vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,2863 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ from typing import TYPE_CHECKING, Literal
5
+
6
+ import torch
7
+
8
+ import vllm.envs as envs
9
+ from vllm.logger import init_logger
10
+ from vllm.platforms import current_platform
11
+ from vllm.scalar_type import ScalarType
12
+
13
+ logger = init_logger(__name__)
14
+
15
+ current_platform.import_kernels()
16
+
17
+ if TYPE_CHECKING:
18
+
19
+ def register_fake(fn):
20
+ return lambda name: fn
21
+ else:
22
+ try:
23
+ from torch.library import register_fake
24
+ except ImportError:
25
+ from torch.library import impl_abstract as register_fake
26
+
27
+
28
+ # page attention ops
29
+ def paged_attention_v1(
30
+ out: torch.Tensor,
31
+ query: torch.Tensor,
32
+ key_cache: torch.Tensor,
33
+ value_cache: torch.Tensor,
34
+ num_kv_heads: int,
35
+ scale: float,
36
+ block_tables: torch.Tensor,
37
+ seq_lens: torch.Tensor,
38
+ block_size: int,
39
+ max_seq_len: int,
40
+ alibi_slopes: torch.Tensor | None,
41
+ kv_cache_dtype: str,
42
+ k_scale: torch.Tensor,
43
+ v_scale: torch.Tensor,
44
+ tp_rank: int = 0,
45
+ blocksparse_local_blocks: int = 0,
46
+ blocksparse_vert_stride: int = 0,
47
+ blocksparse_block_size: int = 64,
48
+ blocksparse_head_sliding_step: int = 0,
49
+ ) -> None:
50
+ torch.ops._C.paged_attention_v1(
51
+ out,
52
+ query,
53
+ key_cache,
54
+ value_cache,
55
+ num_kv_heads,
56
+ scale,
57
+ block_tables,
58
+ seq_lens,
59
+ block_size,
60
+ max_seq_len,
61
+ alibi_slopes,
62
+ kv_cache_dtype,
63
+ k_scale,
64
+ v_scale,
65
+ tp_rank,
66
+ blocksparse_local_blocks,
67
+ blocksparse_vert_stride,
68
+ blocksparse_block_size,
69
+ blocksparse_head_sliding_step,
70
+ )
71
+
72
+
73
+ def paged_attention_v2(
74
+ out: torch.Tensor,
75
+ exp_sum: torch.Tensor,
76
+ max_logits: torch.Tensor,
77
+ tmp_out: torch.Tensor,
78
+ query: torch.Tensor,
79
+ key_cache: torch.Tensor,
80
+ value_cache: torch.Tensor,
81
+ num_kv_heads: int,
82
+ scale: float,
83
+ block_tables: torch.Tensor,
84
+ seq_lens: torch.Tensor,
85
+ block_size: int,
86
+ max_seq_len: int,
87
+ alibi_slopes: torch.Tensor | None,
88
+ kv_cache_dtype: str,
89
+ k_scale: torch.Tensor,
90
+ v_scale: torch.Tensor,
91
+ tp_rank: int = 0,
92
+ blocksparse_local_blocks: int = 0,
93
+ blocksparse_vert_stride: int = 0,
94
+ blocksparse_block_size: int = 64,
95
+ blocksparse_head_sliding_step: int = 0,
96
+ ) -> None:
97
+ torch.ops._C.paged_attention_v2(
98
+ out,
99
+ exp_sum,
100
+ max_logits,
101
+ tmp_out,
102
+ query,
103
+ key_cache,
104
+ value_cache,
105
+ num_kv_heads,
106
+ scale,
107
+ block_tables,
108
+ seq_lens,
109
+ block_size,
110
+ max_seq_len,
111
+ alibi_slopes,
112
+ kv_cache_dtype,
113
+ k_scale,
114
+ v_scale,
115
+ tp_rank,
116
+ blocksparse_local_blocks,
117
+ blocksparse_vert_stride,
118
+ blocksparse_block_size,
119
+ blocksparse_head_sliding_step,
120
+ )
121
+
122
+
123
+ def paged_attention_rocm(
124
+ out: torch.Tensor,
125
+ exp_sum: torch.Tensor,
126
+ max_logits: torch.Tensor,
127
+ tmp_out: torch.Tensor,
128
+ query: torch.Tensor,
129
+ key_cache: torch.Tensor,
130
+ value_cache: torch.Tensor,
131
+ num_kv_heads: int,
132
+ scale: float,
133
+ block_tables: torch.Tensor,
134
+ seq_lens: torch.Tensor,
135
+ query_start_loc: torch.Tensor | None,
136
+ block_size: int,
137
+ max_seq_len: int,
138
+ alibi_slopes: torch.Tensor | None,
139
+ kv_cache_dtype: str,
140
+ k_scale: torch.Tensor,
141
+ v_scale: torch.Tensor,
142
+ fp8_out_scale: torch.Tensor | None = None,
143
+ mfma_type: str = "fp8" if envs.VLLM_ROCM_FP8_MFMA_PAGE_ATTN else "f16",
144
+ ) -> None:
145
+ torch.ops._rocm_C.paged_attention(
146
+ out,
147
+ exp_sum,
148
+ max_logits,
149
+ tmp_out,
150
+ query,
151
+ key_cache,
152
+ value_cache,
153
+ num_kv_heads,
154
+ scale,
155
+ block_tables,
156
+ seq_lens,
157
+ query_start_loc,
158
+ block_size,
159
+ max_seq_len,
160
+ alibi_slopes,
161
+ kv_cache_dtype,
162
+ k_scale,
163
+ v_scale,
164
+ fp8_out_scale,
165
+ mfma_type,
166
+ )
167
+
168
+
169
+ def mla_decode_kvcache_cpu(
170
+ out: torch.Tensor,
171
+ query: torch.Tensor,
172
+ kv_cache: torch.Tensor,
173
+ scale: float,
174
+ block_tables: torch.Tensor,
175
+ seq_lens: torch.Tensor,
176
+ ) -> None:
177
+ torch.ops._C_cpu.mla_decode_kvcache(
178
+ out, query, kv_cache, scale, block_tables, seq_lens
179
+ )
180
+
181
+
182
+ # merge attn states ops
183
+ def merge_attn_states(
184
+ output: torch.Tensor,
185
+ prefix_output: torch.Tensor,
186
+ prefix_lse: torch.Tensor,
187
+ suffix_output: torch.Tensor,
188
+ suffix_lse: torch.Tensor,
189
+ output_lse: torch.Tensor | None = None,
190
+ ) -> None:
191
+ torch.ops._C.merge_attn_states(
192
+ output, output_lse, prefix_output, prefix_lse, suffix_output, suffix_lse
193
+ )
194
+
195
+
196
+ def convert_vertical_slash_indexes(
197
+ q_seqlens: torch.Tensor, # [BATCH, ]
198
+ kv_seqlens: torch.Tensor, # [BATCH, ]
199
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
200
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
201
+ context_size: int,
202
+ block_size_M: int,
203
+ block_size_N: int,
