vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2173 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import bisect
4
+ import gc
5
+ import time
6
+ from typing import TYPE_CHECKING, Any, cast
7
+ from unittest.mock import patch
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ # TPU XLA related
14
+ import torch_xla
15
+ import torch_xla.core.xla_model as xm
16
+ import torch_xla.distributed.spmd as xs
17
+ import torch_xla.runtime as xr
18
+
19
+ import vllm.envs as envs
20
+ from vllm.attention import Attention
21
+ from vllm.attention.backends.abstract import AttentionType
22
+ from vllm.attention.layer import MLAAttention
23
+ from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
24
+ from vllm.compilation.wrapper import TorchCompileWithNoGuardsWrapper
25
+ from vllm.config import (
26
+ ParallelConfig,
27
+ VllmConfig,
28
+ get_layers_from_vllm_config,
29
+ update_config,
30
+ )
31
+ from vllm.distributed.kv_transfer import get_kv_transfer_group, has_kv_transfer_group
32
+ from vllm.distributed.kv_transfer.kv_connector.utils import copy_kv_blocks
33
+ from vllm.forward_context import set_forward_context
34
+ from vllm.logger import init_logger
35
+ from vllm.lora.layers import BaseLayerWithLoRA
36
+ from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
37
+ from vllm.model_executor.model_loader import get_model_loader
38
+ from vllm.model_executor.model_loader.tpu import TPUModelLoader
39
+ from vllm.model_executor.models.interfaces import (
40
+ SupportsMultiModal,
41
+ supports_transcription,
42
+ )
43
+ from vllm.model_executor.models.interfaces_base import (
44
+ is_pooling_model,
45
+ is_text_generation_model,
46
+ )
47
+ from vllm.multimodal import MULTIMODAL_REGISTRY
48
+ from vllm.multimodal.inputs import (
49
+ BatchedTensorInputs,
50
+ MultiModalKwargsItem,
51
+ PlaceholderRange,
52
+ )
53
+ from vllm.multimodal.utils import group_mm_kwargs_by_modality
54
+ from vllm.sequence import IntermediateTensors
55
+ from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
56
+ from vllm.utils.math_utils import cdiv, prev_power_of_2
57
+ from vllm.utils.platform_utils import is_pin_memory_available
58
+ from vllm.v1.attention.backends.pallas import (
59
+ TPU_STR_DTYPE_TO_TORCH_DTYPE,
60
+ PallasAttentionBackend,
61
+ PallasMetadata,
62
+ get_page_size_bytes,
63
+ )
64
+ from vllm.v1.kv_cache_interface import (
65
+ AttentionSpec,
66
+ FullAttentionSpec,
67
+ KVCacheConfig,
68
+ KVCacheSpec,
69
+ MLAAttentionSpec,
70
+ SlidingWindowSpec,
71
+ )
72
+ from vllm.v1.outputs import (
73
+ EMPTY_MODEL_RUNNER_OUTPUT,
74
+ LogprobsLists,
75
+ LogprobsTensors,
76
+ ModelRunnerOutput,
77
+ )
78
+ from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata
79
+ from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
80
+ from vllm.v1.worker.kv_connector_model_runner_mixin import (
81
+ KVConnectorModelRunnerMixin,
82
+ KVConnectorOutput,
83
+ )
84
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
85
+ from vllm.v1.worker.tpu_input_batch import CachedRequestState, InputBatch
86
+
87
+ from .utils import (
88
+ MultiModalBudget,
89
+ add_kv_sharing_layers_to_kv_cache_groups,
90
+ bind_kv_cache,
91
+ sanity_check_mm_encoder_outputs,
92
+ )
93
+
94
+ if TYPE_CHECKING:
95
+ from vllm.v1.core.sched.output import GrammarOutput, SchedulerOutput
96
+
97
+ logger = init_logger(__name__)
98
+
99
+ INVALID_TOKEN_ID = -1
100
+ # Smallest output size
101
+ MIN_NUM_SEQS = 8
102
+
103
+
104
+ #########################################################
105
+ # Ways to avoid recompilation
106
+ #########################################################
107
+ #
108
+ # The model executor has two primary components:
109
+ # 1. preparing the model and sampler inputs
110
+ # 2. executing the model and sampler.
111
+ # The core idea is to avoid any TPU computation during input preparation. For
112
+ # better compilation tracking and increased flexibility, the model execution and
113
+ # sampler are divided into several distinct components.
114
+ #
115
+ # Below are the detailed steps:
116
+ #
117
+ # Step 1
118
+ # It is recommended to avoid TPU operations when preparing the model and sampler
119
+ # inputs. CPU tensors can be prepared and transferred to the XLA device using
120
+ # cpu_tensor.to(xla_device), which only triggers CPU to TPU transfers and avoids
121
+ # compilation.
122
+ #
123
+ # Step 2
124
+ # The TPU execution should be decomposed into subgraphs (4 at the moment):
125
+ # 1. the main model
126
+ # 2. selecting hidden states for each request
127
+ # 3. sampler
128
+ # 4. encoder.
129
+ # Each subgraph should be decorated in a torch.compile. This is used to make
130
+ # sure that we have the same subgraph topology in both dummy_run and
131
+ # xecute_model. The results from these subgraphs should either be passed to
132
+ # other subgraphs, or transferred from TPU to CPU using xla_tensor.cpu() for
133
+ # subsequent processing on the CPU.
134
+ #
135
+ # Step 3
136
+ # The dummy_run should be comprehensive, ensuring all potential input shapes and
137
+ # branch predictions are included as subgraph inputs to facilitate
138
+ # pre-compilation.
139
+ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
140
+ def __init__(
141
+ self,
142
+ vllm_config: VllmConfig,
143
+ device: torch.device,
144
+ original_parallel_config: ParallelConfig | None = None,
145
+ ):
146
+ self.vllm_config = vllm_config
147
+ self.model_config = vllm_config.model_config
148
+ self.cache_config = vllm_config.cache_config
149
+ self.lora_config = vllm_config.lora_config
150
+ self.load_config = vllm_config.load_config
151
+ self.parallel_config = vllm_config.parallel_config
152
+ self.original_parallel_config = original_parallel_config
153
+ self.scheduler_config = vllm_config.scheduler_config
154
+ self.speculative_config = vllm_config.speculative_config
155
+ self.observability_config = vllm_config.observability_config
156
+ self.device_config = vllm_config.device_config
157
+
158
+ model_config = self.model_config
159
+ cache_config = self.cache_config
160
+ scheduler_config = self.scheduler_config
161
+ parallel_config = self.parallel_config
162
+ self.device = device
163
+ self.check_recompilation = envs.VLLM_XLA_CHECK_RECOMPILATION
164
+
165
+ # SPMD Related
166
+ self.use_spmd = envs.VLLM_XLA_USE_SPMD
167
+ if self.use_spmd:
168
+ num_devices = xr.global_runtime_device_count()
169
+ mesh_shape = (num_devices, 1)
170
+ device_ids = np.array(range(num_devices))
171
+ self.mesh = xs.Mesh(device_ids, mesh_shape, ("x", "y"))
172
+
173
+ self.enforce_eager = model_config.enforce_eager
174
+
175
+ self.num_xla_graphs = 0
176
+ self._update_num_xla_graphs("init")
177
+
178
+ self.pin_memory = is_pin_memory_available()
179
+ self.dtype = self.model_config.dtype
180
+ if cache_config.cache_dtype == "auto":
181
+ model_dtype = self.dtype
182
+ if isinstance(model_dtype, str):
183
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
184
+ else:
185
+ self.kv_cache_dtype = model_dtype
186
+ else:
187
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype]
188
+ self._hidden_states_dtype = self.dtype
189
+
190
+ self.sliding_window = model_config.get_sliding_window()
191
+ self.block_size = cache_config.block_size
192
+ self.max_model_len = model_config.max_model_len
193
+ self.most_model_len = envs.VLLM_TPU_MOST_MODEL_LEN
194
+ self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
195
+ self.num_blocks_per_most_len_req = (
196
+ cdiv(self.most_model_len, self.block_size)
197
+ if self.most_model_len is not None
198
+ else None
199
+ )
200
+ # InputBatch needs to work with sampling tensors greater than padding
201
+ # to avoid dynamic shapes. Also, avoid suboptimal alignment.
202
+ self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
203
+ self.num_tokens_paddings = _get_token_paddings(
204
+ min_token_size=16,
205
+ max_token_size=scheduler_config.max_num_batched_tokens,
206
+ padding_gap=envs.VLLM_TPU_BUCKET_PADDING_GAP,
207
+ )
208
+ # In case `max_num_tokens < max(num_tokens_paddings)` use the actual
209
+ # padded max value to pre-allocate data structures and pre-compile.
210
+ self.max_num_tokens = self.num_tokens_paddings[-1]
211
+
212
+ # Model-related.
213
+ self.num_attn_layers = model_config.get_num_layers_by_block_type(
214
+ parallel_config, "attention"
215
+ )
216
+ self.num_query_heads = model_config.get_num_attention_heads(parallel_config)
217
+ self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
218
+ self.head_size = model_config.get_head_size()
219
+ self.hidden_size = model_config.get_hidden_size()
220
+ self.vocab_size = model_config.get_vocab_size()
221
+
222
+ if self.lora_config is not None:
223
+ self.vocab_size += self.lora_config.lora_extra_vocab_size
224
+
225
+ # Multi-modal data support
226
+ self.mm_registry = MULTIMODAL_REGISTRY
227
+ self.uses_mrope = model_config.uses_mrope
228
+ self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
229
+ model_config
230
+ )
231
+ # TODO: Support M-RoPE (e.g, Qwen2-VL)
232
+ assert not self.uses_mrope, "TPU does not support M-RoPE yet."
233
+
234
+ self._num_slices_per_kv_cache_update_block = (
235
+ _get_num_slices_per_kv_cache_update_block(
236
+ get_page_size_bytes(
237
+ block_size=self.block_size,
238
+ num_kv_heads=self.num_kv_heads,
239
+ head_size=self.head_size,
240
+ kv_cache_dtype=self.kv_cache_dtype,
241
+ )
242
+ )
243
+ )
244
+
245
+ # Lazy initialization
246
+ self.model: nn.Module # Set after load_model
247
+ self.kv_caches: list[torch.Tensor] = []
248
+ # mm_hash -> encoder_output
249
+ self.encoder_cache: dict[str, torch.Tensor] = {}
250
+
251
+ # Request states.
252
+ self.requests: dict[str, CachedRequestState] = {}
253
+
254
+ # Initialize input batch early to avoid AttributeError in _update_states
255
+ self.input_batch = InputBatch(
256
+ max_num_reqs=self.max_num_reqs,
257
+ max_model_len=self.max_model_len,
258
+ max_num_batched_tokens=self.max_num_tokens,
259
+ device=self.device,
260
+ pin_memory=self.pin_memory,
261
+ vocab_size=self.model_config.get_vocab_size(),
262
+ block_sizes=[self.block_size],
263
+ kernel_block_sizes=[self.cache_config.block_size],
264
+ )
265
+
266
+ # Cached torch/numpy tensor
267
+ # The pytorch tensor and numpy array share the same buffer.
268
+ # Sometimes the numpy op is faster so we create both.
269
+ self.input_ids_cpu = torch.zeros(
270
+ self.max_num_tokens, dtype=torch.int32, device="cpu"
271
+ )
272
+
273
+ self.positions_cpu = torch.zeros(
274
+ self.max_num_tokens, dtype=torch.int32, device="cpu"
275
+ )
276
+ self.positions_np = self.positions_cpu.numpy()
277
+ self.block_table_cpu = torch.zeros(
278
+ (self.max_num_reqs, self.max_num_blocks_per_req),
279
+ dtype=torch.int32,
280
+ device="cpu",
281
+ )
282
+ # adjust num_reqs to avoid SMEM OOM.
