vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1788 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ from collections.abc import Callable
5
+ from typing import TYPE_CHECKING, Any, Optional
6
+
7
+ import torch
8
+ from torch.nn import Module
9
+ from torch.nn.parameter import Parameter
10
+
11
+ import vllm.envs as envs
12
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
13
+ from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
14
+ from vllm.logger import init_logger
15
+ from vllm.model_executor.layers.fused_moe.config import (
16
+ FusedMoEConfig,
17
+ FusedMoEQuantConfig,
18
+ RoutingMethodType,
19
+ fp8_w8a8_moe_quant_config,
20
+ nvfp4_moe_quant_config,
21
+ )
22
+ from vllm.model_executor.layers.fused_moe.fused_marlin_moe import fused_marlin_moe
23
+ from vllm.model_executor.layers.fused_moe.layer import (
24
+ FusedMoE,
25
+ FusedMoEMethodBase,
26
+ FusedMoeWeightScaleSupported,
27
+ )
28
+ from vllm.model_executor.layers.linear import (
29
+ LinearBase,
30
+ LinearMethodBase,
31
+ UnquantizedLinearMethod,
32
+ )
33
+ from vllm.model_executor.layers.quantization import QuantizationMethods
34
+ from vllm.model_executor.layers.quantization.base_config import (
35
+ QuantizationConfig,
36
+ QuantizeMethodBase,
37
+ )
38
+ from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
39
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
40
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize,
41
+ reorder_w1w3_to_w3w1,
42
+ select_nvfp4_gemm_impl,
43
+ )
44
+ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
45
+ FlashinferMoeBackend,
46
+ apply_flashinfer_per_tensor_scale_fp8,
47
+ build_flashinfer_fp8_cutlass_moe_prepare_finalize,
48
+ flashinfer_cutlass_moe_fp8,
49
+ get_flashinfer_moe_backend,
50
+ is_flashinfer_supporting_global_sf,
51
+ register_moe_scaling_factors,
52
+ rotate_flashinfer_fp8_moe_weights,
53
+ select_cutlass_fp8_gemm_impl,
54
+ swap_w13_to_w31,
55
+ )
56
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
57
+ apply_fp4_marlin_linear,
58
+ is_fp4_marlin_supported,
59
+ prepare_fp4_layer_for_marlin,
60
+ prepare_moe_fp4_layer_for_marlin,
61
+ )
62
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
63
+ GroupShape,
64
+ cutlass_fp4_supported,
65
+ is_layer_skipped,
66
+ swizzle_blockscale,
67
+ )
68
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
69
+ Fp8LinearOp,
70
+ requantize_with_max_scale,
71
+ )
72
+ from vllm.model_executor.parameter import ModelWeightParameter, PerTensorScaleParameter
73
+ from vllm.scalar_type import scalar_types
74
+ from vllm.utils.flashinfer import (
75
+ flashinfer_scaled_fp4_mm,
76
+ has_flashinfer,
77
+ has_flashinfer_moe,
78
+ )
79
+
80
+ if TYPE_CHECKING:
81
+ from vllm.model_executor.models.utils import WeightsMapper
82
+
83
+ logger = init_logger(__name__)
84
+
85
+ QUANT_ALGOS = ["FP8", "NVFP4"]
86
+ KV_CACHE_QUANT_ALGOS = ["FP8"]
87
+
88
+
89
+ class ModelOptFp8Config(QuantizationConfig):
90
+ """Config class for ModelOpt FP8."""
91
+
92
+ def __init__(
93
+ self,
94
+ is_checkpoint_fp8_serialized: bool = False,
95
+ kv_cache_quant_method: str | None = None,
96
+ exclude_modules: list[str] | None = None,
97
+ ) -> None:
98
+ super().__init__()
99
+ self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
100
+ self.kv_cache_quant_method = kv_cache_quant_method
101
+ self.exclude_modules = exclude_modules or []
102
+ if is_checkpoint_fp8_serialized:
103
+ logger.warning(
104
+ "Detected ModelOpt fp8 checkpoint. Please note that"
105
+ " the format is experimental and could change."
106
+ )
107
+
108
+ @classmethod
109
+ def get_name(cls) -> QuantizationMethods:
110
+ return "modelopt"
111
+
112
+ @classmethod
113
+ def get_supported_act_dtypes(cls) -> list[torch.dtype]:
114
+ return [torch.bfloat16, torch.half]
115
+
116
+ @classmethod
117
+ def get_min_capability(cls) -> int:
118
+ return 89
119
+
120
+ @classmethod
121
+ def get_config_filenames(cls) -> list[str]:
122
+ return ["hf_quant_config.json"]
123
+
124
+ def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
125
+ if self.exclude_modules is not None:
126
+ self.exclude_modules = hf_to_vllm_mapper.apply_list(self.exclude_modules)
127
+
128
+ @classmethod
129
+ def override_quantization_method(
130
+ cls, hf_quant_cfg, user_quant
131
+ ) -> QuantizationMethods | None:
132
+ """Detect if this ModelOpt config should be used based on
133
+ quantization config."""
134
+
135
+ if hf_quant_cfg is None:
136
+ return None
137
+
138
+ # Use the community standard 'quant_method'
139
+ quant_method = hf_quant_cfg.get("quant_method", "").lower()
140
+
141
+ # Only proceed if the method is explicitly "modelopt"
142
+ if quant_method != "modelopt":
143
+ return None
144
+
145
+ # Look for ModelOpt-specific config structure
146
+ if "quantization" in hf_quant_cfg:
147
+ quant_config = hf_quant_cfg["quantization"]
148
+ if isinstance(quant_config, dict):
149
+ quant_algo = quant_config.get("quant_algo", "")
150
+ if "FP8" in quant_algo:
151
+ return "modelopt"
152
+ else:
153
+ # Check for compressed-tensors style config with specific quant_algo
154
+ quant_algo = hf_quant_cfg.get("quant_algo", "")
155
+ if isinstance(quant_algo, str) and "FP8" in quant_algo:
156
+ return "modelopt"
157
+
158
+ return None
159
+
160
+ @classmethod
161
+ def from_config(cls, config: dict[str, Any]) -> "ModelOptFp8Config":
162
+ # Handle both ModelOpt format and compressed-tensors style format
163
+ if "quantization" in config:
164
+ # ModelOpt format: {"quantization": {"quant_algo": "..."}}
165
+ quant_config = cls.get_from_keys(config, ["quantization"])
166
+ if not isinstance(quant_config, dict):
167
+ raise ValueError("Expected 'quantization' to be a dictionary in config")
168
+ quant_method = quant_config.get("quant_algo", "")
169
+ if not quant_method:
170
+ raise ValueError("Missing 'quant_algo' in quantization config")
171
+ kv_cache_quant_method = quant_config.get("kv_cache_quant_algo")
172
+ # "exclude_modules" is the key in the legacy hf_quant_config.json
173
+ exclude_modules = quant_config.get("exclude_modules")
174
+ else:
175
+ # Compressed-tensors style format:
176
+ # {"quant_algo": "...", "quant_method": "modelopt"}
177
+ quant_method = config.get("quant_algo", "")
178
+ kv_cache_quant_method = config.get("kv_cache_quant_algo")
179
+ # "ignore" is the key in config.json
180
+ exclude_modules = config.get("ignore")
181
+
182
+ if quant_method not in QUANT_ALGOS:
183
+ raise ValueError(
184
+ f"ModelOpt currently only supports: {QUANT_ALGOS} "
185
+ "quantizations in vLLM. Please check the "
186
+ "`hf_quant_config.json` file for your model's "
187
+ "quant configuration."
188
+ )
189
+ is_checkpoint_fp8_serialized = "FP8" in quant_method
190
+
191
+ return cls(is_checkpoint_fp8_serialized, kv_cache_quant_method, exclude_modules)
192
+
193
+ def is_layer_excluded(self, prefix: str) -> bool:
194
+ """
195
+ Check if a layer should be excluded from quantization.
196
+ Handles both exact matching (for fused layers) and substring matching.
197
+
198
+ This method handles both regular models and multimodal models that use
199
+ the language_model prefix. For multimodal models, it checks if the
200
+ module name (without the language_model prefix) is in the exclude list.
201
+ """
202
+ if self.exclude_modules is None:
203
+ return False
204
+
205
+ # First check exact matching with fused layer support
206
+ if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
207
+ return True
208
+
209
+ # Then check substring matching for patterns not caught by exact match
210
+ for module in self.exclude_modules:
211
+ # Skip exact matches already handled above
212
+ if module != prefix and (
213
+ module in prefix
214
+ or (
215
+ prefix.startswith("language_model.")
216
+ and module in prefix.removeprefix("language_model.")
217
+ )
218
+ ):
219
+ return True
220
+ return False
221
+
222
+ def get_quant_method(
223
+ self, layer: torch.nn.Module, prefix: str
224
+ ) -> Optional["QuantizeMethodBase"]:
225
+ from vllm.attention.layer import ( # Avoid circular import
226
+ Attention,
227
+ MLAAttention,
228
+ )
229
+
230
+ if isinstance(layer, LinearBase):
231
+ if self.is_layer_excluded(prefix):
232
+ return UnquantizedLinearMethod()
233
+ # Check if this is a vision model layer that should not be quantized
234
+ if "vision_tower" in prefix or "vision_model" in prefix:
235
+ return UnquantizedLinearMethod()
236
+ return ModelOptFp8LinearMethod(self)
237
+ elif isinstance(layer, (Attention, MLAAttention)):
238
+ return ModelOptFp8KVCacheMethod(self)
239
+ elif isinstance(layer, FusedMoE):
240
+ return ModelOptFp8MoEMethod(self, layer)
241
+ return None
242
+
243
+
244
+ class ModelOptFp8LinearMethod(LinearMethodBase):
245
+ """Linear method for Model Optimizer static quantization.
