vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1821 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/Glm4v/modeling_Glm4v.py
6
+ # Copyright 2025 The vLLM team.
7
+ # Copyright 2025 The ZhipuAI Team.
8
+ # Copyright 2025 The HuggingFace Inc. team.
9
+ # All rights reserved.
10
+ #
11
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
12
+ # and OPT implementations in this library. It has been modified from its
13
+ # original forms to accommodate minor architectural differences compared
14
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
15
+ #
16
+ # Licensed under the Apache License, Version 2.0 (the "License");
17
+ # you may not use this file except in compliance with the License.
18
+ # You may obtain a copy of the License at
19
+ #
20
+ # http://www.apache.org/licenses/LICENSE-2.0
21
+ #
22
+ # Unless required by applicable law or agreed to in writing, software
23
+ # distributed under the License is distributed on an "AS IS" BASIS,
24
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
+ # See the License for the specific language governing permissions and
26
+ # limitations under the License.
27
+ """Inference-only GLM-4V model compatible with HuggingFace weights."""
28
+
29
+ import itertools
30
+ import math
31
+ from collections.abc import Callable, Iterable, Mapping, Sequence
32
+ from functools import partial
33
+ from typing import Annotated, Any, Literal, TypeAlias
34
+
35
+ import numpy as np
36
+ import torch
37
+ import torch.nn as nn
38
+ import torch.nn.functional as F
39
+ from einops import rearrange
40
+ from transformers import BatchFeature
41
+ from transformers.models.glm4v.configuration_glm4v import Glm4vVisionConfig
42
+ from transformers.models.glm4v.image_processing_glm4v import (
43
+ Glm4vImageProcessor,
44
+ smart_resize,
45
+ )
46
+ from transformers.models.glm4v.video_processing_glm4v import Glm4vVideoProcessor
47
+ from transformers.video_utils import VideoMetadata
48
+
49
+ from vllm.attention.backends.registry import AttentionBackendEnum
50
+ from vllm.attention.layer import (
51
+ check_upstream_fa_availability,
52
+ maybe_get_vit_flash_attn_backend,
53
+ )
54
+ from vllm.config import VllmConfig
55
+ from vllm.config.multimodal import BaseDummyOptions, VideoDummyOptions
56
+ from vllm.distributed import get_tensor_model_parallel_world_size, parallel_state
57
+ from vllm.distributed import utils as dist_utils
58
+ from vllm.logger import init_logger
59
+ from vllm.model_executor.layers.conv import Conv3dLayer
60
+ from vllm.model_executor.layers.layernorm import RMSNorm
61
+ from vllm.model_executor.layers.linear import (
62
+ ColumnParallelLinear,
63
+ MergedColumnParallelLinear,
64
+ QKVParallelLinear,
65
+ RowParallelLinear,
66
+ )
67
+ from vllm.model_executor.layers.quantization import QuantizationConfig
68
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
69
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
70
+ from vllm.multimodal import MULTIMODAL_REGISTRY
71
+ from vllm.multimodal.inputs import (
72
+ MultiModalDataDict,
73
+ MultiModalFeatureSpec,
74
+ MultiModalFieldConfig,
75
+ MultiModalKwargsItems,
76
+ VideoItem,
77
+ )
78
+ from vllm.multimodal.parse import ImageSize, MultiModalDataItems, MultiModalDataParser
79
+ from vllm.multimodal.processing import (
80
+ BaseMultiModalProcessor,
81
+ BaseProcessingInfo,
82
+ PromptReplacement,
83
+ PromptUpdate,
84
+ PromptUpdateDetails,
85
+ )
86
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
87
+ from vllm.sequence import IntermediateTensors
88
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
89
+
90
+ from ..layers.activation import SiluAndMul
91
+ from .interfaces import (
92
+ MultiModalEmbeddings,
93
+ SupportsLoRA,
94
+ SupportsMRoPE,
95
+ SupportsMultiModal,
96
+ SupportsPP,
97
+ )
98
+ from .qwen2_vl import _create_qwen2vl_field_factory, apply_rotary_pos_emb_vision
99
+ from .utils import (
100
+ AutoWeightsLoader,
101
+ WeightsMapper,
102
+ init_vllm_registered_model,
103
+ maybe_prefix,
104
+ )
105
+ from .vision import (
106
+ get_vit_attn_backend,
107
+ run_dp_sharded_mrope_vision_model,
108
+ )
109
+
110
+ logger = init_logger(__name__)
111
+
112
+ # For profile run
113
+ _MAX_FRAMES_PER_VIDEO = 600
114
+
115
+ # === Vision Inputs === #
116
+
117
+
118
+ class Glm4vImagePixelInputs(TensorSchema):
119
+ """
120
+ Dimensions:
121
+ - np: Number of patches
122
+ - cpp: Number of channels * patch_size * patch_size
123
+ - ni: Number of images
124
+ - g: Grid dimensions (3 for grid_t, grid_h, grid_w)
125
+ """
126
+
127
+ type: Literal["pixel_values"] = "pixel_values"
128
+
129
+ pixel_values: Annotated[torch.Tensor, TensorShape("np", "cpp")]
130
+ image_grid_thw: Annotated[torch.Tensor, TensorShape("ni", 3)]
131
+
132
+
133
+ class Glm4vImageEmbeddingInputs(TensorSchema):
134
+ """
135
+ Dimensions:
136
+ - f: Number of image features (varies based on image resolution)
137
+ - h: Hidden size (must match language model backbone)
138
+ - n: Number of images
139
+ - g: Grid dimensions (3 for grid_t, grid_h, grid_w)
140
+ """
141
+
142
+ type: Literal["image_embeds"] = "image_embeds"
143
+
144
+ image_embeds: Annotated[torch.Tensor, TensorShape("f", "h")]
145
+ image_grid_thw: Annotated[torch.Tensor, TensorShape("n", 3)]
146
+
147
+
148
+ Glm4vImageInputs: TypeAlias = Glm4vImagePixelInputs | Glm4vImageEmbeddingInputs
149
+
150
+
151
+ class Glm4vVideoPixelInputs(TensorSchema):
152
+ """
153
+ Dimensions:
154
+ - np: Number of patches
155
+ - ctpp: Number of channels * temporal_patch_size *
156
+ patch_size * patch_size
157
+ - f: Number of frames
158
+ - g: Grid dimensions (3 for grid_t which is usually 1 for processed
159
+ video, grid_h, grid_w)
160
+ """
161
+
162
+ type: Literal["pixel_values_videos"] = "pixel_values_videos"
163
+
164
+ pixel_values_videos: Annotated[torch.Tensor, TensorShape("np", "ctpp")]
165
+ video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
166
+
167
+
168
+ class Glm4vVideoEmbeddingInputs(TensorSchema):
169
+ """
170
+ Dimensions:
171
+ - p: Number of video patches across all frames
172
+ - h: Hidden size (must match language model backbone)
173
+ - f: Number of frames
174
+ - g: Grid dimensions (3 for grid_t which is usually 1 for processed
175
+ video, grid_h, grid_w)
176
+ """
177
+
178
+ type: Literal["video_embeds"] = "video_embeds"
179
+
180
+ video_embeds: Annotated[torch.Tensor, TensorShape("p", "h")]
181
+ video_grid_thw: Annotated[torch.Tensor, TensorShape("f", 3)]
182
+
183
+
184
+ Glm4vVideoInputs: TypeAlias = Glm4vVideoPixelInputs | Glm4vVideoEmbeddingInputs
185
+
186
+ # ==== Vision Encoder ==== #
187
+
188
+
189
+ class Glm4vVisionMLP(nn.Module):
190
+ def __init__(
191
+ self,
192
+ in_features: int,
193
+ hidden_features: int,
194
+ bias: bool = False,
195
+ quant_config: QuantizationConfig | None = None,
196
+ prefix: str = "",
197
+ use_data_parallel: bool = False,
198
+ ):
199
+ super().__init__()
200
+ self.gate_up_proj = MergedColumnParallelLinear(
201
+ input_size=in_features,
202
+ output_sizes=[hidden_features] * 2,
203
+ bias=bias,
204
+ quant_config=quant_config,
205
+ prefix=f"{prefix}.gate_up_proj",
206
+ disable_tp=use_data_parallel,
207
+ )
208
+ self.down_proj = RowParallelLinear(
209
+ hidden_features,
210
+ in_features,
211
+ bias=bias,
212
+ quant_config=quant_config,
213
+ prefix=f"{prefix}.down_proj",
214
+ disable_tp=use_data_parallel,
215
+ )
216
+ self.act_fn = SiluAndMul()
217
+
218
+ def forward(self, x: torch.Tensor):
219
+ x, _ = self.gate_up_proj(x)
220
+ x = self.act_fn(x)
221
+ x, _ = self.down_proj(x)
222
+ return x
223
+
224
+
225
+ def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
226
+ """All-gather the input tensor interleavely across model parallel group."""