283
+ self.num_reqs_most_model_len = (
284
+ min(
285
+ PallasAttentionBackend.get_max_num_seqs(
286
+ self.most_model_len, self.block_size
287
+ ),
288
+ self.max_num_reqs,
289
+ )
290
+ if self.most_model_len is not None
291
+ else None
292
+ )
293
+ self.num_reqs_max_model_len = min(
294
+ PallasAttentionBackend.get_max_num_seqs(
295
+ self.max_model_len, self.block_size
296
+ ),
297
+ self.max_num_reqs,
298
+ )
299
+ self.query_start_loc_cpu = torch.zeros(
300
+ self.max_num_tokens + 1,
301
+ dtype=torch.int32,
302
+ device="cpu",
303
+ pin_memory=self.pin_memory,
304
+ )
305
+ self.query_start_loc_np = self.query_start_loc_cpu.numpy()
306
+
307
+ self.seq_lens_cpu = torch.zeros(
308
+ self.max_num_tokens,
309
+ dtype=torch.int32,
310
+ device="cpu",
311
+ pin_memory=self.pin_memory,
312
+ )
313
+ self.seq_lens_np = self.seq_lens_cpu.numpy()
314
+
315
+ # Only relevant for multimodal models
316
+ if self.supports_mm_inputs:
317
+ self.is_mm_embed_cpu = torch.zeros(
318
+ self.max_num_tokens,
319
+ dtype=torch.bool,
320
+ device="cpu",
321
+ pin_memory=self.pin_memory,
322
+ )
323
+
324
+ # Range tensor with values [0 .. self.max_num_tokens - 1].
325
+ # Used to initialize positions / context_lens / seq_lens
326
+ # Keep in int64 to avoid overflow with long context
327
+ self.arange_np = np.arange(self.max_num_tokens, dtype=np.int64)
328
+ self.num_reqs_paddings = _get_req_paddings(
329
+ min_req_size=MIN_NUM_SEQS, max_req_size=self.max_num_reqs
330
+ )
331
+
332
+ # Layer pairings for cross-layer KV sharing.
333
+ # If an Attention layer `layer_name` is in the keys of this dict, it
334
+ # means this layer will perform attention using the keys and values
335
+ # from the KV cache of `shared_kv_cache_layers[layer_name]`.
336
+ self.shared_kv_cache_layers: dict[str, str] = {}
337
+
338
+ # tensors for structured decoding
339
+ self.grammar_bitmask_cpu = torch.zeros(
340
+ (self.max_num_reqs, cdiv(self.vocab_size, 32)),
341
+ dtype=torch.int32,
342
+ device="cpu",
343
+ pin_memory=self.pin_memory,
344
+ )
345
+ self.require_structured_out_cpu = torch.zeros(
346
+ (self.max_num_reqs, 1),
347
+ dtype=torch.bool,
348
+ device="cpu",
349
+ pin_memory=self.pin_memory,
350
+ )
351
+ self.structured_decode_arange = torch.arange(
352
+ 0, 32, device="cpu", pin_memory=self.pin_memory
353
+ )
354
+
355
+ self.mm_budget = (
356
+ MultiModalBudget(
357
+ self.model_config,
358
+ self.scheduler_config,
359
+ self.mm_registry,
360
+ )
361
+ if self.supports_mm_inputs
362
+ else None
363
+ )
364
+
365
+ if not self.use_spmd:
366
+ self.sample_from_logits_func = torch.compile(
367
+ self.sample_from_logits,
368
+ backend="openxla",
369
+ fullgraph=True,
370
+ dynamic=False,
371
+ )
372
+ else:
373
+ self.sample_from_logits_func = self.sample_from_logits
374
+
375
+ # For passing scheduler_output between successive
376
+ # execute_model() and sample_tokens() calls.
377
+ self.scheduler_output: SchedulerOutput | None = None
378
+ self.mm_embed_inputs: tuple[list[torch.Tensor], torch.Tensor] | None = None
379
+
380
+ def reset_mm_cache(self) -> None:
381
+ if self.mm_budget:
382
+ self.mm_budget.reset_cache()
383
+
384
+ def _update_num_xla_graphs(self, case_str):
385
+ check_comp = self.check_recompilation and not self.enforce_eager
386
+ if not check_comp:
387
+ return
388
+
389
+ total_cached_graphs = xr.get_num_cached_compilation_graph()
390
+ new_compiled_graphs = total_cached_graphs - self.num_xla_graphs
391
+ if new_compiled_graphs == 0:
392
+ return
393
+
394
+ logger.info(
395
+ "Add new %d compiled XLA graphs due to %s", new_compiled_graphs, case_str
396
+ )
397
+ self.num_xla_graphs += new_compiled_graphs
398
+
399
+ def _verify_num_xla_graphs(self, case_str):
400
+ check_comp = self.check_recompilation and not self.enforce_eager
401
+ if not check_comp:
402
+ return
403
+
404
+ curr_cached_graph = xr.get_num_cached_compilation_graph()
405
+ assert self.num_xla_graphs == curr_cached_graph, (
406
+ "Recompilation after warm up is detected during {}."
407
+ " num_xla_graphs = {} curr_cached_graph = {}".format(
408
+ case_str, self.num_xla_graphs, curr_cached_graph
409
+ )
410
+ )
411
+
412
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> bool:
413
+ """Update the cached states and the persistent batch with the scheduler
414
+ output.
415
+
416
+ The updated states are used by the `_prepare_inputs` function to create
417
+ the input GPU tensors for the model.
418
+
419
+ Returns:
420
+ True if there is a new/resumed/paused/finished request.
421
+ If False, we can skip copying SamplingMetadata to the GPU.
422
+ """
423
+ # Remove finished requests from the cached states.
424
+ for req_id in scheduler_output.finished_req_ids:
425
+ self.requests.pop(req_id, None)
426
+
427
+ # Remove the finished requests from the persistent batch.
428
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
429
+ # scheduled_req_ids overlap. This happens when a request is aborted and
430
+ # then resubmitted with the same ID. In this case, we treat them as two
431
+ # distinct requests - clearing the cached states for the first request
432
+ # and handling the second as a new request.
433
+ removed_req_indices: list[int] = []
434
+ for req_id in scheduler_output.finished_req_ids:
435
+ req_index = self.input_batch.remove_request(req_id)
436
+ if req_index is not None:
437
+ removed_req_indices.append(req_index)
438
+
439
+ # Free the cached encoder outputs.
440
+ for mm_hash in scheduler_output.free_encoder_mm_hashes:
441
+ self.encoder_cache.pop(mm_hash, None)
442
+
443
+ # Remove the unscheduled requests from the persistent batch.
444
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
445
+ # or running requests that are not scheduled in this step. We remove
446
+ # them from the persistent batch but keep their cached states since
447
+ # they will be scheduled again sometime in the future.
448
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
449
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
450
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
451
+ # NOTE(woosuk): The persistent batch optimization assumes that
452
+ # consecutive batches contain mostly the same requests. If batches
453
+ # have low request overlap (e.g., alternating between two distinct
454
+ # sets of requests), this optimization becomes very inefficient.
455
+ for req_id in unscheduled_req_ids:
456
+ req_index = self.input_batch.remove_request(req_id)
457
+ assert req_index is not None
458
+ removed_req_indices.append(req_index)
459
+
460
+ req_ids_to_add: list[str] = []
461
+ # Add new requests to the cached states.
462
+ for new_req_data in scheduler_output.scheduled_new_reqs:
463
+ assert new_req_data.sampling_params is not None, (
464
+ "Pooling is not supported in TPU yet"
465
+ )
466
+ req_id = new_req_data.req_id
467
+ sampling_params = new_req_data.sampling_params
468
+
469
+ self.requests[req_id] = CachedRequestState(
470
+ req_id=req_id,
471
+ prompt_token_ids=new_req_data.prompt_token_ids,
472
+ prompt_embeds=new_req_data.prompt_embeds,
473
+ mm_features=new_req_data.mm_features,
474
+ sampling_params=sampling_params,
475
+ pooling_params=None,
476
+ generator=None,
477
+ block_ids=new_req_data.block_ids,
478
+ num_computed_tokens=new_req_data.num_computed_tokens,
479
+ output_token_ids=[],
480
+ lora_request=new_req_data.lora_request,
481
+ )
482
+
483
+ req_ids_to_add.append(req_id)
484
+
485
+ # Update the states of the running/resumed requests.
486
+ req_data = scheduler_output.scheduled_cached_reqs
487
+ for i, req_id in enumerate(req_data.req_ids):
488
+ req_state = self.requests[req_id]
489
+ num_computed_tokens = req_data.num_computed_tokens[i]
490
+ new_block_ids = req_data.new_block_ids[i]
491
+ resumed_from_preemption = req_id in req_data.resumed_req_ids
492
+
493
+ # Update the cached states.
494
+ req_state.num_computed_tokens = num_computed_tokens
495
+ if not resumed_from_preemption:
496
+ if new_block_ids is not None:
497
+ # Append the new blocks to the existing block IDs.
498
+ for block_ids, new_ids in zip(req_state.block_ids, new_block_ids):
499
+ block_ids.extend(new_ids)
500
+ else:
501
+ assert new_block_ids is not None
502
+ # The request is resumed from preemption.
503
+ # Replace the existing block IDs with the new ones.
504
+ req_state.block_ids = new_block_ids
505
+
506
+ req_index = self.input_batch.req_id_to_index.get(req_id)
507
+ if req_index is None:
508
+ # The request is not in the persistent batch.
509
+ # The request was either preempted and resumed later, or was not
510
+ # scheduled in the previous step and needs to be added again.
511
+ req_ids_to_add.append(req_id)
512
+ continue
513
+
514
+ # Update the persistent batch.
515
+ self.input_batch.num_computed_tokens_cpu[req_index] = num_computed_tokens
516
+ if new_block_ids is not None:
517
+ self.input_batch.block_table.append_row(new_block_ids, req_index)
518
+
519
+ # Add the new or resumed requests to the persistent batch.
520
+ # The smaller empty indices are filled first.
521
+ removed_req_indices = sorted(removed_req_indices, reverse=True)
522
+ for req_id in req_ids_to_add:
523
+ req_state = self.requests[req_id]
524
+ # Fill the empty index or append to the end
525
+ req_index = removed_req_indices.pop() if removed_req_indices else None
526
+ self.input_batch.add_request(req_state, req_index)
527
+
528
+ # Condense the batched states if there are empty indices.
529
+ if removed_req_indices:
530
+ self.input_batch.condense(removed_req_indices)
531
+
532
+ return len(unscheduled_req_ids) > 0 or len(req_ids_to_add) > 0
533
+
534
+ def get_model(self) -> nn.Module:
535
+ return self.model
536
+
537
+ def get_supported_generation_tasks(self) -> list[GenerationTask]:
538
+ model = self.get_model()
539
+ supported_tasks = list[GenerationTask]()
540
+
541
+ if is_text_generation_model(model):
542
+ supported_tasks.append("generate")
543
+
544
+ if supports_transcription(model):
545
+ if model.supports_transcription_only:
546
+ return ["transcription"]
547
+
548
+ supported_tasks.append("transcription")
549
+
550
+ return supported_tasks
551
+
552
+ def get_supported_pooling_tasks(self) -> list[PoolingTask]:
553
+ model = self.get_model()
554
+ if not is_pooling_model(model):
555
+ return []
556
+
557
+ return list(model.pooler.get_supported_tasks())
558
+
559
+ def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
560
+ tasks = list[SupportedTask]()
561
+
562
+ if self.model_config.runner_type == "generate":
563
+ tasks.extend(self.get_supported_generation_tasks())
564
+ if self.model_config.runner_type == "pooling":
565
+ tasks.extend(self.get_supported_pooling_tasks())
566
+
567
+ return tuple(tasks)
568
+
569
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
570
+ """
571
+ Generates the KVCacheSpec by parsing the kv cache format from each
572
+ Attention module in the static forward context.
573
+ Returns:
574
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
575
+ format. Layers that do not need KV cache are not included.
576
+ """
577
+
578
+ layers = get_layers_from_vllm_config(self.vllm_config, AttentionLayerBase)
579
+ block_size = self.vllm_config.cache_config.block_size
580
+ cache_dtype_str = self.vllm_config.cache_config.cache_dtype
581
+
582
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
583
+ for layer_name, attn_module in layers.items():
584
+ # Classic Attention path
585
+ if isinstance(attn_module, Attention):
586
+ if (
587
+ kv_tgt_layer := attn_module.kv_sharing_target_layer_name
588
+ ) is not None:
589
+ # The layer doesn't need its own KV cache and will use that of
590
+ # the target layer. We skip creating a KVCacheSpec for it, so
591
+ # that KV cache management logic will act as this layer does
592
+ # not exist, and doesn't allocate KV cache for the layer. This
593
+ # enables the memory saving of cross-layer kv sharing, allowing
594
+ # a given amount of memory to accommodate longer context lengths
595
+ # or enable more requests to be processed simultaneously.