204
+ causal: bool = True,
205
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
206
+ batch_size = slash_indexes.size(0)
207
+ num_heads = slash_indexes.size(1)
208
+ nnz_slash = slash_indexes.size(2)
209
+ nnz_vertical = vertical_indexes.size(2)
210
+ num_rows = (context_size + block_size_M - 1) // block_size_M
211
+
212
+ block_count = torch.zeros(
213
+ batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
214
+ )
215
+ block_offset = torch.zeros(
216
+ batch_size,
217
+ num_heads,
218
+ num_rows,
219
+ nnz_slash,
220
+ dtype=q_seqlens.dtype,
221
+ device=q_seqlens.device,
222
+ )
223
+ column_count = torch.zeros(
224
+ batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
225
+ )
226
+ column_index = torch.zeros(
227
+ batch_size,
228
+ num_heads,
229
+ num_rows,
230
+ nnz_vertical,
231
+ dtype=q_seqlens.dtype,
232
+ device=q_seqlens.device,
233
+ )
234
+
235
+ torch.ops._C.convert_vertical_slash_indexes(
236
+ block_count,
237
+ block_offset,
238
+ column_count,
239
+ column_index,
240
+ q_seqlens,
241
+ kv_seqlens,
242
+ vertical_indexes,
243
+ slash_indexes,
244
+ context_size,
245
+ block_size_M,
246
+ block_size_N,
247
+ causal,
248
+ )
249
+ return block_count, block_offset, column_count, column_index
250
+
251
+
252
+ def convert_vertical_slash_indexes_mergehead(
253
+ q_seqlens: torch.Tensor, # [BATCH, ]
254
+ kv_seqlens: torch.Tensor, # [BATCH, ]
255
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
256
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
257
+ # [N_HEADS] : different head use different number of indices
258
+ vertical_indices_count: torch.Tensor,
259
+ slash_indices_count: torch.Tensor,
260
+ context_size: int,
261
+ block_size_M: int,
262
+ block_size_N: int,
263
+ causal: bool = True,
264
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
265
+ batch_size = slash_indexes.size(0)
266
+ num_heads = slash_indexes.size(1)
267
+ nnz_slash = slash_indexes.size(2)
268
+ nnz_vertical = vertical_indexes.size(2)
269
+ num_rows = (context_size + block_size_M - 1) // block_size_M
270
+
271
+ block_count = torch.empty(
272
+ batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
273
+ )
274
+ block_offset = torch.empty(
275
+ batch_size,
276
+ num_heads,
277
+ num_rows,
278
+ nnz_slash,
279
+ dtype=q_seqlens.dtype,
280
+ device=q_seqlens.device,
281
+ )
282
+ column_count = torch.empty(
283
+ batch_size, num_heads, num_rows, dtype=q_seqlens.dtype, device=q_seqlens.device
284
+ )
285
+ column_index = torch.empty(
286
+ batch_size,
287
+ num_heads,
288
+ num_rows,
289
+ nnz_vertical,
290
+ dtype=q_seqlens.dtype,
291
+ device=q_seqlens.device,
292
+ )
293
+
294
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
295
+ block_count,
296
+ block_offset,
297
+ column_count,
298
+ column_index,
299
+ q_seqlens,
300
+ kv_seqlens,
301
+ vertical_indexes,
302
+ slash_indexes,
303
+ vertical_indices_count,
304
+ slash_indices_count,
305
+ context_size,
306
+ block_size_M,
307
+ block_size_N,
308
+ causal,
309
+ )
310
+ return block_count, block_offset, column_count, column_index
311
+
312
+
313
+ # pos encoding ops
314
+ def rotary_embedding(
315
+ positions: torch.Tensor,
316
+ query: torch.Tensor,
317
+ key: torch.Tensor | None,
318
+ head_size: int,
319
+ cos_sin_cache: torch.Tensor,
320
+ is_neox: bool,
321
+ ) -> None:
322
+ torch.ops._C.rotary_embedding(
323
+ positions, query, key, head_size, cos_sin_cache, is_neox
324
+ )
325
+
326
+
327
+ # layer norm ops
328
+ def rms_norm(
329
+ out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, epsilon: float
330
+ ) -> None:
331
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
332
+ # If removed, also need to remove contiguous in MatcherRMSNorm
333
+ input_contiguous = input.contiguous()
334
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
335
+
336
+
337
+ def fused_add_rms_norm(
338
+ input: torch.Tensor, residual: torch.Tensor, weight: torch.Tensor, epsilon: float
339
+ ) -> None:
340
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
341
+
342
+
343
+ def fused_qk_norm_rope(
344
+ qkv: torch.Tensor,
345
+ num_heads_q: int,
346
+ num_heads_k: int,
347
+ num_heads_v: int,
348
+ head_dim: int,
349
+ eps: float,
350
+ q_weight: torch.Tensor,
351
+ k_weight: torch.Tensor,
352
+ cos_sin_cache: torch.Tensor,
353
+ is_neox: bool,
354
+ position_ids: torch.Tensor,
355
+ ) -> None:
356
+ torch.ops._C.fused_qk_norm_rope(
357
+ qkv,
358
+ num_heads_q,
359
+ num_heads_k,
360
+ num_heads_v,
361
+ head_dim,
362
+ eps,
363
+ q_weight,
364
+ k_weight,
365
+ cos_sin_cache,
366
+ is_neox,
367
+ position_ids,
368
+ )
369
+
370
+
371
+ def apply_repetition_penalties_torch(
372
+ logits: torch.Tensor,
373
+ prompt_mask: torch.Tensor,
374
+ output_mask: torch.Tensor,
375
+ repetition_penalties: torch.Tensor,
376
+ ) -> None:
377
+ repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
378
+ 1, logits.size(1)
379
+ )
380
+ # If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
381
+ penalties = torch.where(prompt_mask | output_mask, repetition_penalties, 1.0)
382
+ # If logits are positive, divide by penalty, otherwise multiply by penalty.