227
+ import torch.distributed as dist
228
+
229
+ gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
230
+ dist.all_gather(
231
+ gathered_tensors,
232
+ local_tensor,
233
+ group=parallel_state.get_tp_group().device_group,
234
+ )
235
+
236
+ gathered_tensors_split = [
237
+ torch.split(tensor, hidden_size // tp_size, -1) for tensor in gathered_tensors
238
+ ]
239
+ ordered_tensors = [
240
+ tensor for pair in zip(*gathered_tensors_split) for tensor in pair
241
+ ]
242
+ result_tensor = torch.cat(ordered_tensors, dim=-1)
243
+ return result_tensor
244
+
245
+
246
+ class Glm4vVisionAttention(nn.Module):
247
+ def __init__(
248
+ self,
249
+ embed_dim: int,
250
+ num_heads: int,
251
+ projection_size: int,
252
+ quant_config: QuantizationConfig | None = None,
253
+ prefix: str = "",
254
+ use_data_parallel: bool = False,
255
+ attn_backend_override: AttentionBackendEnum | None = None,
256
+ ) -> None:
257
+ super().__init__()
258
+ # Per attention head and per partition values.
259
+ self.tp_size = (
260
+ 1 if use_data_parallel else get_tensor_model_parallel_world_size()
261
+ )
262
+ self.tp_rank = (
263
+ 0 if use_data_parallel else parallel_state.get_tensor_model_parallel_rank()
264
+ )
265
+ self.hidden_size_per_attention_head = dist_utils.divide(
266
+ projection_size, num_heads
267
+ )
268
+ self.num_attention_heads_per_partition = dist_utils.divide(
269
+ num_heads, self.tp_size
270
+ )
271
+
272
+ self.qkv = QKVParallelLinear(
273
+ hidden_size=embed_dim,
274
+ head_size=self.hidden_size_per_attention_head,
275
+ total_num_heads=num_heads,
276
+ total_num_kv_heads=num_heads,
277
+ bias=False,
278
+ quant_config=quant_config,
279
+ # Change qkv prefix to align with GLM-4.5V-FP8 quantization cfg
280
+ prefix=f"{prefix}.qkv_proj" if quant_config else f"{prefix}.qkv",
281
+ disable_tp=use_data_parallel,
282
+ )
283
+ self.proj = RowParallelLinear(
284
+ input_size=projection_size,
285
+ output_size=embed_dim,
286
+ quant_config=quant_config,
287
+ prefix=f"{prefix}.proj",
288
+ bias=False,
289
+ disable_tp=use_data_parallel,
290
+ )
291
+
292
+ # Detect attention implementation.
293
+ self.attn_backend = get_vit_attn_backend(
294
+ head_size=self.hidden_size_per_attention_head,
295
+ dtype=torch.get_default_dtype(),
296
+ attn_backend_override=attn_backend_override,
297
+ )
298
+ self.use_upstream_fa = False
299
+
300
+ self.attn_backend, self.flash_attn_varlen_func = (
301
+ maybe_get_vit_flash_attn_backend(
302
+ self.attn_backend,
303
+ self.use_upstream_fa,
304
+ attn_backend_override=attn_backend_override,
305
+ )
306
+ )
307
+
308
+ if self.attn_backend not in {
309
+ AttentionBackendEnum.FLASH_ATTN,
310
+ AttentionBackendEnum.TORCH_SDPA,
311
+ AttentionBackendEnum.XFORMERS,
312
+ AttentionBackendEnum.ROCM_AITER_FA,
313
+ }:
314
+ raise RuntimeError(
315
+ f"GLM-4V does not support {self.attn_backend} backend now."
316
+ )
317
+
318
+ self.is_flash_attn_backend = self.attn_backend in {
319
+ AttentionBackendEnum.FLASH_ATTN,
320
+ AttentionBackendEnum.ROCM_AITER_FA,
321
+ }
322
+
323
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
324
+ # [s, b, 3 * head * head_dim]
325
+ seq_len, bs, _ = qkv.shape
326
+
327
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
328
+ q, k, v = qkv.chunk(3, dim=2)
329
+
330
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
331
+ new_shape = (
332
+ seq_len,
333
+ bs,
334
+ self.num_attention_heads_per_partition,
335
+ self.hidden_size_per_attention_head,
336
+ )
337
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
338
+ return q, k, v
339
+
340
+ def forward(
341
+ self,
342
+ x: torch.Tensor,
343
+ cu_seqlens: torch.Tensor,
344
+ rotary_pos_emb: torch.Tensor,
345
+ max_seqlen: int | None = None, # Only used for Flash Attention
346
+ seqlens: list[int] | None = None, # Only used for xFormers
347
+ ) -> torch.Tensor:
348
+ # [s, b, c] --> [s, b, head * 3 * head_dim]
349
+ x, _ = self.qkv(x)
350
+
351
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
352
+ q, k, v = self.split_qkv(x)
353
+ batch_size = q.shape[1]
354
+
355
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v))
356
+ if rotary_pos_emb is not None:
357
+ # [2 * b, s, heads, head_dim]
358
+ qk_concat = torch.cat([q, k], dim=0)
359
+ qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
360
+ q, k = torch.chunk(qk_rotated, 2, dim=0)
361
+
362
+ if self.is_flash_attn_backend:
363
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
364
+
365
+ output = self.flash_attn_varlen_func(
366
+ q,
367
+ k,
368
+ v,
369
+ cu_seqlens_q=cu_seqlens,
370
+ cu_seqlens_k=cu_seqlens,
371
+ max_seqlen_q=max_seqlen,
372
+ max_seqlen_k=max_seqlen,
373
+ dropout_p=0.0,
374
+ causal=False,
375
+ )
376
+
377
+ context_layer = rearrange(
378
+ output, "(b s) h d -> s b (h d)", b=batch_size
379
+ ).contiguous()
380
+ elif self.attn_backend == AttentionBackendEnum.TORCH_SDPA:
381
+ # Execute attention entry by entry for speed & less VRAM.
382
+ outputs = []
383
+ for i in range(1, len(cu_seqlens)):
384
+ start_idx = cu_seqlens[i - 1]
385
+ end_idx = cu_seqlens[i]
386
+ q_i = q[:, start_idx:end_idx]
387
+ k_i = k[:, start_idx:end_idx]
388
+ v_i = v[:, start_idx:end_idx]
389
+ q_i, k_i, v_i = (
390
+ rearrange(x, "b s h d -> b h s d") for x in [q_i, k_i, v_i]
391
+ )
392
+ output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
393
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
394
+ outputs.append(output_i)
395
+ context_layer = torch.cat(outputs, dim=1)
396
+ context_layer = rearrange(
397
+ context_layer, "b s h d -> s b (h d)"
398
+ ).contiguous()
399
+ elif self.attn_backend == AttentionBackendEnum.XFORMERS:
400
+ from xformers import ops as xops
401
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
402
+
403
+ attn_bias = BlockDiagonalMask.from_seqlens(
404
+ q_seqlen=seqlens, kv_seqlen=None, device=q.device
405
+ )
406
+
407
+ context_layer = xops.memory_efficient_attention_forward(
408
+ q, k, v, attn_bias=attn_bias, p=0, scale=None
409
+ )
410
+ context_layer = rearrange(
411
+ context_layer, "b s h d -> s b (h d)"
412
+ ).contiguous()
413
+
414
+ output, _ = self.proj(context_layer)
415
+ return output
416
+
417
+
418
+ class Glm4vVisionBlock(nn.Module):
419
+ def __init__(
420
+ self,
421
+ dim: int,
422
+ num_heads: int,
423
+ mlp_hidden_dim: int,
424
+ norm_layer: Callable[[int], nn.Module] | None = None,
425
+ quant_config: QuantizationConfig | None = None,
426
+ prefix: str = "",
427
+ use_data_parallel: bool = False,
428
+ attn_backend_override: AttentionBackendEnum | None = None,
429
+ ) -> None:
430
+ super().__init__()
431
+ if norm_layer is None:
432
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
433
+ self.norm1 = norm_layer(dim)
434
+ self.norm2 = norm_layer(dim)
435
+ self.attn = Glm4vVisionAttention(
436
+ embed_dim=dim,
437
+ num_heads=num_heads,
438
+ projection_size=dim,
439
+ quant_config=quant_config,
440
+ prefix=f"{prefix}.attn",
441
+ use_data_parallel=use_data_parallel,
442
+ attn_backend_override=attn_backend_override,
443
+ )
444
+ self.mlp = Glm4vVisionMLP(
445
+ dim,
446
+ mlp_hidden_dim,
447
+ bias=False,
448
+ quant_config=quant_config,
449
+ prefix=f"{prefix}.mlp",
450
+ use_data_parallel=use_data_parallel,
451
+ )
452
+
453
+ def forward(
454
+ self,
455
+ x: torch.Tensor,
456
+ cu_seqlens: torch.Tensor,
457
+ rotary_pos_emb: torch.Tensor,
458
+ max_seqlen: int | None = None, # Only used for Flash Attention
459
+ seqlens: list[int] | None = None, # Only used for xFormers
460
+ ) -> torch.Tensor:
461
+ x_attn = self.attn(
462
+ self.norm1(x),
463
+ cu_seqlens=cu_seqlens,
464
+ rotary_pos_emb=rotary_pos_emb,
465
+ max_seqlen=max_seqlen,
466
+ seqlens=seqlens,