596
+ self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
597
+ continue
598
+
599
+ if attn_module.attn_type == AttentionType.DECODER:
600
+ if isinstance(attn_module, ChunkedLocalAttention):
601
+ logger.warning_once(
602
+ "Using irope in Pallas is not supported yet, it "
603
+ "will fall back to global attention for long context."
604
+ )
605
+ if attn_module.sliding_window is not None:
606
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
607
+ block_size=block_size,
608
+ num_kv_heads=attn_module.num_kv_heads,
609
+ head_size=attn_module.head_size,
610
+ dtype=self.kv_cache_dtype,
611
+ sliding_window=attn_module.sliding_window,
612
+ )
613
+ else:
614
+ kv_cache_spec[layer_name] = FullAttentionSpec(
615
+ block_size=block_size,
616
+ num_kv_heads=attn_module.num_kv_heads,
617
+ head_size=attn_module.head_size,
618
+ dtype=self.kv_cache_dtype,
619
+ )
620
+ elif attn_module.attn_type in (
621
+ AttentionType.ENCODER,
622
+ AttentionType.ENCODER_ONLY,
623
+ ):
624
+ # encoder-only attention does not need KV cache.
625
+ continue
626
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
627
+ raise NotImplementedError
628
+ else:
629
+ raise ValueError(f"Unknown attention type: {attn_module.attn_type}")
630
+ # MLAAttention path
631
+ elif isinstance(attn_module, MLAAttention):
632
+ if layer_name in kv_cache_spec:
633
+ continue
634
+ kv_cache_spec[layer_name] = MLAAttentionSpec(
635
+ block_size=block_size,
636
+ num_kv_heads=1,
637
+ head_size=attn_module.head_size,
638
+ dtype=self.kv_cache_dtype,
639
+ cache_dtype_str=cache_dtype_str,
640
+ )
641
+ else:
642
+ continue
643
+
644
+ return kv_cache_spec
645
+
646
+ def _get_slot_mapping_metadata(
647
+ self, num_reqs, num_scheduled_tokens_per_req
648
+ ) -> np.ndarray:
649
+ """
650
+ Computes metadata for mapping slots to blocks in the key-value (KV)
651
+ cache for a batch of requests.
652
+
653
+ This function determines, for each request in the batch, how the
654
+ scheduled tokens are distributed across memory blocks, and generates
655
+ metadata needed to map slices of tokens to their corresponding positions
656
+ in the KV cache.
657
+
658
+ Args:
659
+ num_reqs (int): Number of requests in the current batch.
660
+ num_scheduled_tokens_per_req (int or np.ndarray): Number of tokens
661
+ to be scheduled for each request.
662
+
663
+ Returns:
664
+ np.ndarray: A 2D array of shape (total_block_len, 3), where each row
665
+ contains:
666
+ - kv_cache_start_index (int): The starting index in the KV cache
667
+ for the corresponding slice.
668
+ - new_kv_start_index (int): The starting index in the new KV
669
+ cache for the corresponding slice.
670
+ - slice_len (int): The length of the slice.
671
+ """
672
+ slices_start = self.input_batch.num_computed_tokens_cpu[:num_reqs]
673
+ slices_end = (
674
+ self.input_batch.num_computed_tokens_cpu[:num_reqs]
675
+ + num_scheduled_tokens_per_req
676
+ )
677
+ local_block_start_idx = slices_start // self.block_size
678
+ local_block_end_idx = (slices_end - 1) // self.block_size
679
+ no_repeat_req_indices = self.arange_np[:num_reqs]
680
+ global_block_start_idx = (
681
+ no_repeat_req_indices * self.max_num_blocks_per_req + local_block_start_idx
682
+ )
683
+ block_lens = local_block_end_idx - local_block_start_idx + 1
684
+ global_block_start_idx = np.repeat(global_block_start_idx, block_lens)
685
+ slice_arange = np.concatenate([self.arange_np[:n] for n in block_lens])
686
+ global_block_indices = global_block_start_idx + slice_arange
687
+ block_table_cpu = self.input_batch.block_table[0].get_cpu_tensor()
688
+ block_numbers = block_table_cpu.flatten()[global_block_indices].numpy()
689
+ total_block_len = np.sum(block_lens)
690
+ slot_mapping_slices = np.repeat(
691
+ np.array([[0, self.block_size]], dtype=np.int32), total_block_len, axis=0
692
+ )
693
+ cu_block_lens = np.zeros(len(block_lens) + 1, dtype=np.int32)
694
+ np.cumsum(block_lens, out=cu_block_lens[1:])
695
+ for req_idx in range(num_reqs):
696
+ slot_mapping_slices[cu_block_lens[req_idx]][0] = (
697
+ slices_start[req_idx] % self.block_size
698
+ )
699
+ slot_mapping_slices[cu_block_lens[req_idx + 1] - 1][1] = (
700
+ slices_end[req_idx] - 1
701
+ ) % self.block_size + 1
702
+ slice_lens = slot_mapping_slices[:, 1] - slot_mapping_slices[:, 0]
703
+ cu_slices_lens = np.zeros(len(slice_lens) + 1, dtype=np.int32)
704
+ np.cumsum(slice_lens, out=cu_slices_lens[1:])
705
+ kv_cache_start_indices = slot_mapping_slices[:, 0] + (
706
+ block_numbers * self.block_size
707
+ )
708
+ new_kv_start_indices = cu_slices_lens[:-1]
709
+ slot_mapping_metadata = np.stack(
710
+ [kv_cache_start_indices, new_kv_start_indices, slice_lens], axis=1
711
+ )
712
+ return slot_mapping_metadata
713
+
714
+ def _prepare_inputs(self, scheduler_output: "SchedulerOutput", start_index: int):
715
+ assert scheduler_output.total_num_scheduled_tokens > 0
716
+ num_reqs = self.input_batch.num_reqs
717
+ assert num_reqs > 0
718
+ assert start_index < num_reqs
719
+
720
+ # Get the number of scheduled tokens for each request.
721
+ use_max_model_len = self.most_model_len is None
722
+ num_scheduled_tokens_per_req = []
723
+ max_num_scheduled_tokens_all_reqs = 0
724
+ end_index = start_index
725
+
726
+ # Use either most_model_len or max_model_len depending on request size.
727
+ for i in range(start_index, num_reqs):
728
+ req_id = self.input_batch.req_ids[i]
729
+ assert req_id is not None
730
+ num_tokens = scheduler_output.num_scheduled_tokens[req_id]
731
+ if not use_max_model_len and num_tokens > self.most_model_len:
732
+ use_max_model_len = True
733
+ num_scheduled_tokens_per_req.append(num_tokens)
734
+ if use_max_model_len:
735
+ if len(num_scheduled_tokens_per_req) > self.num_reqs_max_model_len:
736
+ num_scheduled_tokens_per_req = num_scheduled_tokens_per_req[
737
+ : self.num_reqs_max_model_len
738
+ ]
739
+ end_index = start_index + self.num_reqs_max_model_len
740
+ else:
741
+ end_index = num_reqs
742
+ else:
743
+ if len(num_scheduled_tokens_per_req) > self.num_reqs_most_model_len:
744
+ num_scheduled_tokens_per_req = num_scheduled_tokens_per_req[
745
+ : self.num_reqs_most_model_len
746
+ ]
747
+ end_index = start_index + self.num_reqs_most_model_len
748
+ else:
749
+ end_index = num_reqs
750
+ max_num_scheduled_tokens_all_reqs = max(num_scheduled_tokens_per_req)
751
+ num_scheduled_tokens_per_req = np.array(
752
+ num_scheduled_tokens_per_req, dtype=np.int32
753
+ )
754
+ total_num_scheduled_tokens = sum(num_scheduled_tokens_per_req)
755
+ assert max_num_scheduled_tokens_all_reqs > 0
756
+
757
+ num_reqs = len(num_scheduled_tokens_per_req)
758
+
759
+ # Get request indices.
760
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
761
+ # For each scheduled token, what are the corresponding req index.
762
+ req_indices = np.repeat(self.arange_np[:num_reqs], num_scheduled_tokens_per_req)
763
+
764
+ # Get batched arange.
765
+ # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
766
+ # For each scheduled token, what is its position in corresponding req.
767
+ arange = np.concatenate(
768
+ [self.arange_np[:n] for n in num_scheduled_tokens_per_req]
769
+ )
770
+
771
+ # Get positions.
772
+ positions_np = self.positions_np[:total_num_scheduled_tokens]
773
+ np.add(
774
+ self.input_batch.num_computed_tokens_cpu[req_indices],
775
+ arange,
776
+ out=positions_np,
777
+ )
778
+
779
+ # Get token indices.
780
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
781
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
782
+ # where M is the max_model_len.
783
+ token_indices = (
784
+ positions_np + req_indices * self.input_batch.token_ids_cpu.shape[1]
785
+ )
786
+
787
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
788
+ # because torch.index_select is much faster than np.take for large
789
+ # tensors.
790
+ torch.index_select(
791
+ self.input_batch.token_ids_cpu_tensor.flatten(),
792
+ 0,
793
+ torch.from_numpy(token_indices),
794
+ out=self.input_ids_cpu[:total_num_scheduled_tokens],
795
+ )
796
+
797
+ # Prepare the attention metadata.
798
+ self.query_start_loc_np[0] = 0
799
+ np.cumsum(
800
+ num_scheduled_tokens_per_req, out=self.query_start_loc_np[1 : num_reqs + 1]
801
+ )
802
+ self.query_start_loc_np[num_reqs + 1 :] = 1
803
+
804
+ self.seq_lens_np[:num_reqs] = (
805
+ self.input_batch.num_computed_tokens_cpu[:num_reqs]
806
+ + num_scheduled_tokens_per_req
807
+ )
808
+
809
+ # Do the padding and copy the tensors to the TPU.
810
+ padded_total_num_scheduled_tokens = _get_padded_token_len(
811
+ self.num_tokens_paddings, total_num_scheduled_tokens
812
+ )
813
+ # Zero out to avoid spurious values from prev iteration (last cp chunk)
814
+ self.input_ids_cpu[
815
+ total_num_scheduled_tokens:padded_total_num_scheduled_tokens
816
+ ] = 0
817
+ self.input_ids = self.input_ids_cpu[:padded_total_num_scheduled_tokens].to(
818
+ self.device
819
+ )
820
+ self.position_ids = self.positions_cpu[:padded_total_num_scheduled_tokens].to(
821
+ self.device
822
+ )
823
+ if use_max_model_len:
824
+ block_tables = self.block_table_cpu[
825
+ : self.num_reqs_max_model_len, : self.max_num_blocks_per_req
826
+ ]
827
+ block_tables[:num_reqs, : self.max_num_blocks_per_req] = (
828
+ self.input_batch.block_table[0].get_cpu_tensor()[:num_reqs]
829
+ )
830
+ query_start_loc = self.query_start_loc_cpu[
831
+ : self.num_reqs_max_model_len + 1
832
+ ].to(self.device)
833
+ seq_lens = self.seq_lens_cpu[: self.num_reqs_max_model_len].to(self.device)
834
+ else:
835
+ block_tables = self.block_table_cpu[
836
+ : self.num_reqs_most_model_len, : self.num_blocks_per_most_len_req
837
+ ]
838
+ block_tables[:num_reqs, : self.num_blocks_per_most_len_req] = (
839
+ self.input_batch.block_table[0].get_cpu_tensor()[
840
+ :num_reqs, : self.num_blocks_per_most_len_req
841
+ ]
842
+ )
843
+ query_start_loc = self.query_start_loc_cpu[
844
+ : self.num_reqs_most_model_len + 1
845
+ ].to(self.device)
846
+ seq_lens = self.seq_lens_cpu[: self.num_reqs_most_model_len].to(self.device)
847
+ block_tables = block_tables.to(self.device)
848
+
849
+ # Calculate the slot mapping
850
+ slot_mapping_metadata = self._get_slot_mapping_metadata(
851
+ num_reqs, num_scheduled_tokens_per_req
852
+ )
853
+ num_kv_update_slices = slot_mapping_metadata.shape[0]
854
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
855
+ padded_total_num_scheduled_tokens, self.max_num_reqs, self.block_size
856
+ )
857
+ slot_mapping_metadata = np.pad(
858
+ slot_mapping_metadata,
859
+ [[0, padded_num_slices - len(slot_mapping_metadata)], [0, 0]],
860
+ constant_values=0,
861
+ )
862
+ slot_mapping_metadata = np.transpose(slot_mapping_metadata)
863
+ slot_mapping_metadata = torch.tensor(slot_mapping_metadata, device=self.device)
864
+
865
+ if self.lora_config is not None:
866
+ # We need to respect padding when activating LoRA adapters
867
+ padded_num_scheduled_tokens_per_req = np.copy(
868
+ num_scheduled_tokens_per_req
869
+ ) # Copying to avoid accidental state corruption bugs
870
+ padded_num_scheduled_tokens_per_req[-1] += (
871
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
872
+ )
873
+
874
+ self.set_active_loras(self.input_batch, padded_num_scheduled_tokens_per_req)
875
+
876
+ attn_metadata = PallasMetadata(
877
+ slot_mapping=slot_mapping_metadata,
878
+ block_tables=block_tables,
879
+ context_lens=seq_lens,
880
+ query_start_loc=query_start_loc,
881
+ num_seqs=torch.tensor([num_reqs], dtype=torch.int32, device=self.device),
882
+ num_kv_update_slices=torch.tensor(
883
+ [num_kv_update_slices], dtype=torch.int32, device=self.device
884
+ ),
885
+ num_slices_per_kv_cache_update_block=self._num_slices_per_kv_cache_update_block,
886
+ )
887
+ # NOTE(woosuk): Due to chunked prefills, there can be at most 1 partial
888
+ # request in the batch. While we should not sample any token from this
889
+ # partial request, we do so for simplicity. We will ignore the sampled
890
+ # token from the partial request.
