vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
vllm/config/model.py ADDED
@@ -0,0 +1,2162 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import hashlib
5
+ import json
6
+ import warnings
7
+ from collections.abc import Callable
8
+ from dataclasses import InitVar, field
9
+ from importlib.util import find_spec
10
+ from typing import TYPE_CHECKING, Any, Literal, cast, get_args
11
+
12
+ import torch
13
+ from pydantic import ConfigDict, SkipValidation, field_validator, model_validator
14
+ from pydantic.dataclasses import dataclass
15
+ from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
16
+
17
+ import vllm.envs as envs
18
+ from vllm.config.multimodal import MMCacheType, MMEncoderTPMode, MultiModalConfig
19
+ from vllm.config.pooler import PoolerConfig
20
+ from vllm.config.scheduler import RunnerType
21
+ from vllm.config.utils import assert_hashable, config, getattr_iter
22
+ from vllm.logger import init_logger
23
+ from vllm.platforms import current_platform
24
+ from vllm.transformers_utils.config import (
25
+ ConfigFormat,
26
+ get_config,
27
+ get_hf_image_processor_config,
28
+ get_hf_text_config,
29
+ get_pooling_config,
30
+ get_sentence_transformer_tokenizer_config,
31
+ is_encoder_decoder,
32
+ try_get_dense_modules,
33
+ try_get_generation_config,
34
+ try_get_safetensors_metadata,
35
+ try_get_tokenizer_config,
36
+ uses_mrope,
37
+ )
38
+ from vllm.transformers_utils.runai_utils import ObjectStorageModel, is_runai_obj_uri
39
+ from vllm.transformers_utils.utils import maybe_model_redirect
40
+ from vllm.utils.import_utils import LazyLoader
41
+ from vllm.utils.torch_utils import common_broadcastable_dtype
42
+
43
+ if TYPE_CHECKING:
44
+ from transformers import PretrainedConfig
45
+
46
+ import vllm.model_executor.layers.quantization as me_quant
47
+ import vllm.model_executor.models as me_models
48
+ from vllm.attention.backends.registry import AttentionBackendEnum
49
+ from vllm.config.load import LoadConfig
50
+ from vllm.config.parallel import ParallelConfig
51
+ from vllm.model_executor.layers.quantization import QuantizationMethods
52
+ from vllm.v1.sample.logits_processor import LogitsProcessor
53
+ else:
54
+ PretrainedConfig = Any
55
+
56
+ AttentionBackendEnum = Any
57
+ me_quant = LazyLoader(
58
+ "model_executor", globals(), "vllm.model_executor.layers.quantization"
59
+ )
60
+ me_models = LazyLoader("model_executor", globals(), "vllm.model_executor.models")
61
+ LoadConfig = Any
62
+ ParallelConfig = Any
63
+ QuantizationMethods = Any
64
+ LogitsProcessor = Any
65
+
66
+ logger = init_logger(__name__)
67
+
68
+ RunnerOption = Literal["auto", RunnerType]
69
+ ConvertType = Literal["none", "embed", "classify", "reward"]
70
+ ConvertOption = Literal["auto", ConvertType]
71
+ TaskOption = Literal[
72
+ "auto",
73
+ "generate",
74
+ "embedding",
75
+ "embed",
76
+ "classify",
77
+ "score",
78
+ "reward",
79
+ "transcription",
80
+ "draft",
81
+ ]
82
+ TokenizerMode = Literal["auto", "slow", "mistral", "custom"]
83
+ ModelDType = Literal["auto", "half", "float16", "bfloat16", "float", "float32"]
84
+ LogprobsMode = Literal[
85
+ "raw_logits", "raw_logprobs", "processed_logits", "processed_logprobs"
86
+ ]
87
+ HfOverrides = dict[str, Any] | Callable[[PretrainedConfig], PretrainedConfig]
88
+ ModelImpl = Literal["auto", "vllm", "transformers", "terratorch"]
89
+ LayerBlockType = Literal["attention", "linear_attention", "mamba"]
90
+
91
+ _RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
92
+ "generate": ["generate", "transcription"],
93
+ "pooling": ["embedding", "embed", "classify", "score", "reward"],
94
+ "draft": ["draft"],
95
+ }
96
+
97
+ _RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
98
+ "generate": [],
99
+ "pooling": ["embed", "classify", "reward"],
100
+ "draft": [],
101
+ }
102
+
103
+
104
+ @config
105
+ @dataclass(config=ConfigDict(arbitrary_types_allowed=True))
106
+ class ModelConfig:
107
+ """Configuration for the model."""
108
+
109
+ model: str = "Qwen/Qwen3-0.6B"
110
+ """Name or path of the Hugging Face model to use. It is also used as the
111
+ content for `model_name` tag in metrics output when `served_model_name` is
112
+ not specified."""
113
+ runner: RunnerOption = "auto"
114
+ """The type of model runner to use. Each vLLM instance only supports one
115
+ model runner, even if the same model can be used for multiple types."""
116
+ convert: ConvertOption = "auto"
117
+ """Convert the model using adapters defined in
118
+ [vllm.model_executor.models.adapters][]. The most common use case is to
119
+ adapt a text generation model to be used for pooling tasks."""
120
+ task: TaskOption | None = None
121
+ """[DEPRECATED] The task to use the model for. If the model supports more
122
+ than one model runner, this is used to select which model runner to run.
123
+
124
+ Note that the model may support other tasks using the same model runner.
125
+ """
126
+ tokenizer: SkipValidation[str] = None # type: ignore
127
+ """Name or path of the Hugging Face tokenizer to use. If unspecified, model
128
+ name or path will be used."""
129
+ tokenizer_mode: TokenizerMode = "auto"
130
+ """Tokenizer mode:\n
131
+ - "auto" will use the fast tokenizer if available.\n
132
+ - "slow" will always use the slow tokenizer.\n
133
+ - "mistral" will always use the tokenizer from `mistral_common`.\n
134
+ - "custom" will use --tokenizer to select the preregistered tokenizer."""
135
+ trust_remote_code: bool = False
136
+ """Trust remote code (e.g., from HuggingFace) when downloading the model
137
+ and tokenizer."""
138
+ dtype: ModelDType | torch.dtype = "auto"
139
+ """Data type for model weights and activations:\n
140
+ - "auto" will use FP16 precision for FP32 and FP16 models, and BF16
141
+ precision for BF16 models.\n
142
+ - "half" for FP16. Recommended for AWQ quantization.\n
143
+ - "float16" is the same as "half".\n
144
+ - "bfloat16" for a balance between precision and range.\n
145
+ - "float" is shorthand for FP32 precision.\n
146
+ - "float32" for FP32 precision."""
147
+ seed: int | None = None
148
+ """Random seed for reproducibility. Initialized to None in V0, but
149
+ initialized to 0 in V1."""
150
+ hf_config: PretrainedConfig = field(init=False)
151
+ """The Hugging Face config of the model."""
152
+ hf_text_config: PretrainedConfig = field(init=False)
153
+ """The Hugging Face config of the text model (same as hf_config for text models)."""
154
+ hf_config_path: str | None = None
155
+ """Name or path of the Hugging Face config to use. If unspecified, model
156
+ name or path will be used."""
157
+ allowed_local_media_path: str = ""
158
+ """Allowing API requests to read local images or videos from directories
159
+ specified by the server file system. This is a security risk. Should only
160
+ be enabled in trusted environments."""
161
+ allowed_media_domains: list[str] | None = None
162
+ """If set, only media URLs that belong to this domain can be used for
163
+ multi-modal inputs. """
164
+ revision: str | None = None
165
+ """The specific model version to use. It can be a branch name, a tag name,
166
+ or a commit id. If unspecified, will use the default version."""
167
+ code_revision: str | None = None
168
+ """The specific revision to use for the model code on the Hugging Face Hub.
169
+ It can be a branch name, a tag name, or a commit id. If unspecified, will
170
+ use the default version."""
171
+ tokenizer_revision: str | None = None
172
+ """The specific revision to use for the tokenizer on the Hugging Face Hub.
173
+ It can be a branch name, a tag name, or a commit id. If unspecified, will
174
+ use the default version."""
175
+ max_model_len: SkipValidation[int] = None # type: ignore
176
+ """Model context length (prompt and output). If unspecified, will be
177
+ automatically derived from the model config.
178
+
179
+ When passing via `--max-model-len`, supports k/m/g/K/M/G in human-readable
180
+ format. Examples:\n
181
+ - 1k -> 1000\n
182
+ - 1K -> 1024\n
183
+ - 25.6k -> 25,600"""
184
+ spec_target_max_model_len: int | None = None
185
+ """Specify the maximum length for spec decoding draft models."""
186
+ quantization: SkipValidation[QuantizationMethods | None] = None
187
+ """Method used to quantize the weights. If `None`, we first check the
188
+ `quantization_config` attribute in the model config file. If that is
189
+ `None`, we assume the model weights are not quantized and use `dtype` to
190
+ determine the data type of the weights."""
191
+ enforce_eager: bool = False
192
+ """Whether to always use eager-mode PyTorch. If True, we will disable CUDA
193
+ graph and always execute the model in eager mode. If False, we will use
194
+ CUDA graph and eager execution in hybrid for maximal performance and
195
+ flexibility."""
196
+ max_logprobs: int = 20
197
+ """Maximum number of log probabilities to return when `logprobs` is
198
+ specified in `SamplingParams`. The default value comes the default for the
199
+ OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length *
200
+ vocab_size) logprobs are allowed to be returned and it may cause OOM."""
201
+ logprobs_mode: LogprobsMode = "raw_logprobs"
202
+ """Indicates the content returned in the logprobs and prompt_logprobs.
203
+ Supported mode:
204
+ 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits.
205
+ Raw means the values before applying any logit processors, like bad words.
206
+ Processed means the values after applying all processors, including
207
+ temperature and top_k/top_p.
208
+ """
209
+ disable_sliding_window: bool = False
210
+ """Whether to disable sliding window. If True, we will disable the sliding
211
+ window functionality of the model, capping to sliding window size. If the
212
+ model does not support sliding window, this argument is ignored."""
213
+ disable_cascade_attn: bool = False
214
+ """Disable cascade attention for V1. While cascade attention does not
215
+ change the mathematical correctness, disabling it could be useful for
216
+ preventing potential numerical issues. Note that even if this is set to
217
+ False, cascade attention will be only used when the heuristic tells that
218
+ it's beneficial."""
219
+ skip_tokenizer_init: bool = False
220
+ """Skip initialization of tokenizer and detokenizer. Expects valid
221
+ `prompt_token_ids` and `None` for prompt from the input. The generated
222
+ output will contain token ids."""
223
+ enable_prompt_embeds: bool = False
224
+ """If `True`, enables passing text embeddings as inputs via the
225
+ `prompt_embeds` key.
226
+
227
+ WARNING: The vLLM engine may crash if incorrect shape of embeddings is passed.
228
+ Only enable this flag for trusted users!"""
229
+ served_model_name: str | list[str] | None = None
230
+ """The model name(s) used in the API. If multiple names are provided, the
231
+ server will respond to any of the provided names. The model name in the
232
+ model field of a response will be the first name in this list. If not
233
+ specified, the model name will be the same as the `--model` argument. Noted
234
+ that this name(s) will also be used in `model_name` tag content of
235
+ prometheus metrics, if multiple names provided, metrics tag will take the
236
+ first one."""
237
+ config_format: str | ConfigFormat = "auto"
238
+ """The format of the model config to load:\n
239
+ - "auto" will try to load the config in hf format if available else it
240
+ will try to load in mistral format.\n
241
+ - "hf" will load the config in hf format.\n
242
+ - "mistral" will load the config in mistral format."""
