vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +983 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2863 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +18 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +391 -0
- vllm/attention/backends/registry.py +195 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +1052 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +121 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +414 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +105 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +178 -0
- vllm/attention/selector.py +231 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +109 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +38 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/serve.py +416 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +759 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +178 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +571 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +317 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +135 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +238 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +207 -0
- vllm/config/compilation.py +975 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +112 -0
- vllm/config/model.py +2162 -0
- vllm/config/multimodal.py +248 -0
- vllm/config/observability.py +123 -0
- vllm/config/parallel.py +655 -0
- vllm/config/pooler.py +122 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +654 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +92 -0
- vllm/config/utils.py +178 -0
- vllm/config/vllm.py +1166 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +660 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +107 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +837 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +431 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1759 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +543 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2144 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +170 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1690 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1768 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2096 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +3299 -0
- vllm/entrypoints/openai/run_batch.py +547 -0
- vllm/entrypoints/openai/serving_chat.py +1772 -0
- vllm/entrypoints/openai/serving_classification.py +235 -0
- vllm/entrypoints/openai/serving_completion.py +715 -0
- vllm/entrypoints/openai/serving_embedding.py +695 -0
- vllm/entrypoints/openai/serving_engine.py +1433 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_pooling.py +346 -0
- vllm/entrypoints/openai/serving_responses.py +2021 -0
- vllm/entrypoints/openai/serving_score.py +503 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +269 -0
- vllm/entrypoints/openai/serving_transcription.py +148 -0
- vllm/entrypoints/openai/speech_to_text.py +405 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +77 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +72 -0
- vllm/entrypoints/score_utils.py +242 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +209 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1659 -0
- vllm/forward_context.py +356 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +727 -0
- vllm/logger.py +267 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +77 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +208 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +41 -0
- vllm/lora/layers/base.py +67 -0
- vllm/lora/layers/base_linear.py +164 -0
- vllm/lora/layers/column_parallel_linear.py +578 -0
- vllm/lora/layers/fused_moe.py +472 -0
- vllm/lora/layers/logits_processor.py +252 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +181 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +166 -0
- vllm/lora/lora_weights.py +198 -0
- vllm/lora/models.py +890 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +492 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +411 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +359 -0
- vllm/lora/punica_wrapper/punica_xpu.py +279 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +293 -0
- vllm/lora/worker_manager.py +279 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +569 -0
- vllm/model_executor/layers/attention_layer_base.py +35 -0
- vllm/model_executor/layers/batch_invariant.py +854 -0
- vllm/model_executor/layers/conv.py +236 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +106 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +916 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
- vllm/model_executor/layers/fused_moe/layer.py +1944 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +448 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +729 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +71 -0
- vllm/model_executor/layers/mamba/linear_attn.py +402 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +264 -0
- vllm/model_executor/layers/mla.py +168 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +174 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +240 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1333 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +643 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1788 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
- vllm/model_executor/layers/quantization/petit.py +320 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +528 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +652 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
- vllm/model_executor/layers/rotary_embedding/base.py +235 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +148 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +327 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +176 -0
- vllm/model_executor/model_loader/online_quantization.py +224 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +288 -0
- vllm/model_executor/model_loader/weight_utils.py +1084 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +711 -0
- vllm/model_executor/models/aimv2.py +247 -0
- vllm/model_executor/models/apertus.py +587 -0
- vllm/model_executor/models/arcee.py +439 -0
- vllm/model_executor/models/arctic.py +635 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +496 -0
- vllm/model_executor/models/bailing_moe.py +646 -0
- vllm/model_executor/models/bamba.py +522 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +349 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1120 -0
- vllm/model_executor/models/chatglm.py +498 -0
- vllm/model_executor/models/clip.py +965 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +473 -0
- vllm/model_executor/models/config.py +503 -0
- vllm/model_executor/models/dbrx.py +482 -0
- vllm/model_executor/models/deepencoder.py +673 -0
- vllm/model_executor/models/deepseek_eagle.py +260 -0
- vllm/model_executor/models/deepseek_mtp.py +360 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1649 -0
- vllm/model_executor/models/deepseek_vl2.py +655 -0
- vllm/model_executor/models/dots1.py +574 -0
- vllm/model_executor/models/dots_ocr.py +900 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +759 -0
- vllm/model_executor/models/ernie45_vl.py +1742 -0
- vllm/model_executor/models/ernie45_vl_moe.py +803 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +545 -0
- vllm/model_executor/models/exaone4.py +531 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +545 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +439 -0
- vllm/model_executor/models/gemma3.py +571 -0
- vllm/model_executor/models/gemma3_mm.py +741 -0
- vllm/model_executor/models/gemma3n.py +1165 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1821 -0
- vllm/model_executor/models/glm4_moe.py +747 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +784 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +344 -0
- vllm/model_executor/models/gpt_oss.py +738 -0
- vllm/model_executor/models/granite.py +516 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +569 -0
- vllm/model_executor/models/granitemoehybrid.py +709 -0
- vllm/model_executor/models/granitemoeshared.py +333 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +558 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1053 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +426 -0
- vllm/model_executor/models/idefics3.py +717 -0
- vllm/model_executor/models/interfaces.py +1092 -0
- vllm/model_executor/models/interfaces_base.py +214 -0
- vllm/model_executor/models/intern_vit.py +453 -0
- vllm/model_executor/models/internlm2.py +460 -0
- vllm/model_executor/models/internlm2_ve.py +142 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +432 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +610 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1761 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +663 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +532 -0
- vllm/model_executor/models/lfm2_moe.py +762 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +732 -0
- vllm/model_executor/models/llama4.py +859 -0
- vllm/model_executor/models/llama4_eagle.py +223 -0
- vllm/model_executor/models/llama_eagle.py +218 -0
- vllm/model_executor/models/llama_eagle3.py +367 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +749 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +289 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +827 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +664 -0
- vllm/model_executor/models/minicpm3.py +242 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1745 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1012 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mixtral.py +621 -0