467
+ )
468
+ x_fused_norm, residual = self.norm2(x, residual=x_attn)
469
+ x = residual + self.mlp(x_fused_norm)
470
+
471
+ return x
472
+
473
+
474
+ class Glm4vVisionPatchEmbed(nn.Module):
475
+ def __init__(
476
+ self,
477
+ patch_size: int = 14,
478
+ temporal_patch_size: int = 1,
479
+ in_channels: int = 3,
480
+ hidden_size: int = 1536,
481
+ ) -> None:
482
+ super().__init__()
483
+ self.patch_size = patch_size
484
+ self.temporal_patch_size = temporal_patch_size
485
+ self.hidden_size = hidden_size
486
+
487
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
488
+ self.proj = Conv3dLayer(
489
+ in_channels,
490
+ hidden_size,
491
+ kernel_size=kernel_size,
492
+ stride=kernel_size,
493
+ bias=True,
494
+ )
495
+
496
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
497
+ L, C = x.shape
498
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
499
+ x = self.proj(x).view(L, self.hidden_size)
500
+ return x
501
+
502
+
503
+ class Glm4vPatchMerger(nn.Module):
504
+ def __init__(
505
+ self,
506
+ d_model: int,
507
+ context_dim: int,
508
+ quant_config: QuantizationConfig | None = None,
509
+ bias: bool = False,
510
+ prefix: str = "",
511
+ use_data_parallel: bool = False,
512
+ ) -> None:
513
+ super().__init__()
514
+ self.hidden_size = d_model
515
+ self.proj = ColumnParallelLinear(
516
+ self.hidden_size,
517
+ self.hidden_size,
518
+ bias=bias,
519
+ gather_output=True,
520
+ quant_config=quant_config,
521
+ prefix=f"{prefix}.proj",
522
+ disable_tp=use_data_parallel,
523
+ )
524
+ self.post_projection_norm = nn.LayerNorm(self.hidden_size)
525
+ self.gate_up_proj = MergedColumnParallelLinear(
526
+ input_size=self.hidden_size,
527
+ output_sizes=[context_dim] * 2,
528
+ bias=bias,
529
+ quant_config=quant_config,
530
+ prefix=f"{prefix}.gate_up_proj",
531
+ disable_tp=use_data_parallel,
532
+ )
533
+ self.down_proj = RowParallelLinear(
534
+ context_dim,
535
+ self.hidden_size,
536
+ bias=bias,
537
+ quant_config=quant_config,
538
+ prefix=f"{prefix}.down_proj",
539
+ disable_tp=use_data_parallel,
540
+ )
541
+ self.act_fn = SiluAndMul()
542
+ self.extra_activation_func = nn.GELU()
543
+
544
+ def forward(self, x: torch.Tensor):
545
+ x, _ = self.proj(x)
546
+ x = self.extra_activation_func(self.post_projection_norm(x))
547
+ gate_up, _ = self.gate_up_proj(x)
548
+ x = self.act_fn(gate_up)
549
+ x, _ = self.down_proj(x)
550
+ return x
551
+
552
+
553
+ class Glm4vVisionEmbeddings(nn.Module):
554
+ def __init__(self, config: Glm4vVisionConfig):
555
+ super().__init__()
556
+ self.config = config
557
+ self.embed_dim = config.hidden_size
558
+ self.image_size = config.image_size
559
+ self.patch_size = config.patch_size
560
+
561
+ self.num_patches = (self.image_size // self.patch_size) ** 2
562
+ self.num_positions = self.num_patches
563
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
564
+ self.register_buffer(
565
+ "position_ids",
566
+ torch.arange(self.num_positions).expand((1, -1)),
567
+ persistent=False,
568
+ )
569
+
570
+ def forward(
571
+ self, embeddings, lengths, image_shapes, h_coords, w_coords
572
+ ) -> torch.Tensor:
573
+ pos_embed_weight = self.position_embedding.weight
574
+ hidden_size = pos_embed_weight.shape[1]
575
+ total_seq = h_coords.shape[0]
576
+ device = pos_embed_weight.device
577
+
578
+ # Move coordinates to correct device
579
+ h_coords, w_coords = h_coords.to(device), w_coords.to(device)
580
+
581
+ # Handle empty sequence case
582
+ if total_seq == 0:
583
+ adapted_pos_embed = torch.empty(
584
+ 0, hidden_size, device=device, dtype=pos_embed_weight.dtype
585
+ )
586
+ else:
587
+ # Convert inputs to tensors if needed
588
+ if isinstance(lengths, list):
589
+ lengths = torch.tensor(lengths, device=device, dtype=torch.long)
590
+ if not isinstance(image_shapes, torch.Tensor):
591
+ image_shapes = torch.tensor(
592
+ image_shapes, device=device, dtype=torch.long
593
+ )
594
+
595
+ # Prepare 2D position embedding
596
+ orig_size_sq = pos_embed_weight.shape[0]
597
+ orig_size = int(orig_size_sq**0.5)
598
+ pos_embed_2d = (
599
+ pos_embed_weight.view(orig_size, orig_size, hidden_size)
600
+ .permute(2, 0, 1)
601
+ .unsqueeze(0)
602
+ .to(device=device, dtype=torch.float32)
603
+ )
604
+
605
+ # Calculate target dimensions for each patch
606
+ # Add bounds checking for data parallel mode
607
+ if len(lengths) > image_shapes.shape[0]:
608
+ # In data parallel mode, some GPUs might not have all
609
+ # image shapes
610
+ # Use available image shapes, cycling if necessary
611
+ target_h_list = []
612
+ target_w_list = []
613
+ for i in range(len(lengths)):
614
+ # Cycle through available shapes
615
+ shape_idx = i % image_shapes.shape[0]
616
+ target_h_list.append(image_shapes[shape_idx, 1].repeat(lengths[i]))
617
+ target_w_list.append(image_shapes[shape_idx, 2].repeat(lengths[i]))
618
+ target_h = torch.cat(target_h_list).to(
619
+ device=device, dtype=torch.float32
620
+ )
621
+ target_w = torch.cat(target_w_list).to(
622
+ device=device, dtype=torch.float32
623
+ )
624
+ else:
625
+ target_h = torch.cat(
626
+ [image_shapes[i, 1].repeat(lengths[i]) for i in range(len(lengths))]
627
+ ).to(device=device, dtype=torch.float32)
628
+ target_w = torch.cat(
629
+ [image_shapes[i, 2].repeat(lengths[i]) for i in range(len(lengths))]
630
+ ).to(device=device, dtype=torch.float32)
631
+
632
+ # Normalize coordinates to [-1, 1] range for grid_sample
633
+ h_coords = h_coords.to(device=device, dtype=torch.float32)
634
+ w_coords = w_coords.to(device=device, dtype=torch.float32)
635
+ norm_w = ((w_coords + 0.5) / target_w) * 2 - 1
636
+ norm_h = ((h_coords + 0.5) / target_h) * 2 - 1
637
+
638
+ # Create sampling grid
639
+ grid = torch.stack((norm_w, norm_h), dim=-1).unsqueeze(0).unsqueeze(2)
640
+
641
+ # Perform bicubic interpolation
642
+ interpolated_embed_fp32 = F.grid_sample(
643
+ pos_embed_2d,
644
+ grid,
645
+ mode="bicubic",
646
+ align_corners=False,
647
+ padding_mode="border",
648
+ )
649
+
650
+ # Reshape and convert back to original dtype
651
+ adapted_pos_embed_fp32 = (
652
+ interpolated_embed_fp32.squeeze(0).squeeze(-1).permute(1, 0)
653
+ )
654
+ adapted_pos_embed = adapted_pos_embed_fp32.to(pos_embed_weight.dtype).to(
655
+ embeddings.device
656
+ )
657
+
658
+ # Add adapted position encoding to embeddings
659
+ embeddings = embeddings + adapted_pos_embed
660
+ return embeddings
661
+
662
+
663
+ class Glm4vVisionRotaryEmbedding(nn.Module):
664
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
665
+ super().__init__()
666
+ self.dim = dim
667
+ self.theta = theta
668
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
669
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
670
+ self._seq_len_cached = 0
671
+ self._freqs_cached = None
672
+
673
+ def update_freqs_cache(self, seqlen: int) -> None:
674
+ if seqlen > self._seq_len_cached:
675
+ seqlen *= 2
676
+ self._seq_len_cached = seqlen
677
+ self.inv_freq = 1.0 / (
678
+ self.theta
679
+ ** (
680
+ torch.arange(
681
+ 0,
682
+ self.dim,
683
+ 2,
684
+ dtype=torch.float,
685
+ device=self.inv_freq.device,
686
+ )
687
+ / self.dim
688
+ )
689
+ )
690
+ seq = torch.arange(
691
+ seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
692
+ )
693
+ freqs = torch.outer(seq, self.inv_freq)
694
+ self._freqs_cached = freqs
695
+
696
+ def forward(self, seqlen: int) -> torch.Tensor:
697
+ self.update_freqs_cache(seqlen)
698
+ return self._freqs_cached[:seqlen]
699
+
700
+
701
+ class Glm4vVisionTransformer(nn.Module):
702
+ def __init__(
703
+ self,
704
+ vision_config: Glm4vVisionConfig,
705
+ norm_eps: float = 1e-6,
706
+ quant_config: QuantizationConfig | None = None,
707
+ prefix: str = "",
708
