vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +983 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2863 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +18 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +391 -0
- vllm/attention/backends/registry.py +195 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +1052 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +121 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +414 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +105 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +178 -0
- vllm/attention/selector.py +231 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +109 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +38 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/serve.py +416 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +759 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +178 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +571 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +317 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +135 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +238 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +207 -0
- vllm/config/compilation.py +975 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +112 -0
- vllm/config/model.py +2162 -0
- vllm/config/multimodal.py +248 -0
- vllm/config/observability.py +123 -0
- vllm/config/parallel.py +655 -0
- vllm/config/pooler.py +122 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +654 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +92 -0
- vllm/config/utils.py +178 -0
- vllm/config/vllm.py +1166 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +660 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +107 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +837 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +431 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1759 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +543 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2144 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +170 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1690 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1768 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2096 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +3299 -0
- vllm/entrypoints/openai/run_batch.py +547 -0
- vllm/entrypoints/openai/serving_chat.py +1772 -0
- vllm/entrypoints/openai/serving_classification.py +235 -0
- vllm/entrypoints/openai/serving_completion.py +715 -0
- vllm/entrypoints/openai/serving_embedding.py +695 -0
- vllm/entrypoints/openai/serving_engine.py +1433 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_pooling.py +346 -0
- vllm/entrypoints/openai/serving_responses.py +2021 -0
- vllm/entrypoints/openai/serving_score.py +503 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +269 -0
- vllm/entrypoints/openai/serving_transcription.py +148 -0
- vllm/entrypoints/openai/speech_to_text.py +405 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +77 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +72 -0
- vllm/entrypoints/score_utils.py +242 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +209 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1659 -0
- vllm/forward_context.py +356 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +727 -0
- vllm/logger.py +267 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +77 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +208 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +41 -0
- vllm/lora/layers/base.py +67 -0
- vllm/lora/layers/base_linear.py +164 -0
- vllm/lora/layers/column_parallel_linear.py +578 -0
- vllm/lora/layers/fused_moe.py +472 -0
- vllm/lora/layers/logits_processor.py +252 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +181 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +166 -0
- vllm/lora/lora_weights.py +198 -0
- vllm/lora/models.py +890 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +492 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +411 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +359 -0
- vllm/lora/punica_wrapper/punica_xpu.py +279 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +293 -0
- vllm/lora/worker_manager.py +279 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +569 -0
- vllm/model_executor/layers/attention_layer_base.py +35 -0
- vllm/model_executor/layers/batch_invariant.py +854 -0
- vllm/model_executor/layers/conv.py +236 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +106 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +916 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
- vllm/model_executor/layers/fused_moe/layer.py +1944 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +448 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +729 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +71 -0
- vllm/model_executor/layers/mamba/linear_attn.py +402 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +264 -0
- vllm/model_executor/layers/mla.py +168 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +174 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +240 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1333 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +643 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1788 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
- vllm/model_executor/layers/quantization/petit.py +320 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +528 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +652 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
- vllm/model_executor/layers/rotary_embedding/base.py +235 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +148 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +327 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +176 -0
- vllm/model_executor/model_loader/online_quantization.py +224 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +288 -0
- vllm/model_executor/model_loader/weight_utils.py +1084 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +711 -0
- vllm/model_executor/models/aimv2.py +247 -0
- vllm/model_executor/models/apertus.py +587 -0
- vllm/model_executor/models/arcee.py +439 -0
- vllm/model_executor/models/arctic.py +635 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +496 -0
- vllm/model_executor/models/bailing_moe.py +646 -0
- vllm/model_executor/models/bamba.py +522 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +349 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1120 -0
- vllm/model_executor/models/chatglm.py +498 -0
- vllm/model_executor/models/clip.py +965 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +473 -0
- vllm/model_executor/models/config.py +503 -0
- vllm/model_executor/models/dbrx.py +482 -0
- vllm/model_executor/models/deepencoder.py +673 -0
- vllm/model_executor/models/deepseek_eagle.py +260 -0
- vllm/model_executor/models/deepseek_mtp.py +360 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1649 -0
- vllm/model_executor/models/deepseek_vl2.py +655 -0
- vllm/model_executor/models/dots1.py +574 -0
- vllm/model_executor/models/dots_ocr.py +900 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +759 -0
- vllm/model_executor/models/ernie45_vl.py +1742 -0
- vllm/model_executor/models/ernie45_vl_moe.py +803 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +545 -0
- vllm/model_executor/models/exaone4.py +531 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +545 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +439 -0
- vllm/model_executor/models/gemma3.py +571 -0
- vllm/model_executor/models/gemma3_mm.py +741 -0
- vllm/model_executor/models/gemma3n.py +1165 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1821 -0
- vllm/model_executor/models/glm4_moe.py +747 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +784 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +344 -0
- vllm/model_executor/models/gpt_oss.py +738 -0
- vllm/model_executor/models/granite.py +516 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +569 -0
- vllm/model_executor/models/granitemoehybrid.py +709 -0
- vllm/model_executor/models/granitemoeshared.py +333 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +558 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1053 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +426 -0
- vllm/model_executor/models/idefics3.py +717 -0
- vllm/model_executor/models/interfaces.py +1092 -0
- vllm/model_executor/models/interfaces_base.py +214 -0
- vllm/model_executor/models/intern_vit.py +453 -0
- vllm/model_executor/models/internlm2.py +460 -0
- vllm/model_executor/models/internlm2_ve.py +142 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +432 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +610 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1761 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +663 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +532 -0
- vllm/model_executor/models/lfm2_moe.py +762 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +732 -0
- vllm/model_executor/models/llama4.py +859 -0
- vllm/model_executor/models/llama4_eagle.py +223 -0
- vllm/model_executor/models/llama_eagle.py +218 -0
- vllm/model_executor/models/llama_eagle3.py +367 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +749 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +289 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +827 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +664 -0
- vllm/model_executor/models/minicpm3.py +242 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1745 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1012 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mixtral.py +621 -0
- vllm/model_executor/models/mllama4.py +1147 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +450 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1555 -0
- vllm/model_executor/models/moonvit.py +677 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
- vllm/model_executor/models/nemotron.py +518 -0
- vllm/model_executor/models/nemotron_h.py +852 -0
- vllm/model_executor/models/nemotron_nas.py +491 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +414 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/openpangu.py +1062 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +372 -0
- vllm/model_executor/models/ouro.py +516 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1407 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +377 -0
- vllm/model_executor/models/phi.py +374 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +675 -0
- vllm/model_executor/models/pixtral.py +1352 -0
- vllm/model_executor/models/plamo2.py +981 -0
- vllm/model_executor/models/qwen.py +368 -0
- vllm/model_executor/models/qwen2.py +541 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
- vllm/model_executor/models/qwen2_5_vl.py +1613 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +596 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +336 -0
- vllm/model_executor/models/qwen3_moe.py +744 -0
- vllm/model_executor/models/qwen3_next.py +1395 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
- vllm/model_executor/models/qwen3_vl.py +1673 -0
- vllm/model_executor/models/qwen3_vl_moe.py +415 -0
- vllm/model_executor/models/qwen_vl.py +802 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1155 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +497 -0
- vllm/model_executor/models/siglip.py +1174 -0
- vllm/model_executor/models/siglip2navit.py +724 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +502 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +367 -0
- vllm/model_executor/models/step3_text.py +559 -0
- vllm/model_executor/models/step3_vl.py +1148 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +318 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +207 -0
- vllm/model_executor/models/ultravox.py +681 -0
- vllm/model_executor/models/utils.py +877 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +845 -0
- vllm/model_executor/models/whisper.py +959 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +118 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +755 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2186 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +360 -0
- vllm/multimodal/utils.py +512 -0
- vllm/multimodal/video.py +306 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +414 -0
- vllm/platforms/cuda.py +657 -0
- vllm/platforms/interface.py +639 -0
- vllm/platforms/rocm.py +466 -0
- vllm/platforms/tpu.py +276 -0
- vllm/platforms/xpu.py +274 -0
- vllm/plugins/__init__.py +78 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +228 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +37 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +26 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +669 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1203 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +70 -0
- vllm/transformers_utils/configs/afmoe.py +84 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +77 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +144 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +159 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +174 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +212 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +79 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +274 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +174 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/detokenizer_utils.py +198 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/processor.py +402 -0
- vllm/transformers_utils/processors/__init__.py +15 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +155 -0
- vllm/transformers_utils/tokenizers/__init__.py +16 -0
- vllm/transformers_utils/tokenizers/mistral.py +502 -0
- vllm/transformers_utils/utils.py +130 -0
- vllm/triton_utils/__init__.py +19 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +82 -0
- vllm/utils/argparse_utils.py +487 -0
- vllm/utils/async_utils.py +303 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +139 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +391 -0
- vllm/utils/flashinfer.py +490 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +147 -0
- vllm/utils/hashing.py +63 -0
- vllm/utils/import_utils.py +411 -0
- vllm/utils/jsontree.py +165 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +49 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +229 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +657 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +496 -0
- vllm/v1/attention/backends/flash_attn.py +1028 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +926 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +74 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +115 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +2031 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
- vllm/v1/attention/backends/mla/flashmla.py +314 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
- vllm/v1/attention/backends/mla/indexer.py +362 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
- vllm/v1/attention/backends/rocm_attn.py +362 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +425 -0
- vllm/v1/attention/backends/triton_attn.py +373 -0
- vllm/v1/attention/backends/utils.py +1116 -0
- vllm/v1/attention/backends/xformers.py +417 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +428 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +480 -0
- vllm/v1/core/kv_cache_manager.py +420 -0
- vllm/v1/core/kv_cache_utils.py +1340 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +62 -0
- vllm/v1/core/sched/interface.py +181 -0
- vllm/v1/core/sched/output.py +202 -0
- vllm/v1/core/sched/request_queue.py +221 -0
- vllm/v1/core/sched/scheduler.py +1617 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +736 -0
- vllm/v1/cudagraph_dispatcher.py +148 -0
- vllm/v1/engine/__init__.py +206 -0
- vllm/v1/engine/async_llm.py +797 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1420 -0
- vllm/v1/engine/core_client.py +1400 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/llm_engine.py +408 -0
- vllm/v1/engine/logprobs.py +182 -0
- vllm/v1/engine/output_processor.py +642 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +621 -0
- vllm/v1/engine/utils.py +1072 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +877 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +403 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +93 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +62 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1238 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +169 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +420 -0
- vllm/v1/outputs.py +249 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +259 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +274 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
- vllm/v1/sample/rejection_sampler.py +793 -0
- vllm/v1/sample/sampler.py +316 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1225 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +224 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +103 -0
- vllm/v1/spec_decode/utils.py +16 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +327 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +206 -0
- vllm/v1/worker/dp_utils.py +230 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +975 -0
- vllm/v1/worker/gpu_model_runner.py +5102 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
- vllm/v1/worker/gpu_worker.py +894 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
- vllm/v1/worker/lora_model_runner_mixin.py +213 -0
- vllm/v1/worker/tpu_input_batch.py +593 -0
- vllm/v1/worker/tpu_model_runner.py +2173 -0
- vllm/v1/worker/tpu_worker.py +355 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +366 -0
- vllm/v1/worker/worker_base.py +375 -0
- vllm/v1/worker/xpu_model_runner.py +55 -0
- vllm/v1/worker/xpu_worker.py +189 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2186 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import time
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from collections import defaultdict
|
|
6
|
+
from collections.abc import Callable, Generator, ItemsView, Iterable, Mapping, Sequence
|
|
7
|
+
from dataclasses import dataclass, field, replace
|
|
8
|
+
from enum import Enum
|
|
9
|
+
from functools import lru_cache
|
|
10
|
+
from typing import (
|
|
11
|
+
TYPE_CHECKING,
|
|
12
|
+
Any,
|
|
13
|
+
Generic,
|
|
14
|
+
NamedTuple,
|
|
15
|
+
Protocol,
|
|
16
|
+
TypeAlias,
|
|
17
|
+
cast,
|
|
18
|
+
overload,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
import regex as re
|
|
22
|
+
import torch
|
|
23
|
+
from typing_extensions import TypeVar, assert_never
|
|
24
|
+
|
|
25
|
+
from vllm.logger import init_logger
|
|
26
|
+
from vllm.transformers_utils.processor import cached_processor_from_config
|
|
27
|
+
from vllm.transformers_utils.tokenizer import AnyTokenizer, decode_tokens, encode_tokens
|
|
28
|
+
from vllm.utils.collection_utils import flatten_2d_lists, full_groupby
|
|
29
|
+
from vllm.utils.func_utils import get_allowed_kwarg_only_overrides
|
|
30
|
+
from vllm.utils.jsontree import JSONTree, json_map_leaves
|
|
31
|
+
|
|
32
|
+
from .hasher import MultiModalHasher
|
|
33
|
+
from .inputs import (
|
|
34
|
+
MultiModalDataDict,
|
|
35
|
+
MultiModalEncDecInputs,
|
|
36
|
+
MultiModalFieldConfig,
|
|
37
|
+
MultiModalInputs,
|
|
38
|
+
MultiModalKwargsItem,
|
|
39
|
+
MultiModalKwargsItems,
|
|
40
|
+
MultiModalKwargsOptionalItems,
|
|
41
|
+
MultiModalUUIDDict,
|
|
42
|
+
PlaceholderRange,
|
|
43
|
+
)
|
|
44
|
+
from .parse import (
|
|
45
|
+
DictEmbeddingItems,
|
|
46
|
+
EmbeddingItems,
|
|
47
|
+
MultiModalDataItems,
|
|
48
|
+
MultiModalDataParser,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
if TYPE_CHECKING:
|
|
52
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
53
|
+
from transformers.feature_extraction_utils import BatchFeature
|
|
54
|
+
from transformers.processing_utils import ProcessorMixin
|
|
55
|
+
|
|
56
|
+
from vllm.config import ModelConfig
|
|
57
|
+
|
|
58
|
+
from .cache import BaseMultiModalProcessorCache
|
|
59
|
+
from .profiling import BaseDummyInputsBuilder
|
|
60
|
+
else:
|
|
61
|
+
PretrainedConfig = object
|
|
62
|
+
BatchFeature = object
|
|
63
|
+
ProcessorMixin = object
|
|
64
|
+
|
|
65
|
+
ModelConfig = object
|
|
66
|
+
|
|
67
|
+
BaseMultiModalProcessorCache = object
|
|
68
|
+
|
|
69
|
+
logger = init_logger(__name__)
|
|
70
|
+
|
|
71
|
+
_S = TypeVar("_S", str, list[int])
|
|
72
|
+
|
|
73
|
+
PromptSeq: TypeAlias = str | list[int]
|
|
74
|
+
"""A token sequence (list of token IDs) or text."""