- vllm/model_executor/models/mllama4.py +1147 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +450 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1555 -0
- vllm/model_executor/models/moonvit.py +677 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
- vllm/model_executor/models/nemotron.py +518 -0
- vllm/model_executor/models/nemotron_h.py +852 -0
- vllm/model_executor/models/nemotron_nas.py +491 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +414 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/openpangu.py +1062 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +372 -0
- vllm/model_executor/models/ouro.py +516 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1407 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +377 -0
- vllm/model_executor/models/phi.py +374 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +675 -0
- vllm/model_executor/models/pixtral.py +1352 -0
- vllm/model_executor/models/plamo2.py +981 -0
- vllm/model_executor/models/qwen.py +368 -0
- vllm/model_executor/models/qwen2.py +541 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
- vllm/model_executor/models/qwen2_5_vl.py +1613 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +596 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +336 -0
- vllm/model_executor/models/qwen3_moe.py +744 -0
- vllm/model_executor/models/qwen3_next.py +1395 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
- vllm/model_executor/models/qwen3_vl.py +1673 -0
- vllm/model_executor/models/qwen3_vl_moe.py +415 -0
- vllm/model_executor/models/qwen_vl.py +802 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1155 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +497 -0
- vllm/model_executor/models/siglip.py +1174 -0
- vllm/model_executor/models/siglip2navit.py +724 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +502 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +367 -0
- vllm/model_executor/models/step3_text.py +559 -0
- vllm/model_executor/models/step3_vl.py +1148 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +318 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +207 -0
- vllm/model_executor/models/ultravox.py +681 -0
- vllm/model_executor/models/utils.py +877 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +845 -0
- vllm/model_executor/models/whisper.py +959 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +118 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +755 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2186 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +360 -0
- vllm/multimodal/utils.py +512 -0
- vllm/multimodal/video.py +306 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +414 -0
- vllm/platforms/cuda.py +657 -0
- vllm/platforms/interface.py +639 -0
- vllm/platforms/rocm.py +466 -0
- vllm/platforms/tpu.py +276 -0
- vllm/platforms/xpu.py +274 -0
- vllm/plugins/__init__.py +78 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +228 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +37 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +26 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +669 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1203 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +70 -0
- vllm/transformers_utils/configs/afmoe.py +84 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +77 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +144 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +159 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +174 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +212 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +79 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +274 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +174 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/detokenizer_utils.py +198 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/processor.py +402 -0
- vllm/transformers_utils/processors/__init__.py +15 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +155 -0
- vllm/transformers_utils/tokenizers/__init__.py +16 -0
- vllm/transformers_utils/tokenizers/mistral.py +502 -0
- vllm/transformers_utils/utils.py +130 -0
- vllm/triton_utils/__init__.py +19 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +82 -0
- vllm/utils/argparse_utils.py +487 -0
- vllm/utils/async_utils.py +303 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +139 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +391 -0
- vllm/utils/flashinfer.py +490 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +147 -0
- vllm/utils/hashing.py +63 -0
- vllm/utils/import_utils.py +411 -0
- vllm/utils/jsontree.py +165 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +49 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +229 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +657 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +496 -0
- vllm/v1/attention/backends/flash_attn.py +1028 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +926 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +74 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +115 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +2031 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
- vllm/v1/attention/backends/mla/flashmla.py +314 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
- vllm/v1/attention/backends/mla/indexer.py +362 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
- vllm/v1/attention/backends/rocm_attn.py +362 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +425 -0
- vllm/v1/attention/backends/triton_attn.py +373 -0
- vllm/v1/attention/backends/utils.py +1116 -0
- vllm/v1/attention/backends/xformers.py +417 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +428 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +480 -0
- vllm/v1/core/kv_cache_manager.py +420 -0
- vllm/v1/core/kv_cache_utils.py +1340 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +62 -0
- vllm/v1/core/sched/interface.py +181 -0
- vllm/v1/core/sched/output.py +202 -0
- vllm/v1/core/sched/request_queue.py +221 -0
- vllm/v1/core/sched/scheduler.py +1617 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +736 -0
- vllm/v1/cudagraph_dispatcher.py +148 -0
- vllm/v1/engine/__init__.py +206 -0
- vllm/v1/engine/async_llm.py +797 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1420 -0
- vllm/v1/engine/core_client.py +1400 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/llm_engine.py +408 -0
- vllm/v1/engine/logprobs.py +182 -0
- vllm/v1/engine/output_processor.py +642 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +621 -0
- vllm/v1/engine/utils.py +1072 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +877 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +403 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +93 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +62 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1238 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +169 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +420 -0
- vllm/v1/outputs.py +249 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +259 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +274 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
- vllm/v1/sample/rejection_sampler.py +793 -0
- vllm/v1/sample/sampler.py +316 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1225 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +224 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +103 -0
- vllm/v1/spec_decode/utils.py +16 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +327 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +206 -0
- vllm/v1/worker/dp_utils.py +230 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +975 -0
- vllm/v1/worker/gpu_model_runner.py +5102 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
- vllm/v1/worker/gpu_worker.py +894 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
- vllm/v1/worker/lora_model_runner_mixin.py +213 -0
- vllm/v1/worker/tpu_input_batch.py +593 -0
- vllm/v1/worker/tpu_model_runner.py +2173 -0
- vllm/v1/worker/tpu_worker.py +355 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +366 -0
- vllm/v1/worker/worker_base.py +375 -0
- vllm/v1/worker/xpu_model_runner.py +55 -0
- vllm/v1/worker/xpu_worker.py +189 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,817 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
from abc import ABC, abstractmethod
|
|
4
|
+
from collections.abc import Callable, Mapping, Set
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from enum import IntEnum
|
|
7
|
+
from itertools import groupby
|
|
8
|
+
from typing import TypeVar
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn as nn
|
|
12
|
+
import torch.nn.functional as F
|
|
13
|
+
from transformers import PretrainedConfig
|
|
14
|
+
|
|
15
|
+
from vllm.config import ModelConfig, PoolerConfig, get_current_vllm_config
|
|
16
|
+
from vllm.logger import init_logger
|
|
17
|
+
from vllm.model_executor.models.adapters import _load_st_projector
|
|
18
|
+
from vllm.pooling_params import PoolingParams
|
|
19
|
+
from vllm.tasks import PoolingTask
|
|
20
|
+
from vllm.utils.import_utils import resolve_obj_by_qualname
|
|
21
|
+
from vllm.v1.outputs import PoolerOutput
|
|
22
|
+
from vllm.v1.pool.metadata import PoolingCursor, PoolingMetadata
|
|
23
|
+
|
|
24
|
+
logger = init_logger(__name__)
|
|
25
|
+
|
|
26
|
+
PoolingFn = Callable[
|
|
27
|
+
[torch.Tensor | list[torch.Tensor], PoolingMetadata],
|
|
28
|
+
torch.Tensor | list[torch.Tensor],
|
|
29
|
+
]
|
|
30
|
+
ClassifierFn = Callable[[torch.Tensor], torch.Tensor]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class PoolingType(IntEnum):
|
|
34
|
+
"""Enumeration for different types of pooling methods."""