+ use_data_parallel: bool = False,
709
+ attn_backend_override: AttentionBackendEnum | None = None,
710
+ ) -> None:
711
+ super().__init__()
712
+
713
+ patch_size = vision_config.patch_size
714
+ temporal_patch_size = vision_config.temporal_patch_size
715
+ in_channels = vision_config.in_channels
716
+ depth = vision_config.depth
717
+ self.hidden_size = vision_config.hidden_size
718
+ self.num_heads = vision_config.num_heads
719
+ self.use_data_parallel = use_data_parallel
720
+
721
+ self.patch_size = vision_config.patch_size
722
+ self.spatial_merge_size = vision_config.spatial_merge_size
723
+ self.out_hidden_size = vision_config.out_hidden_size
724
+
725
+ self.patch_embed = Glm4vVisionPatchEmbed(
726
+ patch_size=patch_size,
727
+ temporal_patch_size=temporal_patch_size,
728
+ in_channels=in_channels,
729
+ hidden_size=self.hidden_size,
730
+ )
731
+
732
+ norm_layer = partial(RMSNorm, eps=norm_eps)
733
+ head_dim = self.hidden_size // self.num_heads
734
+ self.rotary_pos_emb = Glm4vVisionRotaryEmbedding(head_dim // 2)
735
+ self.blocks = nn.ModuleList(
736
+ [
737
+ Glm4vVisionBlock(
738
+ dim=self.hidden_size,
739
+ num_heads=self.num_heads,
740
+ mlp_hidden_dim=vision_config.out_hidden_size,
741
+ norm_layer=norm_layer,
742
+ quant_config=quant_config,
743
+ prefix=f"{prefix}.blocks.{layer_idx}",
744
+ use_data_parallel=self.use_data_parallel,
745
+ attn_backend_override=attn_backend_override,
746
+ )
747
+ for layer_idx in range(depth)
748
+ ]
749
+ )
750
+ self.merger = Glm4vPatchMerger(
751
+ d_model=vision_config.out_hidden_size,
752
+ context_dim=vision_config.intermediate_size,
753
+ quant_config=quant_config,
754
+ bias=False,
755
+ prefix=f"{prefix}.merger",
756
+ use_data_parallel=self.use_data_parallel,
757
+ )
758
+ self.embeddings = Glm4vVisionEmbeddings(vision_config)
759
+
760
+ self.post_conv_layernorm = RMSNorm(
761
+ vision_config.hidden_size, eps=vision_config.rms_norm_eps
762
+ )
763
+ self.downsample = nn.Conv2d(
764
+ in_channels=vision_config.hidden_size,
765
+ out_channels=vision_config.out_hidden_size,
766
+ kernel_size=vision_config.spatial_merge_size,
767
+ stride=vision_config.spatial_merge_size,
768
+ )
769
+ self.post_layernorm = RMSNorm(
770
+ vision_config.hidden_size, eps=vision_config.rms_norm_eps
771
+ )
772
+
773
+ self.attn_backend = get_vit_attn_backend(
774
+ head_size=head_dim,
775
+ dtype=torch.get_default_dtype(),
776
+ attn_backend_override=attn_backend_override,
777
+ )
778
+ if (
779
+ self.attn_backend != AttentionBackendEnum.FLASH_ATTN
780
+ and check_upstream_fa_availability(torch.get_default_dtype())
781
+ ):
782
+ self.attn_backend = AttentionBackendEnum.FLASH_ATTN
783
+
784
+ @property
785
+ def dtype(self) -> torch.dtype:
786
+ return self.patch_embed.proj.weight.dtype
787
+
788
+ @property
789
+ def device(self) -> torch.device:
790
+ return self.patch_embed.proj.weight.device
791
+
792
+ def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
793
+ pos_ids = []
794
+ for t, h, w in grid_thw:
795
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
796
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
797
+ hpos_ids = (
798
+ hpos_ids.reshape(
799
+ h // self.spatial_merge_size,
800
+ self.spatial_merge_size,
801
+ w // self.spatial_merge_size,
802
+ self.spatial_merge_size,
803
+ )
804
+ .permute(0, 2, 1, 3)
805
+ .flatten()
806
+ )
807
+ wpos_ids = (
808
+ wpos_ids.reshape(
809
+ h // self.spatial_merge_size,
810
+ self.spatial_merge_size,
811
+ w // self.spatial_merge_size,
812
+ self.spatial_merge_size,
813
+ )
814
+ .permute(0, 2, 1, 3)
815
+ .flatten()
816
+ )
817
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
818
+ pos_ids = torch.cat(pos_ids, dim=0)
819
+ max_grid_size = grid_thw[:, 1:].max()
820
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
821
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
822
+ return rotary_pos_emb, pos_ids
823
+
824
+ def compute_attn_mask_seqlen(
825
+ self,
826
+ cu_seqlens: torch.Tensor,
827
+ ) -> tuple[int | None, list[int] | None]:
828
+ max_seqlen, seqlens = None, None
829
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
830
+ if (
831
+ self.attn_backend == AttentionBackendEnum.FLASH_ATTN
832
+ or self.attn_backend == AttentionBackendEnum.ROCM_AITER_FA
833
+ ):
834
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
835
+ return max_seqlen, seqlens
836
+
837
+ def forward(
838
+ self,
839
+ x: torch.Tensor,
840
+ grid_thw: list[list[int]],
841
+ ) -> torch.Tensor:
842
+ # Convert grid_thw to tensor (always expecting list format now)
843
+ grid_thw = torch.tensor(grid_thw, device=x.device, dtype=torch.long)
844
+
845
+ # patchify
846
+ x = x.to(device=self.device, dtype=self.dtype)
847
+ x = self.patch_embed(x)
848
+ x = self.post_conv_layernorm(x)
849
+
850
+ # compute position embedding
851
+ rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw)
852
+ # compute cu_seqlens
853
+ cu_seqlens = torch.repeat_interleave(
854
+ grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
855
+ ).cumsum(dim=0, dtype=torch.int32)
856
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
857
+
858
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
859
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
860
+ x = self.embeddings(
861
+ x, seqlens, grid_thw, image_type_ids[:, 0], image_type_ids[:, 1]
862
+ )
863
+
864
+ # transformers
865
+ x = x.unsqueeze(1)
866
+ for blk in self.blocks:
867
+ x = blk(
868
+ x,
869
+ cu_seqlens=cu_seqlens,
870
+ rotary_pos_emb=rotary_pos_emb,
871
+ max_seqlen=max_seqlen,
872
+ seqlens=seqlens,
873
+ )
874
+
875
+ # adapter
876
+ x = self.post_layernorm(x)
877
+
878
+ x = x.view(-1, self.spatial_merge_size, self.spatial_merge_size, x.shape[-1])
879
+ x = x.permute(0, 3, 1, 2)
880
+ x = self.downsample(x).view(-1, self.out_hidden_size)
881
+ x = self.merger(x)
882
+
883
+ return x
884
+
885
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
886
+ stacked_params_mapping = [
887
+ # (param_name, shard_name, shard_id)
888
+ ("attn.qkv.", "attn.q.", "q"),
889
+ ("attn.qkv.", "attn.k.", "k"),
890
+ ("attn.qkv.", "attn.v.", "v"),
891
+ ("gate_up_proj", "gate_proj", 0),
892
+ ("gate_up_proj", "up_proj", 1),
893
+ ]
894
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
895
+ loaded_params: set[str] = set()
896
+
897
+ for name, loaded_weight in weights:
898
+ for param_name, weight_name, shard_id in stacked_params_mapping:
899
+ if weight_name not in name:
900
+ continue
901
+ name = name.replace(weight_name, param_name)
902
+
903
+ param = params_dict[name]
904
+ weight_loader = param.weight_loader
905
+ weight_loader(param, loaded_weight, shard_id)
906
+ break
907
+ else:
908
+ param = params_dict[name]
909
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
910
+ weight_loader(param, loaded_weight)
911
+ loaded_params.add(name)
912
+ return loaded_params
913
+
914
+
915
+ class Glm4vProcessingInfo(BaseProcessingInfo):
916
+ def get_hf_config(self):
917
+ return self.ctx.get_hf_config()
918
+
919
+ def get_tokenizer(self):
920
+ return self.ctx.tokenizer
921
+
922
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
923
+ return {"image": None, "video": 1}
924
+
925
+ def get_image_processor(self, **kwargs: object) -> Glm4vImageProcessor:
926
+ return self.get_hf_processor(**kwargs).image_processor
927
+
928
+ def get_video_processor(self, **kwargs: object) -> Glm4vVideoProcessor:
929
+ return self.get_hf_processor(**kwargs).video_processor
930
+
931
+ def _get_vision_info(
932
+ self,
933
+ *,
934
+ image_width: int,
935
+ image_height: int,
936
+ num_frames: int = 16,
937
+ do_resize: bool = True,
938
+ max_image_pixels: int = 28 * 28 * 2 * 30000,
939