383
+ scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
384
+ logits *= scaling
385
+
386
+
387
+ def apply_repetition_penalties_cuda(
388
+ logits: torch.Tensor,
389
+ prompt_mask: torch.Tensor,
390
+ output_mask: torch.Tensor,
391
+ repetition_penalties: torch.Tensor,
392
+ ) -> None:
393
+ torch.ops._C.apply_repetition_penalties_(
394
+ logits, prompt_mask, output_mask, repetition_penalties
395
+ )
396
+
397
+
398
+ def apply_repetition_penalties(
399
+ logits: torch.Tensor,
400
+ prompt_mask: torch.Tensor,
401
+ output_mask: torch.Tensor,
402
+ repetition_penalties: torch.Tensor,
403
+ ) -> None:
404
+ """Apply repetition penalties to logits in-place.
405
+
406
+ Args:
407
+ logits: The logits tensor of shape [num_seqs, vocab_size].
408
+ prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
409
+ output_mask: A boolean tensor indicating which tokens appear in the output.
410
+ repetition_penalties: The repetition penalties of shape (num_seqs, ).
411
+ """
412
+ if logits.is_cuda and logits.is_contiguous():
413
+ apply_repetition_penalties_cuda(
414
+ logits, prompt_mask, output_mask, repetition_penalties
415
+ )
416
+ else:
417
+ apply_repetition_penalties_torch(
418
+ logits, prompt_mask, output_mask, repetition_penalties
419
+ )
420
+
421
+
422
+ # fused quant layer norm ops
423
+ def rms_norm_dynamic_per_token_quant(
424
+ input: torch.Tensor,
425
+ weight: torch.Tensor,
426
+ epsilon: float,
427
+ quant_dtype: torch.dtype,
428
+ scale_ub: torch.Tensor | None = None,
429
+ residual: torch.Tensor | None = None,
430
+ ) -> tuple[torch.Tensor, torch.Tensor]:
431
+ output = torch.empty_like(input, dtype=quant_dtype)
432
+ scales = torch.empty(
433
+ (input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32
434
+ )
435
+
436
+ torch.ops._C.rms_norm_dynamic_per_token_quant(
437
+ output, input, weight, scales, epsilon, scale_ub, residual
438
+ )
439
+ return output, scales
440
+
441
+
442
+ # quantization ops
443
+ # awq
444
+ def awq_dequantize(
445
+ qweight: torch.Tensor,
446
+ scales: torch.Tensor,
447
+ zeros: torch.Tensor,
448
+ split_k_iters: int,
449
+ thx: int,
450
+ thy: int,
451
+ ) -> torch.Tensor:
452
+ if envs.VLLM_USE_TRITON_AWQ:
453
+ from vllm.model_executor.layers.quantization.awq_triton import (
454
+ awq_dequantize_triton,
455
+ )
456
+
457
+ return awq_dequantize_triton(qweight, scales, zeros)
458
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters, thx, thy)
459
+
460
+
461
+ def awq_gemm(
462
+ input: torch.Tensor,
463
+ qweight: torch.Tensor,
464
+ qzeros: torch.Tensor,
465
+ scales: torch.Tensor,
466
+ split_k_iters: int,
467
+ ) -> torch.Tensor:
468
+ if envs.VLLM_USE_TRITON_AWQ:
469
+ from vllm.model_executor.layers.quantization.awq_triton import awq_gemm_triton
470
+
471
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
472
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
473
+
474
+
475
+ # gptq
476
+ def gptq_gemm(
477
+ a: torch.Tensor,
478
+ b_q_weight: torch.Tensor,
479
+ b_gptq_qzeros: torch.Tensor,
480
+ b_gptq_scales: torch.Tensor,
481
+ b_g_idx: torch.Tensor,
482
+ use_exllama: bool,
483
+ use_v2_format: bool,
484
+ bit: int,
485
+ ) -> torch.Tensor:
486
+ return torch.ops._C.gptq_gemm(
487
+ a,
488
+ b_q_weight,
489
+ b_gptq_qzeros,
490
+ b_gptq_scales,
491
+ b_g_idx,
492
+ use_exllama,
493
+ use_v2_format,
494
+ bit,
495
+ )
496
+
497
+
498
+ if hasattr(torch.ops._C, "gptq_gemm"):
499
+
500
+ @register_fake("_C::gptq_gemm")
501
+ def _gptq_gemm_fake(
502
+ a: torch.Tensor,
503
+ b_q_weight: torch.Tensor,
504
+ b_gptq_qzeros: torch.Tensor,
505
+ b_gptq_scales: torch.Tensor,
506
+ b_g_idx: torch.Tensor,
507
+ use_exllama: bool,
508
+ use_v2_format: bool,
509
+ bit: int,
510
+ ) -> torch.Tensor:
511
+ return torch.empty(
512
+ (a.size(0), b_q_weight.size(1)), dtype=a.dtype, device=a.device
513
+ )
514
+
515
+
516
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None:
517
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
518
+
519
+
520
+ # marlin_24
521
+ def gptq_marlin_24_gemm(
522
+ a: torch.Tensor,
523
+ b_q_weight: torch.Tensor,
524
+ b_meta: torch.Tensor,
525
+ b_scales: torch.Tensor,
526
+ workspace: torch.Tensor,
527
+ b_q_type: ScalarType,
528
+ size_m: int,
529
+ size_n: int,
530
+ size_k: int,
531
+ ) -> torch.Tensor:
532
+ return torch.ops._C.gptq_marlin_24_gemm(
533
+ a, b_q_weight, b_meta, b_scales, workspace, b_q_type.id, size_m, size_n, size_k
534
+ )
535
+
536
+
537
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
538
+
539
+ @register_fake("_C::gptq_marlin_24_gemm")
540
+ def _gptq_marlin_24_gemm_fake(
541
+ a: torch.Tensor,
542
+ b_q_weight: torch.Tensor,
543
+ b_meta: torch.Tensor,
544
+ b_scales: torch.Tensor,
545
+ workspace: torch.Tensor,
546
+ b_q_type: ScalarType,
547
+ size_m: torch.SymInt,
548
+ size_n: torch.SymInt,
549
+ size_k: torch.SymInt,
550
+ ) -> torch.Tensor:
551