891
+ # TODO: Support prompt logprobs.
892
+ padded_num_reqs = _get_padded_num_reqs_with_upper_limit(
893
+ num_reqs, self.max_num_reqs
894
+ )
895
+ # Indices at which we sample (positions of last token in the sequence).
896
+ # Padded to avoid recompiling when `num_reqs` varies.
897
+ logits_indices = self.query_start_loc_cpu[1 : padded_num_reqs + 1] - 1
898
+ logits_indices = logits_indices.to(self.device)
899
+
900
+ if self.lora_config is not None:
901
+ # We need to respect padding when activating LoRA adapters
902
+ padded_num_scheduled_tokens_per_req = np.copy(
903
+ num_scheduled_tokens_per_req
904
+ ) # Copying to avoid accidental state corruption bugs
905
+ padded_num_scheduled_tokens_per_req[-1] += (
906
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
907
+ )
908
+
909
+ self.set_active_loras(self.input_batch, padded_num_scheduled_tokens_per_req)
910
+
911
+ layer_names = get_layers_from_vllm_config(self.vllm_config, Attention).keys()
912
+ per_layer_attn_metadata = {
913
+ layer_name: attn_metadata for layer_name in layer_names
914
+ }
915
+ return (
916
+ per_layer_attn_metadata,
917
+ logits_indices,
918
+ padded_num_reqs,
919
+ num_reqs,
920
+ end_index,
921
+ )
922
+
923
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
924
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
925
+ if not scheduled_encoder_inputs:
926
+ return
927
+
928
+ # Batch the multi-modal inputs.
929
+ mm_kwargs = list[MultiModalKwargsItem]()
930
+ # List of tuple (mm_hash, pos_info)
931
+ mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
932
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
933
+ req_state = self.requests[req_id]
934
+
935
+ for mm_input_id in encoder_input_ids:
936
+ mm_feature = req_state.mm_features[mm_input_id]
937
+ mm_hash = mm_feature.identifier
938
+ mm_kwargs.append(mm_feature.data)
939
+ mm_hashes_pos.append((mm_hash, mm_feature.mm_position))
940
+
941
+ # Batch mm inputs as much as we can: if a request in the batch has
942
+ # multiple modalities or a different modality than the previous one,
943
+ # we process it separately to preserve item order.
944
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
945
+ # in the same batch while still being able to benefit from batching
946
+ # multimodal inputs. The proper solution should be reordering the
947
+ # encoder outputs.
948
+ model = cast(SupportsMultiModal, self.model)
949
+ encoder_outputs = []
950
+ for _, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
951
+ mm_kwargs,
952
+ device=self.device,
953
+ pin_memory=self.pin_memory,
954
+ merge_by_field_config=model.merge_by_field_config,
955
+ multimodal_cpu_fields=model.multimodal_cpu_fields,
956
+ ):
957
+ # Run the encoder.
958
+ # `curr_group_outputs` is either of the following:
959
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
960
+ # in case feature_size is fixed across all multimodal items.
961
+ # 2. A list or tuple (length: num_items) of tensors, each of shape
962
+ # (feature_size, hidden_size) in case the feature size is dynamic
963
+ # depending on the input multimodal items.
964
+ torch_xla.sync(wait=False)
965
+ curr_group_outputs = model.embed_multimodal(**mm_kwargs_group)
966
+ torch_xla.sync(wait=False)
967
+
968
+ sanity_check_mm_encoder_outputs(
969
+ curr_group_outputs,
970
+ expected_num_items=num_items,
971
+ )
972
+
973
+ if isinstance(curr_group_outputs, torch.Tensor):
974
+ encoder_outputs.append(curr_group_outputs)
975
+ else:
976
+ assert isinstance(curr_group_outputs, (list, tuple))
977
+ for output in curr_group_outputs:
978
+ encoder_outputs.append(output)
979
+
980
+ # Cache the encoder outputs.
981
+ # NOTE (NickLucche) here we diverge from logic in other runners, as we
982
+ # assume to only have whole mm items to process. Hence we avoid the
983
+ # intrinsic dynamism that `scatter_mm_placeholders` introduces.
984
+ for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
985
+ assert pos_info.is_embed is None, (
986
+ "Expected all positions to be contiguous and embeddings."
987
+ )
988
+ self.encoder_cache[mm_hash] = output
989
+
990
+ def _gather_mm_embeddings(
991
+ self,
992
+ scheduler_output: "SchedulerOutput",
993
+ ) -> tuple[list[torch.Tensor], torch.Tensor]:
994
+ total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
995
+ padded_total_num_scheduled_tokens = _get_padded_token_len(
996
+ self.num_tokens_paddings, total_num_scheduled_tokens
997
+ )
998
+
999
+ is_mm_embed = self.is_mm_embed_cpu
1000
+ is_mm_embed[:padded_total_num_scheduled_tokens] = False
1001
+ mm_embeds = list[torch.Tensor]()
1002
+ req_start_idx = 0
1003
+
1004
+ for req_id in self.input_batch.req_ids:
1005
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[req_id]
1006
+ req_state = self.requests[req_id]
1007
+ num_computed_tokens = req_state.num_computed_tokens
1008
+
1009
+ # TODO unroll loop and assume/enforce --disable_chunked_mm_input
1010
+ # NOTE (NickLucche) here we diverge from logic in other runners, as
1011
+ # we assume to only have whole mm items to process. Hence we avoid
1012
+ # the intrinsic dynamism that `gather_mm_placeholders` introduces.
1013
+ for mm_feature in req_state.mm_features:
1014
+ pos_info = mm_feature.mm_position
1015
+ start_pos = pos_info.offset
1016
+ num_encoder_tokens = pos_info.length
1017
+
1018
+ # The encoder output is needed if the two ranges overlap:
1019
+ # [num_computed_tokens,
1020
+ # num_computed_tokens + num_scheduled_tokens) and
1021
+ # [start_pos, start_pos + num_encoder_tokens)
1022
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
1023
+ # The encoder output is not needed in this step.
1024
+ break
1025
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
1026
+ # The encoder output is already processed and stored
1027
+ # in the decoder's KV cache.
1028
+ continue
1029
+
1030
+ start_idx = max(num_computed_tokens - start_pos, 0)
1031
+ end_idx = min(
1032
+ num_computed_tokens - start_pos + num_scheduled_tokens,
1033
+ num_encoder_tokens,
1034
+ )
1035
+ assert start_idx < end_idx
1036
+
1037
+ mm_hash = mm_feature.identifier
1038
+ encoder_output = self.encoder_cache.get(mm_hash, None)
1039
+ assert encoder_output is not None, f"Encoder cache miss for {mm_hash}."
1040
+
1041
+ assert pos_info.is_embed is None, (
1042
+ "Expected all positions to be contiguous and embeddings."
1043
+ )
1044
+
1045
+ req_start_pos = req_start_idx + start_pos - num_computed_tokens
1046
+ is_mm_embed[req_start_pos + start_idx : req_start_pos + end_idx] = True
1047
+
1048
+ # Only whole mm items are processed
1049
+ mm_embeds.append(encoder_output)
1050
+
1051
+ req_start_idx += num_scheduled_tokens
1052
+
1053
+ is_mm_embed = is_mm_embed[:padded_total_num_scheduled_tokens].to(self.device)
1054
+
1055
+ return mm_embeds, is_mm_embed
1056
+
1057
+ def _get_model_inputs(
1058
+ self,
1059
+ input_ids: torch.Tensor,
1060
+ mm_embed_inputs: tuple[list[torch.Tensor], torch.Tensor] | None,
1061
+ ):
1062
+ if self.supports_mm_inputs:
1063
+ mm_embeds, is_mm_embed = mm_embed_inputs or (None, None)
1064
+
1065
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
1066
+ # embeddings), we always use embeddings (rather than token ids)
1067
+ # as input to the multimodal model, even when the input is text.
1068
+ inputs_embeds = self.model.embed_input_ids(
1069
+ input_ids,
1070
+ multimodal_embeddings=mm_embeds,
1071
+ is_multimodal=is_mm_embed,
1072
+ )
1073
+
1074
+ return None, inputs_embeds
1075
+ else:
1076
+ # For text-only models, we use token ids as input.
1077
+ # While it is possible to use embeddings as input just like the
1078
+ # multimodal models, it is not desirable for performance since
1079
+ # then the embedding layer is not included in the CUDA graph.
1080
+ return input_ids, None
1081
+
1082
+ @torch.no_grad()
1083
+ def execute_model(
1084
+ self,
1085
+ scheduler_output: "SchedulerOutput",
1086
+ intermediate_tensors: IntermediateTensors | None = None,
1087
+ ) -> ModelRunnerOutput | None:
1088
+ if self.scheduler_output is not None:
1089
+ raise RuntimeError(
1090
+ "State error: sample_tokens() must be called "
1091
+ "after execute_model() returns None."
1092
+ )
1093
+ # Update cached state
1094
+ self._update_states(scheduler_output)
1095
+ if not scheduler_output.total_num_scheduled_tokens:
1096
+ if not has_kv_transfer_group():
1097
+ # Return empty ModelRunnerOutput if there's no work to do.
1098
+ return EMPTY_MODEL_RUNNER_OUTPUT
1099
+
1100
+ return self.kv_connector_no_forward(scheduler_output, self.vllm_config)
1101
+
1102
+ mm_embed_inputs = None
1103
+ if self.supports_mm_inputs:
1104
+ # Run the multimodal encoder if any.
1105
+ self._execute_mm_encoder(scheduler_output)
1106
+ mm_embed_inputs = self._gather_mm_embeddings(scheduler_output)
1107
+
1108
+ torch_xla.sync(wait=False)
1109
+
1110
+ self.scheduler_output = scheduler_output
1111
+ self.mm_embed_inputs = mm_embed_inputs
1112
+ return None
1113
+
1114
+ @torch.no_grad()
1115
+ def sample_tokens(
1116
+ self, grammar_output: "GrammarOutput | None"
1117
+ ) -> ModelRunnerOutput:
1118
+ if self.scheduler_output is None:
1119
+ # Nothing to do (PP non-final rank case), output isn't used.