+ ) -> tuple[ImageSize, int]:
940
+ hf_config = self.get_hf_config()
941
+ vision_config = hf_config.vision_config
942
+ patch_size = vision_config.patch_size
943
+ merge_size = vision_config.spatial_merge_size
944
+ temporal_patch_size = vision_config.temporal_patch_size
945
+ if do_resize:
946
+ resized_height, resized_width = smart_resize(
947
+ num_frames=num_frames
948
+ if num_frames > temporal_patch_size
949
+ else temporal_patch_size,
950
+ height=image_height,
951
+ width=image_width,
952
+ factor=patch_size * merge_size,
953
+ max_pixels=max_image_pixels,
954
+ )
955
+ preprocessed_size = ImageSize(width=resized_width, height=resized_height)
956
+ else:
957
+ preprocessed_size = ImageSize(width=image_width, height=image_height)
958
+
959
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
960
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
961
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
962
+
963
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
964
+ grid_h = preprocessed_size.height // patch_size
965
+ grid_w = preprocessed_size.width // patch_size
966
+
967
+ num_patches = grid_t * grid_h * grid_w
968
+ num_vision_tokens = num_patches // (merge_size**2)
969
+
970
+ return preprocessed_size, num_vision_tokens
971
+
972
+ def get_image_size_with_most_features(self) -> ImageSize:
973
+ max_image_size, _ = self._get_vision_info(
974
+ image_width=9999999, image_height=9999999
975
+ )
976
+ return max_image_size
977
+
978
+ def get_num_image_tokens(
979
+ self,
980
+ *,
981
+ image_width: int,
982
+ image_height: int,
983
+ ) -> int:
984
+ _, num_image_tokens = self._get_vision_info(
985
+ image_width=image_width,
986
+ image_height=image_height,
987
+ max_image_pixels=28 * 28 * 2 * 6144,
988
+ )
989
+ return num_image_tokens
990
+
991
+ def get_max_image_tokens(self) -> int:
992
+ target_width, target_height = self.get_image_size_with_most_features()
993
+
994
+ return self.get_num_image_tokens(
995
+ image_width=target_width,
996
+ image_height=target_height,
997
+ )
998
+
999
+ def get_num_video_tokens(
1000
+ self,
1001
+ *,
1002
+ image_width: int,
1003
+ image_height: int,
1004
+ num_frames: int,
1005
+ ) -> int:
1006
+ _, num_video_tokens = self._get_vision_info(
1007
+ image_width=image_width,
1008
+ image_height=image_height,
1009
+ num_frames=num_frames,
1010
+ max_image_pixels=28 * 28 * 2 * 30000,
1011
+ )
1012
+ return num_video_tokens
1013
+
1014
+ def _get_max_video_frames(self, max_tokens: int) -> int:
1015
+ target_width, target_height = self.get_image_size_with_most_features()
1016
+
1017
+ num_frames = 0
1018
+
1019
+ while True:
1020
+ next_num_frames = num_frames + 1
1021
+ next_max_tokens = self.get_num_video_tokens(
1022
+ image_width=target_width,
1023
+ image_height=target_height,
1024
+ num_frames=next_num_frames,
1025
+ )
1026
+ if next_max_tokens > max_tokens or next_max_tokens == 0:
1027
+ break
1028
+
1029
+ num_frames = next_num_frames
1030
+
1031
+ return num_frames
1032
+
1033
+ def get_num_frames_with_most_features(
1034
+ self,
1035
+ seq_len: int,
1036
+ mm_counts: Mapping[str, int],
1037
+ ) -> int:
1038
+ max_images = mm_counts.get("image", 0)
1039
+ max_videos = mm_counts.get("video", 0)
1040
+
1041
+ max_image_tokens = self.get_max_image_tokens() * max_images
1042
+ max_total_frames = self._get_max_video_frames(seq_len - max_image_tokens)
1043
+ max_frames_per_video = min(
1044
+ max_total_frames // max(max_videos, 1), _MAX_FRAMES_PER_VIDEO
1045
+ )
1046
+
1047
+ return max(max_frames_per_video, 1)
1048
+
1049
+ def _get_video_second_idx(
1050
+ self, metadata: dict[str, Any], total_frames: int
1051
+ ) -> list[int]:
1052
+ video_processor = self.get_video_processor()
1053
+
1054
+ video_fps = metadata.get("fps", video_processor.fps)
1055
+ meta_frames = metadata.get("total_num_frames", total_frames)
1056
+ max_frame_idx = meta_frames - 1
1057
+ duration = metadata.get("duration", round(max_frame_idx / video_fps) + 1)
1058
+ do_sample_frames = metadata["do_sample_frames"]
1059
+ if not do_sample_frames:
1060
+ frame_indices = metadata["frames_indices"]
1061
+ else:
1062
+ if duration <= video_processor.max_duration:
1063
+ n = int(math.floor(duration * video_processor.fps))
1064
+ frame_indices = [
1065
+ min(
1066
+ max_frame_idx,
1067
+ int(math.ceil(i * video_fps / video_processor.fps)),
1068
+ )
1069
+ for i in range(n)
1070
+ ]
1071
+ else:
1072
+ num_samples = int(video_processor.max_duration * video_processor.fps)
1073
+ if num_samples >= meta_frames:
1074
+ frame_indices = list(range(meta_frames))
1075
+ else:
1076
+ target_seconds = np.linspace(
1077
+ 0, duration, num_samples, endpoint=True
1078
+ )
1079
+ frame_indices = [
1080
+ min(max_frame_idx, int(math.ceil(t * video_fps)))
1081
+ for t in target_seconds
1082
+ ]
1083
+
1084
+ seen, uniq = set(), []
1085
+ for idx in frame_indices:
1086
+ if idx not in seen:
1087
+ seen.add(idx)
1088
+ uniq.append(idx)
1089
+ if len(uniq) & 1:
1090
+ uniq.append(uniq[-1])
1091
+ frame_indices = uniq
1092
+
1093
+ full_second_idxs = [int(idx / video_fps) for idx in frame_indices]
1094
+ timestamps_list = full_second_idxs[::2]
1095
+ selected_timestamps = []
1096
+ for idx in range(0, len(timestamps_list)):
1097
+ selected_timestamps.append(timestamps_list[idx])
1098
+ return selected_timestamps
1099
+
1100
+ def _construct_video_placeholder(
1101
+ self,
1102
+ video_array: np.ndarray,
1103
+ metadata: dict[str, Any],
1104
+ grid_thw: torch.Tensor,
1105
+ ) -> str:
1106
+ hf_processor = self.get_hf_processor()
1107
+ tokenizer = self.get_tokenizer()
1108
+ image_processor = hf_processor.image_processor
1109
+
1110
+ hf_config = self.get_hf_config()
1111
+ boi_token_id = hf_config.image_start_token_id
1112
+ eoi_token_id = hf_config.image_end_token_id
1113
+ bov_token_id = hf_config.video_start_token_id
1114
+ eov_token_id = hf_config.video_end_token_id
1115
+ merge_length = image_processor.merge_size**2
1116
+
1117
+ assert isinstance(grid_thw, torch.Tensor)
1118
+ timestamps = self._get_video_second_idx(metadata, len(video_array))
1119
+ frames_idx_token = [
1120
+ tokenizer.encode(str(i), add_special_tokens=False) for i in timestamps
1121
+ ]
1122
+ T, H, W = grid_thw
1123
+ num_tokens_per_frame = int(H * W) // merge_length
1124
+ placeholder = []
1125
+ placeholder.append(bov_token_id)
1126
+ for frame_idx in frames_idx_token:
1127
+ placeholder.append(boi_token_id)
1128
+ placeholder.extend([hf_processor.video_token_id] * num_tokens_per_frame)
1129
+ placeholder.append(eoi_token_id)
1130
+ placeholder.extend(frame_idx)
1131
+ placeholder.append(eov_token_id)
1132
+
1133
+ return placeholder
1134
+
1135
+
1136
+ class Glm4vDummyInputsBuilder(BaseDummyInputsBuilder[Glm4vProcessingInfo]):
1137
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1138
+ num_images = mm_counts.get("image", 0)
1139
+ num_videos = mm_counts.get("video", 0)
1140
+
1141
+ hf_config = self.info.get_hf_config()
1142
+ hf_processor = self.info.get_hf_processor()
1143
+ tokenizer = self.info.get_tokenizer()
1144
+
1145
+ image_token: str = hf_processor.image_token
1146
+ video_token_ids = [
1147
+ hf_config.video_start_token_id,
1148
+ hf_processor.video_token_id,
1149
+ hf_config.video_end_token_id,
1150
+ ]
1151
+ video_token = tokenizer.decode(video_token_ids)
1152
+
1153
+ return image_token * num_images + video_token * num_videos
1154
+
1155
+ def get_dummy_mm_data(
1156
+ self,
1157
+ seq_len: int,
1158
+ mm_counts: Mapping[str, int],
1159
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
1160
+ ) -> MultiModalDataDict:
1161
+ num_images = mm_counts.get("image", 0)
1162
+ num_videos = mm_counts.get("video", 0)
1163
+
1164