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@lru_cache(maxsize=2048)
|
|
78
|
+
def _cached_encode(
|
|
79
|
+
tokenizer: AnyTokenizer,
|
|
80
|
+
text: str,
|
|
81
|
+
*,
|
|
82
|
+
add_special_tokens: bool | None = None,
|
|
83
|
+
) -> list[int]:
|
|
84
|
+
return encode_tokens(tokenizer, text, add_special_tokens=add_special_tokens)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
@lru_cache(maxsize=2048)
|
|
88
|
+
def _cached_decode(
|
|
89
|
+
tokenizer: AnyTokenizer,
|
|
90
|
+
token_ids: tuple[int, ...],
|
|
91
|
+
*,
|
|
92
|
+
skip_special_tokens: bool | None = None,
|
|
93
|
+
) -> str:
|
|
94
|
+
return decode_tokens(
|
|
95
|
+
tokenizer, list(token_ids), skip_special_tokens=skip_special_tokens
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def _seq2text(tokenizer: AnyTokenizer, seq: PromptSeq) -> str:
|
|
100
|
+
if isinstance(seq, str):
|
|
101
|
+
return seq
|
|
102
|
+
|
|
103
|
+
return _cached_decode(tokenizer, tuple(seq))
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def _seq2tokens(tokenizer: AnyTokenizer, seq: PromptSeq) -> list[int]:
|
|
107
|
+
if isinstance(seq, str):
|
|
108
|
+
return _cached_encode(tokenizer, seq, add_special_tokens=False)
|
|
109
|
+
|
|
110
|
+
return seq
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
class _GetMatchIndex(Protocol):
|
|
114
|
+
def __call__(
|
|
115
|
+
self,
|
|
116
|
+
tokenizer: AnyTokenizer,
|
|
117
|
+
prompt: PromptSeq,
|
|
118
|
+
start_idx: int = 0,
|
|
119
|
+
) -> int | None: ...
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
@dataclass
|
|
123
|
+
class PromptIndex:
|
|
124
|
+
"""Resolves to an index in the prompt."""
|
|
125
|
+
|
|
126
|
+
get_match_index: _GetMatchIndex
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
class PromptIndexTargets:
|
|
130
|
+
@staticmethod
|
|
131
|
+
def start() -> PromptIndex:
|
|
132
|
+
"""
|
|
133
|
+
Resolves to the start of the prompt (before the first token).
|
|
134
|
+
|
|
135
|
+
This results in a match even if the prompt is empty.
|
|
136
|
+
"""
|
|
137
|
+
return PromptIndex(lambda tokenizer, prompt, start_idx=0: 0)
|
|
138
|
+
|
|
139
|
+
@staticmethod
|
|
140
|
+
def prefix(seq: PromptSeq) -> PromptIndex:
|
|
141
|
+
"""
|
|
142
|
+
Resolves to a location in the prompt after the given prefix.
|
|
143
|
+
"""
|
|
144
|
+
|
|
145
|
+
def get_match_index(
|
|
146
|
+
tokenizer: AnyTokenizer,
|
|
147
|
+
prompt: PromptSeq,
|
|
148
|
+
start_idx: int = 0,
|
|
149
|
+
) -> int | None:
|
|
150
|
+
if start_idx != 0:
|
|
151
|
+
return None
|
|
152
|
+
|
|
153
|
+
prefix = seq
|
|
154
|
+
|
|
155
|
+
if isinstance(prompt, str):
|
|
156
|
+
if not isinstance(prefix, str):
|
|
157
|
+
# Make both `str`
|
|
158
|
+
prefix = decode_tokens(tokenizer, prefix)
|
|
159
|
+
else:
|
|
160
|
+
if isinstance(prefix, str):
|
|
161
|
+
# Make both `list[int]`
|
|
162
|
+
prefix = encode_tokens(tokenizer, prefix, add_special_tokens=False)
|
|
163
|
+
|
|
164
|
+
match_idx = len(prefix)
|
|
165
|
+
return match_idx if prompt[:match_idx] == prefix else None
|
|
166
|
+
|
|
167
|
+
return PromptIndex(get_match_index)
|
|
168
|
+
|
|
169
|
+
@staticmethod
|
|
170
|
+
def end() -> PromptIndex:
|
|
171
|
+
"""
|
|
172
|
+
Resolves to the end of the prompt (after the last token).
|
|
173
|
+
|
|
174
|
+
This results in a match even if the prompt is empty.
|
|
175
|
+
"""
|
|
176
|
+
return PromptIndex(lambda tokenizer, prompt, start_idx=0: len(prompt))
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
UpdateTarget: TypeAlias = PromptSeq | PromptIndex
|
|
180
|
+
"""
|
|
181
|
+
The token sequence or text to update.
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
PromptUpdateTarget: TypeAlias = Callable[[int], UpdateTarget] | UpdateTarget
|
|
185
|
+
"""
|
|
186
|
+
Given the index of the processed item within
|
|
187
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
188
|
+
output the corresponding token sequence (or text).
|
|
189
|
+
|
|
190
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
191
|
+
instead of a function if it does not depend on the input.
|
|
192
|
+
"""
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
@dataclass
|
|
196
|
+
class PromptUpdateDetails(Generic[_S]):
|
|
197
|
+
"""Details about the token sequence or text that are part of the update."""
|
|
198
|
+
|
|
199
|
+
full: _S
|
|
200
|
+
"""The full content."""
|
|
201
|
+
|
|
202
|
+
is_embed: Callable[[AnyTokenizer, PromptSeq], torch.Tensor] | None = None
|
|
203
|
+
"""
|
|
204
|
+
Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
|
|
205
|
+
return a boolean mask of shape `(len(full),)` indicating which positions
|
|
206
|
+
of `full` to assign embeddings to.
|
|
207
|
+
|
|
208
|
+
`None` (default) means to assign embeddings to all positions of `full`.
|
|
209
|
+
|
|
210
|
+
The embeddings are obtained by calling
|
|
211
|
+
[`SupportsMultiModal.embed_multimodal`][vllm.model_executor.models.interfaces.SupportsMultiModal.embed_multimodal].
|
|
212
|
+
"""
|
|
213
|
+
|
|
214
|
+
@staticmethod
|
|
215
|
+
def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
|
|
216
|
+
return PromptUpdateDetails(full=seq)
|
|
217
|
+
|
|
218
|
+
@staticmethod
|
|
219
|
+
def select_text(
|
|
220
|
+
seq: _S,
|
|
221
|
+
embed_text: str,
|
|
222
|
+
) -> "PromptUpdateDetails[_S]":
|
|
223
|
+
def is_embed(tokenizer: AnyTokenizer, full: PromptSeq) -> torch.Tensor:
|
|
224
|
+
embed_token_ids = encode_tokens(tokenizer, embed_text)
|
|
225
|
+
token_ids = _seq2tokens(tokenizer, full)
|
|
226
|
+
|
|
227
|
+
return torch.isin(
|
|
228
|
+
torch.tensor(token_ids),
|
|
229
|
+
torch.tensor(embed_token_ids),
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
return PromptUpdateDetails(full=seq, is_embed=is_embed)
|
|
233
|
+
|
|
234
|
+
@staticmethod
|
|
235
|
+
def select_token_id(
|
|
236
|
+
seq: _S,
|
|
237
|
+
embed_token_id: int,
|
|
238
|
+
) -> "PromptUpdateDetails[_S]":
|
|
239
|
+
def is_embed(tokenizer: AnyTokenizer, full: PromptSeq) -> torch.Tensor:
|
|
240
|
+
token_ids = _seq2tokens(tokenizer, full)
|
|
241
|
+
|
|
242
|
+
return torch.tensor(token_ids) == embed_token_id
|
|
243
|
+
|
|
244
|
+
return PromptUpdateDetails(full=seq, is_embed=is_embed)
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
PromptUpdateInfo: TypeAlias = PromptSeq | PromptUpdateDetails
|
|
248
|
+
"""
|
|
249
|
+
The token sequence or text that are part of the update.
|
|
250
|
+
|
|
251
|
+
If only part of the content corresponds to feature placeholders, you can
|
|
252
|
+
use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
|
|
253
|
+
specify which part.
|
|
254
|
+
"""
|
|
255
|
+
|
|
256
|
+
PromptUpdateContent: TypeAlias = Callable[[int], PromptUpdateInfo] | PromptUpdateInfo
|
|
257
|
+
"""
|
|
258
|
+
Given the index of the processed item within
|
|
259
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
260
|
+
output the corresponding token sequence (or text).
|
|
261
|
+
|
|
262
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
263
|
+
instead of a function if it does not depend on the input.
|
|
264
|
+
"""
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
class UpdateMode(str, Enum):
|
|
268
|
+
INSERT = "insert"
|
|
269
|
+
REPLACE = "replace"
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
@dataclass
|
|
273
|
+
class PromptUpdate(ABC):
|
|
274
|
+
"""
|
|
275
|
+
Defines how to update a prompt with placeholder tokens.
|
|
276
|
+
"""
|
|
277
|
+
|
|
278
|
+
modality: str
|
|
279
|
+
"""The modality for which the update is made."""
|
|
280
|
+
|
|
281
|
+
target: PromptUpdateTarget
|
|
282
|
+
"""The token sequence (or text) to update."""
|
|
283
|
+
|
|
284
|
+
@property
|
|
285
|
+
@abstractmethod
|
|
286
|
+
def content(self) -> PromptUpdateContent:
|
|
287
|
+
"""The placeholder tokens that are part of the update."""
|
|
288
|
+
raise NotImplementedError
|
|
289
|
+
|
|
290
|
+
@property
|
|
291
|
+
@abstractmethod
|
|
292
|
+
def mode(self) -> UpdateMode:
|
|
293
|
+
"""Defines how to update the prompt."""
|
|
294
|
+
raise NotImplementedError
|
|
295
|
+
|
|
296
|
+
def _resolve_target(self, item_idx: int) -> UpdateTarget:
|
|
297
|
+
target = self.target
|
|
298
|
+
if callable(target):
|
|
299
|
+
target = target(item_idx)
|
|
300
|
+
|
|
301
|
+
return target
|
|
302
|
+
|
|
303
|
+
def _resolve_content(self, item_idx: int) -> PromptUpdateDetails:
|
|
304
|
+
content = self.content
|
|
305
|
+
if callable(content):
|
|
306
|
+
content = content(item_idx)
|
|
307
|
+
|
|
308
|
+
if not isinstance(content, PromptUpdateDetails):
|
|
309
|
+
content = PromptUpdateDetails.from_seq(content)
|
|
310
|
+
|
|
311
|
+
return content
|
|
312
|
+
|
|
313
|
+
def resolve(self, item_idx: int) -> "ResolvedPromptUpdate":
|
|
314
|
+
"""
|
|
315
|
+
Given the index of the processed item within
|
|
316
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
317
|
+
output a copy of this object with its lazy attributes resolved.
|
|
318
|
+
"""
|
|
319
|
+
return ResolvedPromptUpdate(
|
|
320
|
+
modality=self.modality,
|
|
321
|
+
item_idx=item_idx,
|
|
322
|
+
mode=self.mode,
|
|
323
|
+
target=self._resolve_target(item_idx),
|
|
324
|
+
content=self._resolve_content(item_idx),
|
|
325
|
+
)
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
@dataclass
|
|
329
|
+
class PromptInsertion(PromptUpdate):
|
|
330
|
+
"""
|
|
331
|
+
Defines how to insert placeholder tokens into a prompt.
|
|
332
|
+
|
|
333
|
+
Example:
|
|
334
|
+
|
|
335
|
+
For each image, insert a number of `<image>` feature placeholders
|
|
336
|
+
equal to the feature size of the vision encoder after the `<s>` token:
|
|
337
|
+
|
|
338
|
+
```python
|
|
339
|
+
PromptInsertion(
|
|
340
|
+
modality="image",
|
|
341
|
+
target="<s>",
|
|
342
|
+
insertion="<image>" * image_feature_size,
|
|
343
|
+
)
|
|
344
|
+
```
|
|
345
|
+
|
|
346
|
+
Insert these tokens at the start of the prompt:
|
|
347
|
+
|
|
348
|
+
```python
|
|
349
|
+
PromptInsertion(
|
|
350
|
+
modality="image",
|
|
351
|
+
target=PromptIndexTargets.start(),
|
|
352
|
+
insertion="<image>" * image_feature_size,
|
|
353
|
+
)
|
|
354
|
+
```
|
|
355
|
+
|
|
356
|
+
Insert these tokens after a prefix `Images:`:
|
|
357
|
+
|
|
358
|
+
```python
|
|
359
|
+
PromptInsertion(
|
|
360
|
+
modality="image",
|
|
361
|
+
target=PromptIndexTargets.prefix("Images:"),
|
|
362
|
+
insertion="<image>" * image_feature_size,
|
|
363
|
+
)
|
|
364
|
+
```
|
|
365
|
+
|
|
366
|
+
Insert these tokens at the end of the prompt:
|
|
367
|
+
|
|
368
|
+
```python
|
|
369
|
+
PromptInsertion(
|
|
370
|
+
modality="image",
|
|
371
|
+
target=PromptIndexTargets.end(),
|
|
372
|
+
insertion="<image>" * image_feature_size,
|
|
373
|
+
)
|
|
374
|
+
```
|
|
375
|
+
"""
|
|
376
|
+
|
|
377
|
+
insertion: PromptUpdateContent = field(repr=False)
|
|
378
|
+
"""
|
|
379
|
+
Given the index of the processed item within
|
|
380
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
381
|
+
output the token sequence (or text) to insert right after
|
|
382
|
+
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
|
383
|
+
|
|
384
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
385
|
+
instead of a function if it does not depend on the input.
|
|
386
|
+
"""
|
|
387
|
+
|
|
388
|
+
@property
|
|
389
|
+
def content(self) -> PromptUpdateContent:
|
|
390
|
+
return self.insertion
|
|
391
|
+
|
|
392
|
+
@property
|
|
393
|
+
def mode(self) -> UpdateMode:
|
|
394
|
+
return UpdateMode.INSERT
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
@dataclass
|
|
398
|
+
class PromptReplacement(PromptUpdate):
|
|
399
|
+
"""
|
|
400
|
+
Defines how to replace portions of an input prompt with placeholder tokens.
|
|
401
|
+
|
|
402
|
+
Example:
|
|
403
|
+
|
|
404
|
+
For each image, replace one `<image>` input placeholder in the prompt
|
|
405
|
+
with a number of `<image>` feature placeholders
|
|
406
|
+
equal to the feature size of the vision encoder:
|
|
407
|
+
|
|
408
|
+
```python
|
|
409
|
+
PromptReplacement(
|
|
410
|
+
modality="image",
|
|
411
|
+
target="<image>",
|
|
412
|
+
replacement="<image>" * image_feature_size,
|
|
413
|
+
)
|
|
414
|
+
```
|
|
415
|
+
|
|
416
|
+
As above, but further pad the feature placeholders with `<image_bos>`
|
|
417
|
+
and `<image_eos>`, which are not supposed to be passed to the vision
|
|
418
|
+
encoder:
|
|
419
|
+
|
|
420
|
+
```python
|
|
421
|
+
PromptReplacement(
|
|
422
|
+
modality="image",
|
|
423
|
+
target="<image>",
|
|
424
|
+
replacement=PromptUpdateDetails(
|
|
425
|
+
full="".join(
|
|
426
|
+
[
|
|
427
|
+
"<image_bos>",
|
|
428
|
+
"<image>" * image_feature_size,
|
|
429
|
+
"<image_eos>",
|
|
430
|
+
]
|
|
431
|
+
),
|
|
432
|
+
features="<image>" * image_feature_size,
|
|
433
|
+
),
|
|
434
|
+
)
|
|
435
|
+
```
|
|
436
|
+
|
|
437
|
+
To avoid unnecessary tokenization during prompt replacement,
|
|
438
|
+
we recommended passing token sequences instead of text:
|
|
439
|
+
|
|
440
|
+
```python
|
|
441
|
+
PromptReplacement(
|
|
442
|
+
modality="image",
|
|
443
|
+
target=[image_token_id],
|
|
444
|
+
replacement=PromptUpdateDetails(
|
|
445
|
+
full=(
|
|
446
|
+
[image_bos_id] + [image_token_id] * image_feature_size + [image_eos_id]
|
|
447
|
+
),
|
|
448
|
+
features=[image_token_id] * image_feature_size,
|
|
449
|
+
),
|
|
450
|
+
)
|
|
451
|
+
```
|
|
452
|
+
"""
|
|
453
|
+
|
|
454
|
+
replacement: PromptUpdateContent = field(repr=False)
|
|
455
|
+
"""
|
|
456
|
+
Given the index of the processed item within
|
|
457
|
+
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
|
458
|
+
output the token sequence (or text) to replace
|
|
459
|
+
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
|
460
|
+
|
|
461
|
+
For convenience, you can directly pass in the token sequence (or text)
|
|
462
|
+
instead of a function if it does not depend on the input.
|
|
463
|
+
"""
|
|
464
|
+
|
|
465
|
+
@property
|
|
466
|
+
def content(self) -> PromptUpdateContent:
|
|
467
|
+
return self.replacement
|
|
468
|
+
|
|
469
|
+
@property
|
|
470
|
+
def mode(self) -> UpdateMode:
|
|
471
|
+
return UpdateMode.REPLACE
|
|
472
|
+
|
|
473
|
+
|
|
474
|
+
class _HasModalityAttr(Protocol):
|
|
475
|
+
modality: str
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
class _HasModalityProp(Protocol):
|
|
479
|
+
@property
|
|
480
|
+
def modality(self) -> str: ...
