtype"]
|
|
685
|
+
)
|
|
686
|
+
model_group.add_argument(
|
|
687
|
+
"--logits-processors", **model_kwargs["logits_processors"]
|
|
688
|
+
)
|
|
689
|
+
model_group.add_argument(
|
|
690
|
+
"--io-processor-plugin", **model_kwargs["io_processor_plugin"]
|
|
691
|
+
)
|
|
692
|
+
|
|
693
|
+
# Model loading arguments
|
|
694
|
+
load_kwargs = get_kwargs(LoadConfig)
|
|
695
|
+
load_group = parser.add_argument_group(
|
|
696
|
+
title="LoadConfig",
|
|
697
|
+
description=LoadConfig.__doc__,
|
|
698
|
+
)
|
|
699
|
+
load_group.add_argument("--load-format", **load_kwargs["load_format"])
|
|
700
|
+
load_group.add_argument("--download-dir", **load_kwargs["download_dir"])
|
|
701
|
+
load_group.add_argument(
|
|
702
|
+
"--safetensors-load-strategy", **load_kwargs["safetensors_load_strategy"]
|
|
703
|
+
)
|
|
704
|
+
load_group.add_argument(
|
|
705
|
+
"--model-loader-extra-config", **load_kwargs["model_loader_extra_config"]
|
|
706
|
+
)
|
|
707
|
+
load_group.add_argument("--ignore-patterns", **load_kwargs["ignore_patterns"])
|
|
708
|
+
load_group.add_argument("--use-tqdm-on-load", **load_kwargs["use_tqdm_on_load"])
|
|
709
|
+
load_group.add_argument(
|
|
710
|
+
"--pt-load-map-location", **load_kwargs["pt_load_map_location"]
|
|
711
|
+
)
|
|
712
|
+
|
|
713
|
+
# Structured outputs arguments
|
|
714
|
+
structured_outputs_kwargs = get_kwargs(StructuredOutputsConfig)
|
|
715
|
+
structured_outputs_group = parser.add_argument_group(
|
|
716
|
+
title="StructuredOutputsConfig",
|
|
717
|
+
description=StructuredOutputsConfig.__doc__,
|
|
718
|
+
)
|
|
719
|
+
structured_outputs_group.add_argument(
|
|
720
|
+
"--reasoning-parser",
|
|
721
|
+
# Choices need to be validated after parsing to include plugins
|
|
722
|
+
**structured_outputs_kwargs["reasoning_parser"],
|
|
723
|
+
)
|
|
724
|
+
structured_outputs_group.add_argument(
|
|
725
|
+
"--reasoning-parser-plugin",
|
|
726
|
+
**structured_outputs_kwargs["reasoning_parser_plugin"],
|
|
727
|
+
)
|
|
728
|
+
# Deprecated guided decoding arguments
|
|
729
|
+
for arg, type in [
|
|
730
|
+
("--guided-decoding-backend", str),
|
|
731
|
+
("--guided-decoding-disable-fallback", bool),
|
|
732
|
+
("--guided-decoding-disable-any-whitespace", bool),
|
|
733
|
+
("--guided-decoding-disable-additional-properties", bool),
|
|
734
|
+
]:
|
|
735
|
+
structured_outputs_group.add_argument(
|
|
736
|
+
arg,
|
|
737
|
+
type=type,
|
|
738
|
+
help=(f"[DEPRECATED] {arg} will be removed in v0.12.0."),
|
|
739
|
+
deprecated=True,
|
|
740
|
+
)
|
|
741
|
+
|
|
742
|
+
# Parallel arguments
|
|
743
|
+
parallel_kwargs = get_kwargs(ParallelConfig)
|
|
744
|
+
parallel_group = parser.add_argument_group(
|
|
745
|
+
title="ParallelConfig",
|
|
746
|
+
description=ParallelConfig.__doc__,
|
|
747
|
+
)
|
|
748
|
+
parallel_group.add_argument(
|
|
749
|
+
"--distributed-executor-backend",
|
|
750
|
+
**parallel_kwargs["distributed_executor_backend"],
|
|
751
|
+
)
|
|
752
|
+
parallel_group.add_argument(
|
|
753
|
+
"--pipeline-parallel-size",
|
|
754
|
+
"-pp",
|
|
755
|
+
**parallel_kwargs["pipeline_parallel_size"],
|
|
756
|
+
)
|
|
757
|
+
parallel_group.add_argument("--master-addr", **parallel_kwargs["master_addr"])
|
|
758
|
+
parallel_group.add_argument("--master-port", **parallel_kwargs["master_port"])
|
|
759
|
+
parallel_group.add_argument("--nnodes", "-n", **parallel_kwargs["nnodes"])
|
|
760
|
+
parallel_group.add_argument("--node-rank", "-r", **parallel_kwargs["node_rank"])
|
|
761
|
+
parallel_group.add_argument(
|
|
762
|
+
"--tensor-parallel-size", "-tp", **parallel_kwargs["tensor_parallel_size"]
|
|
763
|
+
)
|
|
764
|
+
parallel_group.add_argument(
|
|
765
|
+
"--decode-context-parallel-size",
|
|
766
|
+
"-dcp",
|
|
767
|
+
**parallel_kwargs["decode_context_parallel_size"],
|
|
768
|
+
)
|
|
769
|
+
parallel_group.add_argument(
|
|
770
|
+
"--dcp-kv-cache-interleave-size",
|
|
771
|
+
**parallel_kwargs["dcp_kv_cache_interleave_size"],
|
|
772
|
+
)
|
|
773
|
+
parallel_group.add_argument(
|
|
774
|
+
"--data-parallel-size", "-dp", **parallel_kwargs["data_parallel_size"]
|
|
775
|
+
)
|
|
776
|
+
parallel_group.add_argument(
|
|
777
|
+
"--data-parallel-rank",
|
|
778
|
+
"-dpn",
|
|
779
|
+
type=int,
|
|
780
|
+
help="Data parallel rank of this instance. "
|
|
781
|
+
"When set, enables external load balancer mode.",
|
|
782
|
+
)
|
|
783
|
+
parallel_group.add_argument(
|
|
784
|
+
"--data-parallel-start-rank",
|
|
785
|
+
"-dpr",
|
|
786
|
+
type=int,
|
|
787
|
+
help="Starting data parallel rank for secondary nodes.",
|
|
788
|
+
)
|
|
789
|
+
parallel_group.add_argument(
|
|
790
|
+
"--data-parallel-size-local",
|
|
791
|
+
"-dpl",
|
|
792
|
+
type=int,
|
|
793
|
+
help="Number of data parallel replicas to run on this node.",
|
|
794
|
+
)
|
|
795
|
+
parallel_group.add_argument(
|
|
796
|
+
"--data-parallel-address",
|
|
797
|
+
"-dpa",
|
|
798
|
+
type=str,
|
|
799
|
+
help="Address of data parallel cluster head-node.",
|
|
800
|
+
)
|
|
801
|
+
parallel_group.add_argument(
|
|
802
|
+
"--data-parallel-rpc-port",
|
|
803
|
+
"-dpp",
|
|
804
|
+
type=int,
|
|
805
|
+
help="Port for data parallel RPC communication.",
|
|
806
|
+
)
|
|
807
|
+
parallel_group.add_argument(
|
|
808
|
+
"--data-parallel-backend",
|
|
809
|
+
"-dpb",
|
|
810
|
+
type=str,
|
|
811
|
+
default="mp",
|
|
812
|
+
help='Backend for data parallel, either "mp" or "ray".',
|
|
813
|
+
)
|
|
814
|
+
parallel_group.add_argument(
|
|
815
|
+
"--data-parallel-hybrid-lb",
|
|
816
|
+
"-dph",
|
|
817
|
+
**parallel_kwargs["data_parallel_hybrid_lb"],
|
|
818
|
+
)
|
|
819
|
+
parallel_group.add_argument(
|
|
820
|
+
"--data-parallel-external-lb",
|
|
821
|
+
"-dpe",
|
|
822
|
+
**parallel_kwargs["data_parallel_external_lb"],
|
|
823
|
+
)
|
|
824
|
+
parallel_group.add_argument(
|
|
825
|
+
"--enable-expert-parallel", **parallel_kwargs["enable_expert_parallel"]
|
|
826
|
+
)
|
|
827
|
+
parallel_group.add_argument(
|
|
828
|
+
"--all2all-backend", **parallel_kwargs["all2all_backend"]
|
|
829
|
+
)
|
|
830
|
+
parallel_group.add_argument("--enable-dbo", **parallel_kwargs["enable_dbo"])
|
|
831
|
+
parallel_group.add_argument(
|
|
832
|
+
"--dbo-decode-token-threshold",
|
|
833
|
+
**parallel_kwargs["dbo_decode_token_threshold"],
|
|
834
|
+
)
|
|
835
|
+
parallel_group.add_argument(
|
|
836
|
+
"--dbo-prefill-token-threshold",
|
|
837
|
+
**parallel_kwargs["dbo_prefill_token_threshold"],
|
|
838
|
+
)
|
|
839
|
+
parallel_group.add_argument(
|
|
840
|
+
"--disable-nccl-for-dp-synchronization",
|
|
841
|
+
**parallel_kwargs["disable_nccl_for_dp_synchronization"],
|
|
842
|
+
)
|
|
843
|
+
parallel_group.add_argument("--enable-eplb", **parallel_kwargs["enable_eplb"])
|
|
844
|
+
parallel_group.add_argument("--eplb-config", **parallel_kwargs["eplb_config"])
|
|
845
|
+
parallel_group.add_argument(
|
|
846
|
+
"--expert-placement-strategy",
|
|
847
|
+
**parallel_kwargs["expert_placement_strategy"],
|
|
848
|
+
)
|
|
849
|
+
parallel_group.add_argument(
|
|
850
|
+
"--num-redundant-experts",
|
|
851
|
+
type=int,
|
|
852
|
+
help="[DEPRECATED] --num-redundant-experts will be removed in v0.12.0.",
|
|
853
|
+
deprecated=True,
|
|
854
|
+
)
|
|
855
|
+
parallel_group.add_argument(
|
|
856
|
+
"--eplb-window-size",
|
|
857
|
+
type=int,
|
|
858
|
+
help="[DEPRECATED] --eplb-window-size will be removed in v0.12.0.",
|
|
859
|
+
deprecated=True,
|
|
860
|
+
)
|
|
861
|
+
parallel_group.add_argument(
|
|
862
|
+
"--eplb-step-interval",
|
|
863
|
+
type=int,
|
|
864
|
+
help="[DEPRECATED] --eplb-step-interval will be removed in v0.12.0.",
|
|
865
|
+
deprecated=True,
|
|
866
|
+
)
|
|
867
|
+
parallel_group.add_argument(
|
|
868
|
+
"--eplb-log-balancedness",
|
|
869
|
+
action=argparse.BooleanOptionalAction,
|
|
870
|
+
help="[DEPRECATED] --eplb-log-balancedness will be removed in v0.12.0.",
|
|
871
|
+
deprecated=True,
|
|
872
|
+
)
|
|
873
|
+
|
|
874
|
+
parallel_group.add_argument(
|
|
875
|
+
"--max-parallel-loading-workers",
|
|
876
|
+
**parallel_kwargs["max_parallel_loading_workers"],
|
|
877
|
+
)
|
|
878
|
+
parallel_group.add_argument(
|
|
879
|
+
"--ray-workers-use-nsight", **parallel_kwargs["ray_workers_use_nsight"]
|
|
880
|
+
)
|
|
881
|
+
parallel_group.add_argument(
|
|
882
|
+
"--disable-custom-all-reduce",
|
|
883
|
+
**parallel_kwargs["disable_custom_all_reduce"],
|
|
884
|
+
)
|
|