1120
+ return None # noqa
1121
+ scheduler_output = self.scheduler_output
1122
+ mm_embed_inputs = self.mm_embed_inputs
1123
+ self.scheduler_output = None
1124
+ self.mm_embed_inputs = None
1125
+
1126
+ # Prepare inputs, the requests might be split into multiple
1127
+ # executions, combine the result of each execution.
1128
+ start_index = 0
1129
+ combined_selected_tokens: list[torch.Tensor] = []
1130
+ combined_logprobs: list[LogprobsLists] = []
1131
+
1132
+ # NOTE: setup current batch's metadata for kv connector.
1133
+ # Currently, only verified with NixlConnector
1134
+ with set_forward_context(None, self.vllm_config):
1135
+ self.maybe_setup_kv_connector(scheduler_output)
1136
+
1137
+ while start_index < self.input_batch.num_reqs:
1138
+ attn_metadata, logits_indices, padded_num_reqs, num_reqs, end_index = (
1139
+ self._prepare_inputs(scheduler_output, start_index)
1140
+ )
1141
+ input_ids, inputs_embeds = self._get_model_inputs(
1142
+ self.input_ids, mm_embed_inputs
1143
+ )
1144
+ torch_xla.sync(wait=False)
1145
+ # Run the decoder
1146
+ with set_forward_context(
1147
+ attn_metadata,
1148
+ self.vllm_config,
1149
+ num_tokens=scheduler_output.total_num_scheduled_tokens,
1150
+ ):
1151
+ hidden_states = self.model(
1152
+ input_ids=input_ids,
1153
+ positions=self.position_ids,
1154
+ inputs_embeds=inputs_embeds,
1155
+ )
1156
+ hidden_states = self.select_hidden_states(hidden_states, logits_indices)
1157
+ logits = self.compute_logits(hidden_states)
1158
+ tpu_sampling_metadata = TPUSupportedSamplingMetadata.from_input_batch(
1159
+ self.input_batch, padded_num_reqs, self.device
1160
+ )
1161
+ if grammar_output is not None:
1162
+ require_struct_decoding, grammar_bitmask_padded, arange = (
1163
+ self.prepare_structured_decoding_input(logits, grammar_output)
1164
+ )
1165
+ logits = self.structured_decode(
1166
+ require_struct_decoding, grammar_bitmask_padded, logits, arange
1167
+ )
1168
+ selected_token_ids = self.sample_from_logits_func(
1169
+ logits, tpu_sampling_metadata
1170
+ )
1171
+ # NOTE (NickLucche) Use the original logits (before any penalties or
1172
+ # temperature scaling) for the top-k logprobs. We can't enforce it
1173
+ # due to recompilations outside torch.compiled code, so just make
1174
+ # sure `sample_from_logits` does not modify the logits in-place.
1175
+ logprobs = (
1176
+ self.gather_logprobs(logits, selected_token_ids)
1177
+ if tpu_sampling_metadata.logprobs
1178
+ else None
1179
+ )
1180
+
1181
+ # Remove padding on cpu and keep dynamic op outside of xla graph.
1182
+ selected_token_ids = selected_token_ids.cpu()[:num_reqs]
1183
+
1184
+ combined_selected_tokens.append(selected_token_ids)
1185
+ if tpu_sampling_metadata.logprobs:
1186
+ combined_logprobs.append(logprobs.tolists())
1187
+
1188
+ start_index = end_index
1189
+
1190
+ # NOTE: current kv load and save get h2d/d2h copies involved.
1191
+ # Those copies are blocking. Once they become async., kv_save
1192
+ # should be called right after each single forward pass,
1193
+ # instead of the forwards of the entire input batch.
1194
+ self.maybe_wait_for_kv_save()
1195
+ finished_sending, finished_recving = self.get_finished_kv_transfers(
1196
+ scheduler_output
1197
+ )
1198
+
1199
+ selected_token_ids = torch.cat(combined_selected_tokens, dim=0)
1200
+ if tpu_sampling_metadata.logprobs:
1201
+
1202
+ def concat_lists(input_lists):
1203
+ result = []
1204
+ for input_list in input_lists:
1205
+ result.extend(input_list)
1206
+ return result
1207
+
1208
+ logprobs_lists = LogprobsLists(
1209
+ logprob_token_ids=concat_lists(
1210
+ [lp.logprob_token_ids for lp in combined_logprobs]
1211
+ ),
1212
+ logprobs=concat_lists([lp.logprobs for lp in combined_logprobs]),
1213
+ sampled_token_ranks=concat_lists(
1214
+ [lp.sampled_token_ranks for lp in combined_logprobs]
1215
+ ),
1216
+ )
1217
+ else:
1218
+ logprobs_lists = None
1219
+
1220
+ # Update the cache state concurrently. Code above will not block until
1221
+ # we use `selected_token_ids`. Add mark_step if post-processing changes
1222
+ request_seq_lens: list[tuple[int, CachedRequestState, int]] = []
1223
+ discard_sampled_tokens_req_indices = []
1224
+ num_reqs = self.input_batch.num_reqs
1225
+ for i, req_id in zip(range(num_reqs), self.input_batch.req_ids):
1226
+ assert req_id is not None
1227
+ req_state = self.requests[req_id]
1228
+ seq_len = (
1229
+ req_state.num_computed_tokens
1230
+ + scheduler_output.num_scheduled_tokens[req_id]
1231
+ )
1232
+ if seq_len >= req_state.num_tokens:
1233
+ request_seq_lens.append((i, req_state, seq_len))
1234
+ else:
1235
+ # Ignore the sampled token from the partial request.
1236
+ # Rewind the generator state as if the token was not sampled.
1237
+ generator = self.input_batch.generators.get(i)
1238
+ if generator is not None:
1239
+ # This relies on cuda-specific torch-internal impl details
1240
+ generator.set_offset(generator.get_offset() - 4)
1241
+
1242
+ # Record the index of the request that should not be sampled,
1243
+ # so that we could clear the sampled tokens before returning.
1244
+ discard_sampled_tokens_req_indices.append(i)
1245
+
1246
+ assert all(
1247
+ req_id is not None for req_id in self.input_batch.req_ids[:num_reqs]
1248
+ ), "req_ids contains None"
1249
+ req_ids = cast(list[str], self.input_batch.req_ids[:num_reqs])
1250
+
1251
+ prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}
1252
+ for req_id in self.input_batch.req_ids[:num_reqs]:
1253
+ prompt_logprobs_dict[req_id] = None
1254
+
1255
+ max_gen_len = selected_token_ids.shape[-1]
1256
+ if max_gen_len == 1:
1257
+ valid_sampled_token_ids: list[np.ndarray] = [
1258
+ row for row in selected_token_ids.numpy()
1259
+ ]
1260
+
1261
+ # Mask out the sampled tokens that should not be sampled.
1262
+ # TODO: Keep in sync with gpu_model_runner.py, in particular
1263
+ # the "else" case here
1264
+ for i in discard_sampled_tokens_req_indices:
1265
+ valid_sampled_token_ids[i] = np.array([])
1266
+
1267
+ # Append sampled tokens
1268
+ for i, req_state, seq_len in request_seq_lens:
1269
+ token_id = valid_sampled_token_ids[i][0]
1270
+ self.input_batch.token_ids_cpu[i, seq_len] = token_id
1271
+ req_state.output_token_ids.append(token_id)
1272
+ self.input_batch.num_tokens[i] += 1
1273
+
1274
+ else:
1275
+ valid_mask = selected_token_ids != INVALID_TOKEN_ID
1276
+ gen_lens = valid_mask.sum(dim=1).tolist()
1277
+ valid_sampled_token_ids = [
1278
+ seq.numpy() for seq in selected_token_ids[valid_mask].split(gen_lens)
1279
+ ]
1280
+ self.input_batch.num_tokens[:num_reqs] += gen_lens
1281
+ for i, req_state, seq_len in request_seq_lens:
1282
+ target_slice = slice(seq_len - gen_lens[i] + 1, seq_len + 1)
1283
+ self.input_batch.token_ids_cpu[i, target_slice] = (
1284
+ valid_sampled_token_ids[i]
1285
+ )
1286
+ req_state.output_token_ids.extend(valid_sampled_token_ids[i])
1287
+
1288
+ kv_connector_output = (
1289
+ None
1290
+ if (finished_sending is None and finished_recving is None)
1291
+ else KVConnectorOutput(
1292
+ finished_sending=finished_sending,
1293
+ finished_recving=finished_recving,
1294
+ )
1295
+ )
1296
+
1297
+ model_runner_output = ModelRunnerOutput(
1298
+ req_ids=req_ids,
1299
+ req_id_to_index=self.input_batch.req_id_to_index,
1300
+ sampled_token_ids=valid_sampled_token_ids,
1301
+ logprobs=logprobs_lists,
1302
+ prompt_logprobs_dict=prompt_logprobs_dict,
1303
+ pooler_output=[],
1304
+ kv_connector_output=kv_connector_output,
1305
+ )
1306
+
1307
+ # Check there are no new graphs compiled - all the graphs should be
1308
+ # captured and compiled during warm up.
1309
+ self._verify_num_xla_graphs("execute_model")
1310
+
1311
+ return model_runner_output
1312
+
1313
+ def update_config(self, overrides: dict[str, Any]) -> None:
1314
+ # TODO: TPU config may need extra validation
1315
+ # https://github.com/vllm-project/vllm/pull/20095#discussion_r2201497754
1316
+ allowed_config_names = {"load_config", "model_config"}
1317
+ for config_name, config_overrides in overrides.items():
1318
+ assert config_name in allowed_config_names, (
1319
+ f"Config `{config_name}` not supported. "
1320
+ f"Allowed configs: {allowed_config_names}"
1321
+ )
1322
+ config = getattr(self, config_name)
1323
+ new_config = update_config(config, config_overrides)
1324
+ setattr(self, config_name, new_config)
1325
+
1326
+ def load_model(self) -> None:
1327
+ self.device = self.device_config.device
1328
+
1329
+ # NOTE(woosuk): While the executor assigns the TP ranks to the worker
1330
+ # process, the ranks can be different from the ranks internally assigned
1331
+ # by the xm runtime. Therefore, there is a mismatch in the rank
1332
+ # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
1333
+ # This is not a problem in linear layers because all-reduce is
1334
+ # rank-agnostic. However, it matters for all-gather as the ranks
1335
+ # determine the order of concatenating the output tensors.
1336
+ # As a workaround, we use the xm's rank assignment only when loading
1337
+ # the embedding weights.
1338
+ xm_tp_rank = xr.global_ordinal()
1339
+ with patch(
1340
+ "vllm.model_executor.layers.vocab_parallel_embedding."
1341
+ "get_tensor_model_parallel_rank",
1342
+ return_value=xm_tp_rank,
1343
+ ):
1344
+ try:
1345
+ if self.use_spmd:
1346
+ tpu_loader = TPUModelLoader(
1347
+ load_config=self.vllm_config.load_config
1348
+ )
1349
+ model = tpu_loader.load_model(
1350
+ vllm_config=self.vllm_config,
1351
+ model_config=self.vllm_config.model_config,
1352
+ mesh=self.mesh,
1353
+ )
1354
+ else:
1355
+ model_loader = get_model_loader(self.load_config)
1356
+ logger.info("Loading model from scratch...")
1357
+ model = model_loader.load_model(
1358
+ vllm_config=self.vllm_config, model_config=self.model_config
1359
+ )
1360
+ except RuntimeError as e:
1361
+ raise RuntimeError(
1362
+ f"Unable to load model, a likely reason is the model is "
1363
+ "too large for the current device's HBM memory. "
1364
+ "Consider switching to a smaller model "
1365
+ "or sharding the weights on more chips. "
1366
+ f"See the detailed error: {e}"
1367
+ ) from e
1368
+ if self.lora_config is not None:
1369
+ model = self.load_lora_model(model, self.vllm_config, self.device)
1370
+ replace_set_lora(model)
1371
+
1372
+ # Sync all pending XLA execution during model initialization and weight
1373
+ # loading.
1374
+ torch_xla.sync(wait=False)
1375
+ xm.wait_device_ops()
1376
+ if not hasattr(self, "model"):
1377
+ self.model = model
1378
+ self.sampler = TPUSampler()
1379
+
1380
+ def reload_weights(self) -> None:
1381
+ assert getattr(self, "model", None) is not None, (
1382
+ "Cannot reload weights before model is loaded."