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
_M = TypeVar("_M", bound=_HasModalityAttr | _HasModalityProp)
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
|
|
487
|
+
"""
|
|
488
|
+
Convenience function to apply
|
|
489
|
+
[`full_groupby`][vllm.utils.collection_utils.full_groupby]
|
|
490
|
+
based on modality.
|
|
491
|
+
"""
|
|
492
|
+
return full_groupby(values, key=lambda x: x.modality)
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
class PromptTargetMatch(NamedTuple):
|
|
496
|
+
start_idx: int
|
|
497
|
+
end_idx: int
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
@dataclass(frozen=True)
|
|
501
|
+
class ResolvedPromptUpdate:
|
|
502
|
+
"""
|
|
503
|
+
A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] with its
|
|
504
|
+
lazy attributes resolved, apart from those related to tokenization.
|
|
505
|
+
"""
|
|
506
|
+
|
|
507
|
+
modality: str
|
|
508
|
+
"""The modality for which the update is made."""
|
|
509
|
+
|
|
510
|
+
item_idx: int
|
|
511
|
+
"""The index within `modality` of the item this update pertains to."""
|
|
512
|
+
|
|
513
|
+
mode: UpdateMode
|
|
514
|
+
"""Defines how to update the prompt."""
|
|
515
|
+
|
|
516
|
+
target: UpdateTarget
|
|
517
|
+
"""The token sequence (or text) to update."""
|
|
518
|
+
|
|
519
|
+
content: PromptUpdateDetails = field(repr=False)
|
|
520
|
+
"""The placeholder tokens that are part of the update."""
|
|
521
|
+
|
|
522
|
+
def iter_token_matches(
|
|
523
|
+
self,
|
|
524
|
+
prompt: list[int],
|
|
525
|
+
tokenizer: AnyTokenizer,
|
|
526
|
+
*,
|
|
527
|
+
start_idx: int = 0,
|
|
528
|
+
) -> Generator[PromptTargetMatch]:
|
|
529
|
+
"""Yield each instance of `self.target` found in `prompt`."""
|
|
530
|
+
target = self.target
|
|
531
|
+
|
|
532
|
+
if isinstance(target, PromptIndex):
|
|
533
|
+
match_idx = target.get_match_index(tokenizer, prompt, start_idx)
|
|
534
|
+
if match_idx is not None:
|
|
535
|
+
yield PromptTargetMatch(match_idx, match_idx)
|
|
536
|
+
|
|
537
|
+
return
|
|
538
|
+
|
|
539
|
+
target_token_ids = _seq2tokens(tokenizer, target)
|
|
540
|
+
|
|
541
|
+
for match in iter_token_matches(prompt, target_token_ids, start_idx=start_idx):
|
|
542
|
+
yield PromptTargetMatch(match.start_idx, match.end_idx)
|
|
543
|
+
|
|
544
|
+
def iter_text_matches(
|
|
545
|
+
self,
|
|
546
|
+
prompt: str,
|
|
547
|
+
tokenizer: AnyTokenizer,
|
|
548
|
+
*,
|
|
549
|
+
start_idx: int = 0,
|
|
550
|
+
) -> Generator[PromptTargetMatch]:
|
|
551
|
+
"""Yield each instance of `self.target` found in `prompt`."""
|
|
552
|
+
target = self.target
|
|
553
|
+
|
|
554
|
+
if isinstance(target, PromptIndex):
|
|
555
|
+
match_idx = target.get_match_index(tokenizer, prompt, start_idx)
|
|
556
|
+
if match_idx is not None:
|
|
557
|
+
yield PromptTargetMatch(match_idx, match_idx)
|
|
558
|
+
|
|
559
|
+
return
|
|
560
|
+
|
|
561
|
+
target_text = _seq2text(tokenizer, target)
|
|
562
|
+
|
|
563
|
+
for match in re.finditer(re.escape(target_text), prompt, pos=start_idx):
|
|
564
|
+
yield PromptTargetMatch(match.start(), match.end())
|
|
565
|
+
|
|
566
|
+
def iter_matches(
|
|
567
|
+
self,
|
|
568
|
+
prompt: list[int] | str,
|
|
569
|
+
tokenizer: AnyTokenizer,
|
|
570
|
+
*,
|
|
571
|
+
start_idx: int = 0,
|
|
572
|
+
) -> Generator[PromptTargetMatch]:
|
|
573
|
+
"""Yield each instance of `self.target` found in `prompt`."""
|
|
574
|
+
if isinstance(prompt, str):
|
|
575
|
+
return self.iter_text_matches(prompt, tokenizer, start_idx=start_idx)
|
|
576
|
+
|
|
577
|
+
return self.iter_token_matches(prompt, tokenizer, start_idx=start_idx)
|
|
578
|
+
|
|
579
|
+
def with_target(self, target: UpdateTarget):
|
|
580
|
+
return replace(self, target=target)
|
|
581
|
+
|
|
582
|
+
def with_content(self, content: PromptUpdateInfo):
|
|
583
|
+
if not isinstance(content, PromptUpdateDetails):
|
|
584
|
+
content = PromptUpdateDetails.from_seq(content)
|
|
585
|
+
|
|
586
|
+
return replace(self, content=content)
|
|
587
|
+
|
|
588
|
+
|
|
589
|
+
class _TokenMatch(NamedTuple):
|
|
590
|
+
start_idx: int
|
|
591
|
+
end_idx: int
|
|
592
|
+
|
|
593
|
+
|
|
594
|
+
def iter_token_matches(
|
|
595
|
+
token_ids: list[int],
|
|
596
|
+
match_ids: list[int],
|
|
597
|
+
*,
|
|
598
|
+
start_idx: int = 0,
|
|
599
|
+
) -> Generator[_TokenMatch]:
|
|
600
|
+
"""
|
|
601
|
+
Yield each occurrence of `match_ids` in `token_ids`.
|
|
602
|
+
|
|
603
|
+
Note that empty matches are ignored.
|
|
604
|
+
"""
|
|
605
|
+
prompt_len = len(token_ids)
|
|
606
|
+
match_len = len(match_ids)
|
|
607
|
+
|
|
608
|
+
if match_len == 0:
|
|
609
|
+
return
|
|
610
|
+
|
|
611
|
+
while start_idx < prompt_len - match_len + 1:
|
|
612
|
+
end_idx = start_idx + match_len
|
|
613
|
+
|
|
614
|
+
if token_ids[start_idx:end_idx] == match_ids:
|
|
615
|
+
yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
|
|
616
|
+
|
|
617
|
+
# Exclude overlapping matches
|
|
618
|
+
start_idx = end_idx
|
|
619
|
+
else:
|
|
620
|
+
start_idx += 1
|
|
621
|
+
|
|
622
|
+
|
|
623
|
+
def replace_token_matches(
|
|
624
|
+
token_ids: list[int],
|
|
625
|
+
match_ids: list[int],
|
|
626
|
+
new_ids: list[int],
|
|
627
|
+
) -> list[int]:
|
|
628
|
+
"""
|
|
629
|
+
Replace each occurrence of `match_ids` in `token_ids`
|
|
630
|
+
with `new_ids`.
|
|
631
|
+
|
|
632
|
+
Note that empty matches are ignored.
|
|
633
|
+
"""
|
|
634
|
+
out_seqs = list[list[int]]()
|
|
635
|
+
prev_end_idx = 0
|
|
636
|
+
|
|
637
|
+
for match in iter_token_matches(token_ids, match_ids):
|
|
638
|
+
start_idx = match.start_idx
|
|
639
|
+
end_idx = match.end_idx
|
|
640
|
+
|
|
641
|
+
out_seqs.append(token_ids[prev_end_idx:start_idx])
|
|
642
|
+
out_seqs.append(new_ids)
|
|
643
|
+
prev_end_idx = end_idx
|
|
644
|
+
|
|
645
|
+
out_seqs.append(token_ids[prev_end_idx:])
|
|
646
|
+
|
|
647
|
+
return flatten_2d_lists(out_seqs)
|
|
648
|
+
|
|
649
|
+
|
|
650
|
+
@dataclass
|
|
651
|
+
class PlaceholderFeaturesInfo:
|
|
652
|
+
modality: str
|
|
653
|
+
item_idx: int
|
|
654
|
+
start_idx: int
|
|
655
|
+
tokens: list[int]
|
|
656
|
+
is_embed: torch.Tensor | None
|
|
657
|
+
|
|
658
|
+
@property
|
|
659
|
+
def length(self) -> int:
|
|
660
|
+
return len(self.tokens)
|
|
661
|
+
|
|
662
|
+
def to_range(self) -> PlaceholderRange:
|
|
663
|
+
# TODO: Is it worth it to optimize this by stripping the
|
|
664
|
+
# leading and ending positions where `is_embed=False`?
|
|
665
|
+
return PlaceholderRange(
|
|
666
|
+
offset=self.start_idx,
|
|
667
|
+
length=self.length,
|
|
668
|
+
is_embed=self.is_embed,
|
|
669
|
+
)
|
|
670
|
+
|
|
671
|
+
|
|
672
|
+
_MatchToApply = tuple[tuple[str, int], tuple[PromptTargetMatch, int]]
|
|
673
|
+
|
|
674
|
+
|
|
675
|
+
def _find_matches(
|
|
676
|
+
prompt: _S,
|
|
677
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
678
|
+
tokenizer: AnyTokenizer,
|
|
679
|
+
*,
|
|
680
|
+
prev_end_idx: int = 0,
|
|
681
|
+
current_result: "MultiModalPromptUpdatesApplyResult",
|
|
682
|
+
) -> tuple[UpdateMode | None, list[_MatchToApply]]:
|
|
683
|
+
mode: UpdateMode | None = None
|
|
684
|
+
mm_matches = dict[tuple[str, int], tuple[PromptTargetMatch, int]]()
|
|
685
|
+
|
|
686
|
+
for modality, modality_updates in mm_prompt_updates.items():
|
|
687
|
+
for item_idx, item_updates in enumerate(modality_updates):
|
|
688
|
+
if current_result[modality][item_idx] is not None:
|
|
689
|
+
continue # Updates have already been applied for this item
|
|
690
|
+
|
|
691
|
+
for update_idx, update in enumerate(item_updates):
|
|
692
|
+
if (modality, item_idx) in mm_matches:
|
|
693
|
+
break # Already found a match for this item
|
|
694
|
+
|
|
695
|
+
for match in update.iter_matches(
|
|
696
|
+
prompt,
|
|
697
|
+
tokenizer,
|
|
698
|
+
start_idx=prev_end_idx,
|
|
699
|
+
):
|
|
700
|
+
# All matches should share the same mode
|
|
701
|
+
if mode is None:
|
|
702
|
+
mode = update.mode
|
|
703
|
+
elif mode != update.mode:
|
|
704
|
+
continue
|
|
705
|
+
|
|
706
|
+
mm_matches[(modality, item_idx)] = match, update_idx
|
|
707
|
+
break # Get only the first valid match per item
|
|
708
|
+
|
|
709
|
+
# Prioritize earlier matches
|
|
710
|
+
matches_to_apply = sorted(mm_matches.items(), key=lambda item: item[1][0])
|
|
711
|
+
|
|
712
|
+
# To avoid conflicts, only replace one non-empty item at a time
|
|
713
|
+
if mode == UpdateMode.REPLACE:
|
|
714
|
+
matches_to_apply_ = list[_MatchToApply]()
|
|
715
|
+
has_non_empty_matches = False
|
|
716
|
+
|
|
717
|
+
for item in matches_to_apply:
|
|
718
|
+
_, (match, _) = item
|
|
719
|
+
if match.start_idx == match.end_idx:
|
|
720
|
+
matches_to_apply_.append(item)
|
|
721
|
+
elif not has_non_empty_matches:
|
|
722
|
+
has_non_empty_matches = True
|
|
723
|
+
matches_to_apply_.append(item)
|
|
724
|
+
|
|
725
|
+
matches_to_apply = matches_to_apply_
|
|
726
|
+
|
|
727
|
+
return mode, matches_to_apply
|
|
728
|
+
|
|
729
|
+
|
|
730
|
+
def _apply_matches(
|
|
731
|
+
prompt: _S,
|
|
732
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
733
|
+
tokenizer: AnyTokenizer,
|
|
734
|
+
) -> tuple[list[_S], "MultiModalPromptUpdatesApplyResult"]:
|
|
735
|
+
prompt_len = len(prompt)
|
|
736
|
+
|
|
737
|
+
out_seqs = list[str | list[int]]()
|
|
738
|
+
out_result: MultiModalPromptUpdatesApplyResult = {
|
|
739
|
+
m: [None] * len(items) for m, items in mm_prompt_updates.items()
|
|
740
|
+
}
|
|
741
|
+
|
|
742
|
+
start_idx = prev_end_idx = 0
|
|
743
|
+
while start_idx < max(prompt_len, 1): # Allow inserts into empty prompt
|
|
744
|
+
found = False
|
|
745
|
+
|
|
746
|
+
mode, matches_to_apply = _find_matches(
|
|
747
|
+
prompt,
|
|
748
|
+
mm_prompt_updates,
|
|
749
|
+
tokenizer,
|
|
750
|
+
prev_end_idx=prev_end_idx,
|
|
751
|
+
current_result=out_result,
|
|
752
|
+
)
|
|
753
|
+
|
|
754
|
+
if mode is not None:
|
|
755
|
+
for (modality, item_idx), (match, update_idx) in matches_to_apply:
|
|
756
|
+
found = True
|
|
757
|
+
|
|
758
|
+
matched_update = mm_prompt_updates[modality][item_idx][update_idx]
|
|
759
|
+
matched_content = matched_update.content.full
|
|
760
|
+
|
|
761
|
+
if mode == UpdateMode.INSERT:
|
|
762
|
+
end_idx_to_insert = match.end_idx
|
|
763
|
+
elif mode == UpdateMode.REPLACE:
|
|
764
|
+
end_idx_to_insert = match.start_idx
|
|
765
|
+
else:
|
|
766
|
+
assert_never(mode)
|
|
767
|
+
|
|
768
|
+
out_seqs.append(prompt[prev_end_idx:end_idx_to_insert])
|
|
769
|
+
out_seqs.append(
|
|
770
|
+
_seq2text(tokenizer, matched_content)
|
|
771
|
+
if isinstance(prompt, str)
|
|
772
|
+
else _seq2tokens(tokenizer, matched_content)
|
|
773
|
+
)
|
|
774
|
+
out_result[modality][item_idx] = update_idx
|
|
775
|
+
|
|
776
|
+
# Exclude overlapping matches
|
|
777
|
+
start_idx = prev_end_idx = match.end_idx
|
|
778
|
+
|
|
779
|
+
if not found:
|
|
780
|
+
start_idx += 1
|
|
781
|
+
|
|
782
|
+
out_seqs.append(prompt[prev_end_idx:])
|
|
783
|
+
|
|
784
|
+
return cast(list[_S], out_seqs), out_result
|
|
785
|
+
|
|
786
|
+
|
|
787
|
+
def apply_token_matches(
|
|
788
|
+
prompt: list[int],
|
|
789
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
790
|
+
tokenizer: AnyTokenizer,
|
|
791
|
+
) -> tuple[list[int], "MultiModalPromptUpdatesApplyResult"]:
|
|
792
|
+
"""
|
|
793
|
+
Apply the updates in `mm_prompt_updates` to `prompt`.