246
+ Supports loading FP8 checkpoints with static weight scale and
247
+ activation scale. Future support might be added for dynamic
248
+ scales.
249
+
250
+ Limitations:
251
+ 1. Only support per-tensor quantization due to torch._scaled_mm support.
252
+ 2. Only support float8_e4m3fn datatype
253
+ Args: quant_config: The ModelOpt quantization config.
254
+ """
255
+
256
+ def __init__(self, quant_config: ModelOptFp8Config) -> None:
257
+ self.quant_config = quant_config
258
+ self.fp8_linear = Fp8LinearOp(
259
+ act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR
260
+ )
261
+
262
+ def create_weights(
263
+ self,
264
+ layer: torch.nn.Module,
265
+ input_size_per_partition: int,
266
+ output_partition_sizes: list[int],
267
+ input_size: int,
268
+ output_size: int,
269
+ params_dtype: torch.dtype,
270
+ **extra_weight_attrs,
271
+ ):
272
+ del input_size, output_size
273
+ output_size_per_partition = sum(output_partition_sizes)
274
+ weight_loader = extra_weight_attrs.get("weight_loader")
275
+ layer.logical_widths = output_partition_sizes
276
+ layer.input_size_per_partition = input_size_per_partition
277
+ layer.output_size_per_partition = output_size_per_partition
278
+ weight_dtype = (
279
+ torch.float8_e4m3fn
280
+ if self.quant_config.is_checkpoint_fp8_serialized
281
+ else params_dtype
282
+ )
283
+ weight = ModelWeightParameter(
284
+ data=torch.empty(
285
+ output_size_per_partition, input_size_per_partition, dtype=weight_dtype
286
+ ),
287
+ input_dim=1,
288
+ output_dim=0,
289
+ weight_loader=weight_loader,
290
+ )
291
+ layer.register_parameter("weight", weight)
292
+
293
+ if self.quant_config.is_checkpoint_fp8_serialized:
294
+ # WEIGHT SCALE
295
+ weight_scale = PerTensorScaleParameter(
296
+ data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
297
+ weight_loader=weight_loader,
298
+ )
299
+ weight_scale[:] = torch.finfo(torch.float32).min
300
+ layer.register_parameter("weight_scale", weight_scale)
301
+ # INPUT SCALE
302
+ scale = PerTensorScaleParameter(
303
+ data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
304
+ weight_loader=weight_loader,
305
+ )
306
+
307
+ scale[:] = torch.finfo(torch.float32).min
308
+ layer.register_parameter("input_scale", scale)
309
+
310
+ def process_weights_after_loading(self, layer: Module) -> None:
311
+ weight = layer.weight
312
+ max_w_scale = layer.weight_scale.max()
313
+ if not (layer.weight_scale == layer.weight_scale[0]).all():
314
+ max_w_scale, weight = requantize_with_max_scale(
315
+ layer.weight, layer.weight_scale, layer.logical_widths
316
+ )
317
+ layer.weight = Parameter(weight.t(), requires_grad=False)
318
+ layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
319
+ layer.input_scale = Parameter(layer.input_scale.max(), requires_grad=False)
320
+
321
+ def apply(
322
+ self,
323
+ layer: torch.nn.Module,
324
+ x: torch.Tensor,
325
+ bias: torch.Tensor | None = None,
326
+ ) -> torch.Tensor:
327
+ return self.fp8_linear.apply(
328
+ input=x,
329
+ weight=layer.weight,
330
+ weight_scale=layer.weight_scale,
331
+ input_scale=layer.input_scale,
332
+ bias=bias,
333
+ )
334
+
335
+
336
+ class ModelOptFp8MoEMethod(FusedMoEMethodBase):
337
+ """MoE method for ModelOpt FP8.
338
+ Supports loading FP8 checkpoints with static weight scale and
339
+ activation scale.
340
+ Args:
341
+ quant_config: The ModelOpt quantization config.
342
+ """
343
+
344
+ def __init__(
345
+ self,
346
+ quant_config: ModelOptFp8Config,
347
+ layer: torch.nn.Module,
348
+ ) -> None:
349
+ super().__init__(layer.moe_config)
350
+ self.layer = layer
351
+ self.quant_config = quant_config
352
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
353
+ cutlass_fp8_supported,
354
+ )
355
+
356
+ self.cutlass_fp8_supported = cutlass_fp8_supported()
357
+ self.flashinfer_moe_backend: FlashinferMoeBackend | None = None
358
+ if envs.VLLM_USE_FLASHINFER_MOE_FP8 and has_flashinfer_moe():
359
+ self.flashinfer_moe_backend = get_flashinfer_moe_backend()
360
+ if (
361
+ self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
362
+ and not self.moe.is_act_and_mul
363
+ ):
364
+ logger.info_once(
365
+ "Non-gated MoE is not supported for min-latency mode,"
366
+ "falling back to high-throughput mode"
367
+ )
368
+ self.flashinfer_moe_backend = FlashinferMoeBackend.CUTLASS
369
+
370
+ logger.info_once(
371
+ f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
372
+ )
373
+
374
+ def maybe_make_prepare_finalize(
375
+ self,
376
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
377
+ # TRT LLM not supported with all2all yet.
378
+ if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
379
+ return None
380
+ elif self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS:
381
+ prepare_finalize = build_flashinfer_fp8_cutlass_moe_prepare_finalize(
382
+ self.moe
383
+ )
384
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
385
+ return prepare_finalize
386
+ else:
387
+ return super().maybe_make_prepare_finalize()
388
+
389
+ def select_gemm_impl(
390
+ self,
391
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
392
+ layer: torch.nn.Module,
393
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
394
+ assert self.moe_quant_config is not None
395
+ experts = select_cutlass_fp8_gemm_impl(
396
+ self.moe,
397
+ self.moe_quant_config,
398
+ )
399
+ logger.debug_once("Using %s", experts.__class__.__name__)
400
+ return experts
401
+
402
+ def create_weights(
403
+ self,
404
+ layer: torch.nn.Module,
405
+ num_experts: int,
406
+ hidden_size: int,
407
+ intermediate_size_per_partition: int,
408
+ params_dtype: torch.dtype,
409
+ **extra_weight_attrs,
410
+ ):
411
+ # Use FP8 dtype if checkpoint is serialized
412
+ weight_dtype = (
413
+ torch.float8_e4m3fn
414
+ if self.quant_config.is_checkpoint_fp8_serialized
415
+ else params_dtype
416
+ )
417
+ weight_loader = extra_weight_attrs.get("weight_loader")
418
+
419
+ if self.moe.is_act_and_mul:
420
+ w13_up_dim = 2 * intermediate_size_per_partition
421
+ else:
422
+ w13_up_dim = intermediate_size_per_partition
423
+
424
+ w13_weight = ModelWeightParameter(
425
+ data=torch.empty(
426
+ num_experts,
427
+ w13_up_dim,
428
+ hidden_size,
429
+ dtype=weight_dtype,
430
+ ),
431
+ input_dim=2,
432
+ output_dim=1,
433
+ weight_loader=weight_loader,
434
+ )
435
+ layer.register_parameter("w13_weight", w13_weight)
436
+
437
+ w2_weight = ModelWeightParameter(
438
+ data=torch.empty(
439
+ num_experts,
440
+ hidden_size,
441
+ intermediate_size_per_partition,
442
+ dtype=weight_dtype,
443
+ ),
444
+ input_dim=2,
445
+ output_dim=1,
446
+ weight_loader=weight_loader,
447
+ )
448
+ layer.register_parameter("w2_weight", w2_weight)
449
+
450
+ if self.quant_config.is_checkpoint_fp8_serialized:
451
+ # WEIGHT SCALES - Per-tensor scaling for ModelOpts
452
+ # For gated MoE, allocate 2 scales for w1 and w3 respectively.
453
+ # They will be combined to a single scale after weight loading.
454
+ # For non-gated MoE, allocate 1 scale for w13.
455
+ if self.moe.is_act_and_mul:
456
+ w13_weight_scale_shape = (num_experts, 2)
457
+ else:
458
+ w13_weight_scale_shape = (num_experts, 1)
459
+ w13_weight_scale = PerTensorScaleParameter(
460
+ data=torch.full(
461
+ w13_weight_scale_shape,
462
+ 1.0,
463
+ dtype=torch.float32,
464
+ ),
465
+ weight_loader=weight_loader,
466
+ )
467
+ w2_weight_scale = PerTensorScaleParameter(
468
+ data=torch.full((num_experts,), 1.0, dtype=torch.float32),
469
+ weight_loader=weight_loader,
470
+ )
471
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
472
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
473
+
474
+ # Set weight loader attributes for scales
475
+ extra_weight_attrs.update(
476
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
477
+ )
478
+
479
+ # INPUT SCALES - Per-tensor scaling for ModelOpt
480
+ w13_input_scale = PerTensorScaleParameter(
481
+ data=torch.full((num_experts,), 1.0, dtype=torch.float32),
482
+ weight_loader=weight_loader,
483
+ )
484
+ w2_input_scale = PerTensorScaleParameter(
485
+ data=torch.full((num_experts,), 1.0, dtype=torch.float32),
486
+ weight_loader=weight_loader,
487
+ )
488
+ layer.register_parameter("w13_input_scale", w13_input_scale)
489
+ layer.register_parameter("w2_input_scale", w2_input_scale)
490
+
491
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
492
+ """Process FP8 MoE weights after loading from serialized checkpoint.