885
|
+
parallel_group.add_argument("--worker-cls", **parallel_kwargs["worker_cls"])
|
|
886
|
+
parallel_group.add_argument(
|
|
887
|
+
"--worker-extension-cls", **parallel_kwargs["worker_extension_cls"]
|
|
888
|
+
)
|
|
889
|
+
parallel_group.add_argument(
|
|
890
|
+
"--enable-multimodal-encoder-data-parallel",
|
|
891
|
+
action="store_true",
|
|
892
|
+
deprecated=True,
|
|
893
|
+
)
|
|
894
|
+
|
|
895
|
+
# KV cache arguments
|
|
896
|
+
cache_kwargs = get_kwargs(CacheConfig)
|
|
897
|
+
cache_group = parser.add_argument_group(
|
|
898
|
+
title="CacheConfig",
|
|
899
|
+
description=CacheConfig.__doc__,
|
|
900
|
+
)
|
|
901
|
+
cache_group.add_argument("--block-size", **cache_kwargs["block_size"])
|
|
902
|
+
cache_group.add_argument(
|
|
903
|
+
"--gpu-memory-utilization", **cache_kwargs["gpu_memory_utilization"]
|
|
904
|
+
)
|
|
905
|
+
cache_group.add_argument(
|
|
906
|
+
"--kv-cache-memory-bytes", **cache_kwargs["kv_cache_memory_bytes"]
|
|
907
|
+
)
|
|
908
|
+
cache_group.add_argument("--swap-space", **cache_kwargs["swap_space"])
|
|
909
|
+
cache_group.add_argument("--kv-cache-dtype", **cache_kwargs["cache_dtype"])
|
|
910
|
+
cache_group.add_argument(
|
|
911
|
+
"--num-gpu-blocks-override", **cache_kwargs["num_gpu_blocks_override"]
|
|
912
|
+
)
|
|
913
|
+
cache_group.add_argument(
|
|
914
|
+
"--enable-prefix-caching", **cache_kwargs["enable_prefix_caching"]
|
|
915
|
+
)
|
|
916
|
+
cache_group.add_argument(
|
|
917
|
+
"--prefix-caching-hash-algo", **cache_kwargs["prefix_caching_hash_algo"]
|
|
918
|
+
)
|
|
919
|
+
cache_group.add_argument("--cpu-offload-gb", **cache_kwargs["cpu_offload_gb"])
|
|
920
|
+
cache_group.add_argument(
|
|
921
|
+
"--calculate-kv-scales", **cache_kwargs["calculate_kv_scales"]
|
|
922
|
+
)
|
|
923
|
+
cache_group.add_argument(
|
|
924
|
+
"--kv-sharing-fast-prefill", **cache_kwargs["kv_sharing_fast_prefill"]
|
|
925
|
+
)
|
|
926
|
+
cache_group.add_argument(
|
|
927
|
+
"--mamba-cache-dtype", **cache_kwargs["mamba_cache_dtype"]
|
|
928
|
+
)
|
|
929
|
+
cache_group.add_argument(
|
|
930
|
+
"--mamba-ssm-cache-dtype", **cache_kwargs["mamba_ssm_cache_dtype"]
|
|
931
|
+
)
|
|
932
|
+
cache_group.add_argument(
|
|
933
|
+
"--mamba-block-size", **cache_kwargs["mamba_block_size"]
|
|
934
|
+
)
|
|
935
|
+
cache_group.add_argument(
|
|
936
|
+
"--kv-offloading-size", **cache_kwargs["kv_offloading_size"]
|
|
937
|
+
)
|
|
938
|
+
cache_group.add_argument(
|
|
939
|
+
"--kv-offloading-backend", **cache_kwargs["kv_offloading_backend"]
|
|
940
|
+
)
|
|
941
|
+
|
|
942
|
+
# Multimodal related configs
|
|
943
|
+
multimodal_kwargs = get_kwargs(MultiModalConfig)
|
|
944
|
+
multimodal_group = parser.add_argument_group(
|
|
945
|
+
title="MultiModalConfig",
|
|
946
|
+
description=MultiModalConfig.__doc__,
|
|
947
|
+
)
|
|
948
|
+
multimodal_group.add_argument(
|
|
949
|
+
"--limit-mm-per-prompt", **multimodal_kwargs["limit_per_prompt"]
|
|
950
|
+
)
|
|
951
|
+
multimodal_group.add_argument(
|
|
952
|
+
"--enable-mm-embeds", **multimodal_kwargs["enable_mm_embeds"]
|
|
953
|
+
)
|
|
954
|
+
multimodal_group.add_argument(
|
|
955
|
+
"--media-io-kwargs", **multimodal_kwargs["media_io_kwargs"]
|
|
956
|
+
)
|
|
957
|
+
multimodal_group.add_argument(
|
|
958
|
+
"--mm-processor-kwargs", **multimodal_kwargs["mm_processor_kwargs"]
|
|
959
|
+
)
|
|
960
|
+
multimodal_group.add_argument(
|
|
961
|
+
"--mm-processor-cache-gb", **multimodal_kwargs["mm_processor_cache_gb"]
|
|
962
|
+
)
|
|
963
|
+
multimodal_group.add_argument(
|
|
964
|
+
"--disable-mm-preprocessor-cache", action="store_true", deprecated=True
|
|
965
|
+
)
|
|
966
|
+
multimodal_group.add_argument(
|
|
967
|
+
"--mm-processor-cache-type", **multimodal_kwargs["mm_processor_cache_type"]
|
|
968
|
+
)
|
|
969
|
+
multimodal_group.add_argument(
|
|
970
|
+
"--mm-shm-cache-max-object-size-mb",
|
|
971
|
+
**multimodal_kwargs["mm_shm_cache_max_object_size_mb"],
|
|
972
|
+
)
|
|
973
|
+
multimodal_group.add_argument(
|
|
974
|
+
"--mm-encoder-tp-mode", **multimodal_kwargs["mm_encoder_tp_mode"]
|
|
975
|
+
)
|
|
976
|
+
multimodal_group.add_argument(
|
|
977
|
+
"--mm-encoder-attn-backend",
|
|
978
|
+
**multimodal_kwargs["mm_encoder_attn_backend"],
|
|
979
|
+
)
|
|
980
|
+
multimodal_group.add_argument(
|
|
981
|
+
"--interleave-mm-strings", **multimodal_kwargs["interleave_mm_strings"]
|
|
982
|
+
)
|
|
983
|
+
multimodal_group.add_argument(
|
|
984
|
+
"--skip-mm-profiling", **multimodal_kwargs["skip_mm_profiling"]
|
|
985
|
+
)
|
|
986
|
+
|
|
987
|
+
multimodal_group.add_argument(
|
|
988
|
+
"--video-pruning-rate", **multimodal_kwargs["video_pruning_rate"]
|
|
989
|
+
)
|
|
990
|
+
|
|
991
|
+
# LoRA related configs
|
|
992
|
+
lora_kwargs = get_kwargs(LoRAConfig)
|
|
993
|
+
lora_group = parser.add_argument_group(
|
|
994
|
+
title="LoRAConfig",
|
|
995
|
+
description=LoRAConfig.__doc__,
|
|
996
|
+
)
|
|
997
|
+
lora_group.add_argument(
|
|
998
|
+
"--enable-lora",
|
|
999
|
+
action=argparse.BooleanOptionalAction,
|
|
1000
|
+
help="If True, enable handling of LoRA adapters.",
|
|
1001
|
+
)
|
|
1002
|
+
lora_group.add_argument("--max-loras", **lora_kwargs["max_loras"])
|
|
1003
|
+
lora_group.add_argument("--max-lora-rank", **lora_kwargs["max_lora_rank"])
|
|
1004
|
+
lora_group.add_argument(
|
|
1005
|
+
"--lora-extra-vocab-size", **lora_kwargs["lora_extra_vocab_size"]
|
|
1006
|
+
)
|
|
1007
|
+
lora_group.add_argument(
|
|
1008
|
+
"--lora-dtype",
|
|
1009
|
+
**lora_kwargs["lora_dtype"],
|
|
1010
|
+
)
|
|
1011
|
+
lora_group.add_argument("--max-cpu-loras", **lora_kwargs["max_cpu_loras"])
|
|
1012
|
+
lora_group.add_argument(
|
|
1013
|
+
"--fully-sharded-loras", **lora_kwargs["fully_sharded_loras"]
|
|
1014
|
+
)
|
|
1015
|
+
lora_group.add_argument("--default-mm-loras", **lora_kwargs["default_mm_loras"])
|
|
1016
|
+
|
|
1017
|
+
# Observability arguments
|
|
1018
|
+
observability_kwargs = get_kwargs(ObservabilityConfig)
|
|
1019
|
+
observability_group = parser.add_argument_group(
|
|
1020
|
+
title="ObservabilityConfig",
|
|
1021
|
+
description=ObservabilityConfig.__doc__,
|
|
1022
|
+
)
|
|
1023
|
+
observability_group.add_argument(
|
|
1024
|
+
"--show-hidden-metrics-for-version",
|
|
1025
|
+
**observability_kwargs["show_hidden_metrics_for_version"],
|
|
1026
|
+
)
|
|
1027
|
+
observability_group.add_argument(
|
|
1028
|
+
"--otlp-traces-endpoint", **observability_kwargs["otlp_traces_endpoint"]
|
|
1029
|
+
)
|
|
1030
|
+
# TODO: generalise this special case
|
|
1031
|
+
choices = observability_kwargs["collect_detailed_traces"]["choices"]
|
|
1032
|
+
metavar = f"{{{','.join(choices)}}}"
|
|
1033
|
+
observability_kwargs["collect_detailed_traces"]["metavar"] = metavar
|
|
1034
|
+
observability_kwargs["collect_detailed_traces"]["choices"] += [
|
|
1035
|
+
",".join(p) for p in permutations(get_args(DetailedTraceModules), r=2)
|
|
1036
|
+
]
|
|
1037
|
+
observability_group.add_argument(
|
|
1038
|
+
"--collect-detailed-traces",
|
|
1039
|
+
**observability_kwargs["collect_detailed_traces"],
|
|
1040
|
+
)
|
|
1041
|
+
|
|
1042
|
+
# Scheduler arguments
|
|
1043
|
+
scheduler_kwargs = get_kwargs(SchedulerConfig)
|
|
1044
|
+
scheduler_group = parser.add_argument_group(
|
|
1045
|
+
title="SchedulerConfig",
|
|
1046
|
+
description=SchedulerConfig.__doc__,
|
|
1047
|
+
)
|
|
1048
|
+
scheduler_group.add_argument(
|
|
1049
|
+
"--max-num-batched-tokens",
|
|
1050
|
+
**{
|
|
1051
|
+
**scheduler_kwargs["max_num_batched_tokens"],
|
|
1052
|
+
"default": None,
|
|
1053
|
+
},
|
|
1054
|
+
)
|
|
1055
|
+
scheduler_group.add_argument(
|
|
1056
|
+
"--max-num-seqs",
|
|
1057
|
+
**{
|
|
1058
|
+
**scheduler_kwargs["max_num_seqs"],
|
|
1059
|
+
"default": None,
|
|
1060
|
+
},
|
|
1061
|
+
)
|
|
1062
|
+
scheduler_group.add_argument(
|
|
1063
|
+
"--max-num-partial-prefills", **scheduler_kwargs["max_num_partial_prefills"]
|
|
1064
|
+
)
|
|
1065
|
+
scheduler_group.add_argument(
|
|
1066
|
+
"--max-long-partial-prefills",
|
|
1067
|
+
**scheduler_kwargs["max_long_partial_prefills"],
|
|
1068
|
+
)
|
|
1069
|
+
scheduler_group.add_argument(
|
|
1070
|
+
"--long-prefill-token-threshold",
|
|
1071
|
+
**scheduler_kwargs["long_prefill_token_threshold"],
|
|
1072
|
+
)
|
|
1073
|
+
scheduler_group.add_argument(
|
|
1074
|
+
"--num-lookahead-slots", **scheduler_kwargs["num_lookahead_slots"]
|
|
1075
|
+
)