|
|
794
|
+
|
|
795
|
+
Matches are exclusive even when multiple modalities share
|
|
796
|
+
the same placeholder tokens. In that case, the modality that
|
|
797
|
+
appears earlier in `mm_prompt_updates` takes priority.
|
|
798
|
+
"""
|
|
799
|
+
token_id_seqs, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
|
|
800
|
+
|
|
801
|
+
return flatten_2d_lists(token_id_seqs), result
|
|
802
|
+
|
|
803
|
+
|
|
804
|
+
def apply_text_matches(
|
|
805
|
+
prompt: str,
|
|
806
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
807
|
+
tokenizer: AnyTokenizer,
|
|
808
|
+
) -> tuple[str, "MultiModalPromptUpdatesApplyResult"]:
|
|
809
|
+
"""
|
|
810
|
+
Apply the updates in `mm_prompt_updates` to `prompt`.
|
|
811
|
+
|
|
812
|
+
Matches are exclusive even when multiple modalities share
|
|
813
|
+
the same placeholder tokens. In that case, the modality that
|
|
814
|
+
appears earlier in `mm_prompt_updates` takes priority.
|
|
815
|
+
"""
|
|
816
|
+
texts, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
|
|
817
|
+
|
|
818
|
+
return "".join(texts), result
|
|
819
|
+
|
|
820
|
+
|
|
821
|
+
def _iter_placeholders(
|
|
822
|
+
prompt: list[int],
|
|
823
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
824
|
+
tokenizer: AnyTokenizer,
|
|
825
|
+
) -> Iterable[PlaceholderFeaturesInfo]:
|
|
826
|
+
"""
|
|
827
|
+
Yield each set of placeholder tokens found in `prompt`.
|
|
828
|
+
|
|
829
|
+
Matches are exclusive even when multiple modalities share
|
|
830
|
+
the same placeholder tokens. In that case, the modality that
|
|
831
|
+
appears earlier in `mm_prompt_updates` takes priority.
|
|
832
|
+
|
|
833
|
+
Note that empty matches are ignored.
|
|
834
|
+
"""
|
|
835
|
+
prompt_len = len(prompt)
|
|
836
|
+
mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
|
|
837
|
+
|
|
838
|
+
item_idx_by_modality = defaultdict[str, int](lambda: 0)
|
|
839
|
+
|
|
840
|
+
start_idx = 0
|
|
841
|
+
while start_idx < prompt_len:
|
|
842
|
+
found = False
|
|
843
|
+
|
|
844
|
+
for modality, modality_updates in mm_prompt_updates.items():
|
|
845
|
+
item_idx = item_idx_by_modality[modality]
|
|
846
|
+
if item_idx >= mm_item_counts.get(modality, 0):
|
|
847
|
+
continue
|
|
848
|
+
|
|
849
|
+
for update in modality_updates[item_idx]:
|
|
850
|
+
content = update.content
|
|
851
|
+
content_tokens_full = _seq2tokens(tokenizer, content.full)
|
|
852
|
+
content_len_full = len(content_tokens_full)
|
|
853
|
+
end_idx_full = start_idx + content_len_full
|
|
854
|
+
|
|
855
|
+
if content_len_full == 0 or end_idx_full > prompt_len:
|
|
856
|
+
continue
|
|
857
|
+
|
|
858
|
+
if prompt[start_idx:end_idx_full] == content_tokens_full:
|
|
859
|
+
content_is_embed = content.is_embed
|
|
860
|
+
if content_is_embed is not None:
|
|
861
|
+
content_is_embed = content_is_embed(tokenizer, content.full)
|
|
862
|
+
|
|
863
|
+
yield PlaceholderFeaturesInfo(
|
|
864
|
+
modality=modality,
|
|
865
|
+
item_idx=item_idx,
|
|
866
|
+
start_idx=start_idx,
|
|
867
|
+
tokens=content_tokens_full,
|
|
868
|
+
is_embed=content_is_embed,
|
|
869
|
+
)
|
|
870
|
+
|
|
871
|
+
# Exclude overlapping matches
|
|
872
|
+
start_idx = end_idx_full
|
|
873
|
+
item_idx_by_modality[modality] += 1
|
|
874
|
+
found = True
|
|
875
|
+
break
|
|
876
|
+
|
|
877
|
+
if found:
|
|
878
|
+
break # Go back to the outer while loop
|
|
879
|
+
|
|
880
|
+
if not found:
|
|
881
|
+
start_idx += 1
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
def find_mm_placeholders(
|
|
885
|
+
prompt: list[int],
|
|
886
|
+
mm_prompt_updates: "MultiModalPromptUpdates",
|
|
887
|
+
tokenizer: AnyTokenizer,
|
|
888
|
+
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
|
|
889
|
+
it = _iter_placeholders(prompt, mm_prompt_updates, tokenizer)
|
|
890
|
+
return dict(full_groupby_modality(it))
|
|
891
|
+
|
|
892
|
+
|
|
893
|
+
_T = TypeVar("_T")
|
|
894
|
+
_C = TypeVar("_C", bound=PretrainedConfig, default=PretrainedConfig)
|
|
895
|
+
_P = TypeVar("_P", bound=ProcessorMixin, default=ProcessorMixin)
|
|
896
|
+
|
|
897
|
+
|
|
898
|
+
@dataclass(frozen=True)
|
|
899
|
+
class InputProcessingContext:
|
|
900
|
+
"""
|
|
901
|
+
Contains information about the model which may be used to
|
|
902
|
+
modify the inputs.
|
|
903
|
+
"""
|
|
904
|
+
|
|
905
|
+
model_config: ModelConfig
|
|
906
|
+
"""The configuration of the model."""
|
|
907
|
+
|
|
908
|
+
tokenizer: AnyTokenizer
|
|
909
|
+
"""The tokenizer used to tokenize the inputs."""
|
|
910
|
+
|
|
911
|
+
@overload
|
|
912
|
+
def get_hf_config(self, /) -> PretrainedConfig: ...
|
|
913
|
+
|
|
914
|
+
@overload
|
|
915
|
+
def get_hf_config(
|
|
916
|
+
self,
|
|
917
|
+
typ: type[_C] | tuple[type[_C], ...],
|
|
918
|
+
/,
|
|
919
|
+
) -> _C: ...
|
|
920
|
+
|
|
921
|
+
def get_hf_config(
|
|
922
|
+
self,
|
|
923
|
+
typ: type[Any] | tuple[type[Any], ...] | None = None,
|
|
924
|
+
/,
|
|
925
|
+
) -> Any:
|
|
926
|
+
"""
|
|
927
|
+
Get the HuggingFace configuration
|
|
928
|
+
(`transformers.PretrainedConfig`) of the model,
|
|
929
|
+
additionally checking its type.
|
|
930
|
+
|
|
931
|
+
Raises:
|
|
932
|
+
TypeError: If the configuration is not of the specified type.
|
|
933
|
+
"""
|
|
934
|
+
if typ is None:
|
|
935
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
936
|
+
|
|
937
|
+
typ = PretrainedConfig
|
|
938
|
+
|
|
939
|
+
hf_config = self.model_config.hf_config
|
|
940
|
+
if not isinstance(hf_config, typ):
|
|
941
|
+
raise TypeError(
|
|
942
|
+
"Invalid type of HuggingFace config. "
|
|
943
|
+
f"Expected type: {typ}, but "
|
|
944
|
+
f"found type: {type(hf_config)}"
|
|
945
|
+
)
|
|
946
|
+
|
|
947
|
+
return hf_config
|
|
948
|
+
|
|
949
|
+
def get_hf_image_processor_config(self) -> dict[str, Any]:
|
|
950
|
+
"""
|
|
951
|
+
Get the HuggingFace image processor configuration of the model.
|
|
952
|
+
"""
|
|
953
|
+
return self.model_config.hf_image_processor_config
|
|
954
|
+
|
|
955
|
+
def get_mm_config(self):
|
|
956
|
+
"""
|
|
957
|
+
Get the multimodal config of the model.
|
|
958
|
+
|
|
959
|
+
Raises:
|
|
960
|
+
RuntimeError: If the model is not a multimodal model.
|
|
961
|
+
"""
|
|
962
|
+
mm_config = self.model_config.multimodal_config
|
|
963
|
+
if mm_config is None:
|
|
964
|
+
raise RuntimeError("Not a multimodal model")
|
|
965
|
+
|
|
966
|
+
return mm_config
|
|
967
|
+
|
|
968
|
+
@overload
|
|
969
|
+
def get_hf_processor(self, /, **kwargs: object) -> ProcessorMixin: ...
|
|
970
|
+
|
|
971
|
+
@overload
|
|
972
|
+
def get_hf_processor(
|
|
973
|
+
self,
|
|
974
|
+
typ: type[_P] | tuple[type[_P], ...],
|
|
975
|
+
/,
|
|
976
|
+
**kwargs: object,
|
|
977
|
+
) -> _P: ...
|
|
978
|
+
|
|
979
|
+
def get_hf_processor(
|
|
980
|
+
self,
|
|
981
|
+
typ: type[Any] | tuple[type[Any], ...] | None = None,
|
|
982
|
+
/,
|
|
983
|
+
**kwargs: object,
|
|
984
|
+
) -> Any:
|
|
985
|
+
"""
|
|
986
|
+
Get the HuggingFace processor
|
|
987
|
+
(`transformers.ProcessorMixin`) of the model,
|
|
988
|
+
additionally checking its type.
|
|
989
|
+
|
|
990
|
+
Raises:
|
|
991
|
+
TypeError: If the processor is not of the specified type.
|
|
992
|
+
"""
|
|
993
|
+
if typ is None:
|
|
994
|
+
from transformers.processing_utils import ProcessorMixin
|
|
995
|
+
|
|
996
|
+
typ = ProcessorMixin
|
|
997
|
+
|
|
998
|
+
return cached_processor_from_config(
|
|
999
|
+
self.model_config,
|
|
1000
|
+
processor_cls=typ,
|
|
1001
|
+
tokenizer=self.tokenizer,
|
|
1002
|
+
**kwargs,
|
|
1003
|
+
)
|
|
1004
|
+
|
|
1005
|
+
def init_processor(
|
|
1006
|
+
self,
|
|
1007
|
+
typ: type[_T],
|
|
1008
|
+
/,
|
|
1009
|
+
**kwargs: object,
|
|
1010
|
+
) -> _T:
|
|
1011
|
+
"""
|
|
1012
|
+
Initialize a HuggingFace-like processor class, merging the
|
|
1013
|
+
keyword arguments with those in the model's configuration.
|
|
1014
|
+
"""
|
|
1015
|
+
mm_config = self.model_config.get_multimodal_config()
|
|
1016
|
+
base_kwargs = mm_config.mm_processor_kwargs
|
|
1017
|
+
if base_kwargs is None:
|
|
1018
|
+
base_kwargs = {}
|
|
1019
|
+
|
|
1020
|
+
merged_kwargs = {**base_kwargs, **kwargs}
|
|
1021
|
+
|
|
1022
|
+
return typ(**merged_kwargs)
|
|
1023
|
+
|
|
1024
|
+
def _postprocess_output(
|
|
1025
|
+
self,
|
|
1026
|
+
output: JSONTree,
|
|
1027
|
+
) -> JSONTree:
|
|
1028
|
+
def _postprocess_one(x: object):
|
|
1029
|
+
if isinstance(x, torch.Tensor): # noqa: SIM102
|
|
1030
|
+
# This mimics the behavior of transformers.BatchFeature
|
|
1031
|
+
if x.is_floating_point():
|
|
1032
|
+
x = x.to(dtype=self.model_config.dtype)
|
|
1033
|
+
|
|
1034
|
+
return x
|
|
1035
|
+
|
|
1036
|
+
return json_map_leaves(_postprocess_one, output)
|
|
1037
|
+
|
|
1038
|
+
def call_hf_processor(
|
|
1039
|
+
self,
|
|
1040
|
+
hf_processor: ProcessorMixin,
|
|
1041
|
+
data: Mapping[str, object],
|
|
1042
|
+
kwargs: Mapping[str, object] = {},
|
|
1043
|
+
*,
|
|
1044
|
+
num_tries: int = 1,
|
|
1045
|
+
max_tries: int = 5,
|
|
1046
|
+
) -> BatchFeature | JSONTree:
|
|
1047
|
+
"""
|
|
1048
|
+
Call `hf_processor` on the prompt `data`
|
|
1049
|
+
(text, image, audio...) with configurable options `kwargs`.