+ target_width, target_height = self.info.get_image_size_with_most_features()
1165
+ target_num_frames = self.info.get_num_frames_with_most_features(
1166
+ seq_len, mm_counts
1167
+ )
1168
+
1169
+ image_overrides = mm_options.get("image") if mm_options else None
1170
+ video_overrides = mm_options.get("video") if mm_options else None
1171
+
1172
+ return {
1173
+ "image": self._get_dummy_images(
1174
+ width=target_width,
1175
+ height=target_height,
1176
+ num_images=num_images,
1177
+ overrides=image_overrides,
1178
+ ),
1179
+ "video": self._get_dummy_videos(
1180
+ width=target_width,
1181
+ height=target_height,
1182
+ num_frames=target_num_frames,
1183
+ num_videos=num_videos,
1184
+ overrides=video_overrides,
1185
+ ),
1186
+ }
1187
+
1188
+ def _get_dummy_videos(
1189
+ self,
1190
+ *,
1191
+ width: int,
1192
+ height: int,
1193
+ num_frames: int,
1194
+ num_videos: int,
1195
+ overrides: VideoDummyOptions | None = None,
1196
+ ) -> list[VideoItem]:
1197
+ if overrides:
1198
+ if overrides.num_frames:
1199
+ if overrides.num_frames > num_frames:
1200
+ logger.warning(
1201
+ "video.num_frames override (%d) exceeds model's "
1202
+ "maximum number of frames (%d), will be ignored",
1203
+ overrides.num_frames,
1204
+ num_frames,
1205
+ )
1206
+ num_frames = min(num_frames, overrides.num_frames)
1207
+ if overrides.width:
1208
+ if overrides.width > width:
1209
+ logger.warning(
1210
+ "video.width override (%d) exceeds model's "
1211
+ "maximum width (%d), will be ignored",
1212
+ overrides.width,
1213
+ width,
1214
+ )
1215
+ width = min(width, overrides.width)
1216
+ if overrides.height:
1217
+ if overrides.height > height:
1218
+ logger.warning(
1219
+ "video.height override (%d) exceeds model's "
1220
+ "maximum height (%d), will be ignored",
1221
+ overrides.height,
1222
+ height,
1223
+ )
1224
+ height = min(height, overrides.height)
1225
+
1226
+ video = np.full((num_frames, width, height, 3), 255, dtype=np.uint8)
1227
+ video_items = []
1228
+ for i in range(num_videos):
1229
+ video_metadata = {
1230
+ "fps": 2.0,
1231
+ "duration": num_frames / 2.0,
1232
+ "total_num_frames": num_frames,
1233
+ "frames_indices": [i for i in range(num_frames)],
1234
+ "video_backend": "opencv",
1235
+ "do_sample_frames": False,
1236
+ }
1237
+ video_item = (video.copy(), video_metadata)
1238
+ video_items.append(video_item)
1239
+
1240
+ return video_items
1241
+
1242
+
1243
+ class Glm4vMultiModalProcessor(BaseMultiModalProcessor[Glm4vProcessingInfo]):
1244
+ def _get_data_parser(self) -> MultiModalDataParser:
1245
+ return MultiModalDataParser(video_needs_metadata=True)
1246
+
1247
+ def _call_hf_processor(
1248
+ self,
1249
+ prompt: str,
1250
+ mm_data: Mapping[str, object],
1251
+ mm_kwargs: Mapping[str, object],
1252
+ tok_kwargs: Mapping[str, object],
1253
+ ) -> BatchFeature:
1254
+ mm_data = dict(mm_data)
1255
+ processor = self.info.get_hf_processor(**mm_kwargs)
1256
+
1257
+ # GLM-4.1V use `image_token_id` as video placeholder, we need to
1258
+ # replace it with `video_token_id` for video processing. So we
1259
+ # separate video processing from image processing.
1260
+ if (
1261
+ "videos" in mm_data
1262
+ and isinstance(mm_data["videos"], list)
1263
+ and len(mm_data["videos"]) > 0
1264
+ ):
1265
+ video_grid_thw_lst = []
1266
+ pixel_values_videos_lst = []
1267
+ for item in mm_data.pop("videos", []):
1268
+ video_array, metadata = item
1269
+
1270
+ # don't update mm_kwargs inplace
1271
+ video_mm_kwargs = dict(**mm_kwargs)
1272
+ video_mm_kwargs["do_sample_frames"] = metadata.get(
1273
+ "do_sample_frames", True
1274
+ )
1275
+
1276
+ video_mm_data = dict()
1277
+ video_mm_data["videos"] = [[video_array]]
1278
+
1279
+ unuse_metadata = ["do_sample_frames"]
1280
+ video_mm_data["video_metadata"] = [
1281
+ [
1282
+ VideoMetadata(
1283
+ **{
1284
+ k: metadata[k]
1285
+ for k in metadata
1286
+ if k not in unuse_metadata
1287
+ }
1288
+ )
1289
+ ]
1290
+ ]
1291
+
1292
+ video_outputs = super()._call_hf_processor(
1293
+ prompt="<|begin_of_video|><|video|><|end_of_video|>",
1294
+ mm_data=video_mm_data,
1295
+ mm_kwargs=video_mm_kwargs,
1296
+ tok_kwargs=tok_kwargs,
1297
+ )
1298
+ input_ids = video_outputs.pop("input_ids")
1299
+ input_ids[input_ids == processor.image_token_id] = (
1300
+ processor.video_token_id
1301
+ )
1302
+ video_placeholder = processor.tokenizer.batch_decode(input_ids)[0]
1303
+ prompt = prompt.replace(
1304
+ "<|begin_of_video|><|video|><|end_of_video|>",
1305
+ video_placeholder,
1306
+ 1,
1307
+ )
1308
+
1309
+ video_grid_thw_lst.append(video_outputs["video_grid_thw"])
1310
+ pixel_values_videos_lst.append(video_outputs["pixel_values_videos"])
1311
+ video_outputs = dict(
1312
+ pixel_values_videos=torch.cat(pixel_values_videos_lst),
1313
+ video_grid_thw=torch.cat(video_grid_thw_lst),
1314
+ )
1315
+ else:
1316
+ video_outputs = dict()
1317
+
1318
+ processed_outputs = super()._call_hf_processor(
1319
+ prompt=prompt,
1320
+ mm_data=mm_data,
1321
+ mm_kwargs=mm_kwargs,
1322
+ tok_kwargs=tok_kwargs,
1323
+ )
1324
+ combined_outputs = dict(
1325
+ processed_outputs,
1326
+ **video_outputs,
1327
+ )
1328
+ return BatchFeature(combined_outputs)
1329
+
1330
+ def _get_mm_fields_config(
1331
+ self,
1332
+ hf_inputs: BatchFeature,
1333
+ hf_processor_mm_kwargs: Mapping[str, object],
1334
+ ) -> Mapping[str, MultiModalFieldConfig]:
1335
+ return _create_qwen2vl_field_factory(
1336
+ self.info.get_hf_config().vision_config.spatial_merge_size
1337
+ )(hf_inputs)
1338
+
1339
+ def _get_prompt_updates(
1340
+ self,
1341
+ mm_items: MultiModalDataItems,
1342
+ hf_processor_mm_kwargs: Mapping[str, Any],
1343
+ out_mm_kwargs: MultiModalKwargsItems,
1344
+ ) -> Sequence[PromptUpdate]:
1345
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1346
+ image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
1347
+
1348
+ merge_length = image_processor.merge_size**2
1349
+
1350
+ def get_image_replacement_glm4v(item_idx: int):
1351
+ out_item = out_mm_kwargs["image"][item_idx]
1352
+ grid_thw = out_item["image_grid_thw"].data
1353
+ assert isinstance(grid_thw, torch.Tensor)
1354
+
1355
+ num_tokens = int(grid_thw.prod()) // merge_length
1356
+ return [hf_processor.image_token_id] * num_tokens
1357
+
1358
+ def get_video_replacement_glm4v(item_idx: int):
1359
+ out_item = out_mm_kwargs["video"][item_idx]
1360
+ grid_thw = out_item["video_grid_thw"].data
1361
+ assert isinstance(grid_thw, torch.Tensor)
1362
+
1363
+ video, metadata = mm_items["video"][item_idx]
1364
+ placeholder = self.info._construct_video_placeholder(
1365
+ video, metadata, grid_thw
1366
+ )
1367
+ return PromptUpdateDetails.select_token_id(
1368
+ placeholder,
1369
+ embed_token_id=hf_processor.video_token_id,
1370
+ )
1371
+
1372
+ return [
1373
+ PromptReplacement(
1374
+ modality="image",
1375
+ target=hf_processor.image_token,
1376
+ replacement=get_image_replacement_glm4v,
1377
+ ),
1378
+ PromptReplacement(
1379
+ modality="video",
1380
+ target="<|begin_of_video|><|video|><|end_of_video|>",
1381
+ replacement=get_video_replacement_glm4v,
1382
+ ),
1383
+ ]
1384
+
1385
+
1386
+ @MULTIMODAL_REGISTRY.register_processor(
1387
+ Glm4vMultiModalProcessor,
1388
+ info=Glm4vProcessingInfo,
1389
+ dummy_inputs=Glm4vDummyInputsBuilder,
1390
+ )
1391
+ class Glm4vForConditionalGeneration(
1392
+ nn.Module, SupportsMultiModal, SupportsLoRA, SupportsPP, SupportsMRoPE
1393
+ ):
1394
+ merge_by_field_config = True
1395
+
1396
+ packed_modules_mapping = {
1397
+ "qkv_proj": [
1398
+ "q_proj",
1399
+ "k_proj",
1400
+ "v_proj",
1401
+ ],
1402
+ "gate_up_proj": ["gate_up_proj"],
1403
+ }
1404
+
1405
+ # To ensure correct weight loading and mapping.