|
|
35
|
+
|
|
36
|
+
LAST = 0
|
|
37
|
+
ALL = 1
|
|
38
|
+
CLS = 2
|
|
39
|
+
STEP = 3
|
|
40
|
+
MEAN = 4
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@dataclass(frozen=True)
|
|
44
|
+
class ResolvedPoolingConfig:
|
|
45
|
+
pooling_type: PoolingType
|
|
46
|
+
task: PoolingTask
|
|
47
|
+
|
|
48
|
+
@classmethod
|
|
49
|
+
def from_config(
|
|
50
|
+
cls,
|
|
51
|
+
task: PoolingTask,
|
|
52
|
+
pooler_config: PoolerConfig,
|
|
53
|
+
) -> "ResolvedPoolingConfig":
|
|
54
|
+
assert pooler_config.pooling_type is not None
|
|
55
|
+
return cls(task=task, pooling_type=PoolingType[pooler_config.pooling_type])
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
@dataclass(frozen=True)
|
|
59
|
+
class PoolingParamsUpdate:
|
|
60
|
+
requires_token_ids: bool = False
|
|
61
|
+
"""Set this flag to enable `get_prompt_token_ids` for your pooler."""
|
|
62
|
+
|
|
63
|
+
def apply(self, params: PoolingParams) -> None:
|
|
64
|
+
params.requires_token_ids = self.requires_token_ids
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def get_prompt_lens(
|
|
68
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
69
|
+
pooling_metadata: PoolingMetadata,
|
|
70
|
+
) -> torch.Tensor:
|
|
71
|
+
return pooling_metadata.prompt_lens
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def get_prompt_token_ids(pooling_metadata: PoolingMetadata) -> list[torch.Tensor]:
|
|
75
|
+
assert pooling_metadata.prompt_token_ids is not None, (
|
|
76
|
+
"Please set `requires_token_ids=True` in `get_pooling_updates`"
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
return [
|
|
80
|
+
pooling_metadata.prompt_token_ids[i, :num]
|
|
81
|
+
for i, num in enumerate(pooling_metadata.prompt_lens)
|
|
82
|
+
]
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def get_pooling_params(pooling_metadata: PoolingMetadata) -> list[PoolingParams]:
|
|
86
|
+
pooling_params = pooling_metadata.pooling_params
|
|
87
|
+
return pooling_params
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def get_tasks(pooling_metadata: PoolingMetadata) -> list[PoolingTask]:
|
|
91
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
92
|
+
|
|
93
|
+
tasks: list[PoolingTask] = [
|
|
94
|
+
task
|
|
95
|
+
for pooling_param in pooling_params
|
|
96
|
+
if (task := pooling_param.task) is not None
|
|
97
|
+
]
|
|
98
|
+
assert len(pooling_params) == len(tasks)
|
|
99
|
+
|
|
100
|
+
return tasks
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def get_classification_activation_function(config: PretrainedConfig):
|
|
104
|
+
# Implement alignment with transformers ForSequenceClassificationLoss
|
|
105
|
+
# https://github.com/huggingface/transformers/blob/57bb6db6ee4cfaccc45b8d474dfad5a17811ca60/src/transformers/loss/loss_utils.py#L92
|
|
106
|
+
problem_type = getattr(config, "problem_type", "")
|
|
107
|
+
if problem_type == "regression":
|
|
108
|
+
return PoolerIdentity()
|
|
109
|
+
if problem_type == "single_label_classification":
|
|
110
|
+
return PoolerClassify()
|
|
111
|
+
if problem_type == "multi_label_classification":
|
|
112
|
+
return PoolerMultiLabelClassify()
|
|
113
|
+
return PoolerClassify()
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def get_cross_encoder_activation_function(config: PretrainedConfig):
|
|
117
|
+
function_name: str | None = None
|
|
118
|
+
if (
|
|
119
|
+
hasattr(config, "sentence_transformers")
|
|
120
|
+
and "activation_fn" in config.sentence_transformers
|
|
121
|
+
):
|
|
122
|
+
function_name = config.sentence_transformers["activation_fn"]
|
|
123
|
+
elif (
|
|
124
|
+
hasattr(config, "sbert_ce_default_activation_function")
|
|
125
|
+
and config.sbert_ce_default_activation_function is not None
|
|
126
|
+
):
|
|
127
|
+
function_name = config.sbert_ce_default_activation_function
|
|
128
|
+
|
|
129
|
+
if function_name is not None:
|
|
130
|
+
assert function_name.startswith("torch.nn.modules."), (
|
|
131
|
+
"Loading of activation functions is restricted to "
|
|
132
|
+
"torch.nn.modules for security reasons"
|
|
133
|
+
)
|
|
134
|
+
fn = resolve_obj_by_qualname(function_name)()
|
|
135
|
+
return PoolerActivation.wraps(fn)
|
|
136
|
+
|
|
137
|
+
return PoolerClassify()
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
class PoolingMethod(nn.Module, ABC):
|
|
141
|
+
@staticmethod
|
|
142
|
+
def from_pooling_type(pooling_type: PoolingType) -> "PoolingMethod":
|
|
143
|
+
if pooling_type == PoolingType.LAST:
|
|
144
|
+
return LastPool()
|
|
145
|
+
if pooling_type == PoolingType.ALL:
|
|
146
|
+
return AllPool()
|
|
147
|
+
if pooling_type == PoolingType.CLS:
|
|
148
|
+
return CLSPool()
|
|
149
|
+
if pooling_type == PoolingType.MEAN:
|
|
150
|
+
return MeanPool()
|
|
151
|
+
|
|
152
|
+
raise NotImplementedError(f"Unsupported method: {pooling_type}")
|
|
153
|
+
|
|
154
|
+
@abstractmethod
|
|
155
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
156
|
+
raise NotImplementedError
|
|
157
|
+
|
|
158
|
+
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
|
|
159
|
+
return PoolingParamsUpdate()
|
|
160
|
+
|
|
161
|
+
@abstractmethod
|
|
162
|
+
def forward_all(
|
|
163
|
+
self,
|
|
164
|
+
hidden_states: torch.Tensor,
|
|
165
|
+
pooling_cursor: PoolingCursor,
|
|
166
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
167
|
+
raise NotImplementedError
|
|
168
|
+
|
|
169
|
+
def forward(
|
|
170
|
+
self,
|
|
171
|
+
hidden_states: torch.Tensor,
|
|
172
|
+
pooling_metadata: PoolingMetadata,
|
|
173
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
174
|
+
pooling_cursor = pooling_metadata.pooling_cursor
|
|
175
|
+
return self.forward_all(hidden_states, pooling_cursor)
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class CLSPool(PoolingMethod):