|
|
1050
|
+
"""
|
|
1051
|
+
assert callable(hf_processor)
|
|
1052
|
+
|
|
1053
|
+
mm_config = self.model_config.get_multimodal_config()
|
|
1054
|
+
merged_kwargs = mm_config.merge_mm_processor_kwargs(kwargs)
|
|
1055
|
+
|
|
1056
|
+
allowed_kwargs = get_allowed_kwarg_only_overrides(
|
|
1057
|
+
hf_processor,
|
|
1058
|
+
merged_kwargs,
|
|
1059
|
+
requires_kw_only=False,
|
|
1060
|
+
allow_var_kwargs=True,
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
try:
|
|
1064
|
+
output = hf_processor(**data, **allowed_kwargs, return_tensors="pt")
|
|
1065
|
+
except Exception as exc:
|
|
1066
|
+
# See https://github.com/huggingface/tokenizers/issues/537
|
|
1067
|
+
if (
|
|
1068
|
+
isinstance(exc, RuntimeError)
|
|
1069
|
+
and exc
|
|
1070
|
+
and exc.args[0] == "Already borrowed"
|
|
1071
|
+
and num_tries < max_tries
|
|
1072
|
+
):
|
|
1073
|
+
logger.warning(
|
|
1074
|
+
"Failed to acquire tokenizer in current thread. "
|
|
1075
|
+
"Retrying (%d/%d)...",
|
|
1076
|
+
num_tries,
|
|
1077
|
+
max_tries,
|
|
1078
|
+
)
|
|
1079
|
+
time.sleep(0.5)
|
|
1080
|
+
return self.call_hf_processor(
|
|
1081
|
+
hf_processor,
|
|
1082
|
+
data,
|
|
1083
|
+
kwargs,
|
|
1084
|
+
num_tries=num_tries + 1,
|
|
1085
|
+
max_tries=max_tries,
|
|
1086
|
+
)
|
|
1087
|
+
|
|
1088
|
+
msg = (
|
|
1089
|
+
f"Failed to apply {type(hf_processor).__name__} "
|
|
1090
|
+
f"on data={data} with kwargs={allowed_kwargs}"
|
|
1091
|
+
)
|
|
1092
|
+
|
|
1093
|
+
raise ValueError(msg) from exc
|
|
1094
|
+
|
|
1095
|
+
# this emulates output.to(dtype=self.model_config.dtype)
|
|
1096
|
+
from transformers.feature_extraction_utils import BatchFeature
|
|
1097
|
+
|
|
1098
|
+
if isinstance(output, BatchFeature):
|
|
1099
|
+
output_ = self._postprocess_output(output.data)
|
|
1100
|
+
return BatchFeature(output_)
|
|
1101
|
+
|
|
1102
|
+
logger.warning_once(
|
|
1103
|
+
"%s did not return `BatchFeature`. "
|
|
1104
|
+
"Make sure to match the behaviour of `ProcessorMixin` when "
|
|
1105
|
+
"implementing custom processors.",
|
|
1106
|
+
type(hf_processor).__name__,
|
|
1107
|
+
)
|
|
1108
|
+
|
|
1109
|
+
return self._postprocess_output(output)
|
|
1110
|
+
|
|
1111
|
+
|
|
1112
|
+
class BaseProcessingInfo:
|
|
1113
|
+
"""Base class to provide the information necessary for data processing."""
|
|
1114
|
+
|
|
1115
|
+
def __init__(self, ctx: InputProcessingContext) -> None:
|
|
1116
|
+
super().__init__()
|
|
1117
|
+
|
|
1118
|
+
self.ctx = ctx
|
|
1119
|
+
|
|
1120
|
+
@property
|
|
1121
|
+
def model_id(self) -> str:
|
|
1122
|
+
return self.ctx.model_config.model
|
|
1123
|
+
|
|
1124
|
+
def get_tokenizer(self) -> AnyTokenizer:
|
|
1125
|
+
return self.ctx.tokenizer
|
|
1126
|
+
|
|
1127
|
+
def get_hf_config(self) -> PretrainedConfig:
|
|
1128
|
+
return self.ctx.get_hf_config()
|
|
1129
|
+
|
|
1130
|
+
def get_hf_processor(self, **kwargs: object) -> ProcessorMixin:
|
|
1131
|
+
"""
|
|
1132
|
+
Subclasses can override this method to handle
|
|
1133
|
+
specific kwargs from model config or user inputs.
|
|
1134
|
+
"""
|
|
1135
|
+
return self.ctx.get_hf_processor(**kwargs)
|
|
1136
|
+
|
|
1137
|
+
@abstractmethod
|
|
1138
|
+
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
1139
|
+
"""
|
|
1140
|
+
Return the maximum supported number of items for each modality.
|
|
1141
|
+
|
|
1142
|
+
A value of `None` means unlimited number of items.
|
|
1143
|
+
|
|
1144
|
+
Omitting a modality from the returned dictionary means that
|
|
1145
|
+
it is not supported at all.
|
|
1146
|
+
"""
|
|
1147
|
+
raise NotImplementedError
|
|
1148
|
+
|
|
1149
|
+
def get_allowed_mm_limits(self) -> Mapping[str, int]:
|
|
1150
|
+
"""Return the maximum allowed number of items for each modality."""
|
|
1151
|
+
supported_mm_limits = self.get_supported_mm_limits()
|
|
1152
|
+
mm_config = self.ctx.get_mm_config()
|
|
1153
|
+
|
|
1154
|
+
allowed_limits = dict[str, int]()
|
|
1155
|
+
for modality, supported_limit in supported_mm_limits.items():
|
|
1156
|
+
user_limit = mm_config.get_limit_per_prompt(modality)
|
|
1157
|
+
|
|
1158
|
+
allowed_limits[modality] = (
|
|
1159
|
+
user_limit
|
|
1160
|
+
if supported_limit is None
|
|
1161
|
+
else min(user_limit, supported_limit)
|
|
1162
|
+
)
|
|
1163
|
+
|
|
1164
|
+
return allowed_limits
|
|
1165
|
+
|
|
1166
|
+
def get_mm_max_tokens_per_item(
|
|
1167
|
+
self,
|
|
1168
|
+
seq_len: int,
|
|
1169
|
+
mm_counts: Mapping[str, int],
|
|
1170
|
+
) -> Mapping[str, int] | None:
|
|
1171
|
+
"""
|
|
1172
|
+
Return the maximum number of tokens per item of for each modality.
|
|
1173
|
+
|
|
1174
|
+
When `None` (the default) is returned, vLLM will generate dummy inputs
|
|
1175
|
+
(images/videos) at maximum possible sizes and process them to determine
|
|
1176
|
+
the maximum token count per modality.
|
|
1177
|
+
|
|
1178
|
+
This approach works but can be very slow for certain models (e.g.,
|
|
1179
|
+
Qwen2.5-VL), leading to very long startup time. For better performance,
|
|
1180
|
+
each model can override this method to return pre-computed maximum token
|
|
1181
|
+
counts, avoiding the need for dummy input generation and processing.
|
|
1182
|
+
|
|
1183
|
+
Note:
|
|
1184
|
+
The maximum number of tokens per item of each modality returned
|
|
1185
|
+
from this function should respect the model's maximum sequence
|
|
1186
|
+
length and the maximum number of items of each modality allowed,
|
|
1187
|
+
and agree with dummy inputs (images/videos) at maximum possible
|
|
1188
|
+
sizes.
|
|
1189
|
+
"""
|
|
1190
|
+
return None
|
|
1191
|
+
|
|
1192
|
+
|
|
1193
|
+
_I = TypeVar("_I", bound=BaseProcessingInfo)
|
|
1194
|
+
|
|
1195
|
+
MultiModalHashes = dict[str, list[str]]
|
|
1196
|
+
"""
|
|
1197
|
+
A collection of hashes with a similar structure as
|
|
1198
|
+
[`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
|
|
1199
|
+
"""
|
|
1200
|
+
|
|
1201
|
+
MultiModalPromptUpdates = Mapping[str, list[Sequence[ResolvedPromptUpdate]]]
|
|
1202
|
+
"""
|
|
1203
|
+
A collection of prompt updates with a similar structure as
|
|
1204
|
+
[`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
|
|
1205
|
+
"""
|
|
1206
|
+
|
|
1207
|
+
MultiModalPromptUpdatesApplyResult = Mapping[str, list[int | None]]
|
|
1208
|
+
"""
|
|
1209
|
+
For an item `MultiModalPromptUpdates[k][i]`,
|
|
1210
|
+
`MultiModalPromptUpdatesApplyResult[k][i]` represents the index of the
|
|
1211
|
+
`ResolvedPromptUpdate` instance that has been applied, or `None` if none of the
|
|
1212
|
+
`ResolvedPromptUpdate` instances have been applied.
|
|
1213
|
+
"""
|
|
1214
|
+
|
|
1215
|
+
|
|
1216
|
+
class MultiModalProcessingInfo(NamedTuple):
|
|
1217
|
+
kwargs: MultiModalKwargsOptionalItems
|
|
1218
|
+
hashes: MultiModalHashes
|
|
1219
|
+
prompt_updates: MultiModalPromptUpdates
|
|
1220
|
+
|
|
1221
|
+
|
|
1222
|
+
class BaseMultiModalProcessor(ABC, Generic[_I]):
|
|
1223
|
+
"""
|
|
1224
|
+
Abstract base class to process multi-modal inputs to be used in vLLM.
|
|
1225
|
+
|
|
1226
|
+
Not to be confused with `transformers.ProcessorMixin`.
|
|
1227
|
+
"""
|
|
1228
|
+
|
|
1229
|
+
def __init__(
|
|
1230
|
+
self,
|
|
1231
|
+
info: _I,
|
|
1232
|
+
dummy_inputs: "BaseDummyInputsBuilder[_I]",
|
|
1233
|
+
*,
|
|
1234
|
+
cache: BaseMultiModalProcessorCache | None = None,
|
|
1235
|
+
) -> None:
|
|
1236
|
+
super().__init__()
|
|
1237
|
+
|
|
1238
|
+
self.info = info
|
|
1239
|
+
self.dummy_inputs = dummy_inputs
|
|
1240
|
+
self.cache = cache
|
|
1241
|
+
|
|
1242
|
+
self.data_parser = self._get_data_parser()
|
|
1243
|
+
|
|
1244
|
+
# Avoid unnecessary recomputation
|
|
1245
|
+
self._supported_mm_limits = self.info.get_supported_mm_limits()
|
|
1246
|
+
self._allowed_mm_limits = self.info.get_allowed_mm_limits()
|
|
1247
|
+
|
|
1248
|
+
@property
|
|
1249
|
+
def supported_mm_limits(self):
|
|
1250
|
+
return self._supported_mm_limits
|
|
1251
|
+
|
|
1252
|
+
@property
|
|
1253
|
+
def allowed_mm_limits(self):
|
|
1254
|
+
return self._allowed_mm_limits
|
|
1255
|
+
|
|
1256
|
+
def __call__(
|
|
1257
|
+
self,
|
|
1258
|
+
prompt: str,
|
|
1259
|
+
mm_data: MultiModalDataDict,
|
|
1260
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1261
|
+
*,
|
|
1262
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
1263
|
+
) -> MultiModalInputs:
|
|
1264
|
+
return self.apply(prompt, mm_data, hf_processor_mm_kwargs, mm_uuids=mm_uuids)
|
|
1265
|
+
|
|
1266
|
+
def _get_data_parser(self) -> MultiModalDataParser:
|
|
1267
|
+
"""
|
|
1268
|
+
Construct a parser to preprocess multi-modal data items
|
|
1269
|
+
before passing them to
|
|
1270
|
+
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
|
1271
|
+
|
|
1272
|
+
You can support additional modalities by creating a subclass
|
|
1273
|
+
of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
|
|
1274
|
+
that has additional subparsers.
|
|
1275
|
+
"""
|
|
1276
|
+
return MultiModalDataParser()
|
|
1277
|
+
|
|
1278
|
+
def validate_num_items(
|
|
1279
|
+
self,
|
|
1280
|
+
modality: str,
|
|
1281
|
+
num_items: int,
|
|
1282
|
+
) -> None:
|
|
1283
|
+
supported_limit = self.supported_mm_limits.get(modality, 0)
|
|
1284
|
+
allowed_limit = self.allowed_mm_limits.get(modality, 0)
|
|
1285
|
+
|
|
1286
|
+
if supported_limit is None:
|
|
1287
|
+
supported_limit = allowed_limit
|
|
1288
|
+
|
|
1289
|
+
limit = min(supported_limit, allowed_limit)
|
|
1290
|
+
|
|
1291
|
+
if num_items > limit:
|
|
1292
|
+
msg = f"At most {limit} {modality}(s) may be provided in one prompt."
|
|
1293
|
+
|
|
1294
|
+
if num_items <= supported_limit:
|
|
1295
|
+
msg += " Set `--limit-mm-per-prompt` to increase this limit."
|
|
1296
|
+
|
|
1297
|
+
raise ValueError(msg)
|
|
1298
|
+
|
|
1299
|
+
def _to_mm_items(
|
|
1300
|
+
self,
|
|
1301
|
+
mm_data: MultiModalDataDict,
|
|
1302
|
+
) -> MultiModalDataItems:
|
|
1303
|
+
"""
|
|
1304
|
+
Normalize
|
|
1305
|
+
[`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
|
|
1306
|
+
to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
|
|
1307
|
+
before passing them to
|
|
1308
|
+
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
|
1309
|
+
"""
|
|
1310
|
+
mm_items = self.data_parser.parse_mm_data(mm_data)
|
|
1311
|
+
|
|
1312
|
+
mm_config = self.info.ctx.model_config.get_multimodal_config()
|
|
1313
|
+
if not mm_config.enable_mm_embeds:
|
|
1314
|
+
for modality, items in mm_items.items():
|
|
1315
|
+
if isinstance(items, (EmbeddingItems, DictEmbeddingItems)):
|
|
1316
|
+
raise ValueError(
|
|
1317
|
+
f"You must set `--enable-mm-embeds` to input "
|
|
1318
|
+
f"`{modality}_embeds`"
|
|
1319
|
+
)
|
|
1320
|
+
|
|
1321
|
+
for modality, items in mm_items.items():
|
|
1322
|
+
self.validate_num_items(modality, len(items))
|
|
1323
|
+
|
|
1324
|
+
return mm_items
|
|
1325
|
+
|
|
1326
|
+
@abstractmethod
|
|
1327
|
+
def _get_mm_fields_config(
|
|
1328
|
+
self,
|
|
1329
|
+
hf_inputs: BatchFeature,
|
|
1330
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1331
|
+
) -> Mapping[str, MultiModalFieldConfig]:
|
|
1332
|
+
"""Given the HF-processed data, output the metadata of each field."""
|
|
1333
|
+
raise NotImplementedError
|
|
1334
|
+
|
|
1335
|
+
@abstractmethod
|
|
1336
|
+
def _get_prompt_updates(
|
|
1337
|
+
self,
|
|
1338
|
+
mm_items: MultiModalDataItems,
|
|
1339
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1340
|
+
out_mm_kwargs: MultiModalKwargsItems,
|
|
1341
|
+
) -> Sequence[PromptUpdate]:
|
|
1342
|
+
"""
|
|
1343
|
+
Given the original multi-modal items for this modality
|
|
1344
|
+
and HF-processed data, output the updates to perform.