493
+ Only supports pre-quantized checkpoints with FP8 weights and scales.
494
+ """
495
+
496
+ layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False)
497
+ layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)
498
+
499
+ from vllm._custom_ops import scaled_fp8_quant
500
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
501
+ per_tensor_dequantize,
502
+ )
503
+
504
+ # Handle scale parameters
505
+ if hasattr(layer, "w13_weight_scale") and layer.w13_weight_scale is not None:
506
+ # Fp8 moe kernel needs single weight scale for w13 per expert.
507
+ # We take the max of the w1 and w3 scales
508
+ # then dequant and requant each expert.
509
+ if (
510
+ layer.w13_weight_scale.dim() == 2
511
+ and layer.w13_weight_scale.shape[1] == 2
512
+ ):
513
+ assert self.moe.is_act_and_mul, (
514
+ "w13_weight_scale should have 2 elements per expert "
515
+ "only for gated MoE"
516
+ )
517
+ # Get the maximum scale across w1 and w3 for each expert
518
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
519
+
520
+ # Requantize each expert's weights using the combined scale
521
+ # w13_weight (num_experts, 2 * intermediate_size, hidden_size)
522
+ # where the first intermediate_size rows are w1, the next are w3
523
+ intermediate_size = layer.w13_weight.shape[1] // 2
524
+ for expert_id in range(layer.w13_weight.shape[0]):
525
+ start = 0
526
+ for shard_id in range(2): # w1 and w3
527
+ # Dequantize using the original scale for this shard
528
+ dq_weight = per_tensor_dequantize(
529
+ layer.w13_weight[expert_id][
530
+ start : start + intermediate_size, :
531
+ ],
532
+ layer.w13_weight_scale[expert_id][shard_id],
533
+ )
534
+ # Requantize using the combined max scale
535
+
536
+ (
537
+ layer.w13_weight[expert_id][
538
+ start : start + intermediate_size, :
539
+ ],
540
+ _,
541
+ ) = scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
542
+
543
+ start += intermediate_size
544
+
545
+ # Update the scale parameter to be per-expert
546
+ layer.w13_weight_scale = Parameter(max_w13_scales, requires_grad=False)
547
+ else:
548
+ layer.w13_weight_scale = Parameter(
549
+ layer.w13_weight_scale.data, requires_grad=False
550
+ )
551
+
552
+ if hasattr(layer, "w2_weight_scale") and layer.w2_weight_scale is not None:
553
+ layer.w2_weight_scale = Parameter(
554
+ layer.w2_weight_scale.data, requires_grad=False
555
+ )
556
+ # Input scales must be equal for each expert in fp8 MoE layers.
557
+ if hasattr(layer, "w13_input_scale") and layer.w13_input_scale is not None:
558
+ layer.w13_input_scale = Parameter(
559
+ layer.w13_input_scale.max(), requires_grad=False
560
+ )
561
+ if hasattr(layer, "w2_input_scale") and layer.w2_input_scale is not None:
562
+ layer.w2_input_scale = Parameter(
563
+ layer.w2_input_scale.max(), requires_grad=False
564
+ )
565
+
566
+ if self.flashinfer_moe_backend is not None:
567
+ if self.moe.is_act_and_mul:
568
+ layer.w13_weight.data = swap_w13_to_w31(layer.w13_weight.data)
569
+ if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
570
+ rotate_flashinfer_fp8_moe_weights(layer.w13_weight, layer.w2_weight)
571
+ register_moe_scaling_factors(layer)
572
+
573
+ def get_fused_moe_quant_config(
574
+ self, layer: torch.nn.Module
575
+ ) -> FusedMoEQuantConfig | None:
576
+ if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
577
+ return None
578
+
579
+ return fp8_w8a8_moe_quant_config(
580
+ w1_scale=layer.w13_weight_scale,
581
+ g1_alphas=layer.output1_scales_gate_scalar.squeeze(),
582
+ w2_scale=layer.w2_weight_scale,
583
+ g2_alphas=layer.output2_scales_scalar.squeeze(),
584
+ a1_scale=layer.w13_input_scale,
585
+ a1_gscale=layer.w13_input_scale,
586
+ a2_scale=layer.w2_input_scale,
587
+ a2_gscale=layer.w2_input_scale_inv,
588
+ per_act_token_quant=False,
589
+ )
590
+
591
+ def apply(
592
+ self,
593
+ layer: torch.nn.Module,
594
+ x: torch.Tensor,
595
+ router_logits: torch.Tensor,
596
+ top_k: int,
597
+ renormalize: bool,
598
+ use_grouped_topk: bool = False,
599
+ topk_group: int | None = None,
600
+ num_expert_group: int | None = None,
601
+ global_num_experts: int = -1,
602
+ expert_map: torch.Tensor | None = None,
603
+ custom_routing_function: Callable | None = None,
604
+ scoring_func: str = "softmax",
605
+ routed_scaling_factor: float = 1.0,
606
+ e_score_correction_bias: torch.Tensor | None = None,
607
+ apply_router_weight_on_input: bool = False,
608
+ activation: str = "silu",
609
+ enable_eplb: bool = False,
610
+ expert_load_view: torch.Tensor | None = None,
611
+ logical_to_physical_map: torch.Tensor | None = None,
612
+ logical_replica_count: torch.Tensor | None = None,
613
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
614
+ if enable_eplb:
615
+ raise NotImplementedError(
616
+ "EPLB not supported for `ModelOptFp8MoEMethod` yet."
617
+ )
618
+
619
+ if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
620
+ assert activation == "silu", (
621
+ f"Expected 'silu' activation but got {activation}"
622
+ )
623
+ assert not renormalize
624
+ return apply_flashinfer_per_tensor_scale_fp8(
625
+ layer=layer,
626
+ hidden_states=x,
627
+ router_logits=router_logits,
628
+ routing_bias=e_score_correction_bias,
629
+ global_num_experts=global_num_experts,
630
+ top_k=top_k,
631
+ num_expert_group=num_expert_group,
632
+ topk_group=topk_group,
633
+ apply_router_weight_on_input=apply_router_weight_on_input,
634
+ )
635
+
636
+ # Expert selection
637
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
638
+ hidden_states=x,
639
+ router_logits=router_logits,
640
+ use_grouped_topk=use_grouped_topk,
641
+ top_k=top_k,
642
+ renormalize=renormalize,
643
+ topk_group=topk_group,
644
+ num_expert_group=num_expert_group,
645
+ custom_routing_function=custom_routing_function,
646
+ scoring_func=scoring_func,
647
+ routed_scaling_factor=routed_scaling_factor,
648
+ e_score_correction_bias=e_score_correction_bias,
649
+ indices_type=self.topk_indices_dtype,
650
+ )
651
+
652
+ if self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS:
653
+ assert activation in ("silu", "relu2_no_mul"), (
654
+ "Expected activation to be in ('silu', 'relu2_no_mul'),"
655
+ f"but got {activation}"
656
+ )
657
+ return flashinfer_cutlass_moe_fp8(
658
+ x,
659
+ layer,
660
+ topk_weights,
661
+ topk_ids,
662
+ inplace=False,
663
+ activation=activation,
664
+ global_num_experts=global_num_experts,
665
+ expert_map=expert_map,
666
+ apply_router_weight_on_input=apply_router_weight_on_input,
667
+ )
668
+ else:
669
+ from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts
670
+
671
+ assert self.moe_quant_config is not None
672
+
673
+ return fused_experts(
674
+ x,
675
+ layer.w13_weight,
676
+ layer.w2_weight,
677
+ topk_weights=topk_weights,
678
+ topk_ids=topk_ids,
679
+ inplace=True,
680
+ activation=activation,
681
+ quant_config=self.moe_quant_config,
682
+ global_num_experts=global_num_experts,
683
+ expert_map=expert_map,
684
+ apply_router_weight_on_input=apply_router_weight_on_input,
685
+ )
686
+
687
+
688
+ class ModelOptNvFp4Config(QuantizationConfig):
689
+ """Config class for ModelOpt FP4."""
690
+
691
+ def __init__(
692
+ self,
693
+ is_checkpoint_nvfp4_serialized: bool,
694
+ kv_cache_quant_algo: str | None,
695
+ exclude_modules: list[str],
696
+ group_size: int = 16,
697
+ ) -> None:
698
+ super().__init__()
699
+ self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
700
+ if is_checkpoint_nvfp4_serialized:
701
+ logger.warning(
702
+ "Detected ModelOpt NVFP4 checkpoint. Please note that"
703
+ " the format is experimental and could change in future."