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
552
+
553
+ @register_fake("_C::gptq_marlin_gemm")
554
+ def _gptq_marlin_gemm_fake(
555
+ a: torch.Tensor,
556
+ c: torch.Tensor | None,
557
+ b_q_weight: torch.Tensor,
558
+ b_bias: torch.Tensor | None,
559
+ b_scales: torch.Tensor,
560
+ global_scale: torch.Tensor | None,
561
+ b_zeros: torch.Tensor | None,
562
+ g_idx: torch.Tensor | None,
563
+ perm: torch.Tensor | None,
564
+ workspace: torch.Tensor,
565
+ b_q_type_id: int,
566
+ size_m: torch.SymInt,
567
+ size_n: torch.SymInt,
568
+ size_k: torch.SymInt,
569
+ is_k_full: bool = True,
570
+ use_atomic_add: bool = False,
571
+ use_fp32_reduce: bool = False,
572
+ is_zp_float: bool = False,
573
+ ) -> torch.Tensor:
574
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
575
+
576
+ @register_fake("_C::awq_dequantize")
577
+ def _awq_dequantize_fake(
578
+ qweight: torch.Tensor,
579
+ scales: torch.Tensor,
580
+ zeros: torch.Tensor,
581
+ split_k_iters: torch.SymInt,
582
+ thx: int,
583
+ thy: int,
584
+ ) -> torch.Tensor:
585
+ in_c = qweight.size(0)
586
+ qout_c = qweight.size(1)
587
+ out_c = qout_c * 8
588
+ return torch.empty((in_c, out_c), dtype=scales.dtype, device=scales.device)
589
+
590
+ @register_fake("_C::awq_gemm")
591
+ def _awq_gemm_fake(
592
+ input: torch.Tensor,
593
+ qweight: torch.Tensor,
594
+ qzeros: torch.Tensor,
595
+ scales: torch.Tensor,
596
+ split_k_iters: torch.SymInt,
597
+ ) -> torch.Tensor:
598
+ num_in_feats = input.size(0)
599
+ return torch.empty(
600
+ (split_k_iters, num_in_feats, qweight.size(1) * 8),
601
+ dtype=input.dtype,
602
+ device=input.device,
603
+ ).sum(0)
604
+
605
+ @register_fake("_C::machete_mm")
606
+ def machete_mm_fake(
607
+ a: torch.Tensor,
608
+ # b_q Should be the tensor returned by machete_prepack_B
609
+ b_q: torch.Tensor,
610
+ b_type: ScalarType,
611
+ out_type: torch.dtype | None = None,
612
+ b_group_scales: torch.Tensor | None = None,
613
+ b_group_zeros: torch.Tensor | None = None,
614
+ b_group_size: int | None = None,
615
+ b_channel_scales: torch.Tensor | None = None,
616
+ a_token_scales: torch.Tensor | None = None,
617
+ schedule: str | None = None,
618
+ ) -> torch.Tensor:
619
+ m = a.size(0)
620
+ n = b_q.size(1)
621
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
622
+
623
+ @register_fake("_C::machete_prepack_B")
624
+ def machete_prepack_B_fake(
625
+ b_q_weight: torch.Tensor,
626
+ a_type: torch.dtype,
627
+ b_type: ScalarType,
628
+ group_scales_type: torch.dtype | None,
629
+ ) -> torch.Tensor:
630
+ return torch.empty_like(b_q_weight, memory_format=torch.contiguous_format)
631
+
632
+ @register_fake("_C::cutlass_w4a8_mm")
633
+ def cutlass_w4a8_mm_fake(
634
+ a: torch.Tensor,
635
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
636
+ b_q: torch.Tensor,
637
+ b_group_scales: torch.Tensor,
638
+ b_group_size: int,
639
+ b_channel_scales: torch.Tensor,
640
+ a_token_scales: torch.Tensor,
641
+ out_type: torch.dtype | None = None,
642
+ maybe_schedule: str | None = None,
643
+ ) -> torch.Tensor:
644
+ m = a.size(0)
645
+ n = b_q.size(1)
646
+ out_dtype = out_type if out_type is not None else torch.bfloat16
647
+ return torch.empty((m, n), device=a.device, dtype=out_dtype)
648
+
649
+ @register_fake("_C::cutlass_pack_scale_fp8")
650
+ def cutlass_pack_scale_fp8_fake(scales: torch.Tensor) -> torch.Tensor:
651
+ return torch.empty_like(scales, memory_format=torch.contiguous_format)
652
+
653
+ @register_fake("_C::cutlass_encode_and_reorder_int4b")
654
+ def cutlass_encode_and_reorder_int4b_fake(b: torch.Tensor) -> torch.Tensor:
655
+ return torch.empty_like(b, memory_format=torch.contiguous_format)
656
+
657
+
658
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
659
+
660
+ @register_fake("_C::allspark_w8a16_gemm")
661
+ def _allspark_w8a16_gemm_fake(
662
+ a: torch.Tensor,
663
+ b_qweight: torch.Tensor,
664
+ b_scales: torch.Tensor,
665
+ b_qzeros: torch.Tensor | None,
666
+ n: torch.SymInt,
667
+ group_size: torch.SymInt,
668
+ sm_count: torch.SymInt,
669
+ sm_version: torch.SymInt,
670
+ CUBLAS_M_THRESHOLD: torch.SymInt,
671
+ has_zp: bool,
672
+ n32k16_reorder: bool,
673
+ ) -> torch.Tensor:
674
+ m = a.size(0)
675
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
676
+
677
+
678
+ if hasattr(torch.ops._C, "ggml_dequantize"):
679
+
680
+ @register_fake("_C::ggml_dequantize")
681
+ def _ggml_dequantize_fake(
682
+ W: torch.Tensor,
683
+ quant_type: int,
684
+ m: torch.SymInt,
685
+ n: torch.SymInt,
686
+ dtype: torch.dtype | None = None,
687
+ ) -> torch.Tensor:
688
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
689
+
690
+ @register_fake("_C::ggml_mul_mat_vec_a8")
691
+ def _ggml_mul_mat_vec_a8_fake(
692
+ W: torch.Tensor,
693
+ X: torch.Tensor,
694
+ quant_type: int,
695
+ row: torch.SymInt,
696
+ ) -> torch.Tensor:
697
+ return torch.empty((X.shape[0], row), dtype=X.dtype, device=W.device)