243
+ hf_token: bool | str | None = None
244
+ """The token to use as HTTP bearer authorization for remote files . If
245
+ `True`, will use the token generated when running `huggingface-cli login`
246
+ (stored in `~/.huggingface`)."""
247
+ hf_overrides: HfOverrides = field(default_factory=dict)
248
+ """If a dictionary, contains arguments to be forwarded to the Hugging Face
249
+ config. If a callable, it is called to update the HuggingFace config."""
250
+ logits_processor_pattern: str | None = None
251
+ """Optional regex pattern specifying valid logits processor qualified names
252
+ that can be passed with the `logits_processors` extra completion argument.
253
+ Defaults to `None`, which allows no processors."""
254
+ generation_config: str = "auto"
255
+ """The folder path to the generation config. Defaults to `"auto"`, the
256
+ generation config will be loaded from model path. If set to `"vllm"`, no
257
+ generation config is loaded, vLLM defaults will be used. If set to a folder
258
+ path, the generation config will be loaded from the specified folder path.
259
+ If `max_new_tokens` is specified in generation config, then it sets a
260
+ server-wide limit on the number of output tokens for all requests."""
261
+ override_generation_config: dict[str, Any] = field(default_factory=dict)
262
+ """Overrides or sets generation config. e.g. `{"temperature": 0.5}`. If
263
+ used with `--generation-config auto`, the override parameters will be
264
+ merged with the default config from the model. If used with
265
+ `--generation-config vllm`, only the override parameters are used."""
266
+ enable_sleep_mode: bool = False
267
+ """Enable sleep mode for the engine (only cuda and
268
+ hip platforms are supported)."""
269
+ model_impl: str | ModelImpl = "auto"
270
+ """Which implementation of the model to use:\n
271
+ - "auto" will try to use the vLLM implementation, if it exists, and fall
272
+ back to the Transformers implementation if no vLLM implementation is
273
+ available.\n
274
+ - "vllm" will use the vLLM model implementation.\n
275
+ - "transformers" will use the Transformers model implementation.\n
276
+ - "terratorch" will use the TerraTorch model implementation.
277
+ """
278
+ override_attention_dtype: str | None = None
279
+ """Override dtype for attention"""
280
+ logits_processors: list[str | type[LogitsProcessor]] | None = None
281
+ """One or more logits processors' fully-qualified class names or class
282
+ definitions"""
283
+ io_processor_plugin: str | None = None
284
+ """IOProcessor plugin name to load at model startup"""
285
+
286
+ # Pooler config
287
+ pooler_config: PoolerConfig | None = None
288
+ """Pooler config which controls the behaviour of output pooling in pooling
289
+ models."""
290
+ override_pooler_config: dict | PoolerConfig | None = None
291
+ """[DEPRECATED] Use `pooler_config` instead. This field will be removed in
292
+ v0.12.0 or v1.0.0, whichever is sooner."""
293
+
294
+ # Multimodal config and init vars
295
+ multimodal_config: MultiModalConfig | None = None
296
+ """Configuration for multimodal model. If `None`, this will be inferred
297
+ from the architecture of `self.model`."""
298
+ limit_mm_per_prompt: InitVar[dict[str, int | dict[str, int]] | None] = None
299
+ enable_mm_embeds: InitVar[bool | None] = None
300
+ media_io_kwargs: InitVar[dict[str, dict[str, Any]] | None] = None
301
+ mm_processor_kwargs: InitVar[dict[str, Any] | None] = None
302
+ mm_processor_cache_gb: InitVar[float | None] = None
303
+ mm_processor_cache_type: InitVar[MMCacheType | None] = None
304
+ mm_shm_cache_max_object_size_mb: InitVar[int | None] = None
305
+ mm_encoder_tp_mode: InitVar[MMEncoderTPMode | None] = None
306
+ mm_encoder_attn_backend: InitVar[AttentionBackendEnum | str | None] = None
307
+ interleave_mm_strings: InitVar[bool | None] = None
308
+ skip_mm_profiling: InitVar[bool | None] = None
309
+ video_pruning_rate: InitVar[float | None] = None
310
+
311
+ def compute_hash(self) -> str:
312
+ """
313
+ WARNING: Whenever a new field is added to this config,
314
+ ensure that it is included in the factors list if
315
+ it affects the computation graph.
316
+
317
+ Provide a hash that uniquely identifies all the configs
318
+ that affect the structure of the computation
319
+ graph from input ids/embeddings to the final hidden states,
320
+ excluding anything before input ids/embeddings and after
321
+ the final hidden states.
322
+ """
323
+ factors: list[Any] = []
324
+ factors.append(self.model)
325
+ factors.append(self.dtype)
326
+ factors.append(self.quantization)
327
+ factors.append(self.revision)
328
+ factors.append(self.code_revision)
329
+ factors.append(self.max_model_len)
330
+ factors.append(self.max_logprobs)
331
+ factors.append(self.disable_sliding_window)
332
+ factors.append(self.trust_remote_code)
333
+ factors.append(self.generation_config)
334
+ factors.append(self.model_impl)
335
+ factors.append(self.override_generation_config)
336
+ factors.append(self.video_pruning_rate)
337
+ factors.append(self.enable_prompt_embeds)
338
+
339
+ # hf_config can control how the model looks!
340
+ try:
341
+ hf_config_json = self.hf_config.to_json_string(use_diff=False)
342
+ except TypeError:
343
+ from transformers import PretrainedConfig
344
+
345
+ from vllm.utils.jsontree import json_map_leaves
346
+
347
+ # Handle nested HF configs with unserializable values gracefully
348
+ hf_config_json = (
349
+ json.dumps(
350
+ json_map_leaves(
351
+ lambda v: v.to_dict()
352
+ if isinstance(v, PretrainedConfig)
353
+ else str(v),
354
+ self.hf_config.to_dict(),
355
+ ),
356
+ indent=2,
357
+ sort_keys=True,
358
+ )
359
+ + "\n"
360
+ )
361
+
362
+ factors.append(hf_config_json)
363
+
364
+ str_factors = str(factors)
365
+ assert_hashable(str_factors)
366
+ return hashlib.sha256(str(factors).encode()).hexdigest()
367
+
368
+ def _update_nested(
369
+ self,
370
+ target: PretrainedConfig | dict[str, Any],
371
+ updates: dict[str, Any],
372
+ ) -> None:
373
+ """Recursively updates a config or dict with nested updates."""
374
+ for key, value in updates.items():
375
+ if isinstance(value, dict):
376
+ # Get the nested target
377
+ if isinstance(target, dict):
378
+ nested_target = target.get(key)
379
+ else:
380
+ nested_target = getattr(target, key, None)
381
+
382
+ # If nested target exists and can be updated recursively
383
+ if nested_target is not None and (
384
+ isinstance(nested_target, dict)
385
+ or hasattr(nested_target, "__dict__")
386
+ ):
387
+ self._update_nested(nested_target, value)
388
+ continue
389
+
390
+ # Set the value (base case)
391
+ if isinstance(target, dict):
392
+ target[key] = value
393
+ else:
394
+ setattr(target, key, value)
395
+
396
+ def _apply_dict_overrides(
397
+ self,
398
+ config: PretrainedConfig,
399
+ overrides: dict[str, Any],
400
+ ) -> None:
401
+ """Apply dict overrides, handling both nested configs and dict values."""
402
+ from transformers import PretrainedConfig
403
+
404
+ for key, value in overrides.items():
405
+ attr = getattr(config, key, None)
406
+ if attr is not None and isinstance(attr, PretrainedConfig):
407
+ # It's a nested config - recursively update it
408
+ self._update_nested(attr, value)
409
+ else:
410
+ # It's a dict-valued parameter - set it directly
411
+ setattr(config, key, value)
412
+
413
+ def __post_init__(
414
+ self,
415
+ # Multimodal config init vars
416
+ limit_mm_per_prompt: dict[str, int] | None,
417
+ enable_mm_embeds: bool | None,
418
+ media_io_kwargs: dict[str, dict[str, Any]] | None,
419
+ mm_processor_kwargs: dict[str, Any] | None,
420
+ mm_processor_cache_gb: float | None,
421
+ mm_processor_cache_type: MMCacheType | None,
422
+ mm_shm_cache_max_object_size_mb: int | None,
423
+ mm_encoder_tp_mode: MMEncoderTPMode | None,
424
+ mm_encoder_attn_backend: AttentionBackendEnum | str | None,
425
+ interleave_mm_strings: bool | None,
426
+ skip_mm_profiling: bool | None,
427
+ video_pruning_rate: float | None,
428
+ ) -> None:
429
+ # Set the default seed to 0 in V1.
430
+ # NOTE(woosuk): In V1, we use separate processes for workers (unless
431
+ # VLLM_ENABLE_V1_MULTIPROCESSING=0), so setting a seed here
432
+ # doesn't affect the user process. However, without a consistent seed,
433
+ # different tensor parallel workers would sample different tokens,
434
+ # leading to inconsistent results.
435
+ if self.seed is None:
436
+ self.seed = 0
437
+ if not envs.VLLM_ENABLE_V1_MULTIPROCESSING:
438
+ logger.warning(
439
+ "The global random seed is set to %d. Since "
440
+ "VLLM_ENABLE_V1_MULTIPROCESSING is set to False, this may "
441
+ "affect the random state of the Python process that "
442
+ "launched vLLM.",
443
+ self.seed,
444
+ )
445
+
446
+ # Keep set served_model_name before maybe_model_redirect(self.model)
447
+ self.served_model_name = get_served_model_name(
448
+ self.model, self.served_model_name
449
+ )
450
+ self.model = maybe_model_redirect(self.model)
451
+ # The tokenizer is consistent with the model by default.
452
+ if self.tokenizer is None:
453
+ self.tokenizer = self.model
454
+ if self.tokenizer_revision is None:
455
+ self.tokenizer_revision = self.revision
456
+ self.tokenizer = maybe_model_redirect(self.tokenizer)
457
+
458
+ if isinstance(self.hf_config_path, str):
459
+ self.hf_config_path = maybe_model_redirect(self.hf_config_path)
460
+
461
+ if callable(self.hf_overrides):
462
+ hf_overrides_kw = {}
463
+ hf_overrides_fn = self.hf_overrides
464
+ dict_overrides: dict[str, Any] = {}
465
+ else:
466
+ # Separate dict overrides from flat ones
467
+ # We'll determine how to apply dict overrides after loading the config
468
+ hf_overrides_kw = {}
469
+ dict_overrides = {}
470
+ for key, value in self.hf_overrides.items():
471
+ if isinstance(value, dict):
472
+ dict_overrides[key] = value
473
+ else:
474
+ hf_overrides_kw[key] = value
475
+ hf_overrides_fn = None
476
+
477
+ self.maybe_pull_model_tokenizer_for_runai(self.model, self.tokenizer)
478
+
479
+ if (
480
+ (backend := envs.VLLM_ATTENTION_BACKEND)
481
+ and backend == "FLASHINFER"
482
+ and find_spec("flashinfer") is None
483
+ ):
484
+ raise ValueError(
485
+ "VLLM_ATTENTION_BACKEND is set to FLASHINFER, but flashinfer "
486
+ "module was not found. See "
487
+ "https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile " # noqa: E501
488
+ "for instructions on how to install it."