704
+ )
705
+
706
+ self.group_size = group_size
707
+ self.kv_cache_quant_algo = kv_cache_quant_algo
708
+ self.exclude_modules = exclude_modules
709
+
710
+ @classmethod
711
+ def get_name(cls) -> QuantizationMethods:
712
+ return "modelopt_fp4"
713
+
714
+ @classmethod
715
+ def get_supported_act_dtypes(cls) -> list[torch.dtype]:
716
+ return [torch.bfloat16, torch.half, torch.float8_e4m3fn]
717
+
718
+ @classmethod
719
+ def get_min_capability(cls) -> int:
720
+ return 80
721
+
722
+ @classmethod
723
+ def get_config_filenames(cls) -> list[str]:
724
+ return ["hf_quant_config.json"]
725
+
726
+ def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
727
+ if self.exclude_modules is not None:
728
+ self.exclude_modules = hf_to_vllm_mapper.apply_list(self.exclude_modules)
729
+
730
+ @classmethod
731
+ def override_quantization_method(
732
+ cls, hf_quant_cfg, user_quant
733
+ ) -> QuantizationMethods | None:
734
+ """Detect if this ModelOpt FP4 config should be used based on
735
+ quantization config."""
736
+ if hf_quant_cfg is None:
737
+ return None
738
+
739
+ # Use the community standard 'quant_method'
740
+ quant_method = hf_quant_cfg.get("quant_method", "").lower()
741
+
742
+ # Only proceed if the method is explicitly "modelopt"
743
+ if quant_method != "modelopt":
744
+ return None
745
+
746
+ # Look for ModelOpt-specific config structure
747
+ if "quantization" in hf_quant_cfg:
748
+ quant_config = hf_quant_cfg["quantization"]
749
+ if isinstance(quant_config, dict):
750
+ quant_algo = quant_config.get("quant_algo", "")
751
+ if "NVFP4" in quant_algo:
752
+ return "modelopt_fp4"
753
+ else:
754
+ # Check for compressed-tensors style config with specific
755
+ # quant_algo field
756
+ quant_algo = hf_quant_cfg.get("quant_algo", "")
757
+ if isinstance(quant_algo, str) and "FP4" in quant_algo.upper():
758
+ return "modelopt_fp4"
759
+
760
+ return None
761
+
762
+ @classmethod
763
+ def from_config(cls, config: dict[str, Any]) -> "ModelOptNvFp4Config":
764
+ # Handle both traditional ModelOpt format and compressed-tensors
765
+ # style format
766
+ if "quantization" in config:
767
+ # Traditional ModelOpt format:
768
+ # {"quantization": {"quant_algo": "..."}}
769
+ quant_config = cls.get_from_keys(config, ["quantization"])
770
+ if not isinstance(quant_config, dict):
771
+ raise ValueError("Expected 'quantization' to be a dictionary in config")
772
+
773
+ quant_method = quant_config.get("quant_algo", "")
774
+ if not quant_method:
775
+ raise ValueError("Missing 'quant_algo' in quantization config")
776
+
777
+ # Handle kv_cache_quant_algo with proper type validation
778
+ kv_cache_quant_algo_raw = quant_config.get("kv_cache_quant_algo")
779
+ if kv_cache_quant_algo_raw is None:
780
+ # No KV cache quantization by default
781
+ kv_cache_quant_algo = None
782
+ elif isinstance(kv_cache_quant_algo_raw, str):
783
+ kv_cache_quant_algo = kv_cache_quant_algo_raw
784
+ else:
785
+ raise ValueError(
786
+ f"kv_cache_quant_algo must be a string, got "
787
+ f"{type(kv_cache_quant_algo_raw)}"
788
+ )
789
+
790
+ # Handle group_size with proper type validation
791
+ group_size_raw = quant_config.get("group_size")
792
+ if group_size_raw is None:
793
+ group_size = 16 # Default value
794
+ elif isinstance(group_size_raw, int):
795
+ group_size = group_size_raw
796
+ else:
797
+ try:
798
+ group_size = int(group_size_raw)
799
+ except (ValueError, TypeError):
800
+ raise ValueError(
801
+ f"group_size must be an integer, got {type(group_size_raw)}"
802
+ ) from None
803
+
804
+ # "exclude_modules" is the key in the legacy hf_quant_config.json
805
+ exclude_modules = quant_config.get("exclude_modules", [])
806
+ if not isinstance(exclude_modules, list):
807
+ raise ValueError(
808
+ f"exclude_modules must be a list, got {type(exclude_modules)}"
809
+ )
810
+ else:
811
+ # Compressed-tensors style format:
812
+ # {"quant_algo": "...", "quant_method": "modelopt"}
813
+ quant_method = config.get("quant_algo", "")
814
+
815
+ # Handle kv_cache_quant_algo with proper type validation
816
+ kv_cache_quant_algo_raw = config.get("kv_cache_quant_algo")
817
+ if kv_cache_quant_algo_raw is None:
818
+ # No KV cache quantization by default
819
+ kv_cache_quant_algo = None
820
+ elif isinstance(kv_cache_quant_algo_raw, str):
821
+ kv_cache_quant_algo = kv_cache_quant_algo_raw
822
+ else:
823
+ raise ValueError(
824
+ f"kv_cache_quant_algo must be a string, got "
825
+ f"{type(kv_cache_quant_algo_raw)}"
826
+ )
827
+
828
+ # Handle group_size with proper type validation
829
+ group_size_raw = config.get("group_size")
830
+ if group_size_raw is None:
831
+ group_size = 16 # Default value
832
+ elif isinstance(group_size_raw, int):
833
+ group_size = group_size_raw
834
+ else:
835
+ try:
836
+ group_size = int(group_size_raw)
837
+ except (ValueError, TypeError):
838
+ raise ValueError(
839
+ f"group_size must be an integer, got {type(group_size_raw)}"
840
+ ) from None
841
+
842
+ # "ignore" is the key in config.json
843
+ exclude_modules = config.get("ignore", [])
844
+ if not isinstance(exclude_modules, list):
845
+ raise ValueError(
846
+ f"exclude_modules must be a list, got {type(exclude_modules)}"
847
+ )
848
+
849
+ if quant_method not in QUANT_ALGOS:
850
+ raise ValueError(
851
+ f"ModelOpt currently only supports: {QUANT_ALGOS} "
852
+ "quantizations in vLLM. Please check the "
853
+ "`hf_quant_config.json` file for your model's "
854
+ "quant configuration."
855
+ )
856
+ is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method
857
+
858
+ # For FP4, these fields are required
859
+ if is_checkpoint_nvfp4_serialized and "quantization" in config:
860
+ # Check if required fields are present in the quantization config
861
+ quant_config = config["quantization"]
862
+ required_fields = ["group_size", "kv_cache_quant_algo", "exclude_modules"]
863
+ missing_fields = [
864
+ field for field in required_fields if field not in quant_config
865
+ ]
866
+ if missing_fields:
867
+ raise ValueError(
868
+ f"NVFP4 quantization requires the following fields in "
869
+ f"hf_quant_config.json: {missing_fields}"
870
+ )
871
+
872
+ return cls(
873
+ is_checkpoint_nvfp4_serialized,
874
+ kv_cache_quant_algo,
875
+ exclude_modules,
876
+ group_size,
877
+ )
878
+
879
+ def is_layer_excluded(self, prefix: str) -> bool:
880
+ """
881
+ Check if a layer should be excluded from quantization.
882
+ Handles both exact matching (for fused layers) and pattern matching.
883
+ """
884
+ # First check exact matching with fused layer support
885
+ if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
886
+ return True
887
+
888
+ # Check regex pattern matching for patterns not caught by exact match
889
+ import regex as re
890
+
891
+ for pattern in self.exclude_modules:
892
+ # Skip patterns that would be caught by exact matching
893
+ if "*" in pattern or "." in pattern:
894
+ regex_str = pattern.replace(".", r"\.").replace("*", r".*")
895
+ if re.fullmatch(regex_str, prefix):
896
+ return True
897
+ return False
898
+
899
+ def get_quant_method(
900
+ self, layer: torch.nn.Module, prefix: str
901
+ ) -> Optional["QuantizeMethodBase"]:
902
+ from vllm.attention.layer import ( # Avoid circular import
903
+ Attention,
904
+ MLAAttention,
905
+ )
906
+
907
+ skip_layer = self.is_layer_excluded(prefix)
908
+ if isinstance(layer, LinearBase):
909
+ if skip_layer:
910
+ return UnquantizedLinearMethod()
911
+ # Check if this is a vision model layer that should not be quantized
912
+ if "vision_tower" in prefix or "vision_model" in prefix:
913
+ return UnquantizedLinearMethod()
914
+ return ModelOptNvFp4LinearMethod(self)
915
+ elif isinstance(layer, (Attention, MLAAttention)):
916
+ return ModelOptFp8KVCacheMethod(self)
917
+ elif isinstance(layer, FusedMoE):
918
+ if skip_layer:
919
+ return None
920
+ return ModelOptNvFp4FusedMoE(self, layer.moe_config, layer)
921
+ return None
922
+
923
+
924
+ class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
925
+ """
926
+ Supports loading kv-cache scaling factors from FP8 checkpoints.
927
+ """
928
+
929
+ def __init__(self, quant_config: ModelOptFp8Config | ModelOptNvFp4Config):
930
+ super().__init__(quant_config)
931
+
932
+
933
+ class ModelOptNvFp4LinearMethod(LinearMethodBase):
934
+ """Linear method for Model Optimizer NVFP4.