698
+
699
+ @register_fake("_C::ggml_mul_mat_a8")
700
+ def _ggml_mul_mat_a8_fake(
701
+ W: torch.Tensor,
702
+ X: torch.Tensor,
703
+ quant_type: int,
704
+ row: torch.SymInt,
705
+ ) -> torch.Tensor:
706
+ batch = X.size(0)
707
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
708
+
709
+ @register_fake("_C::ggml_moe_a8")
710
+ def _ggml_moe_a8_fake(
711
+ X: torch.Tensor,
712
+ W: torch.Tensor,
713
+ sorted_token_ids: torch.Tensor,
714
+ expert_ids: torch.Tensor,
715
+ num_tokens_post_padded: torch.Tensor,
716
+ quant_type: int,
717
+ row: torch.SymInt,
718
+ top_k: torch.SymInt,
719
+ tokens: torch.SymInt,
720
+ ) -> torch.Tensor:
721
+ tokens = X.size(0)
722
+ return torch.empty((tokens * top_k, row), dtype=torch.float16, device=W.device)
723
+
724
+
725
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
726
+
727
+ @register_fake("_C::ggml_moe_a8_vec")
728
+ def _ggml_moe_a8_vec_fake(
729
+ X: torch.Tensor,
730
+ W: torch.Tensor,
731
+ topk_ids: torch.Tensor,
732
+ top_k: int,
733
+ quant_type: int,
734
+ row: torch.SymInt,
735
+ tokens: torch.SymInt,
736
+ ) -> torch.Tensor:
737
+ tokens = X.size(0)
738
+ return torch.empty((tokens * top_k, row), dtype=X.dtype, device=W.device)
739
+
740
+
741
+ # cutlass
742
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
743
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
744
+
745
+
746
+ def cutlass_blockwise_scaled_grouped_mm(
747
+ output: torch.Tensor,
748
+ a: torch.Tensor,
749
+ b: torch.Tensor,
750
+ scales_a: torch.Tensor,
751
+ scales_b: torch.Tensor,
752
+ problem_sizes: torch.Tensor,
753
+ expert_offsets: torch.Tensor,
754
+ ):
755
+ torch.ops._C.cutlass_blockwise_scaled_grouped_mm(
756
+ output, a, b, scales_a, scales_b, problem_sizes, expert_offsets
757
+ )
758
+
759
+
760
+ def cutlass_scaled_fp4_mm(
761
+ a: torch.Tensor,
762
+ b: torch.Tensor,
763
+ block_scale_a: torch.Tensor,
764
+ block_scale_b: torch.Tensor,
765
+ alpha: torch.Tensor,
766
+ out_dtype: torch.dtype,
767
+ ) -> torch.Tensor:
768
+ assert a.ndim == 2 and b.ndim == 2
769
+ m, n = a.shape[0], b.shape[0]
770
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
771
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b, alpha)
772
+ return out
773
+
774
+
775
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
776
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
777
+
778
+
779
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
780
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(cuda_device_capability)
781
+
782
+
783
+ def cutlass_scaled_mm(
784
+ a: torch.Tensor,
785
+ b: torch.Tensor,
786
+ scale_a: torch.Tensor,
787
+ scale_b: torch.Tensor,
788
+ out_dtype: torch.dtype,
789
+ bias: torch.Tensor | None = None,
790
+ ) -> torch.Tensor:
791
+ """
792
+ `cutlass_scaled_mm` implements a fused version of
793
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
794
+ where scale_a * a and scale_b * b are implemented using numpy-style
795
+ broadcasting.
796
+
797
+ In order to support blockwise scaling like found in DeepSeek V3 we also
798
+ support extended "group" broadcast rules. We extend the numpy-style
799
+ broadcasting rules with the following rule:
800
+ "if the extent of a dimension in the source shape is between 1 and
801
+ corresponding extent in the target shape we repeat each element along
802
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
803
+ example if we have:
804
+ a = [[1, 2], and target_shape = (2, 4)
805
+ [3, 4]]
806
+ then we would expand a to:
807
+ a = [[1, 1, 2, 2],
808
+ [3, 3, 4, 4]]
809
+ currently we only support the case:
810
+ scale_a.shape * [1, 128] == a.shape
811
+ scale_b.shape * [128, 128] == b.shape
812
+ """
813
+ assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
814
+ assert bias is None or bias.numel() == b.shape[1] and bias.dtype == out_dtype
815
+
816
+ # Massage the input to be 2D
817
+ target_shape = (*a.shape[:-1], b.shape[1])
818
+ a = a.view(-1, a.shape[-1])
819
+
820
+ cutlass_compatible_b = b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
821
+ if current_platform.is_rocm() or not cutlass_compatible_b:
822
+ from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
823
+ triton_scaled_mm,
824
+ )
825
+
826
+ out = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
827
+ else:
828
+ out = torch.empty((a.shape[0], b.shape[1]), dtype=out_dtype, device=a.device)
829
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
830
+
831
+ return out.view(*target_shape)
832
+
833
+
834
+ def cutlass_scaled_mm_azp(
835
+ a: torch.Tensor,
836
+ b: torch.Tensor,
837
+ scale_a: torch.Tensor,
838
+ scale_b: torch.Tensor,
839
+ out_dtype: torch.dtype,
840
+ azp_adj: torch.Tensor,
841
+ azp: torch.Tensor | None = None,
842
+ bias: torch.Tensor | None = None,
843
+ ) -> torch.Tensor:
844
+ """
845
+ :param azp_adj: In the per-tensor case, this should include the azp.