|
|
179
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
180
|
+
return {"token_embed", "token_classify", "embed", "classify", "score"}
|
|
181
|
+
|
|
182
|
+
def forward_all(
|
|
183
|
+
self,
|
|
184
|
+
hidden_states: torch.Tensor,
|
|
185
|
+
pooling_cursor: PoolingCursor,
|
|
186
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
187
|
+
assert not pooling_cursor.is_partial_prefill(), (
|
|
188
|
+
"partial prefill not supported with CLS pooling"
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
return hidden_states[pooling_cursor.first_token_indices_gpu]
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
class LastPool(PoolingMethod):
|
|
195
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
196
|
+
return {"token_embed", "token_classify", "embed", "classify", "score"}
|
|
197
|
+
|
|
198
|
+
def forward_all(
|
|
199
|
+
self,
|
|
200
|
+
hidden_states: torch.Tensor,
|
|
201
|
+
pooling_cursor: PoolingCursor,
|
|
202
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
203
|
+
return hidden_states[pooling_cursor.last_token_indices_gpu]
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
class AllPool(PoolingMethod):
|
|
207
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
208
|
+
return {"token_embed", "token_classify"}
|
|
209
|
+
|
|
210
|
+
def forward_all(
|
|
211
|
+
self,
|
|
212
|
+
hidden_states: torch.Tensor,
|
|
213
|
+
pooling_cursor: PoolingCursor,
|
|
214
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
215
|
+
assert not pooling_cursor.is_partial_prefill(), (
|
|
216
|
+
"partial prefill not supported with ALL pooling"
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
hidden_states_lst = list(
|
|
220
|
+
hidden_states.split(pooling_cursor.num_scheduled_tokens_cpu.tolist())
|
|
221
|
+
)
|
|
222
|
+
return [hidden_states_lst[i] for i in pooling_cursor.index]
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
class MeanPool(PoolingMethod):
|
|
226
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
227
|
+
return {"token_embed", "token_classify", "embed", "classify", "score"}
|
|
228
|
+
|
|
229
|
+
def forward_all(
|
|
230
|
+
self,
|
|
231
|
+
hidden_states: torch.Tensor,
|
|
232
|
+
pooling_cursor: PoolingCursor,
|
|
233
|
+
) -> list[torch.Tensor] | torch.Tensor:
|
|
234
|
+
assert not pooling_cursor.is_partial_prefill(), (
|
|
235
|
+
"partial prefill not supported with MEAN pooling"
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
prompt_lens = pooling_cursor.prompt_lens_cpu.to(
|
|
239
|
+
hidden_states.device, non_blocking=True
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
# Use float32 for torch.cumsum in MeanPool,
|
|
243
|
+
# otherwise precision will be lost significantly.
|
|
244
|
+
cumsum = torch.cumsum(hidden_states, dim=0, dtype=torch.float32)
|
|
245
|
+
|
|
246
|
+
start_indices = pooling_cursor.first_token_indices_gpu
|
|
247
|
+
end_indices = pooling_cursor.last_token_indices_gpu
|
|
248
|
+
return (
|
|
249
|
+
cumsum[end_indices] - cumsum[start_indices] + hidden_states[start_indices]
|
|
250
|
+
) / prompt_lens.unsqueeze(1)
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
_T = TypeVar("_T", torch.Tensor, list[torch.Tensor])
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
class BasePoolerActivation(nn.Module, ABC):
|
|
257
|
+
@abstractmethod
|
|
258
|
+
def forward(self, pooled_data: _T) -> _T:
|
|
259
|
+
# shape:
|
|
260
|
+
# classify (& score) -> (batch_size, num_classes)
|
|
261
|
+
# embed -> (batch_size, embedding_dim) or list(embedding_dim)
|
|
262
|
+
# (batch_size, dimensions) or list(dimensions) if using MRL
|
|
263
|
+
raise NotImplementedError
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
class PoolerActivation(BasePoolerActivation):
|
|
267
|
+
@staticmethod
|
|
268
|
+
def wraps(module: nn.Module):
|
|
269
|
+
if isinstance(module, nn.Identity):
|
|
270
|
+
return PoolerIdentity()
|
|
271
|
+
if isinstance(module, (nn.Sigmoid, nn.Softmax)):
|
|
272
|
+
return PoolerClassify()
|
|
273
|
+
|
|
274
|
+
return LambdaPoolerActivation(module)
|
|
275
|
+
|
|
276
|
+
@abstractmethod
|
|
277
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
278
|
+
raise NotImplementedError
|
|
279
|
+
|
|
280
|
+
def forward(self, pooled_data: _T) -> _T:
|
|
281
|
+
if isinstance(pooled_data, list):
|
|
282
|
+
return [self.forward_chunk(data) for data in pooled_data]
|
|
283
|
+
|
|
284
|
+
return self.forward_chunk(pooled_data)
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
class PoolerIdentity(PoolerActivation):
|
|
288
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
289
|
+
return pooled_data
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
class PoolerNormalize(PoolerActivation):
|
|
293
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
294
|
+
return F.normalize(pooled_data, p=2, dim=-1)
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
class PoolerMultiLabelClassify(PoolerActivation):
|
|
298
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
299
|
+
return F.sigmoid(pooled_data)
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
class PoolerClassify(PoolerActivation):
|
|
303
|
+
def __init__(self, *, static_num_labels: bool = True) -> None:
|
|
304
|
+
super().__init__()
|
|
305
|
+
|
|
306
|
+
if static_num_labels:
|
|
307
|
+
vllm_config = get_current_vllm_config()
|
|
308
|
+
self.num_labels = getattr(
|
|
309
|
+
vllm_config.model_config.hf_config, "num_labels", 0
|
|
310
|
+
)
|
|
311
|
+
if self.num_labels == 0:
|
|
312
|
+
logger.warning(
|
|
313
|
+
"num_labels should be > 0 for classification"
|
|
314
|
+
"models, falling back to softmax. "
|
|
315
|
+
"Please check if the configuration is correct."