489
+ )
490
+
491
+ from vllm.platforms import current_platform
492
+
493
+ if self.override_attention_dtype is not None and not current_platform.is_rocm():
494
+ warnings.warn(
495
+ "override-attention-dtype is set but not using ROCm platform",
496
+ stacklevel=2,
497
+ )
498
+
499
+ if self.enable_sleep_mode and not current_platform.is_sleep_mode_available():
500
+ raise ValueError("Sleep mode is not supported on current platform.")
501
+
502
+ hf_config = get_config(
503
+ self.hf_config_path or self.model,
504
+ self.trust_remote_code,
505
+ self.revision,
506
+ self.code_revision,
507
+ self.config_format,
508
+ hf_overrides_kw=hf_overrides_kw,
509
+ hf_overrides_fn=hf_overrides_fn,
510
+ )
511
+
512
+ self.hf_config = hf_config
513
+ if dict_overrides:
514
+ self._apply_dict_overrides(hf_config, dict_overrides)
515
+ self.hf_text_config = get_hf_text_config(self.hf_config)
516
+ self.attention_chunk_size = getattr(
517
+ self.hf_text_config, "attention_chunk_size", None
518
+ )
519
+ self.encoder_config = self._get_encoder_config()
520
+ self.hf_image_processor_config = get_hf_image_processor_config(
521
+ self.model, hf_token=self.hf_token, revision=self.revision
522
+ )
523
+
524
+ architectures = self.architectures
525
+ registry = self.registry
526
+ is_generative_model = registry.is_text_generation_model(architectures, self)
527
+ is_pooling_model = registry.is_pooling_model(architectures, self)
528
+
529
+ def _task_to_convert(task: TaskOption) -> ConvertType:
530
+ if task == "embedding" or task == "embed":
531
+ return "embed"
532
+ if task == "classify":
533
+ return "classify"
534
+ if task == "reward":
535
+ return "reward"
536
+ if task == "score":
537
+ new_task = self._get_default_pooling_task(architectures)
538
+ return "classify" if new_task == "classify" else "embed"
539
+
540
+ return "none"
541
+
542
+ if self.task is not None:
543
+ runner: RunnerOption = "auto"
544
+ convert: ConvertOption = "auto"
545
+ msg_prefix = (
546
+ "The 'task' option has been deprecated and will be "
547
+ "removed in v0.13.0 or v1.0, whichever comes first."
548
+ )
549
+ msg_hint = "Please remove this option."
550
+
551
+ is_generative_task = self.task in _RUNNER_TASKS["generate"]
552
+ is_pooling_task = self.task in _RUNNER_TASKS["pooling"]
553
+
554
+ if is_generative_model and is_pooling_model:
555
+ if is_generative_task:
556
+ runner = "generate"
557
+ convert = "auto"
558
+ msg_hint = (
559
+ "Please replace this option with `--runner "
560
+ "generate` to continue using this model "
561
+ "as a generative model."
562
+ )
563
+ elif is_pooling_task:
564
+ runner = "pooling"
565
+ convert = "auto"
566
+ msg_hint = (
567
+ "Please replace this option with `--runner "
568
+ "pooling` to continue using this model "
569
+ "as a pooling model."
570
+ )
571
+ else: # task == "auto"
572
+ pass
573
+ elif is_generative_model or is_pooling_model:
574
+ if is_generative_task:
575
+ runner = "generate"
576
+ convert = "auto"
577
+ msg_hint = "Please remove this option"
578
+ elif is_pooling_task:
579
+ runner = "pooling"
580
+ convert = _task_to_convert(self.task)
581
+ msg_hint = (
582
+ "Please replace this option with `--convert "
583
+ f"{convert}` to continue using this model "
584
+ "as a pooling model."
585
+ )
586
+ else: # task == "auto"
587
+ pass
588
+ else:
589
+ debug_info = {
590
+ "architectures": architectures,
591
+ "is_generative_model": is_generative_model,
592
+ "is_pooling_model": is_pooling_model,
593
+ }
594
+ raise AssertionError(
595
+ "The model should be a generative or "
596
+ "pooling model when task is set to "
597
+ f"{self.task!r}. Found: {debug_info}"
598
+ )
599
+
600
+ self.runner = runner
601
+ self.convert = convert
602
+
603
+ msg = f"{msg_prefix} {msg_hint}"
604
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
605
+
606
+ self.runner_type = self._get_runner_type(architectures, self.runner)
607
+ self.convert_type = self._get_convert_type(
608
+ architectures, self.runner_type, self.convert
609
+ )
610
+
611
+ if self.runner_type == "generate" and not is_generative_model:
612
+ generate_converts = _RUNNER_CONVERTS["generate"]
613
+ if self.convert_type not in generate_converts:
614
+ # Currently we don't have any converters for generative models
615
+ raise ValueError("This model does not support `--runner generate`.")
616
+ if self.runner_type == "pooling" and not is_pooling_model:
617
+ pooling_converts = _RUNNER_CONVERTS["pooling"]
618
+ if self.convert_type not in pooling_converts:
619
+ convert_option = "<" + "|".join(pooling_converts) + ">"
620
+ raise ValueError(
621
+ "This model does not support `--runner pooling`. "
622
+ f"You can pass `--convert {convert_option} to adapt "
623
+ "it into a pooling model."
624
+ )
625
+
626
+ # Note: Initialize these attributes early because transformers fallback
627
+ # may fail to load dynamic modules in child processes
628
+ model_info, arch = registry.inspect_model_cls(architectures, self)
629
+ self._model_info = model_info
630
+ self._architecture = arch
631
+ logger.info("Resolved architecture: %s", arch)
632
+
633
+ # Init pooler config if needed
634
+ if self.runner_type == "pooling":
635
+ if self.override_pooler_config is not None:
636
+ logger.warning_once(
637
+ "`override_pooler_config` is deprecated and will be "
638
+ "removed in v0.12.0 or v1.0.0, whichever is sooner. "
639
+ "Please use `pooler_config` instead."
640
+ )
641
+
642
+ if isinstance(self.override_pooler_config, dict):
643
+ self.pooler_config = PoolerConfig(**self.override_pooler_config)
644
+ else:
645
+ self.pooler_config = self.override_pooler_config
646
+
647
+ if self.pooler_config is None:
648
+ self.pooler_config = PoolerConfig()
649
+
650
+ base_config = get_pooling_config(self.model, self.revision)
651
+ if base_config is not None:
652
+ # Only set values that are not overridden by the user
653
+ for k, v in base_config.items():
654
+ if getattr(self.pooler_config, k) is None:
655
+ setattr(self.pooler_config, k, v)
656
+
657
+ default_pooling_type = self._model_info.default_pooling_type
658
+ if self.pooler_config.pooling_type is None:
659
+ self.pooler_config.pooling_type = default_pooling_type
660
+
661
+ self.dtype: torch.dtype = _get_and_verify_dtype(
662
+ self.model,
663
+ self.hf_config,
664
+ self.dtype,
665
+ is_pooling_model=self.runner_type == "pooling",
666
+ revision=self.revision,
667
+ )
668
+
669
+ self.original_max_model_len = self.max_model_len
670
+ self.max_model_len = self.get_and_verify_max_len(self.max_model_len)
671
+ # Init multimodal config if needed
672
+ if self._model_info.supports_multimodal:
673
+ if (
674
+ mm_encoder_tp_mode == "data"
675
+ and not self._model_info.supports_multimodal_encoder_tp_data
676
+ ):
677
+ logger.warning_once(
678
+ "This model does not support `--mm-encoder-tp-mode data`. "
679
+ "Falling back to `--mm-encoder-tp-mode weights`."
680
+ )
681
+ mm_encoder_tp_mode = "weights"
682
+
683
+ mm_config_kwargs = dict(
684
+ limit_per_prompt=limit_mm_per_prompt,
685
+ enable_mm_embeds=enable_mm_embeds,
686
+ media_io_kwargs=media_io_kwargs,
687
+ mm_processor_kwargs=mm_processor_kwargs,
688
+ mm_processor_cache_gb=mm_processor_cache_gb,
689
+ mm_processor_cache_type=mm_processor_cache_type,
690
+ mm_shm_cache_max_object_size_mb=mm_shm_cache_max_object_size_mb,
691
+ mm_encoder_tp_mode=mm_encoder_tp_mode,
692
+ mm_encoder_attn_backend=mm_encoder_attn_backend,
693
+ interleave_mm_strings=interleave_mm_strings,
694
+ skip_mm_profiling=skip_mm_profiling,
695
+ video_pruning_rate=video_pruning_rate,
696
+ )
697
+
698
+ mm_config_kwargs = {
699
+ k: v for k, v in mm_config_kwargs.items() if v is not None
700
+ }
701
+
702
+ self.multimodal_config = MultiModalConfig(**mm_config_kwargs)
703
+
704
+ if self.disable_sliding_window:
705
+ # Set after get_and_verify_max_len to ensure that max_model_len
706
+ # can be correctly capped to sliding window size
707
+ self.hf_text_config.sliding_window = None
708
+
709
+ if not self.skip_tokenizer_init:
710
+ self._verify_tokenizer_mode()
711
+
712
+ # Avoid running try_verify_and_update_config multiple times
713
+ self.config_updated = False
714
+
715
+ self._verify_quantization()
716
+ self._verify_cuda_graph()
717
+ self._verify_bnb_config()
718
+
719
+ @field_validator("quantization", mode="before")
720
+ @classmethod
721
+ def validate_quantization_before(cls, value: Any) -> Any:
722
+ if isinstance(value, str):
723
+ return value.lower()
724
+ return value
725
+
726
+ @model_validator(mode="after")
727
+ def validate_model_config_after(self: "ModelConfig") -> "ModelConfig":
728
+ if not isinstance(self.tokenizer, str):
729
+ raise ValueError("tokenizer must be a string after __post_init__.")
730
+ if not isinstance(self.max_model_len, int):
731
+ raise ValueError("max_model_len must be an integer after __post_init__.")
732
+ return self
733
+
734
+ def _get_transformers_backend_cls(self) -> str:
735
+ """Determine which Transformers modeling backend class will be used if
736
+ `model_impl` is set to `transformers` or `auto`."""
737
+ cls = "Transformers"
738
+ # If 'hf_config != hf_text_config' it's a nested config, i.e. multimodal
739
+ cls += "MultiModal" if self.hf_config != self.hf_text_config else ""
740
+ cls += "MoE" if self.get_num_experts() > 1 else ""
741
+ # Check if the architecture we're wrapping has defaults
742
+ runner = None
743
+ task = None
744
+ if defaults := try_match_architecture_defaults(self.architectures[0]):
745
+ _, (runner, task) = defaults
746
+ # User specified value take precedence
747
+ if self.runner != "auto":
748
+ runner = self.runner
749
+ # Only consider Transformers modeling backend pooling classes if we're wrapping
750
+ # an architecture that defaults to pooling. Otherwise, we return the LM class
751
+ # and use adapters.
752
+ if runner == "pooling" and task in {"embed", "classify"}:
753
+ if task == "embed":
754
+ cls += "EmbeddingModel"
755
+ elif task == "classify":
756
+ cls += "ForSequenceClassification"
757
+ else:
758
+ cls += "ForCausalLM"
759
+ return cls
760
+
761
+ def using_transformers_backend(self) -> bool:
762
+ """Check if the model is using the Transformers modeling backend class."""
763
+ used_cls = self._model_info.architecture
764
+ transformers_backend_cls = self._get_transformers_backend_cls()
765
+ return used_cls == transformers_backend_cls
766
+
767
+ @property
768
+ def registry(self):
769
+ return me_models.ModelRegistry
770
+
771
+ @property
772
+ def architectures(self) -> list[str]:
773
+ return getattr(self.hf_config, "architectures", [])
774
+
775
+ @property
776
+ def architecture(self) -> str:
777
+ """The architecture vllm actually used."""