1383
+ )
1384
+ model_loader = get_model_loader(self.load_config)
1385
+ logger.info("Reloading weights inplace...")
1386
+ model_loader.load_weights(self.model, model_config=self.model_config)
1387
+
1388
+ @torch.no_grad()
1389
+ def _dummy_run(self, num_tokens: int, num_reqs: int, num_blocks: int) -> None:
1390
+ if self.supports_mm_inputs:
1391
+ input_ids = None
1392
+ inputs_embeds = torch.zeros(
1393
+ (num_tokens, self.hidden_size), dtype=self.dtype, device=self.device
1394
+ )
1395
+ else:
1396
+ input_ids = torch.zeros((num_tokens), dtype=torch.int32).to(self.device)
1397
+ inputs_embeds = None
1398
+ actual_num_reqs = min(num_tokens, num_reqs)
1399
+ position_ids = torch.zeros(num_tokens, dtype=torch.int32).to(self.device)
1400
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
1401
+ num_tokens, self.max_num_reqs, self.block_size
1402
+ )
1403
+ num_kv_update_slices = torch.tensor([padded_num_slices], dtype=torch.int32).to(
1404
+ self.device
1405
+ )
1406
+ slot_mapping = torch.zeros((3, padded_num_slices), dtype=torch.int32).to(
1407
+ self.device
1408
+ )
1409
+ block_tables = torch.zeros((num_reqs, num_blocks), dtype=torch.int32).to(
1410
+ self.device
1411
+ )
1412
+ query_lens = [1] * num_reqs
1413
+ query_start_loc = torch.cumsum(
1414
+ torch.tensor([0] + query_lens, dtype=torch.int32), dim=0, dtype=torch.int32
1415
+ ).to(self.device)
1416
+ context_lens = torch.ones((num_reqs,), dtype=torch.int32).to(self.device)
1417
+ num_seqs = torch.tensor([actual_num_reqs], dtype=torch.int32).to(self.device)
1418
+ attn_metadata = PallasMetadata(
1419
+ slot_mapping=slot_mapping,
1420
+ block_tables=block_tables,
1421
+ context_lens=context_lens,
1422
+ query_start_loc=query_start_loc,
1423
+ num_seqs=num_seqs,
1424
+ num_kv_update_slices=num_kv_update_slices,
1425
+ num_slices_per_kv_cache_update_block=self._num_slices_per_kv_cache_update_block,
1426
+ )
1427
+
1428
+ if self.supports_mm_inputs:
1429
+ torch._dynamo.mark_dynamic(inputs_embeds, 0)
1430
+ else:
1431
+ torch._dynamo.mark_dynamic(input_ids, 0)
1432
+ torch._dynamo.mark_dynamic(position_ids, 0)
1433
+ torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
1434
+ torch._dynamo.mark_dynamic(attn_metadata.block_tables, (0, 1))
1435
+ torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
1436
+ torch._dynamo.mark_dynamic(attn_metadata.query_start_loc, 0)
1437
+
1438
+ layer_names = get_layers_from_vllm_config(self.vllm_config, Attention).keys()
1439
+ per_layer_attn_metadata = {
1440
+ layer_name: attn_metadata for layer_name in layer_names
1441
+ }
1442
+
1443
+ with (
1444
+ self.maybe_select_dummy_loras(
1445
+ self.lora_config, np.array([num_tokens], dtype=np.int32)
1446
+ ),
1447
+ set_forward_context(per_layer_attn_metadata, self.vllm_config, 0),
1448
+ ):
1449
+ out = self.model(
1450
+ input_ids=input_ids, positions=position_ids, inputs_embeds=inputs_embeds
1451
+ )
1452
+ self._hidden_states_dtype = out.dtype
1453
+
1454
+ def _set_active_loras(
1455
+ self, prompt_lora_mapping, token_lora_mapping, lora_requests
1456
+ ) -> None:
1457
+ torch_xla.sync(wait=False) # Captures input updates
1458
+ super()._set_active_loras(
1459
+ prompt_lora_mapping, token_lora_mapping, lora_requests
1460
+ )
1461
+ torch_xla.sync(wait=False) # Captures metadata updates
1462
+
1463
+ def _precompile_mm_encoder(self) -> None:
1464
+ if not self.supports_mm_inputs:
1465
+ return
1466
+
1467
+ # Pre-compile MM encoder for all supported data modalities.
1468
+ hf_config = self.vllm_config.model_config.hf_config
1469
+
1470
+ mm_budget = self.mm_budget
1471
+ assert mm_budget is not None
1472
+
1473
+ max_items_per_seq_by_modality = mm_budget.max_items_per_batch_by_modality # noqa: E501
1474
+
1475
+ for mode, max_items_per_seq in max_items_per_seq_by_modality.items():
1476
+ logger.info(
1477
+ "Compiling Multimodal %s Encoder with different input shapes.", mode
1478
+ )
1479
+ start = time.perf_counter()
1480
+ # No padding for MM encoder just yet.
1481
+ for num_items in range(1, max_items_per_seq + 1):
1482
+ logger.info(" -- mode: %s items: %d", mode, num_items)
1483
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1484
+ mode,
1485
+ num_items,
1486
+ )
1487
+ # Run multimodal encoder.
1488
+ torch_xla.sync(wait=False)
1489
+ mm_embeds = self.model.embed_multimodal(**batched_dummy_mm_inputs)
1490
+ torch_xla.sync(wait=False)
1491
+ num_patches = mm_embeds[0].shape[0]
1492
+ items_size = num_patches * num_items
1493
+
1494
+ # NOTE (NickLucche) pre-compile `embed_input_ids` when mm
1495
+ # embeddings are present. We assume `--disable-mm-chunked`,
1496
+ # hence only whole items can be scheduled. This implies we just
1497
+ # need to compile when `num_items` fit the (padded) `input_ids`
1498
+ for num_tokens in self.num_tokens_paddings:
1499
+ if num_tokens >= items_size:
1500
+ # XLA Workaround: if torch.zeros(..device) is used, XLA
1501
+ # compiles a scalar+expansion op, which won't match
1502
+ # the graph generated at runtime. CPU->TPU must be used
1503
+ placeholders_ids = torch.zeros(
1504
+ num_tokens, dtype=torch.int32, device="cpu"
1505
+ )
1506
+ # Align placeholders and actual num mm_embeddings.
1507
+ placeholders_ids[:items_size] = hf_config.image_token_index
1508
+
1509
+ placeholders_ids = placeholders_ids.to(self.device)
1510
+
1511
+ mm_mask = torch.tensor([False] * num_tokens)
1512
+ mm_mask[:items_size] = True
1513
+ mm_mask = mm_mask.to(self.device)
1514
+ # Assign outputs or the graph will be cut short.
1515
+ a, b = self._get_model_inputs(
1516
+ placeholders_ids,
1517
+ mm_embed_inputs=([mm_embeds], mm_mask),
1518
+ )
1519
+ assert a is None
1520
+ torch_xla.sync(wait=False)
1521
+
1522
+ # Pre-compile `embed_input_ids` when mm_embeddings are not
1523
+ # present. Chunk is only made of text, no mm_placeholders.
1524
+ for num_tokens in self.num_tokens_paddings:
1525
+ placeholders_ids = torch.zeros(
1526
+ num_tokens, dtype=torch.int32, device="cpu"
1527
+ )
1528
+ placeholders_ids = placeholders_ids.to(self.device)
1529
+ a, b = self._get_model_inputs(
1530
+ placeholders_ids,
1531
+ mm_embed_inputs=None,
1532
+ )
1533
+ assert a is None
1534
+ torch_xla.sync(wait=False)
1535
+
1536
+ xm.wait_device_ops()
1537
+ end = time.perf_counter()
1538
+ logger.info(
1539
+ "Multimodal %s Encoder compilation finished in in %.2f [secs].",
1540
+ mode,
1541
+ end - start,
1542
+ )
1543
+
1544
+ def _precompile_backbone(self) -> None:
1545
+ logger.info("Compiling the model with different input shapes.")
1546
+ start = time.perf_counter()
1547
+ for num_tokens in self.num_tokens_paddings:
1548
+ logger.info(" -- num_tokens: %d", num_tokens)
1549
+ self._dummy_run(
1550
+ num_tokens, self.num_reqs_max_model_len, self.max_num_blocks_per_req
1551
+ )
1552
+ if self.most_model_len is not None:
1553
+ self._dummy_run(
1554
+ num_tokens,
1555
+ self.num_reqs_most_model_len,
1556
+ self.num_blocks_per_most_len_req,
1557
+ )
1558
+ xm.wait_device_ops()
1559
+ end = time.perf_counter()
1560
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1561
+ self._update_num_xla_graphs("model backbone")
1562
+
1563
+ def _precompile_select_hidden_states(self) -> None:
1564
+ # Compile hidden state selection function for bucketed
1565
+ # n_tokens x max_num_reqs. Graph is really small so this is fine.
1566
+ logger.info("Compiling select_hidden_states with different input shapes.")
1567
+ start = time.perf_counter()
1568
+ hsize = self.model_config.get_hidden_size()
1569
+ for num_tokens in self.num_tokens_paddings:
1570
+ dummy_hidden = torch.zeros(
1571
+ (num_tokens, hsize), device=self.device, dtype=self._hidden_states_dtype
1572
+ )
1573
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1574
+ for num_reqs in self.num_reqs_paddings:
1575
+ indices = torch.zeros(num_reqs, dtype=torch.int32, device=self.device)
1576
+ torch._dynamo.mark_dynamic(indices, 0)
1577
+ self.select_hidden_states(dummy_hidden, indices)
1578
+ logger.info(" -- num_tokens: %d, num_seqs: %d", num_tokens, num_reqs)
1579
+ # Requests can't be more than tokens. But do compile for the
1580
+ # next bigger value in case num_tokens uses bucketed padding.
1581
+ if num_reqs >= min(num_tokens, self.max_num_reqs):
1582
+ break
1583
+ xm.wait_device_ops()
1584
+ end = time.perf_counter()
1585
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1586
+ self._update_num_xla_graphs("select_hidden_states")
1587
+
1588
+ def _precompile_compute_logits(self) -> None:
1589
+ logger.info("Compiling compute_logits with different input shapes.")
1590
+ start = time.perf_counter()
1591
+ hsize = self.model_config.get_hidden_size()
1592
+ for num_reqs in self.num_reqs_paddings:
1593
+ dummy_hidden = torch.zeros(
1594
+ (num_reqs, hsize), device=self.device, dtype=self._hidden_states_dtype
1595
+ )
1596
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1597
+ self.compute_logits(dummy_hidden)
1598
+ logger.info(" -- num_seqs: %d", num_reqs)
1599
+ xm.wait_device_ops()
1600
+ end = time.perf_counter()
1601
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1602
+ self._update_num_xla_graphs("compute_logits")
1603
+
1604
+ def _precompile_structured_decoding(self) -> None:
1605
+ logger.info("Compiling structured_decoding with different input shapes.")
1606
+ start = time.perf_counter()
1607
+ for num_reqs in self.num_reqs_paddings:
1608
+ dummy_logits = torch.zeros(
1609
+ (num_reqs, self.vocab_size),
1610
+ device=self.device,
1611
+ dtype=self._hidden_states_dtype,
1612
+ )
1613
+ dummy_require_struct_decoding = self.require_structured_out_cpu[
1614
+ :num_reqs
1615
+ ].to(self.device)
1616
+ dummy_grammar_bitmask = self.grammar_bitmask_cpu[:num_reqs].to(self.device)
1617
+ # The first dimension of the above 3 dummy tensors cannot be
1618
+ # mark_dynamic because some operations in structured_decode require
1619
+ # them to be static.
1620
+ arange = self.structured_decode_arange.to(self.device)
1621
+ self.structured_decode(
1622
+ dummy_require_struct_decoding,
1623
+ dummy_grammar_bitmask,
1624
+ dummy_logits,
1625
+ arange,
1626
+ )
1627
+ logger.info(" -- num_seqs: %d", num_reqs)
1628
+ xm.wait_device_ops()
1629
+ end = time.perf_counter()
1630
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1631
+ self._update_num_xla_graphs("structured_decoding")
1632
+
1633
+ def _precompile_sample_from_logits(self) -> None:
1634
+ logger.info("Compiling sample_from_logits with different input shapes.")