|
|
316
|
+
)
|
|
317
|
+
else:
|
|
318
|
+
self.num_labels = None
|
|
319
|
+
|
|
320
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
321
|
+
num_labels = (
|
|
322
|
+
self.num_labels if self.num_labels is not None else pooled_data.shape[-1]
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
if num_labels < 2:
|
|
326
|
+
return F.sigmoid(pooled_data)
|
|
327
|
+
|
|
328
|
+
return F.softmax(pooled_data, dim=-1)
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
class LambdaPoolerActivation(PoolerActivation):
|
|
332
|
+
def __init__(self, fn: Callable[[torch.Tensor], torch.Tensor]):
|
|
333
|
+
super().__init__()
|
|
334
|
+
|
|
335
|
+
self.fn = fn
|
|
336
|
+
|
|
337
|
+
def forward_chunk(self, pooled_data: torch.Tensor) -> torch.Tensor:
|
|
338
|
+
return self.fn(pooled_data)
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
class Pooler(nn.Module, ABC):
|
|
342
|
+
"""The interface required for all poolers used in pooling models in vLLM."""
|
|
343
|
+
|
|
344
|
+
@staticmethod
|
|
345
|
+
def for_token_embed(pooler_config: PoolerConfig):
|
|
346
|
+
head = TokenEmbeddingPoolerHead()
|
|
347
|
+
|
|
348
|
+
if pooler_config.pooling_type == "STEP":
|
|
349
|
+
return StepPooler(head=head)
|
|
350
|
+
|
|
351
|
+
return AllPooler(head=head)
|
|
352
|
+
|
|
353
|
+
@staticmethod
|
|
354
|
+
def for_token_classify(
|
|
355
|
+
pooler_config: PoolerConfig,
|
|
356
|
+
classifier: ClassifierFn | None = None,
|
|
357
|
+
act_fn: PoolerActivation | str | None = None,
|
|
358
|
+
):
|
|
359
|
+
head = TokenClassifierPoolerHead(classifier=classifier, act_fn=act_fn)
|
|
360
|
+
|
|
361
|
+
if pooler_config.pooling_type == "STEP":
|
|
362
|
+
return StepPooler(head=head)
|
|
363
|
+
|
|
364
|
+
return AllPooler(head=head)
|
|
365
|
+
|
|
366
|
+
@staticmethod
|
|
367
|
+
def for_embed(pooler_config: PoolerConfig):
|
|
368
|
+
resolved_config = ResolvedPoolingConfig.from_config(
|
|
369
|
+
task="embed",
|
|
370
|
+
pooler_config=pooler_config,
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
pooling = PoolingMethod.from_pooling_type(resolved_config.pooling_type)
|
|
374
|
+
head = EmbeddingPoolerHead()
|
|
375
|
+
|
|
376
|
+
return SimplePooler(pooling=pooling, head=head)
|
|
377
|
+
|
|
378
|
+
@staticmethod
|
|
379
|
+
def for_classify(
|
|
380
|
+
pooler_config: PoolerConfig,
|
|
381
|
+
classifier: ClassifierFn | None,
|
|
382
|
+
act_fn: PoolerActivation | str | None = None,
|
|
383
|
+
):
|
|
384
|
+
resolved_config = ResolvedPoolingConfig.from_config(
|
|
385
|
+
task="classify",
|
|
386
|
+
pooler_config=pooler_config,
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
pooling = PoolingMethod.from_pooling_type(resolved_config.pooling_type)
|
|
390
|
+
|
|
391
|
+
return ClassifierPooler(
|
|
392
|
+
pooling=pooling,
|
|
393
|
+
classifier=classifier,
|
|
394
|
+
act_fn=act_fn,
|
|
395
|
+
)
|
|
396
|
+
|
|
397
|
+
@abstractmethod
|
|
398
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
399
|
+
"""Determine which pooling tasks are supported."""
|
|
400
|
+
raise NotImplementedError
|
|
401
|
+
|
|
402
|
+
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
|
|
403
|
+
"""
|
|
404
|
+
Construct the updated pooling parameters to use for a supported task.