778
+ return self._architecture
779
+
780
+ def maybe_pull_model_tokenizer_for_runai(self, model: str, tokenizer: str) -> None:
781
+ """Pull model/tokenizer from Object Storage to temporary
782
+ directory when needed.
783
+
784
+ Args:
785
+ model: Model name or path
786
+ tokenizer: Tokenizer name or path
787
+ """
788
+
789
+ if not (is_runai_obj_uri(model) or is_runai_obj_uri(tokenizer)):
790
+ return
791
+
792
+ if is_runai_obj_uri(model):
793
+ object_storage_model = ObjectStorageModel(url=model)
794
+ object_storage_model.pull_files(
795
+ model, allow_pattern=["*.model", "*.py", "*.json"]
796
+ )
797
+ self.model_weights = model
798
+ self.model = object_storage_model.dir
799
+
800
+ # If tokenizer is same as model, download to same directory
801
+ if model == tokenizer:
802
+ object_storage_model.pull_files(
803
+ model,
804
+ ignore_pattern=[
805
+ "*.pt",
806
+ "*.safetensors",
807
+ "*.bin",
808
+ "*.tensors",
809
+ "*.pth",
810
+ ],
811
+ )
812
+ self.tokenizer = object_storage_model.dir
813
+ return
814
+
815
+ # Only download tokenizer if needed and not already handled
816
+ if is_runai_obj_uri(tokenizer):
817
+ object_storage_tokenizer = ObjectStorageModel(url=tokenizer)
818
+ object_storage_tokenizer.pull_files(
819
+ model,
820
+ ignore_pattern=["*.pt", "*.safetensors", "*.bin", "*.tensors", "*.pth"],
821
+ )
822
+ self.tokenizer = object_storage_tokenizer.dir
823
+
824
+ def _get_encoder_config(self):
825
+ return get_sentence_transformer_tokenizer_config(self.model, self.revision)
826
+
827
+ def _verify_tokenizer_mode(self) -> None:
828
+ tokenizer_mode = cast(TokenizerMode, self.tokenizer_mode.lower())
829
+ if tokenizer_mode not in get_args(TokenizerMode):
830
+ raise ValueError(
831
+ f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
832
+ f"one of {get_args(TokenizerMode)}."
833
+ )
834
+ self.tokenizer_mode = tokenizer_mode
835
+
836
+ def _get_default_runner_type(
837
+ self,
838
+ architectures: list[str],
839
+ ) -> RunnerType:
840
+ registry = self.registry
841
+
842
+ # Some Sentence Transformers models use *ForCausalLM archs
843
+ if get_pooling_config(self.model, self.revision):
844
+ return "pooling"
845
+
846
+ for arch in architectures:
847
+ if arch in registry.get_supported_archs():
848
+ if registry.is_pooling_model(architectures, self):
849
+ return "pooling"
850
+ if registry.is_text_generation_model(architectures, self):
851
+ return "generate"
852
+
853
+ match = try_match_architecture_defaults(arch)
854
+ if match:
855
+ _, (runner_type, _) = match
856
+ return runner_type
857
+
858
+ return "generate"
859
+
860
+ def _get_runner_type(
861
+ self,
862
+ architectures: list[str],
863
+ runner: RunnerOption,
864
+ ) -> RunnerType:
865
+ if runner != "auto":
866
+ return runner
867
+
868
+ runner_type = self._get_default_runner_type(architectures)
869
+
870
+ # Don't log the most common case
871
+ if runner_type != "generate":
872
+ logger.info(
873
+ "Resolved `--runner auto` to `--runner %s`. "
874
+ "Pass the value explicitly to silence this message.",
875
+ runner_type,
876
+ )
877
+
878
+ return runner_type
879
+
880
+ def _get_default_convert_type(
881
+ self,
882
+ architectures: list[str],
883
+ runner_type: RunnerType,
884
+ ) -> ConvertType:
885
+ registry = self.registry
886
+
887
+ for arch in architectures:
888
+ if arch in registry.get_supported_archs():
889
+ if runner_type == "generate" and registry.is_text_generation_model(
890
+ architectures, self
891
+ ):
892
+ return "none"
893
+ if runner_type == "pooling" and registry.is_pooling_model(
894
+ architectures, self
895
+ ):
896
+ return "none"
897
+
898
+ match = try_match_architecture_defaults(arch, runner_type=runner_type)
899
+ if match:
900
+ _, (_, convert_type) = match
901
+ return convert_type
902
+
903
+ # This is to handle Sentence Transformers models that use *ForCausalLM
904
+ # and also multi-modal pooling models which are not defined as
905
+ # Sentence Transformers models
906
+ if runner_type == "pooling":
907
+ return "embed"
908
+
909
+ return "none"
910
+
911
+ def _get_convert_type(
912
+ self,
913
+ architectures: list[str],
914
+ runner_type: RunnerType,
915
+ convert: ConvertOption,
916
+ ) -> ConvertType:
917
+ if convert != "auto":
918
+ return convert
919
+
920
+ convert_type = self._get_default_convert_type(architectures, runner_type)
921
+
922
+ # Don't log the most common case
923
+ if convert_type != "none":
924
+ logger.info(
925
+ "Resolved `--convert auto` to `--convert %s`. "
926
+ "Pass the value explicitly to silence this message.",
927
+ convert_type,
928
+ )
929
+
930
+ return convert_type
931
+
932
+ def _get_default_pooling_task(
933
+ self,
934
+ architectures: list[str],
935
+ ) -> Literal["embed", "classify", "reward"]:
936
+ if self.registry.is_cross_encoder_model(architectures, self):
937
+ return "classify"
938
+
939
+ for arch in architectures:
940
+ match = try_match_architecture_defaults(arch, runner_type="pooling")
941
+ if match:
942
+ _, (_, convert_type) = match
943
+ assert convert_type != "none"
944
+ return convert_type
945
+
946
+ return "embed"
947
+
948
+ def _parse_quant_hf_config(self, hf_config: PretrainedConfig):
949
+ quant_cfg = getattr(hf_config, "quantization_config", None)
950
+ if quant_cfg is None:
951
+ # compressed-tensors uses a "compression_config" key
952
+ quant_cfg = getattr(hf_config, "compression_config", None)
953
+
954
+ else:
955
+ # Set quant_method for ModelOpt models.
956
+ producer_name = quant_cfg.get("producer", {}).get("name")
957
+ if producer_name == "modelopt":
958
+ quant_algo = quant_cfg.get("quantization", {}).get("quant_algo")
959
+ if quant_algo == "FP8":
960
+ quant_cfg["quant_method"] = "modelopt"
961
+ elif quant_algo == "NVFP4":
962
+ quant_cfg["quant_method"] = "modelopt_fp4"
963
+ elif quant_algo is not None:
964
+ raise ValueError(f"Unknown ModelOpt quant algo: {quant_algo}")
965
+
966
+ return quant_cfg
967
+
968
+ def _verify_quantization(self) -> None:
969
+ supported_quantization = me_quant.QUANTIZATION_METHODS
970
+ if self.quantization is not None:
971
+ self.quantization = cast(me_quant.QuantizationMethods, self.quantization)
972
+
973
+ # Parse quantization method from the HF model config, if available.
974
+ quant_cfg = self._parse_quant_hf_config(self.hf_config)
975
+ if quant_cfg is None and (
976
+ text_config := getattr(self.hf_config, "text_config", None)
977
+ ):
978
+ # Check the text config as well for multi-modal models.
979
+ quant_cfg = self._parse_quant_hf_config(text_config)
980
+
981
+ if quant_cfg is not None:
982
+ # Use the community standard 'quant_method'
983
+ quant_method = quant_cfg.get("quant_method", "").lower()
984
+
985
+ # Normalize library names
986
+ quant_method = quant_method.replace(
987
+ "compressed_tensors", "compressed-tensors"
988
+ )
989
+
990
+ quant_cfg["quant_method"] = quant_method
991
+
992
+ # Quantization methods which are overrides (i.e. they have a
993
+ # `override_quantization_method` method) must be checked in order
994
+ # of preference (this is particularly important for GPTQ).
995
+ overrides = [
996
+ "bitblas",
997
+ "gptq_marlin_24",
998
+ "gptq_marlin",
999
+ "gptq_bitblas",
1000
+ "awq_marlin",
1001
+ "ipex",
1002
+ "moe_wna16",
1003
+ "modelopt",
1004
+ "modelopt_fp4",
1005
+ "petit_nvfp4",
1006
+ # Ensure heavy backends are probed last to avoid unnecessary
1007
+ # imports during override detection (e.g., MXFP4 imports Triton)
1008
+ "mxfp4",
1009
+ ]
1010
+ quantization_methods = [
1011
+ q for q in supported_quantization if q not in overrides
1012
+ ]
1013
+ # Any custom overrides will be in quantization_methods so we place
1014
+ # them at the start of the list so custom overrides have preference
1015
+ # over the built-in ones.
1016
+ quantization_methods = quantization_methods + overrides
1017
+
1018
+ # Detect which checkpoint is it
1019
+ for name in quantization_methods:
1020
+ method = me_quant.get_quantization_config(name)
1021
+ quantization_override = method.override_quantization_method(
1022
+ quant_cfg, self.quantization
1023
+ )
1024
+ if quantization_override is not None:
1025
+ # Raise error if the override is not custom (custom would
1026
+ # be in QUANTIZATION_METHODS but not QuantizationMethods)
1027
+ # and hasn't been added to the overrides list.
1028
+ if (
1029
+ name in get_args(me_quant.QuantizationMethods)
1030
+ and name not in overrides
1031
+ ):
1032
+ raise ValueError(
1033
+ f"Quantization method {name} is an override but "
1034
+ "is has not been added to the `overrides` list "
1035
+ "above. This is necessary to ensure that the "
1036
+ "overrides are checked in order of preference."
1037
+ )
1038
+ quant_method = quantization_override
1039
+ self.quantization = quantization_override
1040
+ break
1041
+
1042
+ quant_method = quant_method if quant_method != "" else None
1043
+ # Verify quantization configurations.
1044
+ if self.quantization is None:
1045
+ self.quantization = quant_method
1046
+ elif self.quantization != quant_method:
1047
+ raise ValueError(
1048
+ "Quantization method specified in the model config "
1049
+ f"({quant_method}) does not match the quantization "
1050
+ f"method specified in the `quantization` argument "
1051
+ f"({self.quantization})."
1052
+ )
1053
+
1054
+ if self.quantization is not None:
1055
+ if self.quantization not in supported_quantization:
1056
+ raise ValueError(
1057
+ f"Unknown quantization method: {self.quantization}. Must "
1058
+ f"be one of {supported_quantization}."
1059
+ )
1060
+ from vllm.platforms import current_platform
1061
+
1062
+ current_platform.verify_quantization(self.quantization)
1063
+
1064
+ def _verify_cuda_graph(self) -> None:
1065
+ # CUDAGraph capture not supported for encoder-decoder models on ROCm
1066
+ unsupported_rocm = self.is_encoder_decoder
1067
+ if unsupported_rocm and not self.enforce_eager and current_platform.is_rocm():
1068
+ logger.warning(
1069
+ "CUDA graph is not supported for %s on ROCm yet, fallback "
1070
+ "to eager mode.",
1071
+ self.hf_config.model_type,
1072
+ )
1073
+ self.enforce_eager = True
1074
+
1075
+ def _verify_bnb_config(self) -> None:
1076
+ """
1077
+ The current version of bitsandbytes (0.46.1) with 8-bit models does not
1078
+ yet support CUDA graph.