1406
+ hf_to_vllm_mapper = WeightsMapper(
1407
+ orig_to_new_prefix={
1408
+ "lm_head.": "language_model.lm_head.",
1409
+ "model.language_model.": "language_model.model.",
1410
+ "model.visual.": "visual.",
1411
+ }
1412
+ )
1413
+
1414
+ supports_encoder_tp_data = True
1415
+
1416
+ @classmethod
1417
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
1418
+ if modality.startswith("image"):
1419
+ return "<|begin_of_image|><|image|><|end_of_image|>"
1420
+ if modality.startswith("video"):
1421
+ return "<|begin_of_video|><|video|><|end_of_video|>"
1422
+
1423
+ raise ValueError("Only image or video modality is supported")
1424
+
1425
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1426
+ super().__init__()
1427
+ config = vllm_config.model_config.hf_config
1428
+ quant_config = vllm_config.quant_config
1429
+ multimodal_config = vllm_config.model_config.multimodal_config
1430
+
1431
+ self.config = config
1432
+ self.multimodal_config = multimodal_config
1433
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
1434
+
1435
+ attn_backend_override = (
1436
+ multimodal_config.mm_encoder_attn_backend
1437
+ if multimodal_config is not None
1438
+ else None
1439
+ )
1440
+ self.visual = Glm4vVisionTransformer(
1441
+ config.vision_config,
1442
+ norm_eps=getattr(config, "rms_norm_eps", 1e-5),
1443
+ quant_config=quant_config,
1444
+ prefix=maybe_prefix(prefix, "visual"),
1445
+ use_data_parallel=self.use_data_parallel,
1446
+ attn_backend_override=attn_backend_override,
1447
+ )
1448
+
1449
+ if config.model_type == "glm4v":
1450
+ architectures = ["Glm4ForCausalLM"]
1451
+ elif config.model_type == "glm4v_moe":
1452
+ architectures = ["Glm4MoeForCausalLM"]
1453
+ else:
1454
+ architectures = None
1455
+
1456
+ self.language_model = init_vllm_registered_model(
1457
+ vllm_config=vllm_config,
1458
+ hf_config=config.text_config,
1459
+ prefix=maybe_prefix(prefix, "language_model"),
1460
+ architectures=architectures,
1461
+ )
1462
+
1463
+ self.make_empty_intermediate_tensors = (
1464
+ self.language_model.make_empty_intermediate_tensors
1465
+ )
1466
+
1467
+ def _parse_and_validate_image_input(
1468
+ self, **kwargs: object
1469
+ ) -> Glm4vImageInputs | None:
1470
+ pixel_values = kwargs.pop("pixel_values", None)
1471
+ image_embeds = kwargs.pop("image_embeds", None)
1472
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1473
+
1474
+ if pixel_values is None and image_embeds is None:
1475
+ return None
1476
+
1477
+ if pixel_values is not None:
1478
+ return Glm4vImagePixelInputs(
1479
+ type="pixel_values",
1480
+ pixel_values=pixel_values,
1481
+ image_grid_thw=image_grid_thw,
1482
+ )
1483
+
1484
+ if image_embeds is not None:
1485
+ return Glm4vImageEmbeddingInputs(
1486
+ type="image_embeds",
1487
+ image_embeds=image_embeds,
1488
+ image_grid_thw=image_grid_thw,
1489
+ )
1490
+
1491
+ def _parse_and_validate_video_input(
1492
+ self, **kwargs: object
1493
+ ) -> Glm4vVideoInputs | None:
1494
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1495
+ video_embeds = kwargs.pop("video_embeds", None)
1496
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1497
+
1498
+ if pixel_values_videos is None and video_embeds is None:
1499
+ return None
1500
+
1501
+ if pixel_values_videos is not None:
1502
+ return Glm4vVideoPixelInputs(
1503
+ type="pixel_values_videos",
1504
+ pixel_values_videos=pixel_values_videos,
1505
+ video_grid_thw=video_grid_thw,
1506
+ )
1507
+
1508
+ if video_embeds is not None:
1509
+ return Glm4vVideoEmbeddingInputs(
1510
+ type="video_embeds",
1511
+ video_embeds=video_embeds,
1512
+ video_grid_thw=video_grid_thw,
1513
+ )
1514
+
1515
+ def _process_image_input(
1516
+ self, image_input: Glm4vImageInputs
1517
+ ) -> tuple[torch.Tensor, ...]:
1518
+ grid_thw = image_input["image_grid_thw"]
1519
+ assert grid_thw.ndim == 2
1520
+ grid_thw_list = grid_thw.tolist()
1521
+
1522
+ if image_input["type"] == "image_embeds":
1523
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1524
+ else:
1525
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1526
+ if self.use_data_parallel:
1527
+ return run_dp_sharded_mrope_vision_model(
1528
+ self.visual, pixel_values, grid_thw.tolist(), rope_type="rope_3d"
1529
+ )
1530
+ else:
1531
+ image_embeds = self.visual(pixel_values, grid_thw=grid_thw.tolist())
1532
+ merge_size = self.visual.spatial_merge_size
1533
+ sizes = (
1534
+ torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
1535
+ // (merge_size * merge_size)
1536
+ ).tolist()
1537
+ return image_embeds.split(sizes)
1538
+
1539
+ def _process_video_input(
1540
+ self, video_input: Glm4vVideoInputs
1541
+ ) -> tuple[torch.Tensor, ...]:
1542
+ grid_thw = video_input["video_grid_thw"]
1543
+ assert grid_thw.ndim == 2
1544
+ grid_thw_list = grid_thw.tolist()
1545
+
1546
+ if video_input["type"] == "video_embeds":
1547
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1548
+ else:
1549
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1550
+ self.visual.dtype
1551
+ )
1552
+ if self.use_data_parallel:
1553
+ return run_dp_sharded_mrope_vision_model(
1554
+ self.visual,
1555
+ pixel_values_videos,
1556
+ grid_thw.tolist(),
1557
+ rope_type="rope_3d",
1558
+ )
1559
+ else:
1560
+ video_embeds = self.visual(
1561
+ pixel_values_videos, grid_thw=grid_thw.tolist()
1562
+ )
1563
+ # Split concatenated embeddings for each video item.
1564
+ merge_size = self.visual.spatial_merge_size
1565
+ sizes = (
1566
+ torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
1567
+ // (merge_size * merge_size)
1568
+ ).tolist()
1569
+ return video_embeds.split(sizes)
1570
+
1571
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1572
+ mm_input_by_modality = {}
1573
+
1574
+ # Preserve the order of modalities if there are multiple of them
1575
+ # from the order of kwargs.
1576
+ for input_key in kwargs:
1577
+ if (
1578
+ input_key in ("pixel_values", "image_embeds")
1579
+ and "image" not in mm_input_by_modality
1580
+ ):
1581
+ mm_input_by_modality["image"] = self._parse_and_validate_image_input(
1582
+ **kwargs
1583
+ )
1584
+ if (
1585
+ input_key in ("pixel_values_videos", "video_embeds")
1586
+ and "video" not in mm_input_by_modality
1587
+ ):
1588
+ mm_input_by_modality["video"] = self._parse_and_validate_video_input(
1589
+ **kwargs
1590
+ )
1591
+ return mm_input_by_modality
1592
+
1593
+ def get_language_model(self) -> torch.nn.Module:
1594
+ return self.language_model
1595
+
1596
+ def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings | None:
1597
+ mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
1598
+ if not mm_input_by_modality:
1599
+ return None
1600
+
1601
+ # The result multimodal_embeddings is tuple of tensors, with each
1602
+ # tensor corresponding to a multimodal data item (image or video).