|
|
1076
|
+
# multi-step scheduling has been removed; corresponding arguments
|
|
1077
|
+
# are no longer supported.
|
|
1078
|
+
scheduler_group.add_argument(
|
|
1079
|
+
"--scheduling-policy", **scheduler_kwargs["policy"]
|
|
1080
|
+
)
|
|
1081
|
+
scheduler_group.add_argument(
|
|
1082
|
+
"--enable-chunked-prefill",
|
|
1083
|
+
**{
|
|
1084
|
+
**scheduler_kwargs["enable_chunked_prefill"],
|
|
1085
|
+
"default": None,
|
|
1086
|
+
},
|
|
1087
|
+
)
|
|
1088
|
+
scheduler_group.add_argument(
|
|
1089
|
+
"--disable-chunked-mm-input", **scheduler_kwargs["disable_chunked_mm_input"]
|
|
1090
|
+
)
|
|
1091
|
+
scheduler_group.add_argument(
|
|
1092
|
+
"--scheduler-cls", **scheduler_kwargs["scheduler_cls"]
|
|
1093
|
+
)
|
|
1094
|
+
scheduler_group.add_argument(
|
|
1095
|
+
"--disable-hybrid-kv-cache-manager",
|
|
1096
|
+
**scheduler_kwargs["disable_hybrid_kv_cache_manager"],
|
|
1097
|
+
)
|
|
1098
|
+
scheduler_group.add_argument(
|
|
1099
|
+
"--async-scheduling", **scheduler_kwargs["async_scheduling"]
|
|
1100
|
+
)
|
|
1101
|
+
scheduler_group.add_argument(
|
|
1102
|
+
"--stream-interval", **scheduler_kwargs["stream_interval"]
|
|
1103
|
+
)
|
|
1104
|
+
|
|
1105
|
+
# Compilation arguments
|
|
1106
|
+
compilation_kwargs = get_kwargs(CompilationConfig)
|
|
1107
|
+
compilation_group = parser.add_argument_group(
|
|
1108
|
+
title="CompilationConfig",
|
|
1109
|
+
description=CompilationConfig.__doc__,
|
|
1110
|
+
)
|
|
1111
|
+
compilation_group.add_argument(
|
|
1112
|
+
"--cudagraph-capture-sizes", **compilation_kwargs["cudagraph_capture_sizes"]
|
|
1113
|
+
)
|
|
1114
|
+
compilation_kwargs["cudagraph_capture_sizes"]["help"] = (
|
|
1115
|
+
"--cuda-graph-sizes is deprecated and will be removed in v0.13.0 or v1.0.0,"
|
|
1116
|
+
" whichever is soonest. Please use --cudagraph-capture-sizes instead."
|
|
1117
|
+
)
|
|
1118
|
+
compilation_group.add_argument(
|
|
1119
|
+
"--cuda-graph-sizes",
|
|
1120
|
+
**compilation_kwargs["cudagraph_capture_sizes"],
|
|
1121
|
+
deprecated=True,
|
|
1122
|
+
)
|
|
1123
|
+
compilation_group.add_argument(
|
|
1124
|
+
"--max-cudagraph-capture-size",
|
|
1125
|
+
**compilation_kwargs["max_cudagraph_capture_size"],
|
|
1126
|
+
)
|
|
1127
|
+
|
|
1128
|
+
# vLLM arguments
|
|
1129
|
+
vllm_kwargs = get_kwargs(VllmConfig)
|
|
1130
|
+
vllm_group = parser.add_argument_group(
|
|
1131
|
+
title="VllmConfig",
|
|
1132
|
+
description=VllmConfig.__doc__,
|
|
1133
|
+
)
|
|
1134
|
+
# We construct SpeculativeConfig using fields from other configs in
|
|
1135
|
+
# create_engine_config. So we set the type to a JSON string here to
|
|
1136
|
+
# delay the Pydantic validation that comes with SpeculativeConfig.
|
|
1137
|
+
vllm_kwargs["speculative_config"]["type"] = optional_type(json.loads)
|
|
1138
|
+
vllm_group.add_argument(
|
|
1139
|
+
"--speculative-config", **vllm_kwargs["speculative_config"]
|
|
1140
|
+
)
|
|
1141
|
+
vllm_group.add_argument(
|
|
1142
|
+
"--kv-transfer-config", **vllm_kwargs["kv_transfer_config"]
|
|
1143
|
+
)
|
|
1144
|
+
vllm_group.add_argument("--kv-events-config", **vllm_kwargs["kv_events_config"])
|
|
1145
|
+
vllm_group.add_argument(
|
|
1146
|
+
"--ec-transfer-config", **vllm_kwargs["ec_transfer_config"]
|
|
1147
|
+
)
|
|
1148
|
+
vllm_group.add_argument(
|
|
1149
|
+
"--compilation-config", "-O", **vllm_kwargs["compilation_config"]
|
|
1150
|
+
)
|
|
1151
|
+
vllm_group.add_argument(
|
|
1152
|
+
"--additional-config", **vllm_kwargs["additional_config"]
|
|
1153
|
+
)
|
|
1154
|
+
vllm_group.add_argument(
|
|
1155
|
+
"--structured-outputs-config", **vllm_kwargs["structured_outputs_config"]
|
|
1156
|
+
)
|
|
1157
|
+
|
|
1158
|
+
# Other arguments
|
|
1159
|
+
parser.add_argument(
|
|
1160
|
+
"--disable-log-stats",
|
|
1161
|
+
action="store_true",
|
|
1162
|
+
help="Disable logging statistics.",
|
|
1163
|
+
)
|
|
1164
|
+
|
|
1165
|
+
parser.add_argument(
|
|
1166
|
+
"--aggregate-engine-logging",
|
|
1167
|
+
action="store_true",
|
|
1168
|
+
help="Log aggregate rather than per-engine statistics "
|
|
1169
|
+
"when using data parallelism.",
|
|
1170
|
+
)
|
|
1171
|
+
return parser
|
|
1172
|
+
|
|
1173
|
+
@classmethod
|
|
1174
|
+
def from_cli_args(cls, args: argparse.Namespace):
|
|
1175
|
+
# Get the list of attributes of this dataclass.
|
|
1176
|
+
attrs = [attr.name for attr in dataclasses.fields(cls)]
|
|
1177
|
+
# Set the attributes from the parsed arguments.
|
|
1178
|
+
engine_args = cls(
|
|
1179
|
+
**{attr: getattr(args, attr) for attr in attrs if hasattr(args, attr)}
|
|
1180
|
+
)
|
|
1181
|
+
return engine_args
|
|
1182
|
+
|
|
1183
|
+
def create_model_config(self) -> ModelConfig:
|
|
1184
|
+
# gguf file needs a specific model loader and doesn't use hf_repo
|
|
1185
|
+
if check_gguf_file(self.model):
|
|
1186
|
+
self.quantization = self.load_format = "gguf"
|
|
1187
|
+
|
|
1188
|
+
if self.disable_mm_preprocessor_cache:
|
|
1189
|
+
logger.warning(
|
|
1190
|
+
"`--disable-mm-preprocessor-cache` is deprecated "
|
|
1191
|
+
"and will be removed in v0.13. "
|
|
1192
|
+
"Please use `--mm-processor-cache-gb 0` instead.",
|
|
1193
|
+
)
|
|
1194
|
+
|
|
1195
|
+
self.mm_processor_cache_gb = 0
|
|
1196
|
+
elif envs.VLLM_MM_INPUT_CACHE_GIB != 4:
|
|
1197
|
+
logger.warning(
|
|
1198
|
+
"VLLM_MM_INPUT_CACHE_GIB` is deprecated "
|
|
1199
|
+
"and will be removed in v0.13. "
|
|
1200
|
+
"Please use `--mm-processor-cache-gb %d` instead.",
|
|
1201
|
+
envs.VLLM_MM_INPUT_CACHE_GIB,
|
|
1202
|
+
)
|
|
1203
|
+
|
|
1204
|
+
self.mm_processor_cache_gb = envs.VLLM_MM_INPUT_CACHE_GIB
|
|
1205
|
+
|
|
1206
|
+
if self.enable_multimodal_encoder_data_parallel:
|
|
1207
|
+
logger.warning(
|
|
1208
|
+
"--enable-multimodal-encoder-data-parallel` is deprecated "
|
|
1209
|
+
"and will be removed in v0.13. "
|
|
1210
|
+
"Please use `--mm-encoder-tp-mode data` instead."