1635
+ start = time.perf_counter()
1636
+ for num_reqs in self.num_reqs_paddings:
1637
+ dummy_logits = torch.zeros(
1638
+ (num_reqs, self.vocab_size),
1639
+ device=self.device,
1640
+ dtype=self._hidden_states_dtype,
1641
+ )
1642
+ # The first dimension of dummy_logits cannot be mark_dynamic
1643
+ # because some operations in the sampler require it to be static.
1644
+ for all_greedy in [False, True]:
1645
+ generate_params_if_all_greedy = not all_greedy
1646
+ sampling_metadata = TPUSupportedSamplingMetadata.from_input_batch(
1647
+ self.input_batch,
1648
+ num_reqs,
1649
+ self.device,
1650
+ generate_params_if_all_greedy,
1651
+ )
1652
+ sampling_metadata.all_greedy = all_greedy
1653
+ with self.maybe_select_dummy_loras(
1654
+ self.lora_config, np.array([num_reqs], dtype=np.int32)
1655
+ ):
1656
+ self.sample_from_logits_func(dummy_logits, sampling_metadata)
1657
+ logger.info(" -- num_seqs: %d", num_reqs)
1658
+ xm.wait_device_ops()
1659
+ end = time.perf_counter()
1660
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1661
+ self._update_num_xla_graphs("sample_from_logits")
1662
+
1663
+ def _precompile_gather_logprobs(self) -> None:
1664
+ logger.info("Compiling gather_logprobs with different input shapes.")
1665
+ start = time.perf_counter()
1666
+ for num_reqs in self.num_reqs_paddings:
1667
+ dummy_logits = torch.zeros(
1668
+ (num_reqs, self.vocab_size),
1669
+ device=self.device,
1670
+ dtype=self._hidden_states_dtype,
1671
+ )
1672
+ dummy_tokens = torch.zeros((num_reqs, 1), dtype=torch.int64).to(self.device)
1673
+ with self.maybe_select_dummy_loras(
1674
+ self.lora_config, np.array([num_reqs], dtype=np.int32)
1675
+ ):
1676
+ self.gather_logprobs(dummy_logits, dummy_tokens)
1677
+ logger.info(" -- num_seqs: %d", num_reqs)
1678
+ xm.wait_device_ops()
1679
+ end = time.perf_counter()
1680
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1681
+ self._update_num_xla_graphs("gather_logprobs")
1682
+
1683
+ def capture_model(self) -> None:
1684
+ """
1685
+ Precompile all the subgraphs with possible input shapes.
1686
+ """
1687
+ with self.maybe_setup_dummy_loras(self.lora_config):
1688
+ self._precompile_mm_encoder()
1689
+ self._precompile_backbone()
1690
+ self._precompile_select_hidden_states()
1691
+ self._precompile_compute_logits()
1692
+ self._precompile_structured_decoding()
1693
+ self._precompile_sample_from_logits()
1694
+ self._precompile_gather_logprobs()
1695
+
1696
+ def profile_run(
1697
+ self,
1698
+ num_tokens: int,
1699
+ ) -> None:
1700
+ # Profile with multimodal encoder & encoder cache.
1701
+ if self.supports_mm_inputs:
1702
+ if self.model_config.multimodal_config.skip_mm_profiling:
1703
+ logger.info(
1704
+ "Skipping memory profiling for multimodal encoder and "
1705
+ "encoder cache."
1706
+ )
1707
+ else:
1708
+ mm_budget = self.mm_budget
1709
+ assert mm_budget is not None
1710
+
1711
+ # TODO: handle encoder-decoder models once we support them.
1712
+ if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
1713
+ # NOTE: Currently model is profiled with a single non-text
1714
+ # modality with the max possible input tokens even when
1715
+ # it supports multiple.
1716
+ dummy_modality = mm_budget.get_modality_with_max_tokens()
1717
+ max_mm_items_per_batch = mm_budget.max_items_per_batch_by_modality[
1718
+ dummy_modality
1719
+ ]
1720
+
1721
+ logger.info(
1722
+ "Encoder cache will be initialized with a budget of "
1723
+ "%s tokens, and profiled with %s %s items of the "
1724
+ "maximum feature size.",
1725
+ encoder_budget,
1726
+ max_mm_items_per_batch,
1727
+ dummy_modality,
1728
+ )
1729
+
1730
+ # Create dummy batch of multimodal inputs.
1731
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1732
+ dummy_modality,
1733
+ max_mm_items_per_batch,
1734
+ )
1735
+
1736
+ # Run multimodal encoder.
1737
+ # Isolate encoder graph from post-processing to minimize
1738
+ # impact of recompilation until it's fixed.
1739
+ start = time.perf_counter()
1740
+ torch_xla.sync(wait=False)
1741
+ dummy_encoder_outputs = self.model.embed_multimodal(
1742
+ **batched_dummy_mm_inputs
1743
+ )
1744
+ torch_xla.sync(wait=False)
1745
+ xm.wait_device_ops()
1746
+ end = time.perf_counter()
1747
+ logger.info(
1748
+ "Multimodal Encoder profiling finished in %.2f [secs].",
1749
+ end - start,
1750
+ )
1751
+
1752
+ sanity_check_mm_encoder_outputs(
1753
+ dummy_encoder_outputs,
1754
+ expected_num_items=max_mm_items_per_batch,
1755
+ )
1756
+
1757
+ # Cache the dummy encoder outputs.
1758
+ self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))
1759
+
1760
+ # Trigger compilation for general shape.
1761
+ self._dummy_run(
1762
+ num_tokens, self.num_reqs_max_model_len, self.max_num_blocks_per_req
1763
+ )
1764
+ if self.most_model_len is not None:
1765
+ self._dummy_run(
1766
+ num_tokens,
1767
+ self.num_reqs_most_model_len,
1768
+ self.num_blocks_per_most_len_req,
1769
+ )
1770
+
1771
+ torch_xla.sync(wait=False)
1772
+ xm.wait_device_ops()
1773
+ self.encoder_cache.clear()
1774
+ gc.collect()
1775
+
1776
+ def maybe_setup_cross_layer_kv_sharing(
1777
+ self,
1778
+ kv_caches: dict[str, torch.Tensor],
1779
+ kv_cache_config: KVCacheConfig,
1780
+ ) -> None:
1781
+ """
1782
+ Add layers that re-use KV cache to KV cache group of its target layer.
1783
+ Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
1784
+ """
1785
+ if not self.shared_kv_cache_layers:
1786
+ # No cross-layer KV sharing, return
1787
+ return
1788
+
1789
+ add_kv_sharing_layers_to_kv_cache_groups(
1790
+ self.shared_kv_cache_layers,
1791
+ kv_cache_config.kv_cache_groups,
1792
+ )
1793
+
1794
+ for layer_name, target_layer_name in self.shared_kv_cache_layers.items():
1795
+ logger.debug("%s reuses KV cache of %s", layer_name, target_layer_name)
1796
+ kv_caches[layer_name] = kv_caches[target_layer_name]
1797
+
1798
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
1799
+ """
1800
+ Initialize KV cache based on `kv_cache_config`.
1801
+ Args:
1802
+ kv_cache_config: Configuration for the KV cache, including the KV
1803
+ cache size of each layer
1804
+ """
1805
+ if len(kv_cache_config.kv_cache_groups) > 1:
1806
+ raise NotImplementedError(
1807
+ "Hybrid models with more than one KV cache type are not supported yet."
1808
+ )
1809
+
1810
+ if (
1811
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1812
+ != self.block_size
1813
+ ):
1814
+ self.input_batch = InputBatch(
1815
+ max_num_reqs=self.max_num_reqs,
1816
+ max_model_len=self.max_model_len,
1817
+ max_num_batched_tokens=self.max_num_tokens,
1818
+ device=self.device,
1819
+ pin_memory=self.pin_memory,
1820
+ vocab_size=self.model_config.get_vocab_size(),
1821
+ block_sizes=[
1822
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1823
+ ],
1824
+ kernel_block_sizes=[
1825
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1826
+ ],
1827
+ )
1828
+ # Verify dtype compatibility between block_table_cpu and input_batch
1829
+ assert (
1830
+ self.block_table_cpu.dtype
1831
+ == self.input_batch.block_table[0].get_cpu_tensor().dtype
1832
+ )
1833
+
1834
+ kv_cache_sizes = {}
1835
+ for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
1836
+ assert len(kv_cache_tensor.shared_by) == 1, (
1837
+ "KV cache tensor shared by multiple layers is not supported in TPU."
1838
+ )
1839
+ kv_cache_sizes[kv_cache_tensor.shared_by[0]] = kv_cache_tensor.size
1840
+
1841
+ kv_caches: dict[str, torch.Tensor] = {}
1842
+ for kv_cache_group in kv_cache_config.kv_cache_groups:
1843
+ kv_cache_spec = kv_cache_group.kv_cache_spec
1844
+ for layer_name in kv_cache_group.layer_names:
1845
+ tensor_size = kv_cache_sizes[layer_name]
1846
+ assert tensor_size % kv_cache_spec.page_size_bytes == 0
1847
+ num_blocks = tensor_size // kv_cache_spec.page_size_bytes # noqa
1848
+ if isinstance(kv_cache_spec, AttentionSpec):
1849
+ if self.use_spmd:
1850
+ num_kv_heads = kv_cache_spec.num_kv_heads
1851
+ assert self.original_parallel_config is not None
1852
+ tp_size = self.original_parallel_config.tensor_parallel_size
1853
+ # TODO: Handle kv cache duplication under SPMD mode.
1854
+ assert num_kv_heads % tp_size == 0, (
1855
+ f"num_kv_heads {num_kv_heads} must be divisible by "
1856
+ f"tp_size {tp_size} under SPMD mode"
1857
+ )
1858
+ kv_cache_shape = PallasAttentionBackend.get_kv_cache_shape(
1859
+ num_blocks,
1860
+ kv_cache_spec.block_size,
1861
+ kv_cache_spec.num_kv_heads,
1862
+ kv_cache_spec.head_size,
1863
+ )
1864
+ dtype = kv_cache_spec.dtype
1865
+
1866
+ tpu_kv_cache = torch.zeros(kv_cache_shape, dtype=dtype).to(
1867
+ self.device
1868
+ )
1869
+
1870
+ kv_caches[layer_name] = tpu_kv_cache
1871
+ else:
1872
+ raise NotImplementedError
1873
+
1874
+ # Set up cross-layer KV cache sharing if needed
1875
+ self.maybe_setup_cross_layer_kv_sharing(kv_caches, kv_cache_config)
1876
+
1877
+ bind_kv_cache(
1878
+ kv_caches,
1879
+ self.vllm_config.compilation_config.static_forward_context,
1880
+ self.kv_caches,
1881
+ )
1882
+
1883
+ if self.use_spmd:
1884
+ # Shard KV Cache
1885
+ for cache in self.kv_caches:
1886
+ xs.mark_sharding(cache, self.mesh, (None, "x", None, None))
1887
+
1888
+ if has_kv_transfer_group():
1889
+ get_kv_transfer_group().register_kv_caches(kv_caches)
1890
+ get_kv_transfer_group().set_host_xfer_buffer_ops(copy_kv_blocks)
1891
+
1892
+ def reset_dynamo_cache(self):
1893
+ # NOTE: We check `is_multimodal_model` instead of `supports_mm_inputs`
1894
+ # since the compiled model object of the language backbone of a
1895
+ # multimodal model needs to be extracted via `get_language_model`.
1896
+ if self.model_config.is_multimodal_model:
1897
+ compiled_model = self.model.get_language_model().model
1898
+ else:
1899
+ compiled_model = self.model.model
1900
+ if isinstance(compiled_model, TorchCompileWithNoGuardsWrapper):
1901
+ logger.info("Clear dynamo cache and cached dynamo bytecode.")
1902
+ torch._dynamo.eval_frame.remove_from_cache(
1903
+ compiled_model.original_code_object()
1904
+ )
1905
+ # Reset the wrapper to re-initialize.