1079
+ # TODO Remove this when bitsandbytes supports.
1080
+ """
1081
+ is_bitsandbytes = self.quantization == "bitsandbytes"
1082
+ has_quantization_config = (
1083
+ getattr(self.hf_config, "quantization_config", None) is not None
1084
+ )
1085
+ is_8bit = (
1086
+ self.hf_config.quantization_config.get("load_in_8bit", False)
1087
+ if has_quantization_config
1088
+ else False
1089
+ )
1090
+ if all(
1091
+ [
1092
+ is_bitsandbytes,
1093
+ has_quantization_config,
1094
+ is_8bit,
1095
+ not self.enforce_eager,
1096
+ ]
1097
+ ):
1098
+ logger.warning(
1099
+ "CUDA graph is not supported on BitsAndBytes 8bit yet, "
1100
+ "fallback to the eager mode."
1101
+ )
1102
+
1103
+ self.enforce_eager = True
1104
+
1105
+ def _verify_with_expert_parallelism(self) -> None:
1106
+ num_experts = self.get_num_experts()
1107
+ if num_experts < 1:
1108
+ raise ValueError(
1109
+ "Number of experts in the model must be greater than 0 "
1110
+ "when expert parallelism is enabled."
1111
+ )
1112
+
1113
+ def verify_dual_chunk_attention_config(
1114
+ self,
1115
+ load_config: LoadConfig,
1116
+ ) -> None:
1117
+ if hasattr(self.hf_config, "dual_chunk_attention_config"):
1118
+ # Try loading the sparse attention config
1119
+ from vllm.model_executor.model_loader.weight_utils import (
1120
+ get_sparse_attention_config,
1121
+ )
1122
+
1123
+ sparse_attn_config = get_sparse_attention_config(self, load_config)
1124
+ if sparse_attn_config:
1125
+ self.hf_config.dual_chunk_attention_config[
1126
+ "sparse_attention_config"
1127
+ ] = sparse_attn_config
1128
+ if (
1129
+ "sparse_attention_enabled"
1130
+ not in self.hf_config.dual_chunk_attention_config
1131
+ ):
1132
+ self.hf_config.dual_chunk_attention_config[
1133
+ "sparse_attention_enabled"
1134
+ ] = True
1135
+
1136
+ def verify_with_parallel_config(
1137
+ self,
1138
+ parallel_config: ParallelConfig,
1139
+ ) -> None:
1140
+ if parallel_config.distributed_executor_backend == "external_launcher":
1141
+ assert self.seed is not None, (
1142
+ "Seed must be set when using external launcher backend to "
1143
+ "make sure sampling results are the same across workers."
1144
+ )
1145
+
1146
+ total_num_attention_heads = getattr(
1147
+ self.hf_text_config, "num_attention_heads", 0
1148
+ )
1149
+ tensor_parallel_size = parallel_config.tensor_parallel_size
1150
+ if total_num_attention_heads % tensor_parallel_size != 0:
1151
+ raise ValueError(
1152
+ f"Total number of attention heads ({total_num_attention_heads})"
1153
+ " must be divisible by tensor parallel size "
1154
+ f"({tensor_parallel_size})."
1155
+ )
1156
+
1157
+ if parallel_config.enable_expert_parallel:
1158
+ self._verify_with_expert_parallelism()
1159
+
1160
+ pipeline_parallel_size = parallel_config.pipeline_parallel_size
1161
+ if pipeline_parallel_size > 1 and not self.registry.is_pp_supported_model(
1162
+ self.architectures, self
1163
+ ):
1164
+ raise NotImplementedError(
1165
+ "Pipeline parallelism is not supported for this model. "
1166
+ "Supported models implement the `SupportsPP` interface."
1167
+ )
1168
+
1169
+ decode_context_parallel_size = parallel_config.decode_context_parallel_size
1170
+ if decode_context_parallel_size > 1 and not self.use_mla:
1171
+ total_num_kv_heads = self.get_total_num_kv_heads()
1172
+ assert tensor_parallel_size > total_num_kv_heads, (
1173
+ f"tensor parallel size {tensor_parallel_size} must be greater "
1174
+ f"than total num kv heads {total_num_kv_heads} when enable "
1175
+ f"decode context parallel for GQA/MQA"
1176
+ )
1177
+
1178
+ max_dcp_size = tensor_parallel_size // total_num_kv_heads
1179
+ assert decode_context_parallel_size <= max_dcp_size, (
1180
+ f"decode context parallel size must less than or equal to "
1181
+ f"(tensor parallel size {tensor_parallel_size} // total "
1182
+ f"num kv heads {total_num_kv_heads}) = {max_dcp_size}, "
1183
+ f"but got {decode_context_parallel_size}"
1184
+ )
1185
+
1186
+ num_q_per_kv = total_num_attention_heads // total_num_kv_heads
1187
+ assert num_q_per_kv % decode_context_parallel_size == 0, (
1188
+ f"Total number of q per kv attn heads ({num_q_per_kv})"
1189
+ " must be divisible by dcp world size when enable "
1190
+ "decode context parallel for GQA "
1191
+ f"({parallel_config.decode_context_parallel_size})."
1192
+ )
1193
+
1194
+ def get_sliding_window(self) -> int | None:
1195
+ """Get the sliding window size from the HF text config if present."""
1196
+ return getattr(self.hf_text_config, "sliding_window", None)
1197
+
1198
+ def get_vocab_size(self) -> int:
1199
+ return getattr(self.hf_text_config, "vocab_size", 0)
1200
+
1201
+ def get_hidden_size(self) -> int:
1202
+ return getattr(self.hf_text_config, "hidden_size", 0)
1203
+
1204
+ @property
1205
+ def is_deepseek_mla(self) -> bool:
1206
+ if not hasattr(self.hf_text_config, "model_type"):
1207
+ return False
1208
+ elif self.hf_text_config.model_type in (
1209
+ "deepseek_v2",
1210
+ "deepseek_v3",
1211
+ "deepseek_v32",
1212
+ "deepseek_mtp",
1213
+ "kimi_k2",
1214
+ "kimi_linear",
1215
+ "longcat_flash",
1216
+ "pangu_ultra_moe",
1217
+ "pangu_ultra_moe_mtp",
1218
+ ):
1219
+ return self.hf_text_config.kv_lora_rank is not None
1220
+ elif self.hf_text_config.model_type == "eagle":
1221
+ # if the model is an EAGLE module, check for the
1222
+ # underlying architecture
1223
+ return (
1224
+ self.hf_text_config.model.model_type
1225
+ in ("deepseek_v2", "deepseek_v3", "deepseek_v32")
1226
+ and self.hf_text_config.kv_lora_rank is not None
1227
+ )
1228
+ return False
1229
+
1230
+ def get_head_size(self) -> int:
1231
+ # TODO remove hard code
1232
+ if self.is_deepseek_mla:
1233
+ qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim", 0)
1234
+ if self.use_mla:
1235
+ return self.hf_text_config.kv_lora_rank + qk_rope_head_dim
1236
+ else:
1237
+ qk_nope_head_dim = getattr(self.hf_text_config, "qk_nope_head_dim", 0)
1238
+ if qk_rope_head_dim and qk_nope_head_dim:
1239
+ return qk_rope_head_dim + qk_nope_head_dim
1240
+
1241
+ if hasattr(self.hf_text_config, "model_type") and (
1242
+ self.hf_text_config.model_type == "zamba2"
1243
+ ):
1244
+ return self.hf_text_config.attention_head_dim
1245
+
1246
+ if self.is_attention_free:
1247
+ return 0
1248
+
1249
+ # NOTE: Some configs may set head_dim=None in the config
1250
+ if getattr(self.hf_text_config, "head_dim", None) is not None:
1251
+ return self.hf_text_config.head_dim
1252
+
1253
+ # NOTE: Some models (such as PLaMo2.1) use `hidden_size_per_head`
1254
+ if getattr(self.hf_text_config, "hidden_size_per_head", None) is not None:
1255
+ return self.hf_text_config.hidden_size_per_head
1256
+
1257
+ # FIXME(woosuk): This may not be true for all models.
1258
+ return (
1259
+ self.hf_text_config.hidden_size // self.hf_text_config.num_attention_heads
1260
+ )
1261
+
1262
+ def get_total_num_kv_heads(self) -> int:
1263
+ """Returns the total number of KV heads."""
1264
+ # For GPTBigCode & Falcon:
1265
+ # NOTE: for falcon, when new_decoder_architecture is True, the
1266
+ # multi_query flag is ignored and we use n_head_kv for the number of
1267
+ # KV heads.
1268
+ falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
1269
+ new_decoder_arch_falcon = (
1270
+ self.hf_config.model_type in falcon_model_types
1271
+ and getattr(self.hf_config, "new_decoder_architecture", False)
1272
+ )
1273
+ if not new_decoder_arch_falcon and getattr(
1274
+ self.hf_text_config, "multi_query", False
1275
+ ):
1276
+ # Multi-query attention, only one KV head.
1277
+ # Currently, tensor parallelism is not supported in this case.
1278
+ return 1
1279
+
1280
+ # For DBRX and MPT
1281
+ if self.hf_config.model_type == "mpt":
1282
+ if "kv_n_heads" in self.hf_config.attn_config:
1283
+ return self.hf_config.attn_config["kv_n_heads"]
1284
+ return self.hf_config.num_attention_heads
1285
+ if self.hf_config.model_type == "dbrx":
1286
+ return getattr(
1287
+ self.hf_config.attn_config,
1288
+ "kv_n_heads",
1289
+ self.hf_config.num_attention_heads,
1290
+ )
1291
+
1292
+ if self.hf_config.model_type == "nemotron-nas":
1293
+ for block in self.hf_config.block_configs:
1294
+ if not block.attention.no_op:
1295
+ return (
1296
+ self.hf_config.num_attention_heads
1297
+ // block.attention.n_heads_in_group
1298
+ )
1299
+
1300
+ raise RuntimeError("Couldn't determine number of kv heads")
1301
+
1302
+ if self.is_attention_free:
1303
+ return 0
1304
+
1305
+ attributes = [
1306
+ # For Falcon:
1307
+ "n_head_kv",
1308
+ "num_kv_heads",
1309
+ # For LLaMA-2:
1310
+ "num_key_value_heads",
1311
+ # For ChatGLM:
1312
+ "multi_query_group_num",
1313
+ ]
1314
+ for attr in attributes:
1315
+ num_kv_heads = getattr(self.hf_text_config, attr, None)
1316
+ if num_kv_heads is not None:
1317
+ return num_kv_heads
1318
+
1319
+ # For non-grouped-query attention models, the number of KV heads is
1320
+ # equal to the number of attention heads.
1321
+ return self.hf_text_config.num_attention_heads
1322
+
1323
+ def get_num_kv_heads(self, parallel_config: ParallelConfig) -> int:
1324
+ """Returns the number of KV heads per GPU."""
1325
+ if self.use_mla:
1326
+ # When using MLA during decode it becomes MQA
1327
+ return 1
1328
+
1329
+ total_num_kv_heads = self.get_total_num_kv_heads()
1330
+ # If tensor parallelism is used, we divide the number of KV heads by
1331
+ # the tensor parallel size. We will replicate the KV heads in the
1332
+ # case where the number of KV heads is smaller than the tensor
1333
+ # parallel size so each GPU has at least one KV head.