|
|
1211
|
+
)
|
|
1212
|
+
|
|
1213
|
+
self.mm_encoder_tp_mode = "data"
|
|
1214
|
+
|
|
1215
|
+
return ModelConfig(
|
|
1216
|
+
model=self.model,
|
|
1217
|
+
hf_config_path=self.hf_config_path,
|
|
1218
|
+
runner=self.runner,
|
|
1219
|
+
convert=self.convert,
|
|
1220
|
+
task=self.task,
|
|
1221
|
+
tokenizer=self.tokenizer,
|
|
1222
|
+
tokenizer_mode=self.tokenizer_mode,
|
|
1223
|
+
trust_remote_code=self.trust_remote_code,
|
|
1224
|
+
allowed_local_media_path=self.allowed_local_media_path,
|
|
1225
|
+
allowed_media_domains=self.allowed_media_domains,
|
|
1226
|
+
dtype=self.dtype,
|
|
1227
|
+
seed=self.seed,
|
|
1228
|
+
revision=self.revision,
|
|
1229
|
+
code_revision=self.code_revision,
|
|
1230
|
+
hf_token=self.hf_token,
|
|
1231
|
+
hf_overrides=self.hf_overrides,
|
|
1232
|
+
tokenizer_revision=self.tokenizer_revision,
|
|
1233
|
+
max_model_len=self.max_model_len,
|
|
1234
|
+
quantization=self.quantization,
|
|
1235
|
+
enforce_eager=self.enforce_eager,
|
|
1236
|
+
max_logprobs=self.max_logprobs,
|
|
1237
|
+
logprobs_mode=self.logprobs_mode,
|
|
1238
|
+
disable_sliding_window=self.disable_sliding_window,
|
|
1239
|
+
disable_cascade_attn=self.disable_cascade_attn,
|
|
1240
|
+
skip_tokenizer_init=self.skip_tokenizer_init,
|
|
1241
|
+
enable_prompt_embeds=self.enable_prompt_embeds,
|
|
1242
|
+
served_model_name=self.served_model_name,
|
|
1243
|
+
limit_mm_per_prompt=self.limit_mm_per_prompt,
|
|
1244
|
+
enable_mm_embeds=self.enable_mm_embeds,
|
|
1245
|
+
interleave_mm_strings=self.interleave_mm_strings,
|
|
1246
|
+
media_io_kwargs=self.media_io_kwargs,
|
|
1247
|
+
skip_mm_profiling=self.skip_mm_profiling,
|
|
1248
|
+
config_format=self.config_format,
|
|
1249
|
+
mm_processor_kwargs=self.mm_processor_kwargs,
|
|
1250
|
+
mm_processor_cache_gb=self.mm_processor_cache_gb,
|
|
1251
|
+
mm_processor_cache_type=self.mm_processor_cache_type,
|
|
1252
|
+
mm_shm_cache_max_object_size_mb=self.mm_shm_cache_max_object_size_mb,
|
|
1253
|
+
mm_encoder_tp_mode=self.mm_encoder_tp_mode,
|
|
1254
|
+
mm_encoder_attn_backend=self.mm_encoder_attn_backend,
|
|
1255
|
+
pooler_config=self.pooler_config,
|
|
1256
|
+
override_pooler_config=self.override_pooler_config,
|
|
1257
|
+
logits_processor_pattern=self.logits_processor_pattern,
|
|
1258
|
+
generation_config=self.generation_config,
|
|
1259
|
+
override_generation_config=self.override_generation_config,
|
|
1260
|
+
enable_sleep_mode=self.enable_sleep_mode,
|
|
1261
|
+
model_impl=self.model_impl,
|
|
1262
|
+
override_attention_dtype=self.override_attention_dtype,
|
|
1263
|
+
logits_processors=self.logits_processors,
|
|
1264
|
+
video_pruning_rate=self.video_pruning_rate,
|
|
1265
|
+
io_processor_plugin=self.io_processor_plugin,
|
|
1266
|
+
)
|
|
1267
|
+
|
|
1268
|
+
def validate_tensorizer_args(self):
|
|
1269
|
+
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
|
1270
|
+
|
|
1271
|
+
for key in self.model_loader_extra_config:
|
|
1272
|
+
if key in TensorizerConfig._fields:
|
|
1273
|
+
self.model_loader_extra_config["tensorizer_config"][key] = (
|
|
1274
|
+
self.model_loader_extra_config[key]
|
|
1275
|
+
)
|
|
1276
|
+
|
|
1277
|
+
def create_load_config(self) -> LoadConfig:
|
|
1278
|
+
if self.quantization == "bitsandbytes":
|
|
1279
|
+
self.load_format = "bitsandbytes"
|
|
1280
|
+
|
|
1281
|
+
if self.load_format == "tensorizer":
|
|
1282
|
+
if hasattr(self.model_loader_extra_config, "to_serializable"):
|
|
1283
|
+
self.model_loader_extra_config = (
|
|
1284
|
+
self.model_loader_extra_config.to_serializable()
|
|
1285
|
+
)
|
|
1286
|
+
self.model_loader_extra_config["tensorizer_config"] = {}
|
|
1287
|
+
self.model_loader_extra_config["tensorizer_config"]["tensorizer_dir"] = (
|
|
1288
|
+
self.model
|
|
1289
|
+
)
|
|
1290
|
+
self.validate_tensorizer_args()
|
|
1291
|
+
|
|
1292
|
+
return LoadConfig(
|
|
1293
|
+
load_format=self.load_format,
|
|
1294
|
+
download_dir=self.download_dir,
|
|
1295
|
+
safetensors_load_strategy=self.safetensors_load_strategy,
|
|
1296
|
+
device="cpu" if is_online_quantization(self.quantization) else None,
|
|
1297
|
+
model_loader_extra_config=self.model_loader_extra_config,
|
|
1298
|
+
ignore_patterns=self.ignore_patterns,
|
|
1299
|
+
use_tqdm_on_load=self.use_tqdm_on_load,
|
|
1300
|
+
pt_load_map_location=self.pt_load_map_location,
|
|
1301
|
+
)
|
|
1302
|
+
|
|
1303
|
+
def create_speculative_config(
|
|
1304
|
+
self,
|
|
1305
|
+
target_model_config: ModelConfig,
|
|
1306
|
+
target_parallel_config: ParallelConfig,
|
|
1307
|
+
) -> SpeculativeConfig | None:
|
|
1308
|
+
"""Initializes and returns a SpeculativeConfig object based on
|
|
1309
|
+
`speculative_config`.
|
|
1310
|
+
|
|
1311
|
+
This function utilizes `speculative_config` to create a
|
|
1312
|
+
SpeculativeConfig object. The `speculative_config` can either be
|
|
1313
|
+
provided as a JSON string input via CLI arguments or directly as a
|
|
1314
|
+
dictionary from the engine.
|
|
1315
|
+
"""
|
|
1316
|
+
if self.speculative_config is None:
|
|
1317
|
+
return None
|
|
1318
|
+
|
|
1319
|
+
# Note(Shangming): These parameters are not obtained from the cli arg
|
|
1320
|
+
# '--speculative-config' and must be passed in when creating the engine
|
|
1321
|
+
# config.
|
|
1322
|
+
self.speculative_config.update(
|
|
1323
|
+
{
|
|
1324
|
+
"target_model_config": target_model_config,
|
|
1325
|
+
"target_parallel_config": target_parallel_config,
|
|
1326
|
+
}
|
|
1327
|
+
)
|
|
1328
|
+
return SpeculativeConfig(**self.speculative_config)
|
|
1329
|
+
|
|
1330
|
+
def create_engine_config(
|
|
1331
|
+
self,
|
|
1332
|
+
usage_context: UsageContext | None = None,
|
|
1333
|
+
headless: bool = False,
|
|
1334
|
+
) -> VllmConfig:
|
|
1335
|
+
"""
|
|
1336
|
+
Create the VllmConfig.
|
|
1337
|
+
|
|
1338
|
+
NOTE: If VllmConfig is incompatible, we raise an error.
|
|
1339
|
+
"""
|
|
1340
|
+
current_platform.pre_register_and_update()
|
|
1341
|
+
|
|
1342
|
+
device_config = DeviceConfig(device=cast(Device, current_platform.device_type))
|
|
1343
|
+
|
|
1344
|
+
# Check if the model is a speculator and override model/tokenizer/config
|
|
1345
|
+
# BEFORE creating ModelConfig, so the config is created with the target model
|
|
1346
|
+
# Skip speculator detection for cloud storage models (eg: S3, GCS) since
|
|
1347
|
+
# HuggingFace cannot load configs directly from S3 URLs. S3 models can still
|
|
1348
|
+
# use speculators with explicit --speculative-config.
|
|
1349
|
+
if not is_cloud_storage(self.model):
|
|
1350
|
+
(self.model, self.tokenizer, self.speculative_config) = (
|
|
1351
|
+
maybe_override_with_speculators(
|
|
1352
|
+
model=self.model,
|
|
1353
|
+
tokenizer=self.tokenizer,
|
|
1354
|
+
revision=self.revision,
|
|
1355
|
+
trust_remote_code=self.trust_remote_code,
|
|
1356
|
+
vllm_speculative_config=self.speculative_config,
|
|
1357
|
+
)
|
|
1358
|
+
)
|
|
1359
|
+
|
|
1360
|
+
model_config = self.create_model_config()
|
|
1361
|
+
self.model = model_config.model
|
|
1362
|
+
self.tokenizer = model_config.tokenizer
|
|
1363
|
+
|
|
1364
|
+
self._check_feature_supported(model_config)
|
|
1365
|
+
|
|
1366
|
+
# Set default arguments for V1 Engine.
|
|
1367
|
+
self._set_default_args(usage_context, model_config)
|
|
1368
|
+
# Disable chunked prefill and prefix caching for:
|
|
1369
|
+
# POWER (ppc64le)/ARM/s390x/RISCV CPUs in V1
|
|
1370
|
+
if current_platform.is_cpu() and current_platform.get_cpu_architecture() in (
|
|
1371
|
+
CpuArchEnum.POWERPC,
|
|
1372
|
+
CpuArchEnum.S390X,
|
|
1373
|
+
CpuArchEnum.ARM,
|
|
1374
|
+
CpuArchEnum.RISCV,
|
|
1375
|
+
):
|
|
1376
|
+
logger.info(
|
|
1377
|
+
"Chunked prefill is not supported for ARM and POWER, "
|
|
1378
|
+
"S390X and RISC-V CPUs; "
|
|
1379
|
+
"disabling it for V1 backend."
|
|
1380
|
+
)
|
|
1381
|
+
self.enable_chunked_prefill = False
|
|
1382
|
+
logger.info(
|
|
1383
|
+
"Prefix caching is not supported for ARM and POWER, "
|
|
1384
|
+
"S390X and RISC-V CPUs; "
|
|
1385
|
+
"disabling it for V1 backend."
|
|
1386
|
+
)
|
|
1387
|
+
self.enable_prefix_caching = False
|
|
1388
|
+
|
|
1389
|
+
assert self.enable_chunked_prefill is not None
|
|
1390
|
+
|
|
1391
|
+
sliding_window: int | None = None
|
|
1392
|
+
if not is_interleaved(model_config.hf_text_config):
|
|
1393
|
+
# Only set CacheConfig.sliding_window if the model is all sliding
|
|
1394
|
+
# window. Otherwise CacheConfig.sliding_window will override the
|
|
1395
|
+
# global layers in interleaved sliding window models.
|
|
1396
|
+
sliding_window = model_config.get_sliding_window()
|
|
1397
|
+
|
|
1398
|
+
# Note(hc): In the current implementation of decode context
|
|
1399
|
+
# parallel(DCP), tp_size needs to be divisible by dcp_size,
|
|
1400
|
+
# because the world size does not change by dcp, it simply
|
|
1401
|
+
# reuses the GPUs of TP group, and split one TP group into
|
|
1402
|
+
# tp_size//dcp_size DCP groups.
|
|
1403
|
+
assert self.tensor_parallel_size % self.decode_context_parallel_size == 0, (
|
|
1404
|
+
f"tp_size={self.tensor_parallel_size} must be divisible by"
|
|
1405
|
+
f"dcp_size={self.decode_context_parallel_size}."