1906
+ compiled_model.compiled = False
1907
+ TorchCompileWithNoGuardsWrapper.__init__(compiled_model)
1908
+
1909
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1910
+ def select_hidden_states(self, hidden_states, indices_do_sample):
1911
+ return hidden_states[indices_do_sample]
1912
+
1913
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1914
+ def compute_logits(self, sample_hidden_states: torch.Tensor) -> torch.Tensor:
1915
+ return self.model.compute_logits(sample_hidden_states)
1916
+
1917
+ # TODO: Under SPMD mode, sample_from_logits has correctness issue.
1918
+ # Re-enable the torch.compile once the issue is fixed in torchxla.
1919
+ # @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1920
+ def sample_from_logits(
1921
+ self, logits: torch.Tensor, sampling_metadata: TPUSupportedSamplingMetadata
1922
+ ) -> torch.Tensor:
1923
+ """
1924
+ Sample with xla-friendly function. This function is to be traced
1925
+ separately from `forward` for lighter compilation overhead.
1926
+ """
1927
+ if sampling_metadata.all_greedy:
1928
+ out_tokens = torch.argmax(logits, dim=-1, keepdim=True)
1929
+ else:
1930
+ out_tokens = self.sampler(logits, sampling_metadata).sampled_token_ids
1931
+ return out_tokens
1932
+
1933
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1934
+ def gather_logprobs(
1935
+ self, logits: torch.Tensor, sampled_tokens: torch.Tensor
1936
+ ) -> LogprobsTensors:
1937
+ """
1938
+ Gather the top_logprobs with corresponding tokens. Use a fixed number
1939
+ of logprobs as an alternative to having multiple pre-compiled graphs.
1940
+ Select the number of logprobs actually demanded by each request on CPU.
1941
+ """
1942
+ logprobs = self.sampler.compute_logprobs(logits)
1943
+ return self.sampler.gather_logprobs(
1944
+ logprobs,
1945
+ self.model_config.max_logprobs,
1946
+ token_ids=sampled_tokens.squeeze(-1),
1947
+ )
1948
+
1949
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1950
+ def structured_decode(
1951
+ self,
1952
+ require_struct_decoding: torch.Tensor,
1953
+ grammar_bitmask: torch.Tensor,
1954
+ logits: torch.Tensor,
1955
+ arange: torch.Tensor,
1956
+ ) -> torch.Tensor:
1957
+ return torch.where(
1958
+ require_struct_decoding,
1959
+ self.apply_grammar_bitmask(logits, grammar_bitmask, arange),
1960
+ logits,
1961
+ )
1962
+
1963
+ def apply_grammar_bitmask(
1964
+ self, logits: torch.Tensor, grammar_bitmask: torch.Tensor, arange: torch.Tensor
1965
+ ):
1966
+ assert logits.shape[0] == grammar_bitmask.shape[0]
1967
+ logits_cloned = logits.clone()
1968
+ for i in range(logits.shape[0]):
1969
+ unpacked_bitmask = (
1970
+ torch.bitwise_right_shift(grammar_bitmask[i][:, None], arange[None, :])
1971
+ & 1
1972
+ ) == 0
1973
+ unpacked_bitmask = unpacked_bitmask.reshape(-1)[: self.vocab_size]
1974
+ logits_cloned[i] = logits_cloned[i].masked_fill(
1975
+ unpacked_bitmask, -float("inf")
1976
+ )
1977
+ return logits_cloned
1978
+
1979
+ def embed_multimodal(self, *args, **kwargs):
1980
+ return self.model.embed_multimodal(*args, **kwargs)
1981
+
1982
+ def embed_input_ids(self, *args, **kwargs):
1983
+ return self.model.embed_input_ids(*args, **kwargs)
1984
+
1985
+ def prepare_structured_decoding_input(
1986
+ self, logits: torch.Tensor, grammar_output: "GrammarOutput"
1987
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1988
+ grammar_bitmask = grammar_output.grammar_bitmask
1989
+ num_reqs, _ = logits.shape
1990
+
1991
+ # Reset pre-allocated tensors
1992
+ self.grammar_bitmask_cpu.zero_()
1993
+ self.require_structured_out_cpu.zero_()
1994
+
1995
+ cumulative_mask_idx = 0
1996
+ for req_id in grammar_output.structured_output_request_ids:
1997
+ if req_id not in self.input_batch.req_id_to_index:
1998
+ continue
1999
+ batch_index = self.input_batch.req_id_to_index[req_id]
2000
+ self.grammar_bitmask_cpu[batch_index] = torch.from_numpy(
2001
+ grammar_bitmask[cumulative_mask_idx]
2002
+ )
2003
+ # It's not guaranteed that all requests in this batch require
2004
+ # structured output, so create a bool tensor to represent
2005
+ # the requests that need structured output.
2006
+ self.require_structured_out_cpu[batch_index] = True
2007
+ cumulative_mask_idx += 1
2008
+
2009
+ return (
2010
+ self.require_structured_out_cpu[:num_reqs].to(logits.device),
2011
+ self.grammar_bitmask_cpu[:num_reqs].to(logits.device),
2012
+ self.structured_decode_arange.to(logits.device),
2013
+ )
2014
+
2015
+ def _get_mm_dummy_batch(
2016
+ self,
2017
+ modality: str,
2018
+ max_items_per_batch: int,
2019
+ ) -> BatchedTensorInputs:
2020
+ """Dummy data for profiling and precompiling multimodal models."""
2021
+ assert self.mm_budget is not None
2022
+
2023
+ dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
2024
+ model_config=self.model_config,
2025
+ seq_len=self.max_model_len,
2026
+ mm_counts={modality: 1},
2027
+ cache=self.mm_budget.cache,
2028
+ )
2029
+ dummy_mm_data = dummy_decoder_data.multi_modal_data
2030
+
2031
+ # Result in the maximum GPU consumption of the model
2032
+ dummy_mm_item = dummy_mm_data[modality][0]
2033
+ dummy_mm_items = [dummy_mm_item] * max_items_per_batch
2034
+
2035
+ model = cast(SupportsMultiModal, self.model)
2036
+ return next(
2037
+ grouped_mm_kwargs
2038
+ for _, _, grouped_mm_kwargs in group_mm_kwargs_by_modality(
2039
+ dummy_mm_items,
2040
+ device=self.device,
2041
+ pin_memory=self.pin_memory,
2042
+ merge_by_field_config=model.merge_by_field_config,
2043
+ multimodal_cpu_fields=model.multimodal_cpu_fields,
2044
+ )
2045
+ )
2046
+
2047
+
2048
+ def _get_req_paddings(min_req_size: int, max_req_size: int) -> list[int]:
2049
+ logger.info("Preparing request paddings:")
2050
+ # assert min_req_size is power of 2
2051
+ assert (min_req_size & (min_req_size - 1) == 0) and min_req_size > 0
2052
+ paddings: list = []
2053
+ num = max(MIN_NUM_SEQS, min_req_size)
2054
+ while num <= max_req_size and (len(paddings) == 0 or paddings[-1] != num):
2055
+ paddings.append(num)
2056
+ logger.info(" %d", num)
2057
+ num = _get_padded_num_reqs_with_upper_limit(num + 1, max_req_size)
2058
+ return paddings
2059
+
2060
+
2061
+ def _get_padded_num_reqs_with_upper_limit(x: int, upper_limit: int) -> int:
2062
+ res = MIN_NUM_SEQS if x <= MIN_NUM_SEQS else 1 << (x - 1).bit_length()
2063
+ return min(res, upper_limit)
2064
+
2065
+
2066
+ def _get_token_paddings(
2067
+ min_token_size: int, max_token_size: int, padding_gap: int
2068
+ ) -> list[int]:
2069
+ """Generate a list of padding size, starting from min_token_size,
2070
+ ending with a number that can cover max_token_size
2071
+
2072
+ If padding_gap == 0 then:
2073
+ increase 2X each time (exponential)
2074
+ else:
2075
+ first increase the size to twice,
2076
+ then increase the padding size by padding_gap.
2077
+ """
2078
+ # assert min_token_size is power of 2
2079
+ assert (min_token_size & (min_token_size - 1) == 0) and min_token_size > 0
2080
+ paddings = []
2081
+ num = min_token_size
2082
+
2083
+ if padding_gap == 0:
2084
+ logger.info("Using exponential token paddings:")
2085
+ while True:
2086
+ logger.info(" %d", num)
2087
+ paddings.append(num)
2088
+ if num >= max_token_size:
2089
+ break
2090
+ num *= 2
2091
+ else:
2092
+ logger.info("Using incremental token paddings:")
2093
+ while num <= padding_gap:
2094
+ logger.info(" %d", num)
2095
+ paddings.append(num)
2096
+ num *= 2
2097
+ num //= 2
2098
+ while num < max_token_size:
2099
+ num += padding_gap
2100
+ logger.info(" %d", num)
2101
+ paddings.append(num)
2102
+
2103
+ return paddings
2104
+
2105
+
2106
+ def _get_padded_token_len(paddings: list[int], x: int) -> int:
2107
+ """Return the first element in paddings list greater or equal to x."""
2108
+ index = bisect.bisect_left(paddings, x)
2109
+ assert index < len(paddings)
2110
+ return paddings[index]
2111
+
2112
+
2113
+ def _get_padded_num_kv_cache_update_slices(
2114
+ num_tokens: int, max_num_reqs: int, page_size: int
2115
+ ) -> int:
2116
+ """Calculates the padded number of KV cache update slices to avoid
2117
+ recompilation."""
2118
+ # NOTE(chengjiyao): let's say R_i is the token num for i-th request,
2119
+ # so it occupies most 2 + R_i // page_size pages. The total maximum
2120
+ # possible number of pages needed is sum(2 + R_i // page_size), which
2121
+ # is <= 2 * max_num_reqs + sum(R_i) // page_size
2122
+ # = 2 * max_num_reqs + num_tokens // page_size
2123
+ padded_num_slices = 2 * max_num_reqs + num_tokens // page_size
2124
+ padded_num_slices = min(padded_num_slices, num_tokens)
2125
+ return padded_num_slices
2126
+
2127
+
2128
+ def _get_num_slices_per_kv_cache_update_block(page_size_bytes: int) -> int:
2129
+ """Find the optimum number of slices to copy per Pallas program instance.
2130
+
2131
+ Increasing the number of slices copied in one instance of the kernel program
2132
+ will increase HBM bandwidth utilization via more in-flight DMAs.
2133
+
2134
+ However, it will also use more VMEM, and experimentally, we observed
2135
+ performance regression at 128 slices on v6e, likely due to running
2136
+ out of scalar registers. Thus this function will limit the number of
2137
+ slices to 64.
2138
+ """
2139
+ # The default vmem_limit_bytes of a pallas kernel is 32MB. Here we
2140
+ # calculate num_slices_per_block based on 16MB in case any register spills.
2141
+ vmem_limit = 16 * 1024 * 1024
2142
+ num_slices_per_block = vmem_limit // page_size_bytes
2143
+ assert num_slices_per_block > 0, "Number of slices should be positive"
2144
+ num_slices_per_block = prev_power_of_2(num_slices_per_block)
2145
+ if num_slices_per_block > 64:
2146
+ num_slices_per_block = 64
2147
+ return num_slices_per_block
2148
+
2149
+
2150
+ def replace_set_lora(model):
2151
+ def _tpu_set_lora(
2152
+ self,
2153
+ index: int,
2154
+ lora_a: torch.Tensor,
2155
+ lora_b: torch.Tensor,
2156
+ embeddings_tensor: torch.Tensor | None,
2157
+ ):
2158
+ # TODO: The integer index leads to a recompilation, but converting it
2159
+ # to a tensor doesn't seem to work anymore. This might be fixed with a
2160
+ # later release of torch_xla.
2161
+ self._original_set_lora(index, lora_a, lora_b, embeddings_tensor)
2162
+ torch_xla.sync(wait=False)
2163
+
2164
+ def _tpu_reset_lora(self, index: int):
2165
+ self._original_reset_lora(index)
2166
+ torch_xla.sync(wait=False)
2167
+
2168
+ for _, module in model.named_modules():
2169
+ if isinstance(module, BaseLayerWithLoRA):
2170
+ module._original_set_lora = module.set_lora
2171
+ module._original_reset_lora = module.reset_lora
2172
+ module.set_lora = _tpu_set_lora.__get__(module, module.__class__)
2173
+ module.reset_lora = _tpu_reset_lora.__get__(module, module.__class__)