1334
+ return max(1, total_num_kv_heads // parallel_config.tensor_parallel_size)
1335
+
1336
+ def get_num_attention_heads(self, parallel_config: ParallelConfig) -> int:
1337
+ num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
1338
+ return num_heads // parallel_config.tensor_parallel_size
1339
+
1340
+ def get_num_experts(self) -> int:
1341
+ """Returns the number of experts in the model."""
1342
+ num_expert_names = [
1343
+ "num_experts", # Jamba
1344
+ "moe_num_experts", # Dbrx
1345
+ "n_routed_experts", # DeepSeek
1346
+ "num_local_experts", # Mixtral
1347
+ ]
1348
+ num_experts = getattr_iter(self.hf_text_config, num_expert_names, 0)
1349
+ if isinstance(num_experts, list):
1350
+ # Ernie VL's remote code uses list[int]...
1351
+ # The values are always the same so we just take the first one.
1352
+ return num_experts[0]
1353
+ # Coerce to 0 if explicitly set to None
1354
+ return num_experts or 0
1355
+
1356
+ def get_layers_start_end_indices(
1357
+ self, parallel_config: ParallelConfig
1358
+ ) -> tuple[int, int]:
1359
+ from vllm.distributed.utils import get_pp_indices
1360
+
1361
+ if (
1362
+ self.hf_text_config.model_type == "deepseek_mtp"
1363
+ or self.hf_config.model_type == "mimo_mtp"
1364
+ or self.hf_config.model_type == "glm4_moe_mtp"
1365
+ or self.hf_config.model_type == "ernie_mtp"
1366
+ or self.hf_config.model_type == "qwen3_next_mtp"
1367
+ or self.hf_config.model_type == "pangu_ultra_moe_mtp"
1368
+ ):
1369
+ total_num_hidden_layers = getattr(
1370
+ self.hf_text_config, "num_nextn_predict_layers", 0
1371
+ )
1372
+ elif self.hf_config.model_type == "longcat_flash_mtp":
1373
+ total_num_hidden_layers = getattr(
1374
+ self.hf_text_config, "num_nextn_predict_layers", 1
1375
+ )
1376
+ else:
1377
+ total_num_hidden_layers = getattr(
1378
+ self.hf_text_config, "num_hidden_layers", 0
1379
+ )
1380
+ # the layout order is: DP x PP x TP
1381
+ pp_rank = (
1382
+ parallel_config.rank // parallel_config.tensor_parallel_size
1383
+ ) % parallel_config.pipeline_parallel_size
1384
+ pp_size = parallel_config.pipeline_parallel_size
1385
+ start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
1386
+ return start, end
1387
+
1388
+ def get_num_layers(self, parallel_config: ParallelConfig) -> int:
1389
+ start, end = self.get_layers_start_end_indices(parallel_config)
1390
+ return end - start
1391
+
1392
+ def get_num_layers_by_block_type(
1393
+ self,
1394
+ parallel_config: ParallelConfig,
1395
+ block_type: LayerBlockType = "attention",
1396
+ ) -> int:
1397
+ # This function relies on 'layers_block_type' in hf_config,
1398
+ # for w/o this attribute, we will need to have workarounds like so
1399
+ attn_block_type = block_type == "attention"
1400
+ is_transformer = (
1401
+ not self.is_hybrid and not self.has_noops and not self.is_attention_free
1402
+ )
1403
+ start, end = self.get_layers_start_end_indices(parallel_config)
1404
+
1405
+ if is_transformer:
1406
+ # Handle the basic case first
1407
+ return end - start if attn_block_type else 0
1408
+ elif self.is_attention_free:
1409
+ # Attention free
1410
+ # Note that this code assumes there
1411
+ # is only one type of attention-free block type.
1412
+ return 0 if attn_block_type else end - start
1413
+ elif self.has_noops:
1414
+ block_configs = self.hf_config.block_configs
1415
+ return sum(not bc.attention.no_op for bc in block_configs[start:end])
1416
+ else:
1417
+ # Hybrid model Jamba
1418
+ layers_block_type_value = getattr(
1419
+ self.hf_text_config, "layers_block_type", None
1420
+ )
1421
+ if layers_block_type_value is not None:
1422
+ if hasattr(self.hf_text_config, "model_type") and (
1423
+ self.hf_text_config.model_type == "zamba2"
1424
+ ):
1425
+ if attn_block_type:
1426
+ return sum(
1427
+ t == "hybrid" for t in layers_block_type_value[start:end]
1428
+ )
1429
+ else:
1430
+ return self.get_num_layers(parallel_config)
1431
+ return sum(t == block_type for t in layers_block_type_value[start:end])
1432
+
1433
+ # Hybrid model Minimax
1434
+ attn_type_list = getattr(self.hf_config, "attn_type_list", None)
1435
+ if attn_type_list:
1436
+ return sum(t == 1 for t in attn_type_list[start:end])
1437
+
1438
+ # Hybrid model Qwen3Next
1439
+ layer_types_value = getattr(self.hf_config, "layer_types", None)
1440
+ if layer_types_value is not None:
1441
+ if block_type == "attention":
1442
+ return sum(
1443
+ t == "full_attention" for t in layer_types_value[start:end]
1444
+ )
1445
+ elif block_type == "linear_attention":
1446
+ return sum(
1447
+ t == "linear_attention" for t in layer_types_value[start:end]
1448
+ )
1449
+ else:
1450
+ return sum(t == block_type for t in layer_types_value[start:end])
1451
+
1452
+ if (
1453
+ layers_block_type_value is None
1454
+ and attn_type_list is None
1455
+ and layer_types_value is None
1456
+ ):
1457
+ raise ValueError(
1458
+ "The model is an hybrid without a layers_block_type or an "
1459
+ "attn_type_list, or a layer_types in the hf_config, "
1460
+ f"cannot determine the num of {block_type} layers"
1461
+ )
1462
+
1463
+ def get_mamba_chunk_size(self) -> int | None:
1464
+ """
1465
+ Returns the mamba chunk size if it exists
1466
+ """
1467
+ # used by e.g. Bamba, FalconH1, Granite, PLaMo2
1468
+ chunk_size = getattr(self.hf_text_config, "mamba_chunk_size", None)
1469
+ if chunk_size is None:
1470
+ # used by e.g. Mamba2, NemotronH, Zamba
1471
+ chunk_size = getattr(self.hf_text_config, "chunk_size", None)
1472
+
1473
+ # Since Mamba1 does not have a chunk notion
1474
+ # we use a default chunk size of 1024.
1475
+ if chunk_size is None:
1476
+ chunk_size = 2048
1477
+
1478
+ return chunk_size
1479
+
1480
+ def get_multimodal_config(self) -> MultiModalConfig:
1481
+ """
1482
+ Get the multimodal configuration of the model.
1483
+
1484
+ Raises:
1485
+ ValueError: If the model is not multimodal.
1486
+ """
1487
+ if self.multimodal_config is None:
1488
+ raise ValueError("The model is not multimodal.")
1489
+
1490
+ return self.multimodal_config
1491
+
1492
+ def try_get_generation_config(self) -> dict[str, Any]:
1493
+ """
1494
+ This method attempts to retrieve the non-default values of the
1495
+ generation config for this model.
1496
+
1497
+ The generation config can contain information about special tokens, as
1498
+ well as sampling parameters. Which is why this method exists separately
1499
+ to `get_diff_sampling_param`.
1500
+
1501
+ Returns:
1502
+ A dictionary containing the non-default generation config.
1503
+ """
1504
+ if self.generation_config in {"auto", "vllm"}:
1505
+ config = try_get_generation_config(
1506
+ self.hf_config_path or self.model,
1507
+ trust_remote_code=self.trust_remote_code,
1508
+ revision=self.revision,
1509
+ config_format=self.config_format,
1510
+ )
1511
+ else:
1512
+ config = try_get_generation_config(
1513
+ self.generation_config,
1514
+ trust_remote_code=self.trust_remote_code,
1515
+ config_format=self.config_format,
1516
+ )
1517
+
1518
+ if config is None:
1519
+ return {}
1520
+
1521
+ return config.to_diff_dict()
1522
+
1523
+ def get_diff_sampling_param(self) -> dict[str, Any]:
1524
+ """
1525
+ This method returns a dictionary containing the non-default sampling
1526
+ parameters with `override_generation_config` applied.
1527
+
1528
+ The default sampling parameters are:
1529
+
1530
+ - vLLM's neutral defaults if `self.generation_config="vllm"`
1531
+ - the model's defaults if `self.generation_config="auto"`
1532
+ - as defined in `generation_config.json` if
1533
+ `self.generation_config="path/to/generation_config/dir"`
1534
+
1535
+ Returns:
1536
+ A dictionary containing the non-default sampling parameters.
1537
+ """
1538
+ if self.generation_config == "vllm":
1539
+ config = {}
1540
+ else:
1541
+ config = self.try_get_generation_config()
1542
+
1543
+ # Overriding with given generation config
1544
+ config.update(self.override_generation_config)
1545
+
1546
+ available_params = [
1547
+ "repetition_penalty",
1548
+ "temperature",
1549
+ "top_k",
1550
+ "top_p",
1551
+ "min_p",
1552
+ "max_new_tokens",
1553
+ ]
1554
+ if any(p in config for p in available_params):
1555
+ diff_sampling_param = {
1556
+ p: config.get(p) for p in available_params if config.get(p) is not None
1557
+ }
1558
+ # Huggingface definition of max_new_tokens is equivalent
1559
+ # to vLLM's max_tokens
1560
+ if "max_new_tokens" in diff_sampling_param:
1561
+ diff_sampling_param["max_tokens"] = diff_sampling_param.pop(
1562
+ "max_new_tokens"
1563
+ )
1564
+ else:
1565
+ diff_sampling_param = {}
1566
+
1567
+ if diff_sampling_param:
1568
+ logger.warning_once(
1569
+ "Default sampling parameters have been overridden by the "
1570
+ "model's Hugging Face generation config recommended from the "
1571
+ "model creator. If this is not intended, please relaunch "
1572
+ "vLLM instance with `--generation-config vllm`."
1573
+ )
1574
+ return diff_sampling_param
1575
+
1576
+ @property
1577
+ def is_encoder_decoder(self) -> bool:
1578
+ """Extract the HF encoder/decoder model flag."""
1579
+ return is_encoder_decoder(self.hf_config)
1580
+
1581
+ @property
1582
+ def uses_alibi(self) -> bool:
1583
+ cfg = self.hf_text_config
1584
+
1585
+ return (
1586
+ getattr(cfg, "alibi", False) # Falcon
1587
+ or "BloomForCausalLM" in self.architectures # Bloom
1588
+ or getattr(cfg, "position_encoding_type", "") == "alibi" # codellm_1b_alibi
1589
+ or (
1590
+ hasattr(cfg, "attn_config") # MPT
1591
+ and (
1592
+ (
1593
+ isinstance(cfg.attn_config, dict)
1594
+ and cfg.attn_config.get("alibi", False)
1595
+ )
1596
+ or (
1597
+ not isinstance(cfg.attn_config, dict)
1598
+ and getattr(cfg.attn_config, "alibi", False)
1599
+ )
1600
+ )
1601
+ )
1602
+ )
1603
+
1604
+ @property
1605
+ def uses_mrope(self) -> bool:
1606
+ return uses_mrope(self.hf_config)
1607
+
1608
+ @property
1609
+ def is_multimodal_model(self) -> bool:
1610
+ return self.multimodal_config is not None
1611
+
1612
+ @property
1613
+ def is_multimodal_raw_input_only_model(self) -> bool:
1614
+ return self._model_info.supports_multimodal_raw_input_only
1615
+
1616
+ @property
1617
+ def is_cross_encoder(self) -> bool:
1618
+ return (
1619
+ self._model_info.supports_cross_encoding or self.convert_type == "classify"
1620
+ )
1621
+
1622
+ @property
1623
+ def is_pp_supported(self) -> bool:
1624
+ return self._model_info.supports_pp
1625
+
1626
+ @property
1627
+ def is_attention_free(self) -> bool:
1628
+ return self._model_info.is_attention_free
1629
+
1630
+ @property
1631
+ def is_hybrid(self) -> bool:
1632
+ # Handle granite-4.0-micro case which uses hybrid config but does not
1633
+ # actually contain any non-attention layers.