|
|
1406
|
+
)
|
|
1407
|
+
|
|
1408
|
+
cache_config = CacheConfig(
|
|
1409
|
+
block_size=self.block_size,
|
|
1410
|
+
gpu_memory_utilization=self.gpu_memory_utilization,
|
|
1411
|
+
kv_cache_memory_bytes=self.kv_cache_memory_bytes,
|
|
1412
|
+
swap_space=self.swap_space,
|
|
1413
|
+
cache_dtype=self.kv_cache_dtype,
|
|
1414
|
+
is_attention_free=model_config.is_attention_free,
|
|
1415
|
+
num_gpu_blocks_override=self.num_gpu_blocks_override,
|
|
1416
|
+
sliding_window=sliding_window,
|
|
1417
|
+
enable_prefix_caching=self.enable_prefix_caching,
|
|
1418
|
+
prefix_caching_hash_algo=self.prefix_caching_hash_algo,
|
|
1419
|
+
cpu_offload_gb=self.cpu_offload_gb,
|
|
1420
|
+
calculate_kv_scales=self.calculate_kv_scales,
|
|
1421
|
+
kv_sharing_fast_prefill=self.kv_sharing_fast_prefill,
|
|
1422
|
+
mamba_cache_dtype=self.mamba_cache_dtype,
|
|
1423
|
+
mamba_ssm_cache_dtype=self.mamba_ssm_cache_dtype,
|
|
1424
|
+
mamba_block_size=self.mamba_block_size,
|
|
1425
|
+
kv_offloading_size=self.kv_offloading_size,
|
|
1426
|
+
kv_offloading_backend=self.kv_offloading_backend,
|
|
1427
|
+
)
|
|
1428
|
+
|
|
1429
|
+
ray_runtime_env = None
|
|
1430
|
+
if is_ray_initialized():
|
|
1431
|
+
# Ray Serve LLM calls `create_engine_config` in the context
|
|
1432
|
+
# of a Ray task, therefore we check is_ray_initialized()
|
|
1433
|
+
# as opposed to is_in_ray_actor().
|
|
1434
|
+
import ray
|
|
1435
|
+
|
|
1436
|
+
ray_runtime_env = ray.get_runtime_context().runtime_env
|
|
1437
|
+
# Avoid logging sensitive environment variables
|
|
1438
|
+
sanitized_env = ray_runtime_env.to_dict() if ray_runtime_env else {}
|
|
1439
|
+
if "env_vars" in sanitized_env:
|
|
1440
|
+
sanitized_env["env_vars"] = {
|
|
1441
|
+
k: "***" for k in sanitized_env["env_vars"]
|
|
1442
|
+
}
|
|
1443
|
+
logger.info("Using ray runtime env (env vars redacted): %s", sanitized_env)
|
|
1444
|
+
|
|
1445
|
+
# Get the current placement group if Ray is initialized and
|
|
1446
|
+
# we are in a Ray actor. If so, then the placement group will be
|
|
1447
|
+
# passed to spawned processes.
|
|
1448
|
+
placement_group = None
|
|
1449
|
+
if is_in_ray_actor():
|
|
1450
|
+
import ray
|
|
1451
|
+
|
|
1452
|
+
# This call initializes Ray automatically if it is not initialized,
|
|
1453
|
+
# but we should not do this here.
|
|
1454
|
+
placement_group = ray.util.get_current_placement_group()
|
|
1455
|
+
|
|
1456
|
+
assert not headless or not self.data_parallel_hybrid_lb, (
|
|
1457
|
+
"data_parallel_hybrid_lb is not applicable in headless mode"
|
|
1458
|
+
)
|
|
1459
|
+
assert not (self.data_parallel_hybrid_lb and self.data_parallel_external_lb), (
|
|
1460
|
+
"data_parallel_hybrid_lb and data_parallel_external_lb cannot both be True."
|
|
1461
|
+
)
|
|
1462
|
+
assert self.data_parallel_backend == "mp" or self.nnodes == 1, (
|
|
1463
|
+
"nnodes > 1 is only supported with data_parallel_backend=mp"
|
|
1464
|
+
)
|
|
1465
|
+
inferred_data_parallel_rank = 0
|
|
1466
|
+
if self.nnodes > 1:
|
|
1467
|
+
world_size = (
|
|
1468
|
+
self.data_parallel_size
|
|
1469
|
+
* self.pipeline_parallel_size
|
|
1470
|
+
* self.tensor_parallel_size
|
|
1471
|
+
)
|
|
1472
|
+
world_size_within_dp = (
|
|
1473
|
+
self.pipeline_parallel_size * self.tensor_parallel_size
|
|
1474
|
+
)
|
|
1475
|
+
local_world_size = world_size // self.nnodes
|
|
1476
|
+
assert world_size % self.nnodes == 0, (
|
|
1477
|
+
f"world_size={world_size} must be divisible by nnodes={self.nnodes}."
|
|
1478
|
+
)
|
|
1479
|
+
assert self.node_rank < self.nnodes, (
|
|
1480
|
+
f"node_rank={self.node_rank} must be less than nnodes={self.nnodes}."
|
|
1481
|
+
)
|
|
1482
|
+
inferred_data_parallel_rank = (
|
|
1483
|
+
self.node_rank * local_world_size
|
|
1484
|
+
) // world_size_within_dp
|
|
1485
|
+
if self.data_parallel_size > 1 and self.data_parallel_external_lb:
|
|
1486
|
+
self.data_parallel_rank = inferred_data_parallel_rank
|
|
1487
|
+
logger.info(
|
|
1488
|
+
"Inferred data_parallel_rank %d from node_rank %d for external lb",
|
|
1489
|
+
self.data_parallel_rank,
|
|
1490
|
+
self.node_rank,
|
|
1491
|
+
)
|
|
1492
|
+
elif self.data_parallel_size_local is None:
|
|
1493
|
+
# Infer data parallel size local for internal dplb:
|
|
1494
|
+
self.data_parallel_size_local = max(
|
|
1495
|
+
local_world_size // world_size_within_dp, 1
|
|
1496
|
+
)
|
|
1497
|
+
data_parallel_external_lb = (
|
|
1498
|
+
self.data_parallel_external_lb or self.data_parallel_rank is not None
|
|
1499
|
+
)
|
|
1500
|
+
# Local DP rank = 1, use pure-external LB.
|
|
1501
|
+
if data_parallel_external_lb:
|
|
1502
|
+
assert self.data_parallel_rank is not None, (
|
|
1503
|
+
"data_parallel_rank or node_rank must be spefified if "
|
|
1504
|
+
"data_parallel_external_lb is enable."
|
|
1505
|
+
)
|
|
1506
|
+
assert self.data_parallel_size_local in (1, None), (
|
|
1507
|
+
"data_parallel_size_local must be 1 or None when data_parallel_rank "
|
|
1508
|
+
"is set"
|
|
1509
|
+
)
|
|
1510
|
+
data_parallel_size_local = 1
|
|
1511
|
+
# Use full external lb if we have local_size of 1.
|
|
1512
|
+
self.data_parallel_hybrid_lb = False
|
|
1513
|
+
elif self.data_parallel_size_local is not None:
|
|
1514
|
+
data_parallel_size_local = self.data_parallel_size_local
|
|
1515
|
+
|
|
1516
|
+
if self.data_parallel_start_rank and not headless:
|
|
1517
|
+
# Infer hybrid LB mode.
|
|
1518
|
+
self.data_parallel_hybrid_lb = True
|
|
1519
|
+
|
|
1520
|
+
if self.data_parallel_hybrid_lb and data_parallel_size_local == 1:
|
|
1521
|
+
# Use full external lb if we have local_size of 1.
|
|
1522
|
+
logger.warning(
|
|
1523
|
+
"data_parallel_hybrid_lb is not eligible when "
|
|
1524
|
+
"data_parallel_size_local = 1, autoswitch to "
|
|
1525
|
+
"data_parallel_external_lb."
|
|
1526
|
+
)
|
|
1527
|
+
data_parallel_external_lb = True
|
|
1528
|
+
self.data_parallel_hybrid_lb = False
|
|
1529
|
+
|
|
1530
|
+
if data_parallel_size_local == self.data_parallel_size:
|
|
1531
|
+
# Disable hybrid LB mode if set for a single node
|
|
1532
|
+
self.data_parallel_hybrid_lb = False
|
|
1533
|
+
|
|
1534
|
+
self.data_parallel_rank = (
|
|
1535
|
+
self.data_parallel_start_rank or inferred_data_parallel_rank
|
|
1536
|
+
)
|
|
1537
|
+
if self.nnodes > 1:
|
|
1538
|
+
logger.info(
|
|
1539
|
+
"Inferred data_parallel_rank %d from node_rank %d",
|
|
1540
|
+
self.data_parallel_rank,
|
|
1541
|
+
self.node_rank,
|
|
1542
|
+
)
|
|
1543
|
+
else:
|
|
1544
|
+
assert not self.data_parallel_hybrid_lb, (
|
|
1545
|
+
"data_parallel_size_local must be set to use data_parallel_hybrid_lb."
|
|
1546
|
+
)
|
|
1547
|
+
|
|
1548
|
+
if self.data_parallel_backend == "ray" and (
|
|
1549
|
+
envs.VLLM_RAY_DP_PACK_STRATEGY == "span"
|
|
1550
|
+
):
|
|
1551
|
+
# Data parallel size defaults to 1 if DP ranks are spanning
|
|
1552
|
+
# multiple nodes
|
|
1553
|
+
data_parallel_size_local = 1
|
|
1554
|
+
else:
|
|
1555
|
+
# Otherwise local DP size defaults to global DP size if not set
|
|
1556
|
+
data_parallel_size_local = self.data_parallel_size
|
|
1557
|
+
|
|
1558
|
+
# DP address, used in multi-node case for torch distributed group
|
|
1559
|
+
# and ZMQ sockets.
|
|
1560
|
+
if self.data_parallel_address is None:
|
|
1561
|
+
if self.data_parallel_backend == "ray":
|
|
1562
|
+
host_ip = get_ip()
|
|
1563
|
+
logger.info(
|
|
1564
|
+
"Using host IP %s as ray-based data parallel address", host_ip
|
|
1565
|
+
)
|
|
1566
|
+
data_parallel_address = host_ip
|
|
1567
|
+
else:
|
|
1568
|
+
assert self.data_parallel_backend == "mp", (
|
|
1569
|
+
"data_parallel_backend can only be ray or mp, got %s",
|
|
1570
|
+
self.data_parallel_backend,
|
|
1571
|
+
)
|
|
1572
|
+
data_parallel_address = (
|
|
1573
|
+
self.master_addr or ParallelConfig.data_parallel_master_ip
|
|
1574
|
+
)
|
|
1575
|
+
else:
|
|
1576
|
+
data_parallel_address = self.data_parallel_address
|
|
1577
|
+
|
|
1578
|
+
# This port is only used when there are remote data parallel engines,
|
|
1579
|
+
# otherwise the local IPC transport is used.
|
|
1580
|
+
data_parallel_rpc_port = (
|
|
1581
|
+
self.data_parallel_rpc_port
|
|
1582
|
+
if (self.data_parallel_rpc_port is not None)
|
|
1583
|
+
else ParallelConfig.data_parallel_rpc_port
|
|
1584
|
+
)
|
|
1585
|
+
|
|
1586
|
+
if self.tokens_only and not model_config.skip_tokenizer_init:
|
|
1587
|
+
model_config.skip_tokenizer_init = True
|
|
1588
|
+
logger.info("Skipping tokenizer initialization for tokens-only mode.")