|
|
1345
|
+
|
|
1346
|
+
The information returned by this method is used to update token inputs
|
|
1347
|
+
which bypass the HF processor. It is also used to update the output of
|
|
1348
|
+
HF processor if the HF process does not apply prompt updates to text
|
|
1349
|
+
inputs.
|
|
1350
|
+
|
|
1351
|
+
Moreover, this information is critical to determine the token positions
|
|
1352
|
+
in order to construct
|
|
1353
|
+
[`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
|
|
1354
|
+
for each multi-modal item.
|
|
1355
|
+
"""
|
|
1356
|
+
raise NotImplementedError
|
|
1357
|
+
|
|
1358
|
+
def _bind_and_group_updates(
|
|
1359
|
+
self,
|
|
1360
|
+
prompt_updates: Sequence[PromptUpdate],
|
|
1361
|
+
mm_item_counts: Mapping[str, int],
|
|
1362
|
+
) -> MultiModalPromptUpdates:
|
|
1363
|
+
return {
|
|
1364
|
+
modality: [
|
|
1365
|
+
[update.resolve(item_idx) for update in updates]
|
|
1366
|
+
for item_idx in range(mm_item_counts.get(modality, 0))
|
|
1367
|
+
]
|
|
1368
|
+
for modality, updates in full_groupby_modality(prompt_updates)
|
|
1369
|
+
}
|
|
1370
|
+
|
|
1371
|
+
def _get_mm_prompt_updates(
|
|
1372
|
+
self,
|
|
1373
|
+
mm_items: MultiModalDataItems,
|
|
1374
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1375
|
+
out_mm_kwargs: MultiModalKwargsItems,
|
|
1376
|
+
) -> MultiModalPromptUpdates:
|
|
1377
|
+
unbound_prompt_updates = self._get_prompt_updates(
|
|
1378
|
+
mm_items=mm_items,
|
|
1379
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1380
|
+
out_mm_kwargs=out_mm_kwargs,
|
|
1381
|
+
)
|
|
1382
|
+
|
|
1383
|
+
mm_prompt_updates = self._bind_and_group_updates(
|
|
1384
|
+
unbound_prompt_updates,
|
|
1385
|
+
mm_items.get_all_counts(),
|
|
1386
|
+
)
|
|
1387
|
+
|
|
1388
|
+
for modality, prompt_updates in mm_prompt_updates.items():
|
|
1389
|
+
for item_idx, item_prompt_updates in enumerate(prompt_updates):
|
|
1390
|
+
if len(item_prompt_updates) > 1:
|
|
1391
|
+
logger.warning_once(
|
|
1392
|
+
"Detected %d prompt updates for `mm_items[%r][%s]`. "
|
|
1393
|
+
"Multiple prompt updates per item is now "
|
|
1394
|
+
"deprecated and may be removed in v0.13. "
|
|
1395
|
+
"Instead, please specify dynamic update targets "
|
|
1396
|
+
"in the same prompt update definition by passing "
|
|
1397
|
+
"a function to `PromptUpdate.target`.",
|
|
1398
|
+
len(prompt_updates),
|
|
1399
|
+
modality,
|
|
1400
|
+
item_idx,
|
|
1401
|
+
)
|
|
1402
|
+
|
|
1403
|
+
return mm_prompt_updates
|
|
1404
|
+
|
|
1405
|
+
def _find_mm_placeholders(
|
|
1406
|
+
self,
|
|
1407
|
+
new_token_ids: list[int],
|
|
1408
|
+
mm_prompt_updates: MultiModalPromptUpdates,
|
|
1409
|
+
) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
|
|
1410
|
+
tokenizer = self.info.get_tokenizer()
|
|
1411
|
+
|
|
1412
|
+
return find_mm_placeholders(new_token_ids, mm_prompt_updates, tokenizer)
|
|
1413
|
+
|
|
1414
|
+
def _get_hf_mm_data(
|
|
1415
|
+
self,
|
|
1416
|
+
mm_items: MultiModalDataItems,
|
|
1417
|
+
) -> tuple[Mapping[str, object], Mapping[str, object]]:
|
|
1418
|
+
processor_data = dict[str, object]()
|
|
1419
|
+
passthrough_data = dict[str, object]()
|
|
1420
|
+
|
|
1421
|
+
for items in mm_items.values():
|
|
1422
|
+
processor_data.update(items.get_processor_data())
|
|
1423
|
+
passthrough_data.update(items.get_passthrough_data())
|
|
1424
|
+
|
|
1425
|
+
return processor_data, passthrough_data
|
|
1426
|
+
|
|
1427
|
+
def _call_hf_processor(
|
|
1428
|
+
self,
|
|
1429
|
+
prompt: str,
|
|
1430
|
+
# Not to be confused with `mm_data` in `self.apply`.
|
|
1431
|
+
# This refers to the data to be passed to HF processor.
|
|
1432
|
+
mm_data: Mapping[str, object],
|
|
1433
|
+
mm_kwargs: Mapping[str, object],
|
|
1434
|
+
tok_kwargs: Mapping[str, object],
|
|
1435
|
+
) -> BatchFeature:
|
|
1436
|
+
"""
|
|
1437
|
+
Call the HF processor on the prompt text and
|
|
1438
|
+
associated multi-modal data.
|
|
1439
|
+
"""
|
|
1440
|
+
return self.info.ctx.call_hf_processor(
|
|
1441
|
+
self.info.get_hf_processor(**mm_kwargs),
|
|
1442
|
+
dict(text=prompt, **mm_data),
|
|
1443
|
+
dict(**mm_kwargs, **tok_kwargs),
|
|
1444
|
+
)
|
|
1445
|
+
|
|
1446
|
+
def _hf_processor_applies_updates(
|
|
1447
|
+
self,
|
|
1448
|
+
prompt_text: str,
|
|
1449
|
+
mm_items: MultiModalDataItems,
|
|
1450
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1451
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1452
|
+
) -> bool:
|
|
1453
|
+
"""
|
|
1454
|
+
Return whether the HF processor applies prompt updates.
|
|
1455
|
+
|
|
1456
|
+
For most HF processors, this should be `True` when multi-modal
|
|
1457
|
+
data items are passed, but `False` when multi-modal embeddings
|
|
1458
|
+
are passed.
|
|
1459
|
+
"""
|
|
1460
|
+
return not any(
|
|
1461
|
+
isinstance(items, (EmbeddingItems, DictEmbeddingItems))
|
|
1462
|
+
for items in mm_items.values()
|
|
1463
|
+
)
|
|
1464
|
+
|
|
1465
|
+
def _apply_hf_processor_text_mm(
|
|
1466
|
+
self,
|
|
1467
|
+
prompt_text: str,
|
|
1468
|
+
mm_items: MultiModalDataItems,
|
|
1469
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1470
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1471
|
+
) -> tuple[list[int], BatchFeature, bool]:
|
|
1472
|
+
"""
|
|
1473
|
+
Apply the HF processor on the prompt text and multi-modal data
|
|
1474
|
+
together.
|
|
1475
|
+
|
|
1476
|
+
In addition, return whether prompt updates have been applied.
|
|
1477
|
+
"""
|
|
1478
|
+
processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
|
|
1479
|
+
|
|
1480
|
+
processed_data = self._call_hf_processor(
|
|
1481
|
+
prompt=prompt_text,
|
|
1482
|
+
mm_data=processor_data,
|
|
1483
|
+
mm_kwargs=hf_processor_mm_kwargs,
|
|
1484
|
+
tok_kwargs=tokenization_kwargs,
|
|
1485
|
+
)
|
|
1486
|
+
processed_data.update(passthrough_data)
|
|
1487
|
+
|
|
1488
|
+
(prompt_ids,) = processed_data.pop("input_ids").tolist()
|
|
1489
|
+
|
|
1490
|
+
is_update_applied = self._hf_processor_applies_updates(
|
|
1491
|
+
prompt_text=prompt_text,
|
|
1492
|
+
mm_items=mm_items,
|
|
1493
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1494
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1495
|
+
)
|
|
1496
|
+
|
|
1497
|
+
return prompt_ids, processed_data, is_update_applied
|
|
1498
|
+
|
|
1499
|
+
def _apply_hf_processor_text_only(
|
|
1500
|
+
self,
|
|
1501
|
+
prompt_text: str,
|
|
1502
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1503
|
+
) -> list[int]:
|
|
1504
|
+
"""
|
|
1505
|
+
Apply the HF processor on the prompt text only.
|
|
1506
|
+
|
|
1507
|
+
Since HF processor requires that text and multi-modal items
|
|
1508
|
+
correspond to each other, we create dummy multi-modal items
|
|
1509
|
+
to go along with the text.
|
|
1510
|
+
"""
|
|
1511
|
+
prompt_ids, _, _ = self._apply_hf_processor_text_mm(
|
|
1512
|
+
prompt_text=prompt_text,
|
|
1513
|
+
mm_items=MultiModalDataItems({}),
|
|
1514
|
+
hf_processor_mm_kwargs={},
|
|
1515
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1516
|
+
)
|
|
1517
|
+
|
|
1518
|
+
return prompt_ids
|
|
1519
|
+
|
|
1520
|
+
def _apply_hf_processor_tokens_only(
|
|
1521
|
+
self,
|
|
1522
|
+
prompt_tokens: list[int],
|
|
1523
|
+
) -> list[int]:
|
|
1524
|
+
"""
|
|
1525
|
+
Apply the HF processor on the prompt tokens only.
|
|
1526
|
+
|
|
1527
|
+
Most HF processors accept prompt text but not prompt tokens.
|
|
1528
|
+
If the HF processor adds or removes tokens that are not related to
|
|
1529
|
+
multi-modal data, you should override this method so it is consistent
|
|
1530
|
+
with the output of
|
|
1531
|
+
[`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
|
|
1532
|
+
on the
|
|
1533
|
+
corresponding text.
|
|
1534
|
+
"""
|
|
1535
|
+
return prompt_tokens
|
|
1536
|
+
|
|
1537
|
+
def _apply_hf_processor_mm_only(
|
|
1538
|
+
self,
|
|
1539
|
+
mm_items: MultiModalDataItems,
|
|
1540
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1541
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1542
|
+
) -> BatchFeature:
|
|
1543
|
+
"""
|
|
1544
|
+
Apply the HF processor on the multi-modal data only.
|
|
1545
|
+
|
|
1546
|
+
Since HF processor requires that text and multi-modal items
|
|
1547
|
+
correspond to each other, we generate dummy text using
|
|
1548
|
+
[`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
|
|
1549
|
+
to go along with the multi-modal data.
|
|
1550
|
+
"""
|
|
1551
|
+
mm_counts = mm_items.get_all_counts()
|
|
1552
|
+
|
|
1553
|
+
_, mm_processed_data, _ = self._apply_hf_processor_text_mm(
|
|
1554
|
+
prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
|
|
1555
|
+
mm_items=mm_items,
|
|
1556
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1557
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1558
|
+
)
|
|
1559
|
+
|
|
1560
|
+
return mm_processed_data
|
|
1561
|
+
|
|
1562
|
+
def _apply_hf_processor_main(
|
|
1563
|
+
self,
|
|
1564
|
+
prompt: str | list[int],
|
|
1565
|
+
mm_items: MultiModalDataItems,
|
|
1566
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1567
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1568
|
+
*,
|
|
1569
|
+
enable_hf_prompt_update: bool,
|
|
1570
|
+
) -> tuple[list[int], BatchFeature, bool]:
|
|
1571
|
+
"""
|
|
1572
|
+
Apply the HF processor on the prompt text and multi-modal data.
|
|
1573
|
+
|
|
1574
|
+
In addition, return whether prompt updates have been applied
|
|
1575
|
+
(for most HF processors, this should be `True`).
|
|
1576
|
+
|
|
1577
|
+
Note:
|
|
1578
|
+
If `enable_hf_prompt_update=False`, we use HF processor
|
|
1579
|
+
to perform prompt updates if available; HF processor requires
|
|
1580
|
+
that the prompt corresponds to multi-modal items.
|
|
1581
|
+
"""
|
|
1582
|
+
if isinstance(prompt, str):
|
|
1583
|
+
if enable_hf_prompt_update:
|
|
1584
|
+
return self._apply_hf_processor_text_mm(
|
|
1585
|
+
prompt_text=prompt,
|
|
1586
|
+
mm_items=mm_items,
|
|
1587
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1588
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1589
|
+
)
|
|
1590
|
+
|
|
1591
|
+
prompt_ids = self._apply_hf_processor_text_only(prompt, tokenization_kwargs)
|
|
1592
|
+
else:
|
|
1593
|
+
prompt_ids = self._apply_hf_processor_tokens_only(prompt)
|
|
1594
|
+
|
|
1595
|
+
mm_processed_data = self._apply_hf_processor_mm_only(
|
|
1596
|
+
mm_items=mm_items,
|
|
1597
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1598
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1599
|
+
)
|
|
1600
|
+
|
|
1601
|
+
return prompt_ids, mm_processed_data, False
|
|
1602
|
+
|
|
1603
|
+
def _hash_mm_items(
|
|
1604
|
+
self,
|
|
1605
|
+
mm_items: MultiModalDataItems,
|
|
1606
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1607
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1608
|
+
*,
|
|
1609
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
1610
|
+
) -> MultiModalHashes:
|
|
1611
|
+
"""Create MM hashes to be returned.
|
|
1612
|
+
|
|
1613
|
+
|
|
1614
|
+
Note: When overrides are provided via callers of `apply`,
|
|
1615
|
+
`_hash_mm_items` will be bypassed and the overrides will be used.