935
+ Supports loading NVFP4 checkpoints with the following structure:
936
+
937
+ input_scale: torch.float32, scalar ,
938
+ weight: NVFP4(represented as byte) Shape: [1, X, y/2]
939
+ weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale,
940
+ weight_scale_2: torch.float32, scalar,
941
+ Args: quant_config: The ModelOpt quantization config.
942
+ """
943
+
944
+ def __init__(self, quant_config: ModelOptNvFp4Config) -> None:
945
+ self.quant_config = quant_config
946
+
947
+ self.backend = "none"
948
+ if envs.VLLM_NVFP4_GEMM_BACKEND is None:
949
+ if has_flashinfer():
950
+ self.backend = "flashinfer-cutlass"
951
+ elif cutlass_fp4_supported():
952
+ self.backend = "cutlass"
953
+ elif is_fp4_marlin_supported():
954
+ self.backend = "marlin"
955
+ elif envs.VLLM_NVFP4_GEMM_BACKEND.startswith("flashinfer-"):
956
+ self.backend = envs.VLLM_NVFP4_GEMM_BACKEND
957
+ assert has_flashinfer(), f"FlashInfer is required for {self.backend}"
958
+ elif envs.VLLM_NVFP4_GEMM_BACKEND == "cutlass":
959
+ self.backend = "cutlass"
960
+ assert cutlass_fp4_supported(), f"Cutlass is required for {self.backend}"
961
+
962
+ if self.backend == "none":
963
+ raise ValueError(
964
+ "No valid NVFP4 GEMM backend found. "
965
+ "Please check your platform capability."
966
+ )
967
+
968
+ logger.info_once(f"Using {self.backend} for NVFP4 GEMM")
969
+
970
+ def create_weights(
971
+ self,
972
+ layer: torch.nn.Module,
973
+ input_size_per_partition: int,
974
+ output_partition_sizes: list[int],
975
+ input_size: int,
976
+ output_size: int,
977
+ params_dtype: torch.dtype,
978
+ **extra_weight_attrs,
979
+ ):
980
+ del input_size, output_size
981
+ if not self.quant_config.is_checkpoint_nvfp4_serialized:
982
+ raise ValueError(
983
+ "NVFP4 quantization was selected, "
984
+ " dynamic quantization is not supported."
985
+ )
986
+ output_size_per_partition = sum(output_partition_sizes)
987
+ weight_loader = extra_weight_attrs.get("weight_loader")
988
+ layer.logical_widths = output_partition_sizes
989
+ layer.input_size_per_partition = input_size_per_partition
990
+ layer.output_size_per_partition = output_size_per_partition
991
+
992
+ if input_size_per_partition % 16 != 0:
993
+ raise ValueError(
994
+ "Unsupported model when in features size is not multiple of 16"
995
+ )
996
+ # The nvfp4 weight is still represented as
997
+ weight_dtype = (
998
+ torch.float8_e4m3fn
999
+ if self.quant_config.is_checkpoint_nvfp4_serialized
1000
+ else params_dtype
1001
+ )
1002
+ # Weight
1003
+ weight = ModelWeightParameter(
1004
+ data=torch.empty(
1005
+ # 2 fp4 items are packed in the input dimension
1006
+ layer.output_size_per_partition,
1007
+ layer.input_size_per_partition // 2,
1008
+ dtype=torch.uint8,
1009
+ ),
1010
+ input_dim=1,
1011
+ output_dim=0,
1012
+ weight_loader=weight_loader,
1013
+ )
1014
+ layer.register_parameter("weight", weight)
1015
+
1016
+ # Input Weight Scale
1017
+ input_scale = PerTensorScaleParameter(
1018
+ data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
1019
+ weight_loader=weight_loader,
1020
+ )
1021
+ layer.register_parameter("input_scale", input_scale)
1022
+
1023
+ # Global Weight Scale
1024
+ weight_scale_2 = PerTensorScaleParameter(
1025
+ data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
1026
+ weight_loader=weight_loader,
1027
+ )
1028
+ layer.register_parameter("weight_scale_2", weight_scale_2)
1029
+
1030
+ # Per Block Weight Scale
1031
+ weight_scale = ModelWeightParameter(
1032
+ data=torch.empty(
1033
+ output_size_per_partition,
1034
+ input_size_per_partition // self.quant_config.group_size,
1035
+ dtype=weight_dtype,
1036
+ ),
1037
+ input_dim=1,
1038
+ output_dim=0,
1039
+ weight_loader=weight_loader,
1040
+ )
1041
+
1042
+ layer.register_parameter("weight_scale", weight_scale)
1043
+
1044
+ def process_weights_after_loading(self, layer: Module) -> None:
1045
+ # global scales:
1046
+ input_scale_2 = layer.input_scale.max().to(torch.float32)
1047
+ layer.input_scale = Parameter(input_scale_2, requires_grad=False)
1048
+
1049
+ weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
1050
+ layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)
1051
+
1052
+ layer.alpha = Parameter(
1053
+ layer.input_scale * layer.weight_scale_2, requires_grad=False
1054
+ )
1055
+
1056
+ # Calculate `1 / input_scale` so that we don't need to do so at runtime
1057
+ layer.input_scale_inv = Parameter(
1058
+ (1 / layer.input_scale).to(torch.float32), requires_grad=False
1059
+ )
1060
+
1061
+ # Swizzle the weight blockscale.
1062
+ # contracting dimension is input dimension
1063
+ # block_size = 16;
1064
+ assert layer.weight_scale.dtype == torch.float8_e4m3fn, (
1065
+ "Weight Block scale must be represented as FP8-E4M3"
1066
+ )
1067
+
1068
+ if self.backend == "marlin":
1069
+ prepare_fp4_layer_for_marlin(layer)
1070
+ del layer.alpha
1071
+ del layer.input_scale
1072
+ elif self.backend == "flashinfer-trtllm":
1073
+ # FlashInfer TRTLLM FP4 GEMM requires a different weight layout.
1074
+ # FlashInfer provides nvfp4_quantize to quantize + shuffle the
1075
+ # layout but we use our own quantization so we have to call
1076
+ # shuffles ourselves.
1077
+ from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a
1078
+
1079
+ weight = layer.weight.data
1080
+ weight_scale = layer.weight_scale.data
1081
+
1082
+ epilogue_tile_m = 128
1083
+ weight = shuffle_matrix_a(weight.view(torch.uint8), epilogue_tile_m)
1084
+ weight_scale = (
1085
+ shuffle_matrix_sf_a(weight_scale.view(torch.uint8), epilogue_tile_m)
1086
+ .reshape(weight_scale.shape)
1087
+ .view(torch.float8_e4m3fn)
1088
+ )
1089
+
1090
+ layer.weight_scale = Parameter(weight_scale, requires_grad=False)
1091
+ layer.weight = Parameter(weight, requires_grad=False)
1092
+ else:
1093
+ swizzled_weight_scale = swizzle_blockscale(layer.weight_scale)
1094
+ layer.weight_scale = Parameter(swizzled_weight_scale, requires_grad=False)
1095
+ layer.weight = Parameter(layer.weight.data, requires_grad=False)
1096
+
1097
+ def apply(
1098
+ self,
1099
+ layer: torch.nn.Module,
1100
+ x: torch.Tensor,
1101
+ bias: torch.Tensor | None = None,
1102
+ ) -> torch.Tensor:
1103
+ if self.backend == "marlin":
1104
+ return apply_fp4_marlin_linear(
1105
+ input=x,
1106
+ weight=layer.weight,
1107
+ weight_scale=layer.weight_scale,
1108
+ weight_scale_2=layer.weight_scale_2,
1109
+ workspace=layer.workspace,
1110
+ size_n=layer.output_size_per_partition,
1111
+ size_k=layer.input_size_per_partition,
1112
+ bias=bias,
1113
+ )
1114
+
1115
+ output_dtype = x.dtype
1116
+ output_shape = [x.shape[0], layer.weight.shape[0]]
1117
+
1118
+ # quantize BF16 or FP16 to (FP4 and interleaved block scale)
1119
+ x_fp4, x_blockscale = scaled_fp4_quant(x, layer.input_scale_inv)
1120
+
1121
+ # validate dtypes of quantized input, input block scale,
1122
+ # weight and weight_blockscale
1123
+ assert x_fp4.dtype == torch.uint8
1124
+ assert layer.weight.dtype == torch.uint8
1125
+ assert x_blockscale.dtype == torch.float8_e4m3fn
1126
+ assert layer.weight_scale.dtype == torch.float8_e4m3fn
1127
+ assert layer.alpha.dtype == torch.float32
1128
+
1129
+ mm_args = (
1130
+ x_fp4,
1131
+ layer.weight,
1132
+ x_blockscale,
1133
+ layer.weight_scale,
1134
+ layer.alpha,
1135
+ output_dtype,
1136
+ )
1137
+ if self.backend.startswith("flashinfer-"):
1138
+ backend_name = self.backend[len("flashinfer-") :]
1139
+ out = flashinfer_scaled_fp4_mm(*mm_args, backend=backend_name)
1140
+ else:
1141
+ assert self.backend == "cutlass"
1142
+ out = cutlass_scaled_fp4_mm(*mm_args)
1143
+
1144
+ if bias is not None:
1145
+ out = out + bias
1146
+ return out.view(*output_shape)
1147
+
1148
+
1149
+ class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
1150
+ """
1151
+ MoE Method for FP4 Quantization.