1634
+ layer_types = getattr(self.hf_config, "layer_types", None)
1635
+ if layer_types is not None and all(
1636
+ layer == "attention" for layer in layer_types
1637
+ ):
1638
+ return False
1639
+ return self._model_info.is_hybrid
1640
+
1641
+ @property
1642
+ def has_noops(self) -> bool:
1643
+ return self._model_info.has_noops
1644
+
1645
+ @property
1646
+ def has_inner_state(self):
1647
+ return self._model_info.has_inner_state
1648
+
1649
+ @property
1650
+ def supports_mamba_prefix_caching(self) -> bool:
1651
+ return self._model_info.supports_mamba_prefix_caching
1652
+
1653
+ @property
1654
+ def use_mla(self) -> bool:
1655
+ return self.is_deepseek_mla and not envs.VLLM_MLA_DISABLE
1656
+
1657
+ @property
1658
+ def is_matryoshka(self) -> bool:
1659
+ return bool(getattr(self.hf_config, "matryoshka_dimensions", None)) or getattr(
1660
+ self.hf_config, "is_matryoshka", False
1661
+ )
1662
+
1663
+ @property
1664
+ def matryoshka_dimensions(self):
1665
+ return getattr(self.hf_config, "matryoshka_dimensions", None)
1666
+
1667
+ @property
1668
+ def use_pad_token(self) -> bool:
1669
+ # cross_encoder models defaults to using pad_token.
1670
+ # `llm as reranker` models defaults to not using pad_token.
1671
+ return getattr(self.hf_config, "use_pad_token", True)
1672
+
1673
+ @property
1674
+ def head_dtype(self) -> torch.dtype:
1675
+ """
1676
+ "head" refers to the last Linear layer(s) of an LLM,
1677
+ such as the lm_head in a generation model,
1678
+ or the score or classifier in a classification model.
1679
+
1680
+ `head_dtype` currently only supports pooling models.\n
1681
+ - The pooling model defaults to using fp32 head,
1682
+ you can use --hf-overrides '{"head_dtype": "model"}' to disable it.
1683
+ """
1684
+
1685
+ head_dtype = _get_head_dtype(
1686
+ config=self.hf_config, dtype=self.dtype, runner_type=self.runner_type
1687
+ )
1688
+
1689
+ if self.runner_type != "pooling" and head_dtype != self.dtype:
1690
+ logger.warning_once(
1691
+ "`head_dtype` currently only supports pooling models."
1692
+ "fallback to model dtype [%s].",
1693
+ self.dtype,
1694
+ )
1695
+ return self.dtype
1696
+
1697
+ if head_dtype not in current_platform.supported_dtypes:
1698
+ logger.warning_once(
1699
+ "The current platform does not support [%s] head dtype, "
1700
+ "fallback to model dtype [%s].",
1701
+ head_dtype,
1702
+ self.dtype,
1703
+ )
1704
+ return self.dtype
1705
+
1706
+ logger.debug_once("head dtype: %s", head_dtype)
1707
+ return head_dtype
1708
+
1709
+ @property
1710
+ def hidden_size(self):
1711
+ if hasattr(self.hf_config, "hidden_size"):
1712
+ return self.hf_config.hidden_size
1713
+ text_config = self.hf_config.get_text_config()
1714
+ return text_config.hidden_size
1715
+
1716
+ @property
1717
+ def embedding_size(self):
1718
+ dense_modules = try_get_dense_modules(self.model, revision=self.revision)
1719
+ if dense_modules is not None:
1720
+ return dense_modules[-1]["out_features"]
1721
+ return self.hidden_size
1722
+
1723
+ def get_and_verify_max_len(self, max_model_len: int):
1724
+ # Consider max_model_len in tokenizer_config only when
1725
+ # pooling models use absolute position_embedding.
1726
+ tokenizer_config = None
1727
+ if (
1728
+ self.runner_type == "pooling"
1729
+ and getattr(self.hf_config, "position_embedding_type", "") == "absolute"
1730
+ ):
1731
+ tokenizer_config = try_get_tokenizer_config(
1732
+ self.tokenizer,
1733
+ trust_remote_code=self.trust_remote_code,
1734
+ revision=self.tokenizer_revision,
1735
+ )
1736
+ max_model_len = _get_and_verify_max_len(
1737
+ hf_config=self.hf_text_config,
1738
+ tokenizer_config=tokenizer_config,
1739
+ max_model_len=max_model_len,
1740
+ disable_sliding_window=self.disable_sliding_window,
1741
+ sliding_window=self.get_sliding_window(),
1742
+ spec_target_max_model_len=self.spec_target_max_model_len,
1743
+ encoder_config=self.encoder_config,
1744
+ )
1745
+ logger.info("Using max model len %s", max_model_len)
1746
+ return max_model_len
1747
+
1748
+
1749
+ def get_served_model_name(model: str, served_model_name: str | list[str] | None):
1750
+ """
1751
+ If the input is a non-empty list, the first model_name in
1752
+ `served_model_name` is taken.
1753
+ If the input is a non-empty string, it is used directly.
1754
+ For cases where the input is either an empty string or an
1755
+ empty list, the fallback is to use `self.model`.
1756
+ """
1757
+ if not served_model_name:
1758
+ return model
1759
+ if isinstance(served_model_name, list):
1760
+ return served_model_name[0]
1761
+ return served_model_name
1762
+
1763
+
1764
+ # Some model suffixes are based on auto classes from Transformers:
1765
+ # https://huggingface.co/docs/transformers/en/model_doc/auto
1766
+ # NOTE: Items higher on this list priority over lower ones
1767
+ _SUFFIX_TO_DEFAULTS: list[tuple[str, tuple[RunnerType, ConvertType]]] = [
1768
+ ("ForCausalLM", ("generate", "none")),
1769
+ ("ForConditionalGeneration", ("generate", "none")),
1770
+ ("ChatModel", ("generate", "none")),
1771
+ ("LMHeadModel", ("generate", "none")),
1772
+ ("ForTextEncoding", ("pooling", "embed")),
1773
+ ("EmbeddingModel", ("pooling", "embed")),
1774
+ ("ForSequenceClassification", ("pooling", "classify")),
1775
+ ("ForAudioClassification", ("pooling", "classify")),
1776
+ ("ForImageClassification", ("pooling", "classify")),
1777
+ ("ForVideoClassification", ("pooling", "classify")),
1778
+ ("ClassificationModel", ("pooling", "classify")),
1779
+ ("ForRewardModeling", ("pooling", "reward")),
1780
+ ("RewardModel", ("pooling", "reward")),
1781
+ # Let other `*Model`s take priority
1782
+ ("Model", ("pooling", "embed")),
1783
+ ]
1784
+
1785
+
1786
+ def iter_architecture_defaults():
1787
+ yield from _SUFFIX_TO_DEFAULTS
1788
+
1789
+
1790
+ def try_match_architecture_defaults(
1791
+ architecture: str,
1792
+ *,
1793
+ runner_type: RunnerType | None = None,
1794
+ convert_type: ConvertType | None = None,
1795
+ ) -> tuple[str, tuple[RunnerType, ConvertType]] | None:
1796
+ for suffix, (
1797
+ default_runner_type,
1798
+ default_convert_type,
1799
+ ) in iter_architecture_defaults():
1800
+ if (
1801
+ (runner_type is None or runner_type == default_runner_type)
1802
+ and (convert_type is None or convert_type == default_convert_type)
1803
+ and architecture.endswith(suffix)
1804
+ ):
1805
+ return suffix, (default_runner_type, default_convert_type)
1806
+
1807
+ return None
1808
+
1809
+
1810
+ _STR_DTYPE_TO_TORCH_DTYPE = {
1811
+ "half": torch.float16,
1812
+ "float16": torch.float16,
1813
+ "float": torch.float32,
1814
+ "float32": torch.float32,
1815
+ "bfloat16": torch.bfloat16,
1816
+ }
1817
+
1818
+ # model_type -> reason
1819
+ _FLOAT16_NOT_SUPPORTED_MODELS = {
1820
+ "gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
1821
+ "gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
1822
+ "gemma3_text": "Numerical instability. Please use bfloat16 or float32 instead.",
1823
+ "plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
1824
+ "glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
1825
+ }
1826
+
1827
+
1828
+ def _is_valid_dtype(model_type: str, dtype: torch.dtype):
1829
+ if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16: # noqa: E501, SIM103
1830
+ return False
1831
+
1832
+ return True
1833
+
1834
+
1835
+ def _check_valid_dtype(model_type: str, dtype: torch.dtype):
1836
+ if model_type in _FLOAT16_NOT_SUPPORTED_MODELS and dtype == torch.float16:
1837
+ reason = _FLOAT16_NOT_SUPPORTED_MODELS[model_type]
1838
+ raise ValueError(
1839
+ f"The model type {model_type!r} does not support float16. Reason: {reason}"
1840
+ )
1841
+
1842
+ return True
1843
+
1844
+
1845
+ def _find_dtype(
1846
+ model_id: str,
1847
+ config: PretrainedConfig,
1848
+ *,
1849
+ revision: str | None,
1850
+ ):
1851
+ # NOTE: getattr(config, "dtype", torch.float32) is not correct
1852
+ # because config.dtype can be None.