846
+ Always per-channel.
847
+ :param azp: Only set in the per-token case. Per-token if set.
848
+ """
849
+ assert b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
850
+ assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
851
+ assert bias is None or bias.numel() == b.shape[1] and bias.dtype == out_dtype
852
+
853
+ # Massage the input to be 2D
854
+ target_shape = (*a.shape[:-1], b.shape[1])
855
+ a = a.view(-1, a.shape[-1])
856
+ assert azp is None or azp.numel() == a.shape[0]
857
+
858
+ out = torch.empty((a.shape[0], b.shape[1]), dtype=out_dtype, device=a.device)
859
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj, azp, bias)
860
+ return out.view(*target_shape)
861
+
862
+
863
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
864
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(cuda_device_capability)
865
+
866
+
867
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
868
+ try:
869
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
870
+ except AttributeError:
871
+ # Return False on non-CUDA platforms where it is not available
872
+ return False
873
+
874
+
875
+ def cutlass_sparse_compress(a: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
876
+ """
877
+ Compresses a sparse matrix for use with Cutlass sparse operations.
878
+
879
+ This function takes a dense tensor and compresses it into two components:
880
+ non-zero elements and metadata. The compressed representation is compatible
881
+ with Cutlass sparse kernels.
882
+
883
+ Args:
884
+ a (torch.Tensor):
885
+ The input tensor to be compressed. Must have one of the following data types:
886
+ - `torch.int8`
887
+ - `torch.float8_e4m3fn`
888
+ - `torch.bfloat16`
889
+ - `torch.float16`
890
+
891
+ Returns:
892
+ tuple[torch.Tensor, torch.Tensor]:
893
+ A tuple containing:
894
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
895
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
896
+
897
+ Raises:
898
+ ValueError: If the compression operation fails.
899
+
900
+ Notes:
901
+ - The `a_meta` tensor has a data type of `torch.uint8`.
902
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
903
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
904
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
905
+ """
906
+ assert a.dtype in [torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16]
907
+ assert a.is_contiguous()
908
+
909
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
910
+ elemsPerMetaElem = 4
911
+ assert a.shape[1] % (2 * elemsPerMetaElem) == 0
912
+
913
+ return torch.ops._C.cutlass_sparse_compress(a)
914
+
915
+
916
+ def cutlass_scaled_sparse_mm(
917
+ a: torch.Tensor,
918
+ bt_nzs: torch.Tensor,
919
+ bt_meta: torch.Tensor,
920
+ scale_a: torch.Tensor,
921
+ scale_b: torch.Tensor,
922
+ out_dtype: torch.dtype,
923
+ bias: torch.Tensor | None = None,
924
+ ) -> torch.Tensor:
925
+ """
926
+ Performs a scaled sparse matrix multiplication using Cutlass.
927
+
928
+ Steps:
929
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
930
+ `a = torch.randn((m, k), device='cuda')`.
931
+
932
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
933
+ `b = torch.randn((k, n), device='cuda')`.
934
+
935
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
936
+ `b = prune_to_2_4(b, dim=0)`.
937
+
938
+ 4. Compress the transposed sparse matrix `b.t()`:
939
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
940
+
941
+ 5. Perform sparse matrix multiplication using the compressed matrix,
942
+ applying scaling factors for `a` and `b`, and the output data type:
943
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
944
+
945
+ Returns:
946
+ - The result of the scaled sparse matrix multiplication.
947
+ """
948
+ assert bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0
949
+ assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
950
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] and bias.dtype == out_dtype
951
+
952
+ m = a.shape[0]
953
+ n = bt_nzs.shape[0]
954
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
955
+
956
+ torch.ops._C.cutlass_scaled_sparse_mm(
957
+ out, a, bt_nzs, bt_meta, scale_a, scale_b, bias
958
+ )
959
+
960
+ return out
961
+
962
+
963
+ def get_cutlass_moe_mm_data(
964
+ topk_ids: torch.Tensor,
965
+ expert_offsets: torch.Tensor,
966
+ problem_sizes1: torch.Tensor,
967
+ problem_sizes2: torch.Tensor,
968
+ input_permutation: torch.Tensor,
969
+ output_permutation: torch.Tensor,
970
+ num_experts: int,
971
+ n: int,
972
+ k: int,
973
+ blockscale_offsets: torch.Tensor | None = None,
974
+ ):
975
+ """
976
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
977
+ used in CUTLASS-based fused MoE.
978
+
979
+ The function takes in topk_ids (token-expert mapping) and uses it to
980
+ compute:
981
+ - expert_offsets: Indices that mark at which token index each expert begins
982
+ its computation after the input is sorted with
983
+ input_permutation. The number of tokens computed with
984
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
985
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
986
+ multiplication in two grouped MMs used in
987
+ the fused MoE operation.
988
+ - input_permutation: Permutation that must be used to shuffle the input
989
+ before executing the MMs.
990
+ - output_permutation: Permutation that must be used to shuffle the output
991
+ after executing the MMs.
992
+ - blockscale_offsets: Optional argument passed for fp4 moe. Indices that
993
+ mark at which block scale index each expert begins
994
+ its computation. The number of block scale rows
995
+ computed with expert E is blockscale_offsets[E + 1] -
996
+ blockscale_offsets[E]
997
+ """
998
+ return torch.ops._C.get_cutlass_moe_mm_data(
999
+ topk_ids,
1000
+ expert_offsets,
1001
+ problem_sizes1,
1002
+ problem_sizes2,
1003
+ input_permutation,
1004
+ output_permutation,
1005
+ num_experts,
1006
+ n,
1007
+ k,
1008
+ blockscale_offsets,
1009
+ )
1010
+
1011
+
1012
+ def get_cutlass_moe_mm_problem_sizes(
1013
+ topk_ids: torch.Tensor,
1014
+ problem_sizes1: torch.Tensor,
1015
+ problem_sizes2: torch.Tensor,
1016
+ num_experts: int,
1017
+ n: int,
1018
+ k: int,
1019
+ blockscale_offsets: torch.Tensor | None = None,
1020
+ ):
1021
+ """
1022
+ Compute only the per-expert problem sizes needed by the two grouped matrix
1023
+ multiplications used in CUTLASS-based fused MoE.