1152
+ Args:
1153
+ quant_config: NVFP4 Quant Config
1154
+ """
1155
+
1156
+ def __init__(
1157
+ self,
1158
+ quant_config: ModelOptNvFp4Config,
1159
+ moe: FusedMoEConfig,
1160
+ layer: torch.nn.Module,
1161
+ ) -> None:
1162
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import (
1163
+ detect_nvfp4_moe_support, # noqa: E501
1164
+ )
1165
+
1166
+ super().__init__(moe)
1167
+ self.quant_config = quant_config
1168
+ self.layer = layer
1169
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
1170
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
1171
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
1172
+ self.use_marlin = _nvfp4.use_marlin
1173
+ self.flashinfer_moe_backend = None
1174
+ self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}
1175
+ if self.allow_flashinfer:
1176
+ self.flashinfer_moe_backend = get_flashinfer_moe_backend()
1177
+ logger.info_once(
1178
+ f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
1179
+ " for ModelOptNvFp4FusedMoE."
1180
+ )
1181
+
1182
+ def maybe_make_prepare_finalize(self) -> mk.FusedMoEPrepareAndFinalize | None:
1183
+ if self.use_marlin or (
1184
+ self.allow_flashinfer
1185
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
1186
+ ):
1187
+ return None
1188
+ elif (
1189
+ self.allow_flashinfer
1190
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS
1191
+ ):
1192
+ # For now, fp4 moe only works with the flashinfer dispatcher.
1193
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
1194
+ self.moe
1195
+ )
1196
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
1197
+ return prepare_finalize
1198
+ else:
1199
+ return super().maybe_make_prepare_finalize()
1200
+
1201
+ def select_gemm_impl(
1202
+ self,
1203
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1204
+ layer: torch.nn.Module,
1205
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1206
+ assert self.moe_quant_config is not None
1207
+ experts = select_nvfp4_gemm_impl(
1208
+ self.moe,
1209
+ self.moe_quant_config,
1210
+ allow_flashinfer=self.allow_flashinfer,
1211
+ )
1212
+ logger.debug_once("Using %s", experts.__class__.__name__)
1213
+ return experts
1214
+
1215
+ def uses_weight_scale_2_pattern(self) -> bool:
1216
+ """
1217
+ FP4 variants use 'weight_scale_2' pattern for per-tensor weight scales.
1218
+ """
1219
+ return True
1220
+
1221
+ def create_weights(
1222
+ self,
1223
+ layer: torch.nn.Module,
1224
+ num_experts: int,
1225
+ hidden_size: int,
1226
+ intermediate_size_per_partition: int,
1227
+ params_dtype: torch.dtype,
1228
+ **extra_weight_attrs,
1229
+ ):
1230
+ if not self.quant_config.is_checkpoint_nvfp4_serialized:
1231
+ raise ValueError(
1232
+ "NVFP4 quantization was selected, "
1233
+ " dynamic quantization is not supported."
1234
+ )
1235
+
1236
+ layer.num_experts = num_experts
1237
+ layer.params_dtype = params_dtype
1238
+ layer.quant_config = self.quant_config
1239
+ weight_dtype = torch.uint8
1240
+ weight_scale_dtype = torch.float8_e4m3fn
1241
+ weight_loader = extra_weight_attrs.get("weight_loader")
1242
+ global_num_experts = extra_weight_attrs.get("global_num_experts")
1243
+ # GEMM 1
1244
+ w13_weight = ModelWeightParameter(
1245
+ data=torch.empty(
1246
+ num_experts,
1247
+ 2 * intermediate_size_per_partition,
1248
+ # 2 fp4 items are packed in the input dimension
1249
+ hidden_size // 2,
1250
+ dtype=weight_dtype,
1251
+ ),
1252
+ input_dim=1,
1253
+ output_dim=2,
1254
+ weight_loader=weight_loader,
1255
+ )
1256
+ layer.register_parameter("w13_weight", w13_weight)
1257
+
1258
+ # GEMM 2
1259
+ w2_weight = ModelWeightParameter(
1260
+ data=torch.empty(
1261
+ num_experts,
1262
+ hidden_size,
1263
+ # 2 fp4 items are packed in the input dimension
1264
+ intermediate_size_per_partition // 2,
1265
+ dtype=weight_dtype,
1266
+ ),
1267
+ input_dim=1,
1268
+ output_dim=2,
1269
+ weight_loader=weight_loader,
1270
+ )
1271
+ layer.register_parameter("w2_weight", w2_weight)
1272
+
1273
+ w13_weight_scale = ModelWeightParameter(
1274
+ data=torch.empty(
1275
+ num_experts,
1276
+ 2 * intermediate_size_per_partition,
1277
+ # 2 fp4 items are packed in the input dimension
1278
+ hidden_size // self.quant_config.group_size,
1279
+ dtype=weight_scale_dtype,
1280
+ ),
1281
+ input_dim=1,
1282
+ output_dim=2,
1283
+ weight_loader=weight_loader,
1284
+ )
1285
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1286
+
1287
+ w2_weight_scale = ModelWeightParameter(
1288
+ data=torch.empty(
1289
+ num_experts,
1290
+ hidden_size,
1291
+ # 2 fp4 items are packed in the input dimension
1292
+ intermediate_size_per_partition // self.quant_config.group_size,
1293
+ dtype=weight_scale_dtype,
1294
+ ),
1295
+ input_dim=1,
1296
+ output_dim=2,
1297
+ weight_loader=weight_loader,
1298
+ )
1299
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1300
+
1301
+ extra_weight_attrs.update(
1302
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
1303
+ )
1304
+
1305
+ w13_weight_scale_2 = PerTensorScaleParameter(
1306
+ data=torch.empty(num_experts, 2, dtype=torch.float32),
1307
+ weight_loader=weight_loader,
1308
+ )
1309
+ layer.register_parameter("w13_weight_scale_2", w13_weight_scale_2)
1310
+
1311
+ w2_weight_scale_2 = PerTensorScaleParameter(
1312
+ data=torch.empty(num_experts, dtype=torch.float32),
1313
+ weight_loader=weight_loader,
1314
+ )
1315
+ layer.register_parameter("w2_weight_scale_2", w2_weight_scale_2)
1316
+
1317
+ extra_weight_attrs.update(
1318
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
1319
+ )
1320
+
1321
+ use_global_sf = self.allow_flashinfer and is_flashinfer_supporting_global_sf(
1322
+ self.flashinfer_moe_backend
1323
+ )
1324
+ global_scale_num_experts = global_num_experts if use_global_sf else num_experts
1325
+
1326
+ w13_input_scale = PerTensorScaleParameter(
1327
+ data=torch.empty(global_scale_num_experts, 2, dtype=torch.float32),
1328
+ weight_loader=weight_loader,
1329
+ )
1330
+ layer.register_parameter("w13_input_scale", w13_input_scale)
1331
+
1332
+ w2_input_scale = PerTensorScaleParameter(
1333
+ data=torch.empty(global_scale_num_experts, dtype=torch.float32),
1334
+ weight_loader=weight_loader,
1335
+ )
1336
+ layer.register_parameter("w2_input_scale", w2_input_scale)
1337
+
1338
+ def prepare_static_weights_for_trtllm_fp4_moe(
1339
+ self,
1340
+ # args_dequant,
1341
+ # args,
1342
+ gemm1_weights,
1343
+ gemm2_weights,
1344
+ gemm1_scales_linear_fp4_bytes,
1345
+ gemm2_scales_linear_fp4_bytes,
1346
+ hidden_size,
1347
+ intermediate_size,
1348
+ num_experts,
1349
+ ):
1350
+ from flashinfer import nvfp4_block_scale_interleave
1351
+ from flashinfer.fused_moe.core import (
1352
+ _maybe_get_cached_w3_w1_permute_indices,
1353
+ get_w2_permute_indices_with_cache,
1354
+ )
1355
+
1356
+ """Prepare quantized weights for kernel (done offline with weights)."""