|
|
1616
|
+
"""
|
|
1617
|
+
model_id = self.info.model_id
|
|
1618
|
+
|
|
1619
|
+
hashes: MultiModalHashes = {}
|
|
1620
|
+
mm_uuids = mm_uuids or {}
|
|
1621
|
+
|
|
1622
|
+
for modality, items in mm_items.items():
|
|
1623
|
+
if modality in mm_uuids:
|
|
1624
|
+
mm_uuids_per_modality = mm_uuids[modality]
|
|
1625
|
+
if isinstance(mm_uuids_per_modality, str):
|
|
1626
|
+
mm_uuids_per_modality = [mm_uuids_per_modality]
|
|
1627
|
+
|
|
1628
|
+
# For None entries, compute a hash; otherwise, use provided ID.
|
|
1629
|
+
computed: list[str] = []
|
|
1630
|
+
for i, item in enumerate(items):
|
|
1631
|
+
item_uuid = mm_uuids_per_modality[i]
|
|
1632
|
+
|
|
1633
|
+
# NOTE: Even if a item_uuid is provided, we still compute a
|
|
1634
|
+
# hash if `hf_processor_mm_kwargs` or `tokenization_kwargs`
|
|
1635
|
+
# are provided. This is because the processed multimodal
|
|
1636
|
+
# inputs can be different depending on the processor kwargs.
|
|
1637
|
+
if (
|
|
1638
|
+
item_uuid is None
|
|
1639
|
+
or hf_processor_mm_kwargs
|
|
1640
|
+
or tokenization_kwargs
|
|
1641
|
+
):
|
|
1642
|
+
# NOTE: use provided hash string to hash with kwargs
|
|
1643
|
+
# if available for better performance.
|
|
1644
|
+
item = item_uuid if item_uuid is not None else item
|
|
1645
|
+
computed.append(
|
|
1646
|
+
MultiModalHasher.hash_kwargs(
|
|
1647
|
+
model_id=model_id,
|
|
1648
|
+
**{modality: item},
|
|
1649
|
+
**hf_processor_mm_kwargs,
|
|
1650
|
+
**tokenization_kwargs,
|
|
1651
|
+
)
|
|
1652
|
+
)
|
|
1653
|
+
else:
|
|
1654
|
+
computed.append(item_uuid)
|
|
1655
|
+
hashes[modality] = computed
|
|
1656
|
+
else:
|
|
1657
|
+
hashes[modality] = [
|
|
1658
|
+
MultiModalHasher.hash_kwargs(
|
|
1659
|
+
model_id=model_id,
|
|
1660
|
+
**{modality: item},
|
|
1661
|
+
**hf_processor_mm_kwargs,
|
|
1662
|
+
**tokenization_kwargs,
|
|
1663
|
+
)
|
|
1664
|
+
for item in items
|
|
1665
|
+
]
|
|
1666
|
+
|
|
1667
|
+
return hashes
|
|
1668
|
+
|
|
1669
|
+
def _get_cache_missing_items(
|
|
1670
|
+
self,
|
|
1671
|
+
cache: BaseMultiModalProcessorCache,
|
|
1672
|
+
mm_data_items: MultiModalDataItems,
|
|
1673
|
+
mm_hashes: MultiModalHashes,
|
|
1674
|
+
) -> MultiModalDataItems:
|
|
1675
|
+
mm_is_cached = {
|
|
1676
|
+
modality: cache.is_cached(hashes) for modality, hashes in mm_hashes.items()
|
|
1677
|
+
}
|
|
1678
|
+
|
|
1679
|
+
mm_missing_idxs = {
|
|
1680
|
+
modality: [
|
|
1681
|
+
idx
|
|
1682
|
+
for idx, item_is_cached in enumerate(items_is_cached)
|
|
1683
|
+
if not item_is_cached
|
|
1684
|
+
]
|
|
1685
|
+
for modality, items_is_cached in mm_is_cached.items()
|
|
1686
|
+
}
|
|
1687
|
+
mm_missing_data = {}
|
|
1688
|
+
for modality, idxs in mm_missing_idxs.items():
|
|
1689
|
+
missing_modality_data = []
|
|
1690
|
+
for idx in idxs:
|
|
1691
|
+
data = mm_data_items[modality][idx]
|
|
1692
|
+
if data is None:
|
|
1693
|
+
raise ValueError(
|
|
1694
|
+
f"Cache miss for {modality} at index {idx} "
|
|
1695
|
+
f"but data is not provided."
|
|
1696
|
+
)
|
|
1697
|
+
else:
|
|
1698
|
+
missing_modality_data.append(data)
|
|
1699
|
+
mm_missing_data[modality] = missing_modality_data
|
|
1700
|
+
|
|
1701
|
+
return self._to_mm_items(mm_missing_data)
|
|
1702
|
+
|
|
1703
|
+
def _recompute_cached_prompt_update(
|
|
1704
|
+
self,
|
|
1705
|
+
cached_update: ResolvedPromptUpdate,
|
|
1706
|
+
new_item_idx: int,
|
|
1707
|
+
) -> ResolvedPromptUpdate:
|
|
1708
|
+
"""
|
|
1709
|
+
Override this if other attributes of `ResolvedPromptUpdate`
|
|
1710
|
+
also need to be recomputed after retrieving from the cache.
|
|
1711
|
+
"""
|
|
1712
|
+
return replace(cached_update, item_idx=new_item_idx)
|
|
1713
|
+
|
|
1714
|
+
def _merge_mm_kwargs(
|
|
1715
|
+
self,
|
|
1716
|
+
cache: BaseMultiModalProcessorCache,
|
|
1717
|
+
mm_hashes: MultiModalHashes,
|
|
1718
|
+
mm_missing_kwargs: MultiModalKwargsItems,
|
|
1719
|
+
mm_missing_prompt_updates: MultiModalPromptUpdates,
|
|
1720
|
+
) -> tuple[MultiModalKwargsOptionalItems, MultiModalPromptUpdates]:
|
|
1721
|
+
# Need to calculate this at the beginning to avoid skipping cache logic
|
|
1722
|
+
# for subsequently repeated items in the same modality
|
|
1723
|
+
mm_is_cached = {
|
|
1724
|
+
modality: cache.is_cached(hashes) for modality, hashes in mm_hashes.items()
|
|
1725
|
+
}
|
|
1726
|
+
|
|
1727
|
+
mm_missing_next_idx = defaultdict[str, int](lambda: 0)
|
|
1728
|
+
|
|
1729
|
+
merged_kwargs = defaultdict[str, list[MultiModalKwargsItem | None]](list)
|
|
1730
|
+
merged_prompt_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](
|
|
1731
|
+
list
|
|
1732
|
+
)
|
|
1733
|
+
for modality, hashes in mm_hashes.items():
|
|
1734
|
+
missing_kwargs = mm_missing_kwargs.get(modality, [])
|
|
1735
|
+
missing_prompt_updates = mm_missing_prompt_updates.get(modality, [])
|
|
1736
|
+
|
|
1737
|
+
for item_idx, item_hash in enumerate(hashes):
|
|
1738
|
+
kwargs: MultiModalKwargsItem | None
|
|
1739
|
+
if not mm_is_cached[modality][item_idx]:
|
|
1740
|
+
missing_next_idx = mm_missing_next_idx[modality]
|
|
1741
|
+
kwargs = missing_kwargs[missing_next_idx]
|
|
1742
|
+
updates = missing_prompt_updates[missing_next_idx]
|
|
1743
|
+
|
|
1744
|
+
mm_missing_next_idx[modality] += 1
|
|
1745
|
+
|
|
1746
|
+
item = kwargs, updates
|
|
1747
|
+
else:
|
|
1748
|
+
item = None
|
|
1749
|
+
|
|
1750
|
+
kwargs, updates = cache.get_and_update_item(item, item_hash)
|
|
1751
|
+
|
|
1752
|
+
merged_kwargs[modality].append(kwargs)
|
|
1753
|
+
merged_prompt_updates[modality].append(
|
|
1754
|
+
[
|
|
1755
|
+
self._recompute_cached_prompt_update(update, item_idx)
|
|
1756
|
+
for update in updates
|
|
1757
|
+
]
|
|
1758
|
+
)
|
|
1759
|
+
|
|
1760
|
+
mm_kwargs = MultiModalKwargsItems(merged_kwargs)
|
|
1761
|
+
mm_prompt_updates = dict(merged_prompt_updates)
|
|
1762
|
+
|
|
1763
|
+
return mm_kwargs, mm_prompt_updates
|
|
1764
|
+
|
|
1765
|
+
def _apply_hf_processor(
|
|
1766
|
+
self,
|
|
1767
|
+
prompt: str | list[int],
|
|
1768
|
+
mm_data_items: MultiModalDataItems,
|
|
1769
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1770
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1771
|
+
*,
|
|
1772
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
1773
|
+
) -> tuple[list[int], MultiModalProcessingInfo, bool]:
|
|
1774
|
+
(
|
|
1775
|
+
prompt_ids,
|
|
1776
|
+
mm_processed_data,
|
|
1777
|
+
is_update_applied,
|
|
1778
|
+
) = self._apply_hf_processor_main(
|
|
1779
|
+
prompt=prompt,
|
|
1780
|
+
mm_items=mm_data_items,
|
|
1781
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1782
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1783
|
+
enable_hf_prompt_update=True,
|
|
1784
|
+
)
|
|
1785
|
+
|
|
1786
|
+
mm_kwargs = MultiModalKwargsItems.from_hf_inputs(
|
|
1787
|
+
mm_processed_data,
|
|
1788
|
+
self._get_mm_fields_config(mm_processed_data, hf_processor_mm_kwargs),
|
|
1789
|
+
)
|
|
1790
|
+
|
|
1791
|
+
# Use overrides if provided; fallback to data-dependent hashing.
|
|
1792
|
+
mm_hashes = self._hash_mm_items(
|
|
1793
|
+
mm_data_items,
|
|
1794
|
+
hf_processor_mm_kwargs,
|
|
1795
|
+
tokenization_kwargs,
|
|
1796
|
+
mm_uuids=mm_uuids,
|
|
1797
|
+
)
|
|
1798
|
+
|
|
1799
|
+
mm_prompt_updates = self._get_mm_prompt_updates(
|
|
1800
|
+
mm_data_items,
|
|
1801
|
+
hf_processor_mm_kwargs,
|
|
1802
|
+
mm_kwargs,
|
|
1803
|
+
)
|
|
1804
|
+
|
|
1805
|
+
mm_info = MultiModalProcessingInfo(
|
|
1806
|
+
kwargs=mm_kwargs,
|
|
1807
|
+
hashes=mm_hashes,
|
|
1808
|
+
prompt_updates=mm_prompt_updates,
|
|
1809
|
+
)
|
|
1810
|
+
|
|
1811
|
+
return prompt_ids, mm_info, is_update_applied
|
|
1812
|
+
|
|
1813
|
+
def _cached_apply_hf_processor(
|
|
1814
|
+
self,
|
|
1815
|
+
prompt: str | list[int],
|
|
1816
|
+
mm_data_items: MultiModalDataItems,
|
|
1817
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
1818
|
+
tokenization_kwargs: Mapping[str, object],
|
|
1819
|
+
*,
|
|
1820
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
1821
|
+
) -> tuple[list[int], MultiModalProcessingInfo, bool]:
|
|
1822
|
+
"""
|
|
1823
|
+
Apply the HF processor on the full prompt text,
|
|
1824
|
+
caching the results and reusing cached results.
|
|
1825
|
+
"""
|
|
1826
|
+
cache = self.cache
|
|
1827
|
+
|
|
1828
|
+
_, passthrough_data = self._get_hf_mm_data(mm_data_items)
|
|
1829
|
+
if cache is None or passthrough_data:
|
|
1830
|
+
return self._apply_hf_processor(
|
|
1831
|
+
prompt=prompt,
|
|
1832
|
+
mm_data_items=mm_data_items,
|
|
1833
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1834
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1835
|
+
mm_uuids=mm_uuids,
|
|
1836
|
+
)
|
|
1837
|
+
|
|
1838
|
+
mm_hashes = self._hash_mm_items(
|
|
1839
|
+
mm_data_items,
|
|
1840
|
+
hf_processor_mm_kwargs,
|
|
1841
|
+
tokenization_kwargs,
|
|
1842
|
+
mm_uuids=mm_uuids,
|
|
1843
|
+
)
|
|
1844
|
+
|
|
1845
|
+
mm_missing_data_items = self._get_cache_missing_items(
|
|
1846
|
+
cache=cache,
|
|
1847
|
+
mm_data_items=mm_data_items,
|
|
1848
|
+
mm_hashes=mm_hashes,
|
|
1849
|
+
)
|
|
1850
|
+
|
|
1851
|
+
# NOTE: `prompt` does not correspond to `mm_missing_data_items`,
|
|
1852
|
+
# so we can't apply prompt updates until the new multimodal
|
|
1853
|
+
# items are combined with the cached multimodal items
|
|
1854
|
+
(
|
|
1855
|
+
prompt_ids,
|
|
1856
|
+
mm_missing_processed_data,
|
|
1857
|
+
is_update_applied,
|
|
1858
|
+
) = self._apply_hf_processor_main(
|
|
1859
|
+
prompt=prompt,
|
|
1860
|
+
mm_items=mm_missing_data_items,
|
|
1861
|
+
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
1862
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
1863
|
+
enable_hf_prompt_update=False,
|
|
1864
|
+
)
|
|
1865
|
+
|
|
1866
|
+
mm_missing_kwargs = MultiModalKwargsItems.from_hf_inputs(
|
|
1867
|
+
mm_missing_processed_data,
|
|
1868
|
+
self._get_mm_fields_config(
|
|
1869
|
+
mm_missing_processed_data, hf_processor_mm_kwargs
|
|
1870
|
+
),
|
|
1871
|
+
)
|
|
1872
|
+
|
|
1873
|
+
mm_missing_prompt_updates = self._get_mm_prompt_updates(
|
|
1874
|
+
mm_missing_data_items,
|
|
1875
|
+
hf_processor_mm_kwargs,
|
|
1876
|
+
mm_missing_kwargs,
|
|
1877
|
+
)
|
|
1878
|
+
|
|
1879
|
+
mm_kwargs, mm_prompt_updates = self._merge_mm_kwargs(
|
|
1880
|
+
cache,
|
|
1881
|
+
mm_hashes=mm_hashes,
|
|
1882
|
+
mm_missing_kwargs=mm_missing_kwargs,
|
|
1883
|
+
mm_missing_prompt_updates=mm_missing_prompt_updates,
|
|
1884
|
+
)
|
|
1885
|
+
|
|
1886
|
+
mm_info = MultiModalProcessingInfo(
|
|
1887
|
+
kwargs=mm_kwargs,
|
|
1888
|
+
hashes=mm_hashes,
|
|
1889
|
+
prompt_updates=mm_prompt_updates,
|
|
1890
|
+
)
|
|
1891
|
+
|
|
1892
|
+
return prompt_ids, mm_info, is_update_applied
|
|
1893
|
+
|
|
1894
|
+
def _apply_token_matches(
|
|
1895
|
+
self,
|
|
1896
|
+
prompt: list[int],
|
|
1897
|
+
mm_prompt_updates: MultiModalPromptUpdates,
|
|
1898
|
+
) -> tuple[list[int], MultiModalPromptUpdatesApplyResult]:
|
|
1899
|
+
tokenizer = self.info.get_tokenizer()
|
|
1900
|
+
return apply_token_matches(prompt, mm_prompt_updates, tokenizer)
|
|
1901
|
+
|
|
1902
|
+
def _apply_text_matches(
|
|
1903
|
+
self,
|
|
1904
|
+
prompt: str,
|
|
1905
|
+
mm_prompt_updates: MultiModalPromptUpdates,
|
|
1906
|
+
) -> tuple[str, MultiModalPromptUpdatesApplyResult]:
|
|
1907
|
+
tokenizer = self.info.get_tokenizer()
|
|
1908
|
+
return apply_text_matches(prompt, mm_prompt_updates, tokenizer)
|
|
1909
|
+
|
|
1910
|
+
def _apply_prompt_updates(
|
|
1911
|
+
self,
|
|
1912
|
+
token_ids: list[int],
|
|
1913
|
+
mm_prompt_updates: MultiModalPromptUpdates,
|
|
1914
|
+
) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
|
|
1915
|
+
tokenizer = self.info.get_tokenizer()
|
|
1916
|
+
|
|
1917
|
+
new_token_ids, match_result = self._apply_token_matches(
|
|
1918
|
+
token_ids,
|
|
1919
|
+
mm_prompt_updates,
|
|
1920
|
+
)