1853
+ config_dtype = getattr(config, "dtype", None)
1854
+
1855
+ # Fallbacks for multi-modal models if the root config
1856
+ # does not define dtype
1857
+ if config_dtype is None:
1858
+ config_dtype = getattr(config.get_text_config(), "dtype", None)
1859
+ if config_dtype is None and hasattr(config, "vision_config"):
1860
+ config_dtype = getattr(config.vision_config, "dtype", None)
1861
+ if config_dtype is None and hasattr(config, "encoder_config"):
1862
+ config_dtype = getattr(config.encoder_config, "dtype", None)
1863
+
1864
+ # Try to read the dtype of the weights if they are in safetensors format
1865
+ if config_dtype is None:
1866
+ repo_mt = try_get_safetensors_metadata(model_id, revision=revision)
1867
+
1868
+ if repo_mt and (files_mt := repo_mt.files_metadata):
1869
+ param_dtypes: set[torch.dtype] = {
1870
+ _SAFETENSORS_TO_TORCH_DTYPE[dtype_str]
1871
+ for file_mt in files_mt.values()
1872
+ for dtype_str in file_mt.parameter_count
1873
+ if dtype_str in _SAFETENSORS_TO_TORCH_DTYPE
1874
+ }
1875
+
1876
+ if param_dtypes:
1877
+ return common_broadcastable_dtype(param_dtypes)
1878
+
1879
+ if config_dtype is None:
1880
+ config_dtype = torch.float32
1881
+
1882
+ return config_dtype
1883
+
1884
+
1885
+ def _resolve_auto_dtype(
1886
+ model_type: str,
1887
+ config_dtype: torch.dtype,
1888
+ *,
1889
+ is_pooling_model: bool,
1890
+ ):
1891
+ from vllm.platforms import current_platform
1892
+
1893
+ supported_dtypes = [
1894
+ dtype
1895
+ for dtype in current_platform.supported_dtypes
1896
+ if _is_valid_dtype(model_type, dtype)
1897
+ ]
1898
+
1899
+ if is_pooling_model and torch.float16 in supported_dtypes:
1900
+ preferred_dtype = torch.float16
1901
+ else:
1902
+ preferred_dtype = supported_dtypes[0]
1903
+
1904
+ # Downcast for float32 models
1905
+ if config_dtype == torch.float32:
1906
+ config_dtype = preferred_dtype
1907
+
1908
+ if config_dtype in supported_dtypes:
1909
+ return config_dtype
1910
+
1911
+ # Ensure device compatibility
1912
+ device_name = current_platform.get_device_name()
1913
+ device_capability = current_platform.get_device_capability()
1914
+
1915
+ if device_capability is None:
1916
+ device_str = f"{device_name!r}"
1917
+ else:
1918
+ version_str = device_capability.as_version_str()
1919
+ device_str = f"{device_name!r} (with compute capability {version_str})"
1920
+
1921
+ logger.warning(
1922
+ "Your device %s doesn't support %s. Falling back to %s for compatibility.",
1923
+ device_str,
1924
+ config_dtype,
1925
+ preferred_dtype,
1926
+ )
1927
+
1928
+ return preferred_dtype
1929
+
1930
+
1931
+ def _get_and_verify_dtype(
1932
+ model_id: str,
1933
+ config: PretrainedConfig,
1934
+ dtype: str | torch.dtype,
1935
+ *,
1936
+ is_pooling_model: bool,
1937
+ revision: str | None = None,
1938
+ ) -> torch.dtype:
1939
+ config_dtype = _find_dtype(model_id, config, revision=revision)
1940
+ model_type = config.model_type
1941
+
1942
+ if isinstance(dtype, str):
1943
+ dtype = dtype.lower()
1944
+ if dtype == "auto":
1945
+ # Set default dtype from model config
1946
+ torch_dtype = _resolve_auto_dtype(
1947
+ model_type,
1948
+ config_dtype,
1949
+ is_pooling_model=is_pooling_model,
1950
+ )
1951
+ else:
1952
+ if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
1953
+ raise ValueError(f"Unknown dtype: {dtype!r}")
1954
+ torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
1955
+ elif isinstance(dtype, torch.dtype):
1956
+ torch_dtype = dtype
1957
+ else:
1958
+ raise ValueError(f"Unknown dtype: {dtype}")
1959
+
1960
+ _check_valid_dtype(model_type, torch_dtype)
1961
+
1962
+ if torch_dtype != config_dtype:
1963
+ if torch_dtype == torch.float32:
1964
+ # Upcasting to float32 is allowed.
1965
+ logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
1966
+ elif config_dtype == torch.float32:
1967
+ # Downcasting from float32 to float16 or bfloat16 is allowed.
1968
+ logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
1969
+ else:
1970
+ # Casting between float16 and bfloat16 is allowed with a warning.
1971
+ logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
1972
+
1973
+ return torch_dtype
1974
+
1975
+
1976
+ def _get_head_dtype(
1977
+ config: PretrainedConfig, dtype: torch.dtype, runner_type: str
1978
+ ) -> torch.dtype:
1979
+ head_dtype: str | torch.dtype | None = getattr(config, "head_dtype", None)
1980
+
1981
+ if head_dtype == "model":
1982
+ return dtype
1983
+ elif isinstance(head_dtype, str):
1984
+ head_dtype = head_dtype.lower()
1985
+ if head_dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
1986
+ raise ValueError(f"Unknown dtype: {head_dtype!r}")
1987
+ return _STR_DTYPE_TO_TORCH_DTYPE[head_dtype]
1988
+ elif isinstance(head_dtype, torch.dtype):
1989
+ return head_dtype
1990
+ elif head_dtype is None:
1991
+ if torch.float32 not in current_platform.supported_dtypes:
1992
+ return dtype
1993
+ if runner_type == "pooling":
1994
+ return torch.float32
1995
+ return dtype
1996
+ else:
1997
+ raise ValueError(f"Unknown dtype: {head_dtype}")
1998
+
1999
+
2000
+ def _get_and_verify_max_len(
2001
+ hf_config: PretrainedConfig,
2002
+ tokenizer_config: dict | None,
2003
+ max_model_len: int | None,
2004
+ disable_sliding_window: bool,
2005
+ sliding_window: int | None,
2006
+ spec_target_max_model_len: int | None = None,
2007
+ encoder_config: Any | None = None,
2008
+ ) -> int:
2009
+ """Get and verify the model's maximum length."""
2010
+ derived_max_model_len = float("inf")
2011
+ possible_keys = [
2012
+ # OPT
2013
+ "max_position_embeddings",
2014
+ # GPT-2
2015
+ "n_positions",
2016
+ # MPT
2017
+ "max_seq_len",
2018
+ # ChatGLM2
2019
+ "seq_length",
2020
+ # Command-R
2021
+ "model_max_length",
2022
+ # Whisper
2023
+ "max_target_positions",
2024
+ # Others
2025
+ "max_sequence_length",
2026
+ "max_seq_length",
2027
+ "seq_len",
2028
+ ]
2029
+ # Choose the smallest "max_length" from the possible keys
2030
+ max_len_key = None
2031
+ for key in possible_keys:
2032
+ max_len = getattr(hf_config, key, None)
2033
+ if max_len is not None:
2034
+ max_len_key = key if max_len < derived_max_model_len else max_len_key
2035
+ derived_max_model_len = min(derived_max_model_len, max_len)
2036
+ # For Command-R / Cohere, Cohere2 / Aya Vision models
2037
+ if tmp_max_len := getattr(hf_config, "model_max_length", None):
2038
+ max_len_key = "model_max_length"
2039
+ derived_max_model_len = tmp_max_len
2040
+
2041
+ # If sliding window is manually disabled, max_length should be less
2042
+ # than the sliding window length in the model config.
2043
+ if (
2044
+ disable_sliding_window
2045
+ and sliding_window is not None
2046
+ and sliding_window < derived_max_model_len
2047
+ ):
2048
+ max_len_key = "sliding_window"
2049
+ derived_max_model_len = sliding_window
2050
+
2051
+ # Consider model_max_length in tokenizer_config
2052
+ if tokenizer_config:
2053
+ tokenizer_model_max_length = tokenizer_config.get(
2054
+ "model_max_length", derived_max_model_len
2055
+ )
2056
+ derived_max_model_len = min(derived_max_model_len, tokenizer_model_max_length)
2057
+
2058
+ # If none of the keys were found in the config, use a default and
2059
+ # log a warning.
2060
+ if derived_max_model_len == float("inf"):
2061
+ if max_model_len is not None:
2062
+ # If max_model_len is specified, we use it.
2063
+ return max_model_len
2064
+
2065
+ if spec_target_max_model_len is not None:
2066
+ # If this is a speculative draft model, we use the max model len
2067
+ # from the target model.
2068
+ return spec_target_max_model_len
2069
+
2070
+ default_max_len = 2048
2071
+ logger.warning(
2072
+ "The model's config.json does not contain any of the following "
2073
+ "keys to determine the original maximum length of the model: "
2074
+ "%s. Assuming the model's maximum length is %d.",
2075
+ possible_keys,
2076
+ default_max_len,
2077
+ )
2078
+ derived_max_model_len = default_max_len
2079
+
2080
+ rope_scaling = getattr(hf_config, "rope_scaling", None)
2081
+ # NOTE(woosuk): Gemma3's max_model_len (128K) is already scaled by RoPE
2082
+ # scaling, so we skip applying the scaling factor again.
2083
+ if rope_scaling is not None and "gemma3" not in hf_config.model_type:
2084
+ # No need to consider "type" key because of patch_rope_scaling when
2085
+ # loading HF config
2086
+ rope_type = rope_scaling["rope_type"]
2087
+
2088
+ if rope_type not in ("su", "longrope", "llama3"):
2089
+ if disable_sliding_window:
2090
+ # TODO(robertgshaw): Find a model that supports rope_scaling
2091
+ # with sliding window to see if this case should be allowed.
2092
+ raise NotImplementedError(
2093
+ "Disabling sliding window is not supported for models "
2094
+ "with rope_scaling. Please raise an issue so we can "
2095
+ "investigate."
2096
+ )
2097
+
2098
+ # NOTE: rope_type == "default" does not define factor
2099
+ # https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
2100
+ scaling_factor = rope_scaling.get("factor", 1.0)
2101
+
2102
+ if rope_type == "yarn":
2103
+ derived_max_model_len = rope_scaling["original_max_position_embeddings"]
2104
+ derived_max_model_len *= scaling_factor
2105
+
2106
+ if encoder_config and "max_seq_length" in encoder_config:
2107
+ derived_max_model_len = encoder_config["max_seq_length"]
2108
+
2109
+ # If the user didn't specify `max_model_len`, then use that derived from
2110
+ # the model config as a default value.
2111
+ if max_model_len is None:
2112
+ # For LongRoPE, default to original_max_position_embeddings to avoid
2113
+ # performance degradation for shorter sequences
2114
+ if rope_scaling is not None and rope_scaling["rope_type"] == "longrope":
2115
+ max_model_len = int(
2116
+ getattr(
2117
+ hf_config, "original_max_position_embeddings", derived_max_model_len
2118
+ )
2119
+ )
2120
+ else:
2121
+ max_model_len = int(derived_max_model_len)
2122
+ max_model_len = current_platform.check_max_model_len(max_model_len)
2123
+
2124
+ # If the user specified a max length, make sure it is smaller than the
2125
+ # derived length from the HF model config.
2126
+ elif max_model_len > derived_max_model_len:
2127
+ # Some models might have a separate key for specifying model_max_length
2128
+ # that will be bigger than derived_max_model_len. We compare user input
2129
+ # with model_max_length and allow this override when it's smaller.
2130
+ model_max_length = getattr(hf_config, "model_max_length", None)
2131
+ if model_max_length is not None and max_model_len <= model_max_length:
2132
+ if disable_sliding_window:
2133
+ # TODO(robertgshaw): Find a model that has model_max_length
2134
+ # with sliding window to see if this case should be allowed.
2135
+ raise NotImplementedError(
2136
+ "Disabling sliding window is not supported for models "
2137
+ "model_max_length in the config. Please raise an issue "
2138
+ "so we can investigate."
2139
+ )
2140
+ else:
2141
+ msg = (
2142
+ f"User-specified max_model_len ({max_model_len}) is greater "
2143
+ f"than the derived max_model_len ({max_len_key}="
2144
+ f"{derived_max_model_len} or model_max_length="
2145
+ f"{model_max_length} in model's config.json)."
2146
+ )
2147
+ warning = (
2148
+ "VLLM_ALLOW_LONG_MAX_MODEL_LEN must be used with extreme "
2149
+ "caution. If the model uses relative position encoding (RoPE), "
2150
+ "positions exceeding derived_max_model_len lead to nan. If the "
2151
+ "model uses absolute position encoding, positions exceeding "
2152
+ "derived_max_model_len will cause a CUDA array out-of-bounds "
2153
+ "error."
2154
+ )
2155
+ if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
2156
+ logger.warning_once("%s %s", msg, warning)
2157
+ else:
2158
+ raise ValueError(
2159
+ f"{msg} To allow overriding this maximum, set "
2160
+ f"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1. {warning}"
2161
+ )
2162
+ return int(max_model_len)