1357
+ epilogue_tile_m = 128 # FIXME: this depends on the kernel internals
1358
+
1359
+ # Convert quantized weights to proper formats
1360
+ gemm1_weights_fp4 = gemm1_weights.view(torch.float8_e4m3fn).reshape(
1361
+ num_experts, 2 * intermediate_size, hidden_size // 2
1362
+ ) # packed fp4
1363
+ gemm1_scales_linear_fp4 = gemm1_scales_linear_fp4_bytes.view(
1364
+ torch.float8_e4m3fn
1365
+ ).reshape(
1366
+ num_experts, 2 * intermediate_size, hidden_size // 16
1367
+ ) # fp8 scaling factors
1368
+
1369
+ gemm2_weights_fp4 = gemm2_weights.view(torch.float8_e4m3fn).reshape(
1370
+ num_experts, hidden_size, intermediate_size // 2
1371
+ ) # packed fp4
1372
+ gemm2_scales_linear_fp4 = gemm2_scales_linear_fp4_bytes.view(
1373
+ torch.float8_e4m3fn
1374
+ ).reshape(
1375
+ num_experts, hidden_size, intermediate_size // 16
1376
+ ) # fp8 scaling factors
1377
+
1378
+ gemm1_weights_fp4_shuffled = []
1379
+ gemm1_scales_fp4_shuffled = []
1380
+ gemm2_weights_fp4_shuffled = []
1381
+ gemm2_scales_fp4_shuffled = []
1382
+ for i in range(num_experts):
1383
+ # Calculate the permute indices for the following:
1384
+ # 1. Reorder rows of W1 and scales for fused gated activation
1385
+ # 2. Shuffle weights and scaling factors for transposed mma output
1386
+ # for both w3_w1 and w2 weights and scale factors
1387
+ permute_indices = _maybe_get_cached_w3_w1_permute_indices(
1388
+ self._cache_permute_indices,
1389
+ gemm1_weights_fp4[i].view(torch.uint8),
1390
+ epilogue_tile_m,
1391
+ )
1392
+ gemm1_weights_fp4_shuffled.append(
1393
+ gemm1_weights_fp4[i]
1394
+ .view(torch.uint8)[permute_indices.to(gemm1_weights_fp4.device)]
1395
+ .contiguous()
1396
+ )
1397
+
1398
+ permute_sf_indices = _maybe_get_cached_w3_w1_permute_indices(
1399
+ self._cache_permute_indices,
1400
+ gemm1_scales_linear_fp4[i].view(torch.uint8),
1401
+ epilogue_tile_m,
1402
+ num_elts_per_sf=16,
1403
+ )
1404
+ gemm1_scales_fp4_shuffled.append(
1405
+ nvfp4_block_scale_interleave(
1406
+ gemm1_scales_linear_fp4[i]
1407
+ .view(torch.uint8)[
1408
+ permute_sf_indices.to(gemm1_scales_linear_fp4.device)
1409
+ ]
1410
+ .contiguous()
1411
+ )
1412
+ )
1413
+
1414
+ permute_indices = get_w2_permute_indices_with_cache(
1415
+ self._cache_permute_indices,
1416
+ gemm2_weights_fp4[i].view(torch.uint8),
1417
+ epilogue_tile_m,
1418
+ )
1419
+ gemm2_weights_fp4_shuffled.append(
1420
+ gemm2_weights_fp4[i]
1421
+ .view(torch.uint8)[permute_indices.to(gemm2_weights_fp4.device)]
1422
+ .contiguous()
1423
+ )
1424
+
1425
+ permute_sf_indices = get_w2_permute_indices_with_cache(
1426
+ self._cache_permute_indices,
1427
+ gemm2_scales_linear_fp4[i].view(torch.uint8),
1428
+ epilogue_tile_m,
1429
+ num_elts_per_sf=16,
1430
+ )
1431
+ gemm2_scales_fp4_shuffled.append(
1432
+ nvfp4_block_scale_interleave(
1433
+ gemm2_scales_linear_fp4[i]
1434
+ .view(torch.uint8)[
1435
+ permute_sf_indices.to(gemm2_scales_linear_fp4.device)
1436
+ ]
1437
+ .contiguous()
1438
+ )
1439
+ )
1440
+
1441
+ # Stack weights for all experts
1442
+ gemm1_weights_fp4_shuffled = torch.stack(gemm1_weights_fp4_shuffled)
1443
+ gemm1_scales_fp4_shuffled = (
1444
+ torch.stack(gemm1_scales_fp4_shuffled)
1445
+ .view(torch.float8_e4m3fn)
1446
+ .reshape(num_experts, 2 * intermediate_size, hidden_size // 16)
1447
+ )
1448
+
1449
+ gemm2_weights_fp4_shuffled = torch.stack(gemm2_weights_fp4_shuffled)
1450
+ gemm2_scales_fp4_shuffled = (
1451
+ torch.stack(gemm2_scales_fp4_shuffled)
1452
+ .view(torch.float8_e4m3fn)
1453
+ .reshape(num_experts, hidden_size, intermediate_size // 16)
1454
+ )
1455
+ return (
1456
+ gemm1_weights_fp4_shuffled,
1457
+ gemm1_scales_fp4_shuffled,
1458
+ gemm2_weights_fp4_shuffled,
1459
+ gemm2_scales_fp4_shuffled,
1460
+ )
1461
+
1462
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1463
+ # GEMM 1 processing
1464
+ gemm1_weight = layer.w13_weight.data
1465
+ gemm1_weight_scale = layer.w13_weight_scale.data
1466
+
1467
+ if self.allow_flashinfer:
1468
+ gemm1_weight, gemm1_weight_scale = reorder_w1w3_to_w3w1(
1469
+ gemm1_weight, gemm1_weight_scale, dim=-2
1470
+ )
1471
+
1472
+ layer.w13_weight = Parameter(gemm1_weight, requires_grad=False)
1473
+ layer.w13_weight_scale = Parameter(gemm1_weight_scale, requires_grad=False)
1474
+
1475
+ # Common processing for w13_weight_scale_2
1476
+ if not torch.allclose(
1477
+ layer.w13_weight_scale_2[:, 0], layer.w13_weight_scale_2[:, 1]
1478
+ ):
1479
+ logger.warning_once(
1480
+ "w1_weight_scale_2 must match w3_weight_scale_2. "
1481
+ "Accuracy may be affected."
1482
+ )
1483
+
1484
+ w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0]
1485
+ layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False)
1486
+
1487
+ # Common processing for input scales and alphas
1488
+ use_global_sf = self.allow_flashinfer and is_flashinfer_supporting_global_sf(
1489
+ self.flashinfer_moe_backend
1490
+ )
1491
+ if use_global_sf:
1492
+ # For backends provide by Flashinfer, the input global scales are
1493
+ # shared across all experts.
1494
+ w13_input_scale = (
1495
+ layer.w13_input_scale.max().to(torch.float32).expand(layer.num_experts)
1496
+ )
1497
+ else:
1498
+ w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
1499
+ layer.g1_alphas = Parameter(
1500
+ (w13_input_scale * w13_weight_scale_2).to(torch.float32),
1501
+ requires_grad=False,
1502
+ )
1503
+
1504
+ # This is for quantization, so we need to invert it.
1505
+ layer.w13_input_scale_quant = Parameter(
1506
+ (1 / w13_input_scale).to(torch.float32), requires_grad=False
1507
+ )
1508
+
1509
+ # GEMM 2 processing
1510
+ if use_global_sf:
1511
+ # For backends provide by Flashinfer, the input global scales are
1512
+ # shared across all experts.
1513
+ w2_input_scale = (
1514
+ layer.w2_input_scale.max().to(torch.float32).expand(layer.num_experts)
1515
+ )
1516
+ else:
1517
+ w2_input_scale = layer.w2_input_scale
1518
+ layer.g2_alphas = Parameter(
1519
+ (w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
1520
+ requires_grad=False,
1521
+ )
1522
+
1523
+ # This is for quantization, so we need to invert it.