|
|
1589
|
+
|
|
1590
|
+
# Forward the deprecated CLI args to the EPLB config.
|
|
1591
|
+
if self.num_redundant_experts is not None:
|
|
1592
|
+
self.eplb_config.num_redundant_experts = self.num_redundant_experts
|
|
1593
|
+
if self.eplb_window_size is not None:
|
|
1594
|
+
self.eplb_config.window_size = self.eplb_window_size
|
|
1595
|
+
if self.eplb_step_interval is not None:
|
|
1596
|
+
self.eplb_config.step_interval = self.eplb_step_interval
|
|
1597
|
+
if self.eplb_log_balancedness is not None:
|
|
1598
|
+
self.eplb_config.log_balancedness = self.eplb_log_balancedness
|
|
1599
|
+
|
|
1600
|
+
parallel_config = ParallelConfig(
|
|
1601
|
+
pipeline_parallel_size=self.pipeline_parallel_size,
|
|
1602
|
+
tensor_parallel_size=self.tensor_parallel_size,
|
|
1603
|
+
data_parallel_size=self.data_parallel_size,
|
|
1604
|
+
data_parallel_rank=self.data_parallel_rank or 0,
|
|
1605
|
+
data_parallel_external_lb=data_parallel_external_lb,
|
|
1606
|
+
data_parallel_size_local=data_parallel_size_local,
|
|
1607
|
+
master_addr=self.master_addr,
|
|
1608
|
+
master_port=self.master_port,
|
|
1609
|
+
nnodes=self.nnodes,
|
|
1610
|
+
node_rank=self.node_rank,
|
|
1611
|
+
data_parallel_master_ip=data_parallel_address,
|
|
1612
|
+
data_parallel_rpc_port=data_parallel_rpc_port,
|
|
1613
|
+
data_parallel_backend=self.data_parallel_backend,
|
|
1614
|
+
data_parallel_hybrid_lb=self.data_parallel_hybrid_lb,
|
|
1615
|
+
enable_expert_parallel=self.enable_expert_parallel,
|
|
1616
|
+
all2all_backend=self.all2all_backend,
|
|
1617
|
+
enable_dbo=self.enable_dbo,
|
|
1618
|
+
dbo_decode_token_threshold=self.dbo_decode_token_threshold,
|
|
1619
|
+
dbo_prefill_token_threshold=self.dbo_prefill_token_threshold,
|
|
1620
|
+
disable_nccl_for_dp_synchronization=self.disable_nccl_for_dp_synchronization,
|
|
1621
|
+
enable_eplb=self.enable_eplb,
|
|
1622
|
+
eplb_config=self.eplb_config,
|
|
1623
|
+
expert_placement_strategy=self.expert_placement_strategy,
|
|
1624
|
+
max_parallel_loading_workers=self.max_parallel_loading_workers,
|
|
1625
|
+
disable_custom_all_reduce=self.disable_custom_all_reduce,
|
|
1626
|
+
ray_workers_use_nsight=self.ray_workers_use_nsight,
|
|
1627
|
+
ray_runtime_env=ray_runtime_env,
|
|
1628
|
+
placement_group=placement_group,
|
|
1629
|
+
distributed_executor_backend=self.distributed_executor_backend,
|
|
1630
|
+
worker_cls=self.worker_cls,
|
|
1631
|
+
worker_extension_cls=self.worker_extension_cls,
|
|
1632
|
+
decode_context_parallel_size=self.decode_context_parallel_size,
|
|
1633
|
+
dcp_kv_cache_interleave_size=self.dcp_kv_cache_interleave_size,
|
|
1634
|
+
_api_process_count=self._api_process_count,
|
|
1635
|
+
_api_process_rank=self._api_process_rank,
|
|
1636
|
+
)
|
|
1637
|
+
|
|
1638
|
+
speculative_config = self.create_speculative_config(
|
|
1639
|
+
target_model_config=model_config,
|
|
1640
|
+
target_parallel_config=parallel_config,
|
|
1641
|
+
)
|
|
1642
|
+
|
|
1643
|
+
# make sure num_lookahead_slots is set appropriately depending on
|
|
1644
|
+
# whether speculative decoding is enabled
|
|
1645
|
+
num_lookahead_slots = self.num_lookahead_slots
|
|
1646
|
+
if speculative_config is not None:
|
|
1647
|
+
num_lookahead_slots = speculative_config.num_lookahead_slots
|
|
1648
|
+
|
|
1649
|
+
scheduler_config = SchedulerConfig(
|
|
1650
|
+
runner_type=model_config.runner_type,
|
|
1651
|
+
max_num_batched_tokens=self.max_num_batched_tokens,
|
|
1652
|
+
max_num_seqs=self.max_num_seqs,
|
|
1653
|
+
max_model_len=model_config.max_model_len,
|
|
1654
|
+
num_lookahead_slots=num_lookahead_slots,
|
|
1655
|
+
enable_chunked_prefill=self.enable_chunked_prefill,
|
|
1656
|
+
disable_chunked_mm_input=self.disable_chunked_mm_input,
|
|
1657
|
+
is_multimodal_model=model_config.is_multimodal_model,
|
|
1658
|
+
is_encoder_decoder=model_config.is_encoder_decoder,
|
|
1659
|
+
policy=self.scheduling_policy,
|
|
1660
|
+
scheduler_cls=self.scheduler_cls,
|
|
1661
|
+
max_num_partial_prefills=self.max_num_partial_prefills,
|
|
1662
|
+
max_long_partial_prefills=self.max_long_partial_prefills,
|
|
1663
|
+
long_prefill_token_threshold=self.long_prefill_token_threshold,
|
|
1664
|
+
disable_hybrid_kv_cache_manager=self.disable_hybrid_kv_cache_manager,
|
|
1665
|
+
async_scheduling=self.async_scheduling,
|
|
1666
|
+
stream_interval=self.stream_interval,
|
|
1667
|
+
)
|
|
1668
|
+
|
|
1669
|
+
if not model_config.is_multimodal_model and self.default_mm_loras:
|
|
1670
|
+
raise ValueError(
|
|
1671
|
+
"Default modality-specific LoRA(s) were provided for a "
|
|
1672
|
+
"non multimodal model"
|
|
1673
|
+
)
|
|
1674
|
+
|
|
1675
|
+
lora_config = (
|
|
1676
|
+
LoRAConfig(
|
|
1677
|
+
max_lora_rank=self.max_lora_rank,
|
|
1678
|
+
max_loras=self.max_loras,
|
|
1679
|
+
default_mm_loras=self.default_mm_loras,
|
|
1680
|
+
fully_sharded_loras=self.fully_sharded_loras,
|
|
1681
|
+
lora_extra_vocab_size=self.lora_extra_vocab_size,
|
|
1682
|
+
lora_dtype=self.lora_dtype,
|
|
1683
|
+
max_cpu_loras=self.max_cpu_loras
|
|
1684
|
+
if self.max_cpu_loras and self.max_cpu_loras > 0
|
|
1685
|
+
else None,
|
|
1686
|
+
)
|
|
1687
|
+
if self.enable_lora
|
|
1688
|
+
else None
|
|
1689
|
+
)
|
|
1690
|
+
|
|
1691
|
+
if (
|
|
1692
|
+
lora_config is not None
|
|
1693
|
+
and speculative_config is not None
|
|
1694
|
+
and scheduler_config.max_num_batched_tokens
|
|
1695
|
+
< (
|
|
1696
|
+
scheduler_config.max_num_seqs
|
|
1697
|
+
* (speculative_config.num_speculative_tokens + 1)
|
|
1698
|
+
)
|
|
1699
|
+
):
|
|
1700
|
+
raise ValueError(
|
|
1701
|
+
"Consider increasing max_num_batched_tokens or "
|
|
1702
|
+
"decreasing num_speculative_tokens"
|
|
1703
|
+
)
|
|
1704
|
+
|
|
1705
|
+
# bitsandbytes pre-quantized model need a specific model loader
|
|
1706
|
+
if model_config.quantization == "bitsandbytes":
|
|
1707
|
+
self.quantization = self.load_format = "bitsandbytes"
|
|
1708
|
+
|
|
1709
|
+
load_config = self.create_load_config()
|
|
1710
|
+
|
|
1711
|
+
# Pass reasoning_parser into StructuredOutputsConfig
|
|
1712
|
+
if self.reasoning_parser:
|
|
1713
|
+
self.structured_outputs_config.reasoning_parser = self.reasoning_parser
|
|
1714
|
+
|
|
1715
|
+
if self.reasoning_parser_plugin:
|
|
1716
|
+
self.structured_outputs_config.reasoning_parser_plugin = (
|
|
1717
|
+
self.reasoning_parser_plugin
|
|
1718
|
+
)
|
|
1719
|
+
|
|
1720
|
+
# Forward the deprecated CLI args to the StructuredOutputsConfig
|
|
1721
|
+
so_config = self.structured_outputs_config
|
|
1722
|
+
if self.guided_decoding_backend is not None:
|
|
1723
|
+
so_config.guided_decoding_backend = self.guided_decoding_backend
|
|
1724
|
+
if self.guided_decoding_disable_fallback is not None:
|
|
1725
|
+
so_config.disable_fallback = self.guided_decoding_disable_fallback
|
|
1726
|
+
if self.guided_decoding_disable_any_whitespace is not None:
|
|
1727
|
+
so_config.disable_any_whitespace = (
|
|
1728
|
+
self.guided_decoding_disable_any_whitespace
|
|
1729
|
+
)
|
|
1730
|
+
if self.guided_decoding_disable_additional_properties is not None:
|
|
1731
|
+
so_config.disable_additional_properties = (
|
|
1732
|
+
self.guided_decoding_disable_additional_properties
|
|
1733
|
+
)
|
|
1734
|
+
|
|
1735
|
+
observability_config = ObservabilityConfig(
|
|
1736
|
+
show_hidden_metrics_for_version=self.show_hidden_metrics_for_version,
|
|
1737
|
+
otlp_traces_endpoint=self.otlp_traces_endpoint,
|
|
1738
|
+
collect_detailed_traces=self.collect_detailed_traces,
|
|
1739
|
+
)
|
|
1740
|
+
|
|
1741
|
+
# Compilation config overrides
|
|
1742
|
+
compilation_config = copy.deepcopy(self.compilation_config)
|
|
1743
|
+
if self.cuda_graph_sizes is not None:
|
|
1744
|
+
logger.warning(
|
|
1745
|
+
"--cuda-graph-sizes is deprecated and will be removed in v0.13.0 or "
|
|
1746
|
+
"v1.0.0, whichever is soonest. Please use --cudagraph-capture-sizes "
|
|
1747
|
+
"instead."
|
|
1748
|
+
)
|
|
1749
|
+
if compilation_config.cudagraph_capture_sizes is not None:
|
|
1750
|
+
raise ValueError(
|
|
1751
|
+
"cuda_graph_sizes and compilation_config."
|
|
1752
|
+
"cudagraph_capture_sizes are mutually exclusive"
|
|
1753
|
+
)
|
|
1754
|
+
compilation_config.cudagraph_capture_sizes = self.cuda_graph_sizes
|
|
1755
|
+
if self.cudagraph_capture_sizes is not None:
|
|
1756
|
+
if compilation_config.cudagraph_capture_sizes is not None:
|
|
1757
|
+
raise ValueError(
|
|
1758
|
+
"cudagraph_capture_sizes and compilation_config."