1603
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1604
+
1605
+ # NOTE: It is important to iterate over the keys in this dictionary
1606
+ # to preserve the order of the modalities.
1607
+ for modality in mm_input_by_modality:
1608
+ multimodal_input = mm_input_by_modality[modality]
1609
+ if modality == "image":
1610
+ image_embeddings = self._process_image_input(multimodal_input)
1611
+ multimodal_embeddings += tuple(image_embeddings)
1612
+ if modality == "video":
1613
+ video_embeddings = self._process_video_input(multimodal_input)
1614
+ multimodal_embeddings += tuple(video_embeddings)
1615
+ return multimodal_embeddings
1616
+
1617
+ def get_mrope_input_positions(
1618
+ self,
1619
+ input_tokens: list[int],
1620
+ mm_features: list[MultiModalFeatureSpec],
1621
+ ) -> tuple[torch.Tensor, int]:
1622
+ kwargs = MultiModalFeatureSpec.gather_kwargs(
1623
+ mm_features,
1624
+ {"image_grid_thw", "video_grid_thw"},
1625
+ )
1626
+ image_grid_thw = [item.tolist() for item in kwargs.get("image_grid_thw", [])]
1627
+ video_grid_thw = [item.tolist() for item in kwargs.get("video_grid_thw", [])]
1628
+
1629
+ hf_config = self.config
1630
+ image_token_id = hf_config.image_token_id
1631
+ video_start_token_id = hf_config.video_start_token_id
1632
+ video_end_token_id = hf_config.video_end_token_id
1633
+ spatial_merge_size = hf_config.vision_config.spatial_merge_size
1634
+ llm_pos_ids_list: list = []
1635
+
1636
+ if image_grid_thw or video_grid_thw:
1637
+ input_token_type: list[str] = []
1638
+ video_check_flg = False
1639
+ for token in input_tokens:
1640
+ if token == video_start_token_id:
1641
+ video_check_flg = True
1642
+ elif token == video_end_token_id:
1643
+ video_check_flg = False
1644
+
1645
+ if (token == image_token_id) and (video_check_flg is False):
1646
+ input_token_type.append("image")
1647
+ elif (token == image_token_id) and (video_check_flg is True):
1648
+ input_token_type.append("video")
1649
+ else:
1650
+ input_token_type.append("text")
1651
+
1652
+ input_type_group: list[tuple[str, int, int]] = []
1653
+ for key, group_iter in itertools.groupby(
1654
+ enumerate(input_token_type), lambda x: x[1]
1655
+ ):
1656
+ group_list = list(group_iter)
1657
+ start_index = group_list[0][0]
1658
+ end_index = group_list[-1][0] + 1
1659
+ input_type_group.append((key, start_index, end_index))
1660
+
1661
+ video_frame_num = 1
1662
+ mm_data_idx = 0
1663
+ for modality_type, start_idx, end_idx in input_type_group:
1664
+ st_idx = (
1665
+ llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1666
+ )
1667
+ if modality_type == "image":
1668
+ t, h, w = image_grid_thw[mm_data_idx]
1669
+ llm_grid_t, llm_grid_h, llm_grid_w = (
1670
+ t,
1671
+ h // spatial_merge_size,
1672
+ w // spatial_merge_size,
1673
+ )
1674
+
1675
+ t_index = (
1676
+ torch.arange(llm_grid_t)
1677
+ .view(-1, 1)
1678
+ .expand(-1, llm_grid_h * llm_grid_w)
1679
+ .flatten()
1680
+ )
1681
+ h_index = (
1682
+ torch.arange(llm_grid_h)
1683
+ .view(1, -1, 1)
1684
+ .expand(llm_grid_t, -1, llm_grid_w)
1685
+ .flatten()
1686
+ )
1687
+ w_index = (
1688
+ torch.arange(llm_grid_w)
1689
+ .view(1, 1, -1)
1690
+ .expand(llm_grid_t, llm_grid_h, -1)
1691
+ .flatten()
1692
+ )
1693
+ llm_pos_ids_list.append(
1694
+ torch.stack([t_index, h_index, w_index]) + st_idx
1695
+ )
1696
+ mm_data_idx += 1
1697
+
1698
+ elif modality_type == "video":
1699
+ t, h, w = (
1700
+ video_frame_num,
1701
+ *image_grid_thw[mm_data_idx][1:],
1702
+ )
1703
+ llm_grid_t, llm_grid_h, llm_grid_w = (
1704
+ t,
1705
+ h // spatial_merge_size,
1706
+ w // spatial_merge_size,
1707
+ )
1708
+
1709
+ for t_idx in range(llm_grid_t):
1710
+ t_index = (
1711
+ torch.tensor(t_idx)
1712
+ .view(-1, 1)
1713
+ .expand(-1, llm_grid_h * llm_grid_w)
1714
+ .flatten()
1715
+ )
1716
+ h_index = (
1717
+ torch.arange(llm_grid_h)
1718
+ .view(1, -1, 1)
1719
+ .expand(1, -1, llm_grid_w)
1720
+ .flatten()
1721
+ )
1722
+ w_index = (
1723
+ torch.arange(llm_grid_w)
1724
+ .view(1, 1, -1)
1725
+ .expand(1, llm_grid_h, -1)
1726
+ .flatten()
1727
+ )
1728
+ llm_pos_ids_list.append(
1729
+ torch.stack([t_index, h_index, w_index]) + st_idx
1730
+ )
1731
+
1732
+ mm_data_idx += 1
1733
+ video_frame_num += 1
1734
+
1735
+ else:
1736
+ text_len = end_idx - start_idx
1737
+ llm_pos_ids_list.append(
1738
+ torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
1739
+ )
1740
+ video_frame_num = 1
1741
+
1742
+ else:
1743
+ text_len = len(input_tokens)
1744
+ llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1))
1745
+
1746
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1747
+ mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
1748
+ return llm_positions, mrope_position_delta
1749
+
1750
+ def forward(
1751
+ self,
1752
+ input_ids: torch.Tensor,
1753
+ positions: torch.Tensor,
1754
+ intermediate_tensors: IntermediateTensors | None = None,
1755
+ inputs_embeds: torch.Tensor | None = None,
1756
+ **kwargs: object,
1757
+ ) -> torch.Tensor | IntermediateTensors:
1758
+ """Run forward pass for GLM-4V.
1759
+
1760
+ Args:
1761
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1762
+ batch.
1763
+ positions: Flattened (concatenated) position ids corresponding to a
1764
+ batch.
1765
+ **NOTE**: If mrope is enabled (default setting for GLM-4V
1766
+ opensource models), the shape will be `(3, seq_len)`,
1767
+ otherwise it will be `(seq_len,).
1768
+ intermediate_tensors: Optional intermediate tensors for pipeline
1769
+ parallelism.
1770
+ inputs_embeds: Optional pre-computed input embeddings.
1771
+ **kwargs: Additional keyword arguments.
1772
+ """
1773
+ if intermediate_tensors is not None:
1774
+ inputs_embeds = None
1775
+
1776
+ hidden_states = self.language_model.model(
1777
+ input_ids=input_ids,
1778
+ positions=positions,
1779
+ intermediate_tensors=intermediate_tensors,
1780
+ inputs_embeds=inputs_embeds,
1781
+ )
1782
+ return hidden_states
1783
+
1784
+ def compute_logits(
1785
+ self,
1786
+ hidden_states: torch.Tensor,
1787
+ ) -> torch.Tensor | None:
1788
+ return self.language_model.compute_logits(hidden_states)
1789
+
1790
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
1791
+ loader = AutoWeightsLoader(self)
1792
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1793
+
1794
+ def get_mm_mapping(self) -> MultiModelKeys:
1795
+ """
1796
+ Get the module prefix in multimodal models
1797
+ """
1798
+ return MultiModelKeys.from_string_field(
1799
+ language_model="language_model.model",
1800
+ connector="visual.merger.",
1801
+ tower_model="visual.",
1802
+ )
1803
+
1804
+
1805
+ @MULTIMODAL_REGISTRY.register_processor(
1806
+ Glm4vMultiModalProcessor,
1807
+ info=Glm4vProcessingInfo,
1808
+ dummy_inputs=Glm4vDummyInputsBuilder,
1809
+ )
1810
+ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration):
1811
+ packed_modules_mapping = {
1812
+ "qkv_proj": [
1813
+ "q_proj",
1814
+ "k_proj",
1815
+ "v_proj",
1816
+ ],
1817
+ "gate_up_proj": [
1818
+ "gate_proj",
1819
+ "up_proj",
1820
+ ],
1821
+ }