|
|
405
|
+
"""
|
|
406
|
+
return PoolingParamsUpdate()
|
|
407
|
+
|
|
408
|
+
@abstractmethod
|
|
409
|
+
def forward(
|
|
410
|
+
self,
|
|
411
|
+
hidden_states: list[torch.Tensor] | torch.Tensor,
|
|
412
|
+
pooling_metadata: PoolingMetadata,
|
|
413
|
+
) -> PoolerOutput:
|
|
414
|
+
raise NotImplementedError
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
class DummyPooler(Pooler):
|
|
418
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
419
|
+
return {"plugin", "score"}
|
|
420
|
+
|
|
421
|
+
def forward(
|
|
422
|
+
self,
|
|
423
|
+
hidden_states: list[torch.Tensor] | torch.Tensor,
|
|
424
|
+
pooling_metadata: PoolingMetadata,
|
|
425
|
+
) -> PoolerOutput:
|
|
426
|
+
return hidden_states
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
class PoolerHead(nn.Module):
|
|
430
|
+
def __init__(self, activation: PoolerActivation) -> None:
|
|
431
|
+
super().__init__()
|
|
432
|
+
self.activation = activation
|
|
433
|
+
|
|
434
|
+
def forward(
|
|
435
|
+
self,
|
|
436
|
+
pooled_data: list[torch.Tensor] | torch.Tensor,
|
|
437
|
+
pooling_metadata: PoolingMetadata,
|
|
438
|
+
):
|
|
439
|
+
return self.activation(pooled_data)
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
class EmbeddingPoolerHead(PoolerHead):
|
|
443
|
+
def __init__(self) -> None:
|
|
444
|
+
super().__init__(activation=PoolerNormalize())
|
|
445
|
+
|
|
446
|
+
# Load ST projector if available
|
|
447
|
+
vllm_config = get_current_vllm_config()
|
|
448
|
+
self.projector: nn.Module | None = (
|
|
449
|
+
_load_st_projector(vllm_config.model_config) if vllm_config else None
|
|
450
|
+
)
|
|
451
|
+
self.head_dtype = vllm_config.model_config.head_dtype
|
|
452
|
+
|
|
453
|
+
def forward(
|
|
454
|
+
self,
|
|
455
|
+
pooled_data: list[torch.Tensor] | torch.Tensor,
|
|
456
|
+
pooling_metadata: PoolingMetadata,
|
|
457
|
+
):
|
|
458
|
+
if isinstance(pooled_data, list):
|
|
459
|
+
pooled_data = torch.stack(pooled_data)
|
|
460
|
+
# pooled_data shape: [batchsize, hidden_dimension]
|
|
461
|
+
|
|
462
|
+
pooled_data = pooled_data.to(self.head_dtype)
|
|
463
|
+
|
|
464
|
+
# Apply ST projector
|
|
465
|
+
if self.projector is not None:
|
|
466
|
+
pooled_data = self.projector(pooled_data)
|
|
467
|
+
# pooled_data shape: [batchsize, embedding_dimension]
|
|
468
|
+
|
|
469
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
470
|
+
|
|
471
|
+
# for matryoshka representation
|
|
472
|
+
dimensions_list = [pooling_param.dimensions for pooling_param in pooling_params]
|
|
473
|
+
if any(d is not None for d in dimensions_list):
|
|
474
|
+
# change the output dimension
|
|
475
|
+
assert len(pooled_data) == len(dimensions_list)
|
|
476
|
+
if len(set(dimensions_list)) == 1 and not isinstance(pooled_data, list):
|
|
477
|
+
# if all dimensions are the same
|
|
478
|
+
d = dimensions_list[0]
|
|
479
|
+
pooled_data = pooled_data[..., :d]
|
|
480
|
+
else:
|
|
481
|
+
pooled_data = [
|
|
482
|
+
vecs if d is None else vecs[..., :d]
|
|
483
|
+
for vecs, d in zip(pooled_data, dimensions_list)
|
|
484
|
+
]
|
|
485
|
+
|
|
486
|
+
# for normalize
|
|
487
|
+
flags = [p.normalize for p in pooling_params]
|
|
488
|
+
if len(set(flags)) == 1:
|
|
489
|
+
if flags[0]:
|
|
490
|
+
pooled_data = self.activation(pooled_data)
|
|
491
|
+
else:
|
|
492
|
+
pooled_data = [
|
|
493
|
+
self.activation(vecs) if f else vecs
|
|
494
|
+
for vecs, f in zip(pooled_data, flags)
|
|
495
|
+
]
|
|
496
|
+
|
|
497
|
+
# pooled_data shape: [batchsize, embedding_dimension]
|
|
498
|
+
return pooled_data
|
|
499
|
+
|
|
500
|
+
|
|
501
|
+
class SimplePooler(Pooler):
|
|
502
|
+
"""A layer that pools specific information from hidden states.
|
|
503
|
+
|
|
504
|
+
This layer does the following:
|
|
505
|
+
1. Extracts specific tokens or aggregates data based on pooling method.
|
|
506
|
+
2. Normalizes output if specified.
|
|
507
|
+
3. Returns structured results as `PoolerOutput`.
|
|
508
|
+
"""
|
|
509
|
+
|
|
510
|
+
def __init__(self, pooling: PoolingMethod, head: PoolerHead) -> None:
|
|
511
|
+
super().__init__()
|
|
512
|
+
|
|
513
|
+
self.pooling = pooling
|
|
514
|
+
self.head = head
|
|
515
|
+
|
|
516
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
517
|
+
return self.pooling.get_supported_tasks()
|
|
518
|
+
|
|
519
|
+
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
|
|
520
|
+
return self.pooling.get_pooling_updates(task)
|
|
521
|
+
|
|
522
|
+
def forward(
|
|
523
|
+
self,
|
|
524
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
525
|
+
pooling_metadata: PoolingMetadata,
|
|
526
|
+
) -> PoolerOutput:
|
|
527
|
+
pooled_data = self.pooling(hidden_states, pooling_metadata)
|
|
528
|
+
pooled_data = self.head(pooled_data, pooling_metadata)
|
|
529
|
+
return pooled_data
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
class ClassifierPooler(Pooler):
|
|
533
|
+
"""A pooling layer for classification tasks.
|
|
534
|
+
|
|
535
|
+
This layer does the following:
|
|
536
|
+
1. Applies a classification layer to the hidden states.
|
|
537
|
+
2. Optionally applies a pooler layer.
|
|
538
|
+
3. Applies an activation function to the output.
|
|
539
|
+
"""
|
|
540
|
+
|
|
541
|
+
@staticmethod
|
|
542
|
+
def act_fn_for_seq_cls(model_config: ModelConfig):
|
|
543
|
+
return get_classification_activation_function(model_config.hf_config)
|
|
544
|
+
|
|
545
|
+
@staticmethod
|
|
546
|
+
def act_fn_for_cross_encoder(model_config: ModelConfig):
|
|
547
|
+
return get_cross_encoder_activation_function(model_config.hf_config)
|
|
548
|
+
|
|
549
|
+
@staticmethod
|
|
550
|
+
def resolve_act_fn(
|
|
551
|
+
model_config: ModelConfig,
|
|
552
|
+
static_num_labels: bool = True,
|
|
553
|
+
act_fn: PoolerActivation | str | None = None,
|
|
554
|
+
):
|
|
555
|
+
if isinstance(act_fn, str):
|
|
556
|
+
if act_fn == "classify":
|
|
557
|
+
return ClassifierPooler.act_fn_for_seq_cls(model_config)
|
|
558
|
+
elif act_fn == "score":
|
|
559
|
+
return ClassifierPooler.act_fn_for_cross_encoder(model_config)
|
|
560
|
+
else:
|
|
561
|
+
raise ValueError(f"act_fn [{act_fn=}] not supported.")