1524
+ layer.w2_input_scale_quant = Parameter(
1525
+ (1 / w2_input_scale).to(torch.float32), requires_grad=False
1526
+ )
1527
+
1528
+ # TensorRT-LLM specific processing
1529
+ if (
1530
+ self.allow_flashinfer
1531
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
1532
+ ):
1533
+ # Prepare static weights for TRT-LLM kernel
1534
+ # alternate: prepare_static_weight_layouts_for_trtllm_moe
1535
+ (
1536
+ gemm1_weights_fp4_shuffled,
1537
+ gemm1_scales_fp4_shuffled,
1538
+ gemm2_weights_fp4_shuffled,
1539
+ gemm2_scales_fp4_shuffled,
1540
+ ) = self.prepare_static_weights_for_trtllm_fp4_moe(
1541
+ layer.w13_weight,
1542
+ layer.w2_weight,
1543
+ layer.w13_weight_scale,
1544
+ layer.w2_weight_scale,
1545
+ layer.w2_weight.size(-2), # hidden_size
1546
+ layer.w13_weight.size(-2) // 2, # intermediate_size
1547
+ layer.w13_weight.size(0), # num_experts
1548
+ )
1549
+ logger.debug_once("Finished shuffling weights for TRT-LLM MOE")
1550
+
1551
+ layer.gemm1_weights_fp4_shuffled = Parameter(
1552
+ gemm1_weights_fp4_shuffled, requires_grad=False
1553
+ )
1554
+ layer.gemm2_weights_fp4_shuffled = Parameter(
1555
+ gemm2_weights_fp4_shuffled, requires_grad=False
1556
+ )
1557
+ layer.gemm1_scales_fp4_shuffled = Parameter(
1558
+ gemm1_scales_fp4_shuffled, requires_grad=False
1559
+ )
1560
+ layer.gemm2_scales_fp4_shuffled = Parameter(
1561
+ gemm2_scales_fp4_shuffled, requires_grad=False
1562
+ )
1563
+
1564
+ # Additional parameter needed for TRT-LLM
1565
+ layer.g1_scale_c = Parameter(
1566
+ (layer.w2_input_scale_quant * layer.g1_alphas).to(torch.float32),
1567
+ requires_grad=False,
1568
+ )
1569
+
1570
+ # Clean up weights that won't be used by TRT-LLM
1571
+ del layer.w2_weight
1572
+ del layer.w2_weight_scale
1573
+ del layer.w13_weight
1574
+ del layer.w13_weight_scale
1575
+ elif self.use_marlin:
1576
+ # Marlin processing
1577
+ prepare_moe_fp4_layer_for_marlin(layer)
1578
+ del layer.g1_alphas
1579
+ del layer.g2_alphas
1580
+ del layer.w13_input_scale_quant
1581
+ del layer.w2_input_scale_quant
1582
+ else:
1583
+ # Non-TRT-LLM processing (Cutlass or non-flashinfer)
1584
+ w13_blockscale_swizzled = swizzle_blockscale(layer.w13_weight_scale)
1585
+ layer.w13_weight_scale = Parameter(
1586
+ w13_blockscale_swizzled, requires_grad=False
1587
+ )
1588
+
1589
+ w2_blockscale_swizzled = swizzle_blockscale(layer.w2_weight_scale)
1590
+ layer.w2_weight_scale = Parameter(
1591
+ w2_blockscale_swizzled, requires_grad=False
1592
+ )
1593
+ layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)
1594
+
1595
+ def get_fused_moe_quant_config(
1596
+ self, layer: torch.nn.Module
1597
+ ) -> FusedMoEQuantConfig | None:
1598
+ if (
1599
+ self.use_marlin
1600
+ or self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
1601
+ ):
1602
+ return None
1603
+
1604
+ return nvfp4_moe_quant_config(
1605
+ w1_scale=layer.w13_weight_scale,
1606
+ w2_scale=layer.w2_weight_scale,
1607
+ g1_alphas=layer.g1_alphas,
1608
+ g2_alphas=layer.g2_alphas,
1609
+ a1_gscale=layer.w13_input_scale_quant,
1610
+ a2_gscale=layer.w2_input_scale_quant,
1611
+ )
1612
+
1613
+ def apply(
1614
+ self,
1615
+ layer: torch.nn.Module,
1616
+ x: torch.Tensor,
1617
+ router_logits: torch.Tensor,
1618
+ top_k: int,
1619
+ renormalize: bool,
1620
+ use_grouped_topk: bool = False,
1621
+ topk_group: int | None = None,
1622
+ num_expert_group: int | None = None,
1623
+ global_num_experts: int = -1,
1624
+ expert_map: torch.Tensor | None = None,
1625
+ custom_routing_function: Callable | None = None,
1626
+ scoring_func: str = "softmax",
1627
+ routed_scaling_factor: float = 1.0,
1628
+ e_score_correction_bias: torch.Tensor | None = None,
1629
+ apply_router_weight_on_input: bool = False,
1630
+ activation: str = "silu",
1631
+ enable_eplb: bool = False,
1632
+ expert_load_view: torch.Tensor | None = None,
1633
+ logical_to_physical_map: torch.Tensor | None = None,
1634
+ logical_replica_count: torch.Tensor | None = None,
1635
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1636
+ if enable_eplb:
1637
+ raise NotImplementedError(
1638
+ "EPLB not supported for `ModelOptNvFp4FusedMoE` yet."
1639
+ )
1640
+ assert activation == "silu", "Only SiLU activation is supported."
1641
+
1642
+ if (
1643
+ self.allow_flashinfer
1644
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
1645
+ ):
1646
+ import flashinfer
1647
+
1648
+ from vllm.model_executor.models.llama4 import Llama4MoE
1649
+
1650
+ a1_gscale = layer.w13_input_scale_quant
1651
+ (hidden_states_fp4, hidden_states_scale_linear_fp4) = (
1652
+ flashinfer.fp4_quantize(
1653
+ x,
1654
+ a1_gscale,
1655
+ is_sf_swizzled_layout=False,
1656
+ )
1657
+ )
1658
+ use_llama4_routing = (
1659
+ custom_routing_function is Llama4MoE.custom_routing_function
1660
+ )
1661
+ routing_method_type = layer.routing_method_type
1662
+ if use_llama4_routing:
1663
+ routing_method_type = RoutingMethodType.Llama4
1664
+ router_logits = (
1665
+ router_logits.to(torch.float32)
1666
+ if routing_method_type == RoutingMethodType.DeepSeekV3
1667
+ else router_logits
1668
+ )
1669
+ routing_bias = e_score_correction_bias
1670
+ if routing_bias is not None:
1671
+ routing_bias = routing_bias.to(torch.bfloat16)
1672
+ out = flashinfer.fused_moe.trtllm_fp4_block_scale_moe(
1673
+ routing_logits=router_logits,
1674
+ routing_bias=routing_bias,
1675
+ hidden_states=hidden_states_fp4,
1676
+ hidden_states_scale=hidden_states_scale_linear_fp4.view(
1677
+ torch.float8_e4m3fn
1678
+ ).flatten(),
1679
+ gemm1_weights=layer.gemm1_weights_fp4_shuffled.data,
1680
+ gemm1_weights_scale=layer.gemm1_scales_fp4_shuffled.data.view(
1681
+ torch.float8_e4m3fn
1682
+ ),
1683
+ gemm1_bias=None,
1684
+ gemm1_alpha=None,
1685
+ gemm1_beta=None,
1686
+ gemm1_clamp_limit=None,
1687
+ gemm2_weights=layer.gemm2_weights_fp4_shuffled.data,
1688
+ gemm2_weights_scale=layer.gemm2_scales_fp4_shuffled.data.view(
1689
+ torch.float8_e4m3fn
1690
+ ),
1691
+ gemm2_bias=None,
1692
+ output1_scale_scalar=layer.g1_scale_c.data,
1693
+ output1_scale_gate_scalar=layer.g1_alphas.data,
1694
+ output2_scale_scalar=layer.g2_alphas.data,
1695
+ num_experts=global_num_experts,
1696
+ top_k=top_k,
1697
+ n_group=num_expert_group,
1698
+ topk_group=topk_group,
1699
+ intermediate_size=layer.intermediate_size_per_partition,
1700
+ local_expert_offset=layer.ep_rank * layer.local_num_experts,
1701
+ local_num_experts=layer.local_num_experts,
1702
+ routed_scaling_factor=None,
1703
+ tile_tokens_dim=None,
1704
+ routing_method_type=routing_method_type,
1705
+ do_finalize=True,
1706
+ )[0]
1707
+ return out
1708
+
1709
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1710
+ hidden_states=x,
1711
+ router_logits=router_logits,
1712
+ use_grouped_topk=use_grouped_topk,
1713
+ top_k=top_k,
1714
+ renormalize=renormalize,
1715
+ topk_group=topk_group,
1716
+ num_expert_group=num_expert_group,
1717
+ custom_routing_function=custom_routing_function,
1718
+ scoring_func=scoring_func,
1719
+ routed_scaling_factor=routed_scaling_factor,
1720
+ e_score_correction_bias=e_score_correction_bias,
1721
+ indices_type=self.topk_indices_dtype,
1722
+ )
1723
+
1724
+ if self.use_marlin:
1725
+ return fused_marlin_moe(
1726
+ x,
1727
+ layer.w13_weight,
1728
+ layer.w2_weight,
1729
+ None,
1730
+ None,
1731
+ layer.w13_weight_scale,
1732
+ layer.w2_weight_scale,
1733
+ router_logits,
1734
+ topk_weights,
1735
+ topk_ids,
1736
+ global_scale1=layer.w13_weight_scale_2,
1737
+ global_scale2=layer.w2_weight_scale_2,
1738
+ quant_type_id=scalar_types.float4_e2m1f.id,
1739
+ apply_router_weight_on_input=apply_router_weight_on_input,
1740
+ global_num_experts=global_num_experts,
1741
+ expert_map=expert_map,
1742
+ workspace=layer.workspace,
1743
+ )
1744
+
1745
+ elif (
1746
+ self.allow_flashinfer
1747
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS
1748
+ ):
1749
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
1750
+ flashinfer_cutlass_moe_fp4,
1751
+ )
1752
+
1753
+ assert self.moe_quant_config is not None
1754
+
1755
+ return flashinfer_cutlass_moe_fp4(
1756
+ hidden_states=x,
1757
+ w1=layer.w13_weight,
1758
+ w2=layer.w2_weight,
1759
+ topk_weights=topk_weights,
1760
+ topk_ids=topk_ids,
1761
+ quant_config=self.moe_quant_config,
1762
+ inplace=False,
1763
+ activation=activation,
1764
+ global_num_experts=global_num_experts,
1765
+ expert_map=expert_map,
1766
+ apply_router_weight_on_input=apply_router_weight_on_input,
1767
+ )
1768
+ else:
1769
+ # If no modular kernel is provided, use cutlass_moe_fp4 for TP case
1770
+ # only (no EP).
1771
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
1772
+
1773
+ assert self.moe_quant_config is not None
1774
+ return cutlass_moe_fp4(
1775
+ a=x,
1776
+ w1_fp4=layer.w13_weight,
1777
+ w2_fp4=layer.w2_weight,
1778
+ topk_weights=topk_weights,
1779
+ topk_ids=topk_ids,
1780
+ quant_config=self.moe_quant_config,
1781
+ expert_map=expert_map,
1782
+ apply_router_weight_on_input=apply_router_weight_on_input,
1783
+ # TODO: derive from arguments
1784
+ m=x.shape[0],
1785
+ n=layer.w2_weight.shape[2] * 2,
1786
+ k=x.shape[1],
1787
+ e=layer.w13_weight.shape[0],
1788
+ )