|
|
1759
|
+
"cudagraph_capture_sizes are mutually exclusive"
|
|
1760
|
+
)
|
|
1761
|
+
compilation_config.cudagraph_capture_sizes = self.cudagraph_capture_sizes
|
|
1762
|
+
if self.max_cudagraph_capture_size is not None:
|
|
1763
|
+
if compilation_config.max_cudagraph_capture_size is not None:
|
|
1764
|
+
raise ValueError(
|
|
1765
|
+
"max_cudagraph_capture_size and compilation_config."
|
|
1766
|
+
"max_cudagraph_capture_size are mutually exclusive"
|
|
1767
|
+
)
|
|
1768
|
+
compilation_config.max_cudagraph_capture_size = (
|
|
1769
|
+
self.max_cudagraph_capture_size
|
|
1770
|
+
)
|
|
1771
|
+
|
|
1772
|
+
config = VllmConfig(
|
|
1773
|
+
model_config=model_config,
|
|
1774
|
+
cache_config=cache_config,
|
|
1775
|
+
parallel_config=parallel_config,
|
|
1776
|
+
scheduler_config=scheduler_config,
|
|
1777
|
+
device_config=device_config,
|
|
1778
|
+
lora_config=lora_config,
|
|
1779
|
+
speculative_config=speculative_config,
|
|
1780
|
+
load_config=load_config,
|
|
1781
|
+
structured_outputs_config=self.structured_outputs_config,
|
|
1782
|
+
observability_config=observability_config,
|
|
1783
|
+
compilation_config=compilation_config,
|
|
1784
|
+
kv_transfer_config=self.kv_transfer_config,
|
|
1785
|
+
kv_events_config=self.kv_events_config,
|
|
1786
|
+
ec_transfer_config=self.ec_transfer_config,
|
|
1787
|
+
additional_config=self.additional_config,
|
|
1788
|
+
)
|
|
1789
|
+
|
|
1790
|
+
return config
|
|
1791
|
+
|
|
1792
|
+
def _check_feature_supported(self, model_config: ModelConfig):
|
|
1793
|
+
"""Raise an error if the feature is not supported."""
|
|
1794
|
+
if self.logits_processor_pattern != EngineArgs.logits_processor_pattern:
|
|
1795
|
+
_raise_unsupported_error(feature_name="--logits-processor-pattern")
|
|
1796
|
+
|
|
1797
|
+
# No Concurrent Partial Prefills so far.
|
|
1798
|
+
if (
|
|
1799
|
+
self.max_num_partial_prefills != SchedulerConfig.max_num_partial_prefills
|
|
1800
|
+
or self.max_long_partial_prefills
|
|
1801
|
+
!= SchedulerConfig.max_long_partial_prefills
|
|
1802
|
+
):
|
|
1803
|
+
_raise_unsupported_error(feature_name="Concurrent Partial Prefill")
|
|
1804
|
+
|
|
1805
|
+
# N-gram, Medusa, and Eagle are supported for speculative decoding.
|
|
1806
|
+
if self.speculative_config is not None:
|
|
1807
|
+
# speculative_config could still be a dict at this point
|
|
1808
|
+
if isinstance(self.speculative_config, dict):
|
|
1809
|
+
method = self.speculative_config.get("method", None)
|
|
1810
|
+
else:
|
|
1811
|
+
method = self.speculative_config.method
|
|
1812
|
+
|
|
1813
|
+
if method == "draft_model":
|
|
1814
|
+
raise NotImplementedError(
|
|
1815
|
+
"Draft model speculative decoding is not supported yet. "
|
|
1816
|
+
"Please consider using other speculative decoding methods "
|
|
1817
|
+
"such as ngram, medusa, eagle, or mtp."
|
|
1818
|
+
)
|
|
1819
|
+
|
|
1820
|
+
if self.pipeline_parallel_size > 1:
|
|
1821
|
+
supports_pp = getattr(
|
|
1822
|
+
self.distributed_executor_backend, "supports_pp", False
|
|
1823
|
+
)
|
|
1824
|
+
if not supports_pp and self.distributed_executor_backend not in (
|
|
1825
|
+
ParallelConfig.distributed_executor_backend,
|
|
1826
|
+
"ray",
|
|
1827
|
+
"mp",
|
|
1828
|
+
"external_launcher",
|
|
1829
|
+
):
|
|
1830
|
+
name = (
|
|
1831
|
+
"Pipeline Parallelism without Ray distributed "
|
|
1832
|
+
"executor or multiprocessing executor or external "
|
|
1833
|
+
"launcher"
|
|
1834
|
+
)
|
|
1835
|
+
_raise_unsupported_error(feature_name=name)
|
|
1836
|
+
|
|
1837
|
+
@classmethod
|
|
1838
|
+
def get_chunked_prefill_prefix_caching_defaults(
|
|
1839
|
+
cls,
|
|
1840
|
+
model_config: ModelConfig,
|
|
1841
|
+
) -> tuple[bool, bool]:
|
|
1842
|
+
if model_config.runner_type != "pooling":
|
|
1843
|
+
default_chunked_prefill = True
|
|
1844
|
+
|
|
1845
|
+
# Disable prefix caching default for hybrid models
|
|
1846
|
+
# since the feature is still experimental.
|
|
1847
|
+
default_prefix_caching = not model_config.is_hybrid
|
|
1848
|
+
else:
|
|
1849
|
+
assert model_config.pooler_config is not None
|
|
1850
|
+
|
|
1851
|
+
pooling_type = model_config.pooler_config.pooling_type
|
|
1852
|
+
incremental_prefill_supported = (
|
|
1853
|
+
pooling_type is not None
|
|
1854
|
+
and pooling_type.lower() == "last"
|
|
1855
|
+
and getattr(model_config.hf_config, "is_causal", True)
|
|
1856
|
+
)
|
|
1857
|
+
|
|
1858
|
+
default_chunked_prefill = incremental_prefill_supported
|
|
1859
|
+
default_prefix_caching = incremental_prefill_supported
|
|
1860
|
+
|
|
1861
|
+
return default_chunked_prefill, default_prefix_caching
|
|
1862
|
+
|
|
1863
|
+
@classmethod
|
|
1864
|
+
def get_batch_defaults(
|
|
1865
|
+
cls,
|
|
1866
|
+
world_size: int,
|
|
1867
|
+
) -> tuple[dict[UsageContext | None, int], dict[UsageContext | None, int]]:
|
|
1868
|
+
from vllm.usage.usage_lib import UsageContext
|
|
1869
|
+
|
|
1870
|
+
default_max_num_batched_tokens: dict[UsageContext | None, int]
|
|
1871
|
+
default_max_num_seqs: dict[UsageContext | None, int]
|
|
1872
|
+
|
|
1873
|
+
# When no user override, set the default values based on the usage
|
|
1874
|
+
# context.
|
|
1875
|
+
# Use different default values for different hardware.
|
|
1876
|
+
|
|
1877
|
+
# Try to query the device name on the current platform. If it fails,
|
|
1878
|
+
# it may be because the platform that imports vLLM is not the same
|
|
1879
|
+
# as the platform that vLLM is running on (e.g. the case of scaling
|
|
1880
|
+
# vLLM with Ray) and has no GPUs. In this case we use the default
|
|
1881
|
+
# values for non-H100/H200 GPUs.
|
|
1882
|
+
try:
|
|
1883
|
+
device_memory = current_platform.get_device_total_memory()
|
|
1884
|
+
device_name = current_platform.get_device_name().lower()
|
|
1885
|
+
except Exception:
|
|
1886
|
+
# This is only used to set default_max_num_batched_tokens
|
|
1887
|
+
device_memory = 0
|
|
1888
|
+
|
|
1889
|
+
# NOTE(Kuntai): Setting large `max_num_batched_tokens` for A100 reduces
|
|
1890
|
+
# throughput, see PR #17885 for more details.
|
|
1891
|
+
# So here we do an extra device name check to prevent such regression.
|
|
1892
|
+
if device_memory >= 70 * GiB_bytes and "a100" not in device_name:
|
|
1893
|
+
# For GPUs like H100 and MI300x, use larger default values.
|
|
1894
|
+
default_max_num_batched_tokens = {
|
|
1895
|
+
UsageContext.LLM_CLASS: 16384,
|
|
1896
|
+
UsageContext.OPENAI_API_SERVER: 8192,
|
|
1897
|
+
}
|
|
1898
|
+
default_max_num_seqs = {
|
|
1899
|
+
UsageContext.LLM_CLASS: 1024,
|
|
1900
|
+
UsageContext.OPENAI_API_SERVER: 1024,
|
|
1901
|
+
}
|
|
1902
|
+
else:
|
|
1903
|
+
# TODO(woosuk): Tune the default values for other hardware.
|
|
1904
|
+
default_max_num_batched_tokens = {
|
|
1905
|
+
UsageContext.LLM_CLASS: 8192,
|
|
1906
|
+
UsageContext.OPENAI_API_SERVER: 2048,
|
|
1907
|
+
}
|
|
1908
|
+
default_max_num_seqs = {
|
|
1909
|
+
UsageContext.LLM_CLASS: 256,
|
|
1910
|
+
UsageContext.OPENAI_API_SERVER: 256,
|
|
1911
|
+
}
|
|
1912
|
+
|
|
1913
|
+
# tpu specific default values.
|
|
1914
|
+
if current_platform.is_tpu():
|
|
1915
|
+
chip_name = current_platform.get_device_name()
|
|
1916
|
+
|
|
1917
|
+
if chip_name == "V6E":
|
|
1918
|
+
default_max_num_batched_tokens = {
|
|
1919
|
+
UsageContext.LLM_CLASS: 2048,
|
|
1920
|
+
UsageContext.OPENAI_API_SERVER: 1024,
|
|
1921
|
+
}
|
|
1922
|
+
elif chip_name == "V5E":
|
|
1923
|
+
default_max_num_batched_tokens = {
|
|
1924
|
+
UsageContext.LLM_CLASS: 1024,
|
|
1925
|
+
UsageContext.OPENAI_API_SERVER: 512,
|
|
1926
|
+
}
|
|
1927
|
+
elif chip_name == "V5P":
|
|
1928
|
+
default_max_num_batched_tokens = {
|
|
1929
|
+
UsageContext.LLM_CLASS: 512,
|
|
1930
|
+
UsageContext.OPENAI_API_SERVER: 256,
|
|
1931
|
+
}
|
|
1932
|
+
|
|
1933
|
+
# cpu specific default values.
|
|
1934
|
+
if current_platform.is_cpu():
|
|
1935
|
+
default_max_num_batched_tokens = {
|
|
1936
|
+
UsageContext.LLM_CLASS: 4096 * world_size,
|
|
1937
|
+
UsageContext.OPENAI_API_SERVER: 2048 * world_size,
|
|
1938
|
+
}
|
|
1939
|
+
default_max_num_seqs = {
|
|
1940
|
+
UsageContext.LLM_CLASS: 256 * world_size,
|
|
1941
|
+
UsageContext.OPENAI_API_SERVER: 128 * world_size,
|
|
1942
|
+
}
|
|
1943
|
+
|
|
1944
|
+
return default_max_num_batched_tokens, default_max_num_seqs
|
|
1945
|
+
|
|
1946
|
+
def _set_default_args(
|
|
1947
|
+
self, usage_context: UsageContext, model_config: ModelConfig
|
|
1948
|
+
) -> None:
|
|
1949
|
+
"""Set Default Arguments for V1 Engine."""