|
|
562
|
+
elif act_fn is None:
|
|
563
|
+
return PoolerClassify(static_num_labels=static_num_labels)
|
|
564
|
+
else:
|
|
565
|
+
assert callable(act_fn)
|
|
566
|
+
return act_fn
|
|
567
|
+
|
|
568
|
+
def __init__(
|
|
569
|
+
self,
|
|
570
|
+
pooling: PoolingFn,
|
|
571
|
+
classifier: ClassifierFn | None,
|
|
572
|
+
act_fn: PoolerActivation | str | None = None,
|
|
573
|
+
) -> None:
|
|
574
|
+
super().__init__()
|
|
575
|
+
|
|
576
|
+
vllm_config = get_current_vllm_config()
|
|
577
|
+
self.pooling = pooling
|
|
578
|
+
self.classifier = classifier
|
|
579
|
+
self.act_fn = self.resolve_act_fn(
|
|
580
|
+
vllm_config.model_config, static_num_labels=True, act_fn=act_fn
|
|
581
|
+
)
|
|
582
|
+
self.logit_bias: float | None = (
|
|
583
|
+
vllm_config.model_config.pooler_config.logit_bias
|
|
584
|
+
)
|
|
585
|
+
self.head_dtype = vllm_config.model_config.head_dtype
|
|
586
|
+
|
|
587
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
588
|
+
return {"classify", "score"}
|
|
589
|
+
|
|
590
|
+
def forward(
|
|
591
|
+
self,
|
|
592
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
593
|
+
pooling_metadata: PoolingMetadata,
|
|
594
|
+
) -> PoolerOutput:
|
|
595
|
+
pooled_data = self.pooling(hidden_states, pooling_metadata)
|
|
596
|
+
if isinstance(pooled_data, list):
|
|
597
|
+
pooled_data = torch.stack(pooled_data)
|
|
598
|
+
# pooled_data shape: [batchsize, hidden_size]
|
|
599
|
+
|
|
600
|
+
pooled_data = pooled_data.to(self.head_dtype)
|
|
601
|
+
|
|
602
|
+
if self.classifier is not None:
|
|
603
|
+
pooled_data = self.classifier(pooled_data)
|
|
604
|
+
# pooled_data shape: [batchsize, num_labels]
|
|
605
|
+
|
|
606
|
+
if self.logit_bias is not None:
|
|
607
|
+
pooled_data -= self.logit_bias
|
|
608
|
+
|
|
609
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
610
|
+
flags = [p.use_activation for p in pooling_params]
|
|
611
|
+
|
|
612
|
+
if len(set(flags)) == 1:
|
|
613
|
+
scores = self.act_fn(pooled_data) if flags[0] else pooled_data
|
|
614
|
+
else:
|
|
615
|
+
scores = [
|
|
616
|
+
self.act_fn(vecs) if f else vecs for vecs, f in zip(pooled_data, flags)
|
|
617
|
+
]
|
|
618
|
+
|
|
619
|
+
# scores shape: [batchsize, num_labels]
|
|
620
|
+
return scores
|
|
621
|
+
|
|
622
|
+
|
|
623
|
+
class TokenEmbeddingPoolerHead(EmbeddingPoolerHead):
|
|
624
|
+
def forward(
|
|
625
|
+
self, pooled_data: torch.Tensor, pooling_param: PoolingParams
|
|
626
|
+
) -> torch.Tensor:
|
|
627
|
+
pooled_data = pooled_data.to(self.head_dtype)
|
|
628
|
+
# pooled_data shape: [n_tokens, hidden_dimension]
|
|
629
|
+
|
|
630
|
+
# Apply ST projector
|
|
631
|
+
if self.projector is not None:
|
|
632
|
+
pooled_data = self.projector(pooled_data)
|
|
633
|
+
# pooled_data shape: [n_tokens, embedding_dimension]
|
|
634
|
+
|
|
635
|
+
# for matryoshka representation
|
|
636
|
+
pooled_data = pooled_data[..., : pooling_param.dimensions]
|
|
637
|
+
|
|
638
|
+
# for normalize
|
|
639
|
+
if pooling_param.normalize:
|
|
640
|
+
pooled_data = self.activation(pooled_data)
|
|
641
|
+
|
|
642
|
+
# pooled_data shape: [n_tokens, embedding_dimension]
|
|
643
|
+
return pooled_data
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
class TokenClassifierPoolerHead(nn.Module):
|
|
647
|
+
def __init__(
|
|
648
|
+
self,
|
|
649
|
+
classifier: ClassifierFn | None,
|
|
650
|
+
act_fn: PoolerActivation | str | None = None,
|
|
651
|
+
) -> None:
|
|
652
|
+
super().__init__()
|
|
653
|
+
vllm_config = get_current_vllm_config()
|
|
654
|
+
|
|
655
|
+
self.classifier = classifier
|
|
656
|
+
self.act_fn = ClassifierPooler.resolve_act_fn(
|
|
657
|
+
vllm_config.model_config, static_num_labels=False, act_fn=act_fn
|
|
658
|
+
)
|
|
659
|
+
self.logit_bias: float | None = (
|
|
660
|
+
vllm_config.model_config.pooler_config.logit_bias
|
|
661
|
+
)
|
|
662
|
+
self.head_dtype = vllm_config.model_config.head_dtype
|
|
663
|
+
|
|
664
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
665
|
+
return {"token_classify"}
|
|
666
|
+
|
|
667
|
+
def forward(
|
|
668
|
+
self,
|
|
669
|
+
hidden_states: torch.Tensor,
|
|
670
|
+
pooling_param: PoolingParams,
|
|
671
|
+
) -> torch.Tensor:
|
|
672
|
+
hidden_states = hidden_states.to(self.head_dtype)
|
|
673
|
+
# hidden_states shape: [n_token, hidden_size]
|
|
674
|
+
|
|
675
|
+
if self.classifier is not None:
|
|
676
|
+
scores = self.classifier(hidden_states)
|
|
677
|
+
else:
|
|
678
|
+
scores = hidden_states
|
|
679
|
+
# scores shape: [n_token, num_labels]
|
|
680
|
+
|
|
681
|
+
if self.logit_bias is not None:
|
|
682
|
+
scores -= self.logit_bias
|
|
683
|
+
|
|
684
|
+
if pooling_param.use_activation:
|
|
685
|
+
scores = self.act_fn(scores)
|
|
686
|
+
|
|
687
|
+
# scores shape: [n_token, num_labels]
|
|
688
|
+
return scores
|
|
689
|
+
|
|
690
|
+
|
|
691
|
+
class AllPooler(Pooler):
|