1024
+
1025
+ The function takes in topk_ids (token→expert mapping) and computes:
1026
+ - problem_sizes1, problem_sizes2: M×N×K sizes of each expert's
1027
+ multiplication for the two grouped MMs
1028
+ used in the fused MoE operation.
1029
+ """
1030
+ return torch.ops._C.get_cutlass_moe_mm_problem_sizes(
1031
+ topk_ids, problem_sizes1, problem_sizes2, num_experts, n, k, blockscale_offsets
1032
+ )
1033
+
1034
+
1035
+ def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
1036
+ """
1037
+ Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
1038
+ This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
1039
+ """
1040
+ num_tokens_permuted = dst2src_map.shape[0]
1041
+ output_tensor = torch.empty(
1042
+ (num_tokens_permuted, input_tensor.shape[1]),
1043
+ device=input_tensor.device,
1044
+ dtype=input_tensor.dtype,
1045
+ )
1046
+ torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
1047
+ return output_tensor
1048
+
1049
+
1050
+ def get_cutlass_pplx_moe_mm_data(
1051
+ expert_offsets: torch.Tensor,
1052
+ problem_sizes1: torch.Tensor,
1053
+ problem_sizes2: torch.Tensor,
1054
+ expert_num_tokens: torch.Tensor,
1055
+ num_local_experts: int,
1056
+ padded_m: int,
1057
+ n: int,
1058
+ k: int,
1059
+ ):
1060
+ """
1061
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
1062
+ used in CUTLASS-based fused MoE.
1063
+
1064
+ The function takes in expert_num_tokens (token count per expert) and
1065
+ non_zero_expert_idxs (consecutive indices of experts with non-zero token
1066
+ counts) and uses them to compute:
1067
+ - expert_offsets: Indices that mark at which token index each expert begins
1068
+ its computation.
1069
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
1070
+ multiplication in two grouped MMs used in
1071
+ the fused MoE operation.
1072
+ """
1073
+ return torch.ops._C.get_cutlass_pplx_moe_mm_data(
1074
+ expert_offsets,
1075
+ problem_sizes1,
1076
+ problem_sizes2,
1077
+ expert_num_tokens,
1078
+ num_local_experts,
1079
+ padded_m,
1080
+ n,
1081
+ k,
1082
+ )
1083
+
1084
+
1085
+ def cutlass_moe_mm(
1086
+ out_tensors: torch.Tensor,
1087
+ a_tensors: torch.Tensor,
1088
+ b_tensors: torch.Tensor,
1089
+ a_scales: torch.Tensor,
1090
+ b_scales: torch.Tensor,
1091
+ expert_offsets: torch.Tensor,
1092
+ problem_sizes: torch.Tensor,
1093
+ a_strides: torch.Tensor,
1094
+ b_strides: torch.Tensor,
1095
+ c_strides: torch.Tensor,
1096
+ per_act_token: bool,
1097
+ per_out_ch: bool,
1098
+ ):
1099
+ """
1100
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
1101
+ The function executes fp8-quantized OUT = AB matrix multiplication.
1102
+
1103
+ - expert_offsets: Indices that mark at which token index each expert begins
1104
+ its computation. The number of tokens computed with
1105
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
1106
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
1107
+ MMs used in the fused MoE operation.
1108
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
1109
+ """
1110
+ return torch.ops._C.cutlass_moe_mm(
1111
+ out_tensors,
1112
+ a_tensors,
1113
+ b_tensors,
1114
+ a_scales,
1115
+ b_scales,
1116
+ expert_offsets,
1117
+ problem_sizes,
1118
+ a_strides,
1119
+ b_strides,
1120
+ c_strides,
1121
+ per_act_token,
1122
+ per_out_ch,
1123
+ )
1124
+
1125
+
1126
+ def cutlass_fp4_moe_mm(
1127
+ out_tensors: torch.Tensor,
1128
+ a_tensors: torch.Tensor,
1129
+ b_tensors: torch.Tensor,
1130
+ a_scales: torch.Tensor,
1131
+ b_scales: torch.Tensor,
1132
+ alphas: torch.Tensor,
1133
+ problem_sizes: torch.Tensor,
1134
+ expert_offsets: torch.Tensor,
1135
+ sf_offsets: torch.Tensor,
1136
+ ):
1137
+ """
1138
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
1139
+ the gemms for each combination based on the specified problem sizes.
1140
+
1141
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
1142
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
1143
+ input and expert weights.
1144
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
1145
+ - expert_offsets/sf_offsets: Indices that mark at which token index
1146
+ each expert begins its computation. The number of tokens
1147
+ computed with expert E is expert_offsets[E + 1] -
1148
+ expert_offsets[E] And the sf_size per expert is
1149
+ sf_offset[E+1] - sf_offset[E]
1150
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
1151
+ MMs used in the fused MoE operation.