|
|
1950
|
+
(
|
|
1951
|
+
default_chunked_prefill,
|
|
1952
|
+
default_prefix_caching,
|
|
1953
|
+
) = self.get_chunked_prefill_prefix_caching_defaults(model_config)
|
|
1954
|
+
|
|
1955
|
+
if self.enable_chunked_prefill is None:
|
|
1956
|
+
self.enable_chunked_prefill = default_chunked_prefill
|
|
1957
|
+
|
|
1958
|
+
logger.debug(
|
|
1959
|
+
"%s chunked prefill by default",
|
|
1960
|
+
"Enabling" if default_chunked_prefill else "Disabling",
|
|
1961
|
+
)
|
|
1962
|
+
elif (
|
|
1963
|
+
model_config.runner_type == "pooling"
|
|
1964
|
+
and self.enable_chunked_prefill
|
|
1965
|
+
and not default_chunked_prefill
|
|
1966
|
+
):
|
|
1967
|
+
logger.warning(
|
|
1968
|
+
"This model does not officially support chunked prefill. "
|
|
1969
|
+
"Enabling this manually may cause the engine to crash "
|
|
1970
|
+
"or produce incorrect outputs.",
|
|
1971
|
+
)
|
|
1972
|
+
|
|
1973
|
+
if self.enable_prefix_caching is None:
|
|
1974
|
+
self.enable_prefix_caching = default_prefix_caching
|
|
1975
|
+
|
|
1976
|
+
logger.debug(
|
|
1977
|
+
"%s prefix caching by default",
|
|
1978
|
+
"Enabling" if default_prefix_caching else "Disabling",
|
|
1979
|
+
)
|
|
1980
|
+
elif (
|
|
1981
|
+
model_config.runner_type == "pooling"
|
|
1982
|
+
and self.enable_prefix_caching
|
|
1983
|
+
and not default_prefix_caching
|
|
1984
|
+
):
|
|
1985
|
+
logger.warning(
|
|
1986
|
+
"This model does not officially support prefix caching. "
|
|
1987
|
+
"Enabling this manually may cause the engine to crash "
|
|
1988
|
+
"or produce incorrect outputs.",
|
|
1989
|
+
)
|
|
1990
|
+
|
|
1991
|
+
world_size = self.pipeline_parallel_size * self.tensor_parallel_size
|
|
1992
|
+
(
|
|
1993
|
+
default_max_num_batched_tokens,
|
|
1994
|
+
default_max_num_seqs,
|
|
1995
|
+
) = self.get_batch_defaults(world_size)
|
|
1996
|
+
|
|
1997
|
+
orig_max_num_batched_tokens = self.max_num_batched_tokens
|
|
1998
|
+
orig_max_num_seqs = self.max_num_seqs
|
|
1999
|
+
|
|
2000
|
+
if self.max_num_batched_tokens is None:
|
|
2001
|
+
self.max_num_batched_tokens = default_max_num_batched_tokens.get(
|
|
2002
|
+
usage_context,
|
|
2003
|
+
SchedulerConfig.DEFAULT_MAX_NUM_BATCHED_TOKENS,
|
|
2004
|
+
)
|
|
2005
|
+
|
|
2006
|
+
if self.max_num_seqs is None:
|
|
2007
|
+
self.max_num_seqs = default_max_num_seqs.get(
|
|
2008
|
+
usage_context,
|
|
2009
|
+
SchedulerConfig.DEFAULT_MAX_NUM_SEQS,
|
|
2010
|
+
)
|
|
2011
|
+
|
|
2012
|
+
if orig_max_num_batched_tokens is None:
|
|
2013
|
+
if not self.enable_chunked_prefill:
|
|
2014
|
+
# If max_model_len is too short, use the default for higher throughput.
|
|
2015
|
+
self.max_num_batched_tokens = max(
|
|
2016
|
+
model_config.max_model_len,
|
|
2017
|
+
self.max_num_batched_tokens,
|
|
2018
|
+
)
|
|
2019
|
+
|
|
2020
|
+
# When using default settings,
|
|
2021
|
+
# Ensure max_num_batched_tokens does not exceed model limit.
|
|
2022
|
+
# Some models (e.g., Whisper) have embeddings tied to max length.
|
|
2023
|
+
self.max_num_batched_tokens = min(
|
|
2024
|
+
self.max_num_seqs * model_config.max_model_len,
|
|
2025
|
+
self.max_num_batched_tokens,
|
|
2026
|
+
)
|
|
2027
|
+
|
|
2028
|
+
logger.debug(
|
|
2029
|
+
"Defaulting max_num_batched_tokens to %d for %s usage context.",
|
|
2030
|
+
self.max_num_batched_tokens,
|
|
2031
|
+
usage_context.value if usage_context else None,
|
|
2032
|
+
)
|
|
2033
|
+
|
|
2034
|
+
if orig_max_num_seqs is None:
|
|
2035
|
+
assert self.max_num_batched_tokens is not None # For type checking
|
|
2036
|
+
self.max_num_seqs = min(self.max_num_seqs, self.max_num_batched_tokens)
|
|
2037
|
+
|
|
2038
|
+
logger.debug(
|
|
2039
|
+
"Defaulting max_num_seqs to %d for %s usage context.",
|
|
2040
|
+
self.max_num_seqs,
|
|
2041
|
+
usage_context.value if usage_context else None,
|
|
2042
|
+
)
|
|
2043
|
+
|
|
2044
|
+
|
|
2045
|
+
@dataclass
|
|
2046
|
+
class AsyncEngineArgs(EngineArgs):
|
|
2047
|
+
"""Arguments for asynchronous vLLM engine."""
|
|
2048
|
+
|
|
2049
|
+
enable_log_requests: bool = False
|
|
2050
|
+
|
|
2051
|
+
@property
|
|
2052
|
+
@deprecated(
|
|
2053
|
+
"`disable_log_requests` is deprecated and has been replaced with "
|
|
2054
|
+
"`enable_log_requests`. This will be removed in v0.12.0. Please use "
|
|
2055
|
+
"`enable_log_requests` instead."
|
|
2056
|
+
)
|
|
2057
|
+
def disable_log_requests(self) -> bool:
|
|
2058
|
+
return not self.enable_log_requests
|
|
2059
|
+
|
|
2060
|
+
@disable_log_requests.setter
|
|
2061
|
+
@deprecated(
|
|
2062
|
+
"`disable_log_requests` is deprecated and has been replaced with "
|
|
2063
|
+
"`enable_log_requests`. This will be removed in v0.12.0. Please use "
|
|
2064
|
+
"`enable_log_requests` instead."
|
|
2065
|
+
)
|
|
2066
|
+
def disable_log_requests(self, value: bool):
|
|
2067
|
+
self.enable_log_requests = not value
|
|
2068
|
+
|
|
2069
|
+
@staticmethod
|
|
2070
|
+
def add_cli_args(
|
|
2071
|
+
parser: FlexibleArgumentParser, async_args_only: bool = False
|
|
2072
|
+
) -> FlexibleArgumentParser:
|
|
2073
|
+
# Initialize plugin to update the parser, for example, The plugin may
|
|
2074
|
+
# add a new kind of quantization method to --quantization argument or
|
|
2075
|
+
# a new device to --device argument.
|
|
2076
|
+
load_general_plugins()
|
|
2077
|
+
if not async_args_only:
|
|
2078
|
+
parser = EngineArgs.add_cli_args(parser)
|
|
2079
|
+
parser.add_argument(
|
|
2080
|
+
"--enable-log-requests",
|
|
2081
|
+
action=argparse.BooleanOptionalAction,
|
|
2082
|
+
default=AsyncEngineArgs.enable_log_requests,
|
|
2083
|
+
help="Enable logging requests.",
|
|
2084
|
+
)
|
|
2085
|
+
parser.add_argument(
|
|
2086
|
+
"--disable-log-requests",
|
|
2087
|
+
action=argparse.BooleanOptionalAction,
|
|
2088
|
+
default=not AsyncEngineArgs.enable_log_requests,
|
|
2089
|
+
help="[DEPRECATED] Disable logging requests.",
|
|
2090
|
+
deprecated=True,
|
|
2091
|
+
)
|
|
2092
|
+
current_platform.pre_register_and_update(parser)
|
|
2093
|
+
return parser
|
|
2094
|
+
|
|
2095
|
+
|
|
2096
|
+
def _raise_unsupported_error(feature_name: str):
|
|
2097
|
+
msg = (
|
|
2098
|
+
f"{feature_name} is not supported. We recommend to "
|
|
2099
|
+
f"remove {feature_name} from your config."
|
|
2100
|
+
)
|
|
2101
|
+
raise NotImplementedError(msg)
|
|
2102
|
+
|
|
2103
|
+
|
|
2104
|
+
def human_readable_int(value):
|
|
2105
|
+
"""Parse human-readable integers like '1k', '2M', etc.
|
|
2106
|
+
Including decimal values with decimal multipliers.
|
|
2107
|
+
|
|
2108
|
+
Examples:
|
|
2109
|
+
- '1k' -> 1,000
|
|
2110
|
+
- '1K' -> 1,024
|
|
2111
|
+
- '25.6k' -> 25,600
|
|
2112
|
+
"""
|
|
2113
|
+
value = value.strip()
|
|
2114
|
+
match = re.fullmatch(r"(\d+(?:\.\d+)?)([kKmMgGtT])", value)
|
|
2115
|
+
if match:
|
|
2116
|
+
decimal_multiplier = {
|
|
2117
|
+
"k": 10**3,
|
|
2118
|
+
"m": 10**6,
|
|
2119
|
+
"g": 10**9,
|
|
2120
|
+
}
|
|
2121
|
+
binary_multiplier = {
|
|
2122
|
+
"K": 2**10,
|
|
2123
|
+
"M": 2**20,
|
|
2124
|
+
"G": 2**30,
|
|
2125
|
+
}
|
|
2126
|
+
|
|
2127
|
+
number, suffix = match.groups()
|
|
2128
|
+
if suffix in decimal_multiplier:
|
|
2129
|
+
mult = decimal_multiplier[suffix]
|
|
2130
|
+
return int(float(number) * mult)
|
|
2131
|
+
elif suffix in binary_multiplier:
|
|
2132
|
+
mult = binary_multiplier[suffix]
|
|
2133
|
+
# Do not allow decimals with binary multipliers
|
|
2134
|
+
try:
|
|
2135
|
+
return int(number) * mult
|
|
2136
|
+
except ValueError as e:
|
|
2137
|
+
raise argparse.ArgumentTypeError(
|
|
2138
|
+
"Decimals are not allowed "
|
|
2139
|
+
f"with binary suffixes like {suffix}. Did you mean to use "
|
|
2140
|
+
f"{number}{suffix.lower()} instead?"
|
|
2141
|
+
) from e
|
|
2142
|
+
|
|
2143
|
+
# Regular plain number.
|
|
2144
|
+
return int(value)
|