|
|
1921
|
+
|
|
1922
|
+
# If the search text does not represent a special token,
|
|
1923
|
+
# it may have different token IDs in the prompt, because
|
|
1924
|
+
# the tokens may go across the boundaries of the search text.
|
|
1925
|
+
# ----
|
|
1926
|
+
# e.g. when searching for "foo" in "food", if "food" itself makes
|
|
1927
|
+
# up a token, then the token ID of "foo" will not appear at all
|
|
1928
|
+
# ----
|
|
1929
|
+
# Since it is inefficient to search for all possible tokenizations
|
|
1930
|
+
# of the search text in the prompt, we instead perform string-based
|
|
1931
|
+
# updates on the decoded token IDs, then encode them back.
|
|
1932
|
+
if not all(
|
|
1933
|
+
all(update_idx is not None for update_idx in update_idxs)
|
|
1934
|
+
for update_idxs in match_result.values()
|
|
1935
|
+
):
|
|
1936
|
+
new_text, match_result = self._apply_text_matches(
|
|
1937
|
+
decode_tokens(tokenizer, token_ids),
|
|
1938
|
+
mm_prompt_updates,
|
|
1939
|
+
)
|
|
1940
|
+
|
|
1941
|
+
new_token_ids = encode_tokens(
|
|
1942
|
+
tokenizer,
|
|
1943
|
+
new_text,
|
|
1944
|
+
add_special_tokens=False,
|
|
1945
|
+
)
|
|
1946
|
+
|
|
1947
|
+
matched_updates = defaultdict[str, list[Sequence[ResolvedPromptUpdate]]](list)
|
|
1948
|
+
for modality, update_idxs in match_result.items():
|
|
1949
|
+
for item_idx, update_idx in enumerate(update_idxs):
|
|
1950
|
+
assert update_idx is not None, (
|
|
1951
|
+
"Failed to apply prompt replacement for "
|
|
1952
|
+
f"mm_items[{modality!r}][{item_idx}]"
|
|
1953
|
+
)
|
|
1954
|
+
|
|
1955
|
+
matched_updates[modality].append(
|
|
1956
|
+
[mm_prompt_updates[modality][item_idx][update_idx]]
|
|
1957
|
+
)
|
|
1958
|
+
|
|
1959
|
+
placeholders = self._find_mm_placeholders(
|
|
1960
|
+
new_token_ids,
|
|
1961
|
+
dict(matched_updates),
|
|
1962
|
+
)
|
|
1963
|
+
|
|
1964
|
+
return new_token_ids, placeholders
|
|
1965
|
+
|
|
1966
|
+
def _validate_mm_kwargs(
|
|
1967
|
+
self,
|
|
1968
|
+
mm_kwargs: MultiModalKwargsOptionalItems,
|
|
1969
|
+
mm_item_counts: Mapping[str, int],
|
|
1970
|
+
) -> None:
|
|
1971
|
+
for modality, item_count in mm_item_counts.items():
|
|
1972
|
+
items = mm_kwargs.get(modality, [])
|
|
1973
|
+
|
|
1974
|
+
if len(items) != item_count:
|
|
1975
|
+
raise RuntimeError(
|
|
1976
|
+
f"Expected there to be {item_count} {modality} items in "
|
|
1977
|
+
f"keyword arguments corresponding to {item_count} "
|
|
1978
|
+
f"{modality} data items, but only found {len(items)}! "
|
|
1979
|
+
"There is likely a problem with your "
|
|
1980
|
+
"implementation of merged multi-modal processor for this "
|
|
1981
|
+
"model (usually arising from an inconsistency between "
|
|
1982
|
+
"`_call_hf_processor` and `_get_mm_fields_config`)."
|
|
1983
|
+
)
|
|
1984
|
+
|
|
1985
|
+
def _validate_mm_updates(
|
|
1986
|
+
self,
|
|
1987
|
+
mm_updates: MultiModalPromptUpdates,
|
|
1988
|
+
mm_item_counts: Mapping[str, int],
|
|
1989
|
+
) -> None:
|
|
1990
|
+
for modality, item_count in mm_item_counts.items():
|
|
1991
|
+
placeholders = mm_updates.get(modality, [])
|
|
1992
|
+
|
|
1993
|
+
if len(placeholders) != item_count:
|
|
1994
|
+
raise RuntimeError(
|
|
1995
|
+
f"Expected there to be {item_count} prompt updates "
|
|
1996
|
+
f"corresponding to {item_count} {modality} items, but "
|
|
1997
|
+
f"instead found {len(placeholders)} prompt updates! "
|
|
1998
|
+
"This is likely because you forgot to include input "
|
|
1999
|
+
"placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
|
|
2000
|
+
"in the prompt. If the model has a chat template, make "
|
|
2001
|
+
"sure you have applied it before calling `LLM.generate`."
|
|
2002
|
+
)
|
|
2003
|
+
|
|
2004
|
+
def _validate_mm_placeholders(
|
|
2005
|
+
self,
|
|
2006
|
+
mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
|
|
2007
|
+
mm_item_counts: Mapping[str, int],
|
|
2008
|
+
) -> None:
|
|
2009
|
+
for modality, item_count in mm_item_counts.items():
|
|
2010
|
+
placeholders = mm_placeholders.get(modality, [])
|
|
2011
|
+
|
|
2012
|
+
if len(placeholders) != item_count:
|
|
2013
|
+
raise RuntimeError(
|
|
2014
|
+
f"Expected there to be {item_count} prompt placeholders "
|
|
2015
|
+
f"corresponding to {item_count} {modality} items, but "
|
|
2016
|
+
f"instead found {len(placeholders)} prompt placeholders! "
|
|
2017
|
+
"Make sure the implementation of `_call_hf_processor` and "
|
|
2018
|
+
"`_get_mm_fields_config` are consistent with each other."
|
|
2019
|
+
)
|
|
2020
|
+
|
|
2021
|
+
def _maybe_apply_prompt_updates(
|
|
2022
|
+
self,
|
|
2023
|
+
mm_items: MultiModalDataItems,
|
|
2024
|
+
prompt_ids: list[int],
|
|
2025
|
+
mm_kwargs: MultiModalKwargsOptionalItems,
|
|
2026
|
+
mm_prompt_updates: MultiModalPromptUpdates,
|
|
2027
|
+
is_update_applied: bool,
|
|
2028
|
+
) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
|
|
2029
|
+
mm_item_counts = mm_items.get_all_counts()
|
|
2030
|
+
self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
|
|
2031
|
+
self._validate_mm_updates(mm_prompt_updates, mm_item_counts)
|
|
2032
|
+
|
|
2033
|
+
if is_update_applied:
|
|
2034
|
+
mm_placeholders = self._find_mm_placeholders(
|
|
2035
|
+
prompt_ids,
|
|
2036
|
+
mm_prompt_updates,
|
|
2037
|
+
)
|
|
2038
|
+
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
|
|
2039
|
+
else:
|
|
2040
|
+
prompt_ids, mm_placeholders = self._apply_prompt_updates(
|
|
2041
|
+
prompt_ids,
|
|
2042
|
+
mm_prompt_updates,
|
|
2043
|
+
)
|
|
2044
|
+
self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
|
|
2045
|
+
|
|
2046
|
+
return prompt_ids, mm_placeholders
|
|
2047
|
+
|
|
2048
|
+
def apply(
|
|
2049
|
+
self,
|
|
2050
|
+
prompt: str | list[int],
|
|
2051
|
+
mm_data: MultiModalDataDict,
|
|
2052
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
2053
|
+
tokenization_kwargs: Mapping[str, object] | None = None,
|
|
2054
|
+
*,
|
|
2055
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
2056
|
+
) -> MultiModalInputs:
|
|
2057
|
+
"""
|
|
2058
|
+
Process multi-modal inputs to be used in vLLM.
|
|
2059
|
+
|
|
2060
|
+
The main steps are:
|
|
2061
|
+
|
|
2062
|
+
1. Apply HF Processor on prompt text and multi-modal data together,
|
|
2063
|
+
outputting token IDs and processed tensors.
|
|
2064
|
+
2. Find and update sequences in the token IDs with placeholder tokens.
|
|
2065
|
+
The number of placeholder tokens equals the feature size of the
|
|
2066
|
+
multi-modal data outputted by the multi-modal encoder.
|
|
2067
|
+
3. Extract information about the placeholder tokens from the
|
|
2068
|
+
processed token IDs.
|
|
2069
|
+
"""
|
|
2070
|
+
mm_items = self._to_mm_items(mm_data)
|
|
2071
|
+
|
|
2072
|
+
if tokenization_kwargs is None:
|
|
2073
|
+
tokenization_kwargs = {}
|
|
2074
|
+
|
|
2075
|
+
(
|
|
2076
|
+
prompt_ids,
|
|
2077
|
+
mm_info,
|
|
2078
|
+
is_update_applied,
|
|
2079
|
+
) = self._cached_apply_hf_processor(
|
|
2080
|
+
prompt,
|
|
2081
|
+
mm_items,
|
|
2082
|
+
hf_processor_mm_kwargs,
|
|
2083
|
+
tokenization_kwargs=tokenization_kwargs,
|
|
2084
|
+
mm_uuids=mm_uuids,
|
|
2085
|
+
)
|
|
2086
|
+
|
|
2087
|
+
# NOTE: tokenization_kwargs are not required to init processor
|
|
2088
|
+
prompt_ids, mm_placeholders = self._maybe_apply_prompt_updates(
|
|
2089
|
+
mm_items=mm_items,
|
|
2090
|
+
prompt_ids=prompt_ids,
|
|
2091
|
+
mm_kwargs=mm_info.kwargs,
|
|
2092
|
+
mm_prompt_updates=mm_info.prompt_updates,
|
|
2093
|
+
is_update_applied=is_update_applied,
|
|
2094
|
+
)
|
|
2095
|
+
|
|
2096
|
+
mm_placeholder_ranges = {
|
|
2097
|
+
modality: [item.to_range() for item in placeholders]
|
|
2098
|
+
for modality, placeholders in mm_placeholders.items()
|
|
2099
|
+
}
|
|
2100
|
+
|
|
2101
|
+
return MultiModalInputs(
|
|
2102
|
+
type="multimodal",
|
|
2103
|
+
prompt_token_ids=prompt_ids,
|
|
2104
|
+
mm_kwargs=mm_info.kwargs,
|
|
2105
|
+
mm_hashes=mm_info.hashes,
|
|
2106
|
+
mm_placeholders=mm_placeholder_ranges,
|
|
2107
|
+
)
|
|
2108
|
+
|
|
2109
|
+
|
|
2110
|
+
class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
|
|
2111
|
+
@abstractmethod
|
|
2112
|
+
def create_encoder_prompt(
|
|
2113
|
+
self,
|
|
2114
|
+
prompt: str | list[int],
|
|
2115
|
+
mm_data: MultiModalDataDict,
|
|
2116
|
+
) -> str | list[int]:
|
|
2117
|
+
"""
|
|
2118
|
+
Create input prompt for the encoder. HF processor will be applied on
|
|
2119
|
+
this prompt during profiling and generation.
|
|
2120
|
+
"""
|
|
2121
|
+
raise NotImplementedError
|
|
2122
|
+
|
|
2123
|
+
@property
|
|
2124
|
+
def pad_dummy_encoder_prompt(self) -> bool:
|
|
2125
|
+
return False
|
|
2126
|
+
|
|
2127
|
+
def create_decoder_prompt(
|
|
2128
|
+
self,
|
|
2129
|
+
prompt: str | list[int],
|
|
2130
|
+
mm_data: MultiModalDataDict,
|
|
2131
|
+
) -> str | list[int]:
|
|
2132
|
+
"""Create input prompt for the decoder."""
|
|
2133
|
+
return prompt
|
|
2134
|
+
|
|
2135
|
+
def _get_enc_dec_inputs(
|
|
2136
|
+
self,
|
|
2137
|
+
prompt: str | list[int],
|
|
2138
|
+
mm_data: MultiModalDataDict,
|
|
2139
|
+
encoder_inputs: MultiModalInputs,
|
|
2140
|
+
):
|
|
2141
|
+
tokenizer = self.info.get_tokenizer()
|
|
2142
|
+
decoder_prompt_raw = self.create_decoder_prompt(prompt, mm_data)
|
|
2143
|
+
if isinstance(decoder_prompt_raw, str):
|
|
2144
|
+
decoder_prompt_ids = encode_tokens(
|
|
2145
|
+
tokenizer, decoder_prompt_raw, add_special_tokens=False
|
|
2146
|
+
)
|
|
2147
|
+
else:
|
|
2148
|
+
decoder_prompt_ids = decoder_prompt_raw
|
|
2149
|
+
|
|
2150
|
+
mm_inputs = MultiModalEncDecInputs(
|
|
2151
|
+
encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
|
|
2152
|
+
**encoder_inputs,
|
|
2153
|
+
)
|
|
2154
|
+
mm_inputs["prompt_token_ids"] = decoder_prompt_ids
|
|
2155
|
+
return mm_inputs
|
|
2156
|
+
|
|
2157
|
+
def apply(
|
|
2158
|
+
self,
|
|
2159
|
+
prompt: str | list[int],
|
|
2160
|
+
mm_data: MultiModalDataDict,
|
|
2161
|
+
hf_processor_mm_kwargs: Mapping[str, object],
|
|
2162
|
+
tokenization_kwargs: Mapping[str, object] | None = None,
|
|
2163
|
+
*,
|
|
2164
|
+
mm_uuids: MultiModalUUIDDict | None = None,
|
|
2165
|
+
) -> MultiModalEncDecInputs:
|
|
2166
|
+
"""
|
|
2167
|
+
Process multi-modal inputs to be used in vLLM.
|
|
2168
|
+
The main processing steps are modified to fit encoder-decoder model:
|
|
2169
|
+
1. Create encoder prompt from input prompt text.
|
|
2170
|
+
2. Apply the HF processor on encoder prompt.
|
|
2171
|
+
3. Copy the input prompt text as decoder prompt inputs.
|
|
2172
|
+
"""
|
|
2173
|
+
encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
|
|
2174
|
+
encoder_inputs = super().apply(
|
|
2175
|
+
encoder_prompt,
|
|
2176
|
+
mm_data,
|
|
2177
|
+
hf_processor_mm_kwargs,
|
|
2178
|
+
tokenization_kwargs,
|
|
2179
|
+
mm_uuids=mm_uuids,
|
|
2180
|
+
)
|
|
2181
|
+
|
|
2182
|
+
return self._get_enc_dec_inputs(
|
|
2183
|
+
prompt=prompt,
|
|
2184
|
+
mm_data=mm_data,
|
|
2185
|
+
encoder_inputs=encoder_inputs,
|
|
2186
|
+
)
|