1152
+ """
1153
+ return torch.ops._C.cutlass_fp4_group_mm(
1154
+ out_tensors,
1155
+ a_tensors,
1156
+ b_tensors,
1157
+ a_scales,
1158
+ b_scales,
1159
+ alphas,
1160
+ problem_sizes,
1161
+ expert_offsets,
1162
+ sf_offsets,
1163
+ )
1164
+
1165
+
1166
+ # gptq_marlin
1167
+ def gptq_marlin_repack(
1168
+ b_q_weight: torch.Tensor,
1169
+ perm: torch.Tensor,
1170
+ size_k: int,
1171
+ size_n: int,
1172
+ num_bits: int,
1173
+ ) -> torch.Tensor:
1174
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits)
1175
+
1176
+
1177
+ if hasattr(torch.ops._C, "gptq_marlin_repack"):
1178
+
1179
+ @register_fake("_C::gptq_marlin_repack")
1180
+ def _gptq_marlin_repack_fake(
1181
+ b_q_weight: torch.Tensor,
1182
+ perm: torch.Tensor,
1183
+ size_k: torch.SymInt,
1184
+ size_n: torch.SymInt,
1185
+ num_bits: int,
1186
+ ) -> torch.Tensor:
1187
+ pack_factor = 32 // num_bits
1188
+ marlin_tile_size = 16
1189
+ return torch.empty(
1190
+ (size_k // marlin_tile_size, size_n * marlin_tile_size // pack_factor),
1191
+ dtype=b_q_weight.dtype,
1192
+ device=b_q_weight.device,
1193
+ )
1194
+
1195
+
1196
+ # awq_marlin
1197
+ def awq_marlin_repack(
1198
+ b_q_weight: torch.Tensor, size_k: int, size_n: int, num_bits: int
1199
+ ) -> torch.Tensor:
1200
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
1201
+
1202
+
1203
+ if hasattr(torch.ops._C, "awq_marlin_repack"):
1204
+
1205
+ @register_fake("_C::awq_marlin_repack")
1206
+ def _awq_marlin_repack_fake(
1207
+ b_q_weight: torch.Tensor,
1208
+ size_k: torch.SymInt,
1209
+ size_n: torch.SymInt,
1210
+ num_bits: int,
1211
+ ) -> torch.Tensor:
1212
+ pack_factor = 32 // num_bits
1213
+ marlin_tile_size = 16
1214
+ return torch.empty(
1215
+ (size_k // marlin_tile_size, size_n * marlin_tile_size // pack_factor),
1216
+ dtype=b_q_weight.dtype,
1217
+ device=b_q_weight.device,
1218
+ )
1219
+
1220
+
1221
+ def gptq_marlin_moe_repack(
1222
+ b_q_weight: torch.Tensor,
1223
+ perm: torch.Tensor,
1224
+ size_k: int,
1225
+ size_n: int,
1226
+ num_bits: int,
1227
+ ) -> torch.Tensor:
1228
+ num_experts = b_q_weight.shape[0]
1229
+ assert size_k % 16 == 0
1230
+ output = torch.empty(
1231
+ (num_experts, size_k // 16, size_n * (num_bits // 2)),
1232
+ device=b_q_weight.device,
1233
+ dtype=b_q_weight.dtype,
1234
+ )
1235
+ for e in range(num_experts):
1236
+ output[e] = torch.ops._C.gptq_marlin_repack(
1237
+ b_q_weight[e], perm[e], size_k, size_n, num_bits
1238
+ )
1239
+ return output
1240
+
1241
+
1242
+ def awq_marlin_moe_repack(
1243
+ b_q_weight: torch.Tensor,
1244
+ perm: torch.Tensor,
1245
+ size_k: int,
1246
+ size_n: int,
1247
+ num_bits: int,
1248
+ ) -> torch.Tensor:
1249
+ num_experts = b_q_weight.shape[0]
1250
+ assert size_k % 16 == 0
1251
+ output = torch.empty(
1252
+ (num_experts, size_k // 16, size_n * (num_bits // 2)),
1253
+ device=b_q_weight.device,
1254
+ dtype=b_q_weight.dtype,
1255
+ )
1256
+ for e in range(num_experts):
1257
+ output[e] = torch.ops._C.awq_marlin_repack(
1258
+ b_q_weight[e], size_k, size_n, num_bits
1259
+ )
1260
+ return output
1261
+
1262
+
1263
+ def gptq_marlin_gemm(
1264
+ a: torch.Tensor,
1265
+ c: torch.Tensor | None,
1266
+ b_q_weight: torch.Tensor,
1267
+ b_bias: torch.Tensor | None,
1268
+ b_scales: torch.Tensor,
1269
+ global_scale: torch.Tensor | None,
1270
+ b_zeros: torch.Tensor | None,
1271
+ g_idx: torch.Tensor | None,
1272
+ perm: torch.Tensor | None,
1273
+ workspace: torch.Tensor,
1274
+ b_q_type: ScalarType,
1275
+ size_m: int,
1276
+ size_n: int,
1277
+ size_k: int,
1278
+ is_k_full: bool = True,
1279
+ use_atomic_add: bool = False,
1280
+ use_fp32_reduce: bool = False,
1281
+ is_zp_float: bool = False,
1282
+ ) -> torch.Tensor:
1283
+ return torch.ops._C.gptq_marlin_gemm(
1284
+ a,
1285
+ c,
1286
+ b_q_weight,
1287
+ b_bias,
1288
+ b_scales,
1289
+ global_scale,
1290
+ b_zeros,
1291
+ g_idx,
1292
+ perm,
1293
+ workspace,
1294
+ b_q_type.id,
1295
+ size_m,
1296
+ size_n,
1297
+ size_k,
1298
+ is_k_full,
1299
+ use_atomic_add,
1300
+ use_fp32_reduce,
1301
+ is_zp_float,
1302
+ )
1303
+
1304
+
1305
+ # machete
1306
+ def machete_supported_schedules(
1307
+ a_type: torch.dtype,
1308
+ b_type: ScalarType,
1309
+ group_scales_type: torch.dtype | None,
1310
+ group_zeros_type: torch.dtype | None = None,
1311
+ channel_scales_type: torch.dtype | None = None,
1312
+ token_scales_type: torch.dtype | None = None,
1313
+ out_type: torch.dtype | None = None,
1314
+ ) -> list[str]:
1315
+ return torch.ops._C.machete_supported_schedules(
1316
+ a_type,
1317
+ b_type.id,
1318
+ group_scales_type,
1319
+ group_zeros_type,
1320
+ channel_scales_type,
1321
+ token_scales_type,
1322
+ out_type,
1323
+ )
1324
+
1325
+
1326
+ def machete_mm(
1327
+ a: torch.Tensor,
1328
+ # b_q Should be the tensor returned by machete_prepack_B
1329
+ b_q: torch.Tensor,
1330
+ b_type: ScalarType,
1331
+ out_type: torch.dtype | None = None,
1332
+ b_group_scales: torch.Tensor | None = None,
1333
+ b_group_zeros: torch.Tensor | None = None,
1334
+ b_group_size: int | None = None,
1335
+ b_channel_scales: torch.Tensor | None = None,
1336
+ a_token_scales: torch.Tensor | None = None,
1337
+ schedule: str | None = None,
1338
+ ) -> torch.