|
692
|
+
def __init__(self, head: nn.Module | PoolerHead) -> None:
|
|
693
|
+
super().__init__()
|
|
694
|
+
|
|
695
|
+
self.pooling = AllPool()
|
|
696
|
+
self.head = head
|
|
697
|
+
|
|
698
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
699
|
+
return {"token_embed", "token_classify"}
|
|
700
|
+
|
|
701
|
+
def forward(
|
|
702
|
+
self,
|
|
703
|
+
hidden_states: torch.Tensor,
|
|
704
|
+
pooling_metadata: PoolingMetadata,
|
|
705
|
+
) -> PoolerOutput:
|
|
706
|
+
pooled_data = self.pooling(hidden_states, pooling_metadata)
|
|
707
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
708
|
+
assert len(pooled_data) == len(pooling_params)
|
|
709
|
+
|
|
710
|
+
pooled_data = [self.head(d, p) for d, p in zip(pooled_data, pooling_params)]
|
|
711
|
+
return pooled_data
|
|
712
|
+
|
|
713
|
+
|
|
714
|
+
class StepPooler(Pooler):
|
|
715
|
+
def __init__(self, head: nn.Module | PoolerHead) -> None:
|
|
716
|
+
super().__init__()
|
|
717
|
+
|
|
718
|
+
self.pooling = AllPool()
|
|
719
|
+
self.head = head
|
|
720
|
+
|
|
721
|
+
def extract_states(
|
|
722
|
+
self,
|
|
723
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
724
|
+
pooling_metadata: PoolingMetadata,
|
|
725
|
+
) -> torch.Tensor | list[torch.Tensor]:
|
|
726
|
+
pooled_data_lst = self.pooling(hidden_states, pooling_metadata)
|
|
727
|
+
prompt_token_ids = get_prompt_token_ids(pooling_metadata)
|
|
728
|
+
|
|
729
|
+
pooled_data = list[torch.Tensor]()
|
|
730
|
+
|
|
731
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
732
|
+
|
|
733
|
+
for data, token_id, pooling_param in zip(
|
|
734
|
+
pooled_data_lst, prompt_token_ids, pooling_params
|
|
735
|
+
):
|
|
736
|
+
step_tag_id = pooling_param.step_tag_id
|
|
737
|
+
returned_token_ids = pooling_param.returned_token_ids
|
|
738
|
+
|
|
739
|
+
if returned_token_ids is not None and len(returned_token_ids) > 0:
|
|
740
|
+
data = data[:, returned_token_ids]
|
|
741
|
+
|
|
742
|
+
if step_tag_id is not None:
|
|
743
|
+
data = data[token_id == step_tag_id]
|
|
744
|
+
pooled_data.append(data)
|
|
745
|
+
|
|
746
|
+
return pooled_data
|
|
747
|
+
|
|
748
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
749
|
+
return {"token_embed", "token_classify"}
|
|
750
|
+
|
|
751
|
+
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
|
|
752
|
+
return PoolingParamsUpdate(requires_token_ids=True)
|
|
753
|
+
|
|
754
|
+
def forward(
|
|
755
|
+
self,
|
|
756
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
757
|
+
pooling_metadata: PoolingMetadata,
|
|
758
|
+
) -> PoolerOutput:
|
|
759
|
+
pooled_data = self.extract_states(hidden_states, pooling_metadata)
|
|
760
|
+
pooling_params = get_pooling_params(pooling_metadata)
|
|
761
|
+
assert len(pooled_data) == len(pooling_params)
|
|
762
|
+
|
|
763
|
+
pooled_data = [self.head(d, p) for d, p in zip(pooled_data, pooling_params)]
|
|
764
|
+
return pooled_data
|
|
765
|
+
|
|
766
|
+
|
|
767
|
+
class DispatchPooler(Pooler):
|
|
768
|
+
"""Dispatches calls to a sub-pooler based on the pooling task."""
|
|
769
|
+
|
|
770
|
+
def __init__(self, poolers_by_task: Mapping[PoolingTask, Pooler]) -> None:
|
|
771
|
+
super().__init__()
|
|
772
|
+
|
|
773
|
+
for task, pooler in poolers_by_task.items():
|
|
774
|
+
if task not in pooler.get_supported_tasks():
|
|
775
|
+
raise ValueError(
|
|
776
|
+
f"{pooler=} does not support {task=}. "
|
|
777
|
+
f"Supported tasks: {pooler.get_supported_tasks()}"
|
|
778
|
+
)
|
|
779
|
+
|
|
780
|
+
self.poolers_by_task = poolers_by_task
|
|
781
|
+
|
|
782
|
+
def get_supported_tasks(self) -> Set[PoolingTask]:
|
|
783
|
+
return set(self.poolers_by_task)
|
|
784
|
+
|
|
785
|
+
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
|
|
786
|
+
return self.poolers_by_task[task].get_pooling_updates(task)
|
|
787
|
+
|
|
788
|
+
def forward(
|
|
789
|
+
self,
|
|
790
|
+
hidden_states: torch.Tensor | list[torch.Tensor],
|
|
791
|
+
pooling_metadata: PoolingMetadata,
|
|
792
|
+
) -> PoolerOutput:
|
|
793
|
+
poolers_by_task = self.poolers_by_task
|
|
794
|
+
|
|
795
|
+
outputs = list[torch.Tensor]()
|
|
796
|
+
offset = 0
|
|
797
|
+
for task, group in groupby(get_tasks(pooling_metadata)):
|
|
798
|
+
if not (pooler := poolers_by_task.get(task)):
|
|
799
|
+
raise ValueError(
|
|
800
|
+
f"Unsupported task: {task} "
|
|
801
|
+
f"Supported tasks: {self.get_supported_tasks()}"
|
|
802
|
+
)
|
|
803
|
+
|
|
804
|
+
num_items = len(list(group))
|
|
805
|
+
group_output: PoolerOutput = pooler(
|
|
806
|
+
hidden_states,
|
|
807
|
+
pooling_metadata[offset : offset + num_items],
|
|
808
|
+
)
|
|
809
|
+
|
|
810
|
+
outputs.extend(group_output)
|
|
811
|
+
offset += num_items
|
|
812
|
+
|
|
813
|
+
return outputs
|
|
814
|
+
|
|
815
|
+
def extra_repr(self) -> str:
|
|
816
|
+
s = f"supported_task={self.get_supported_tasks()}"
|
|
817
|
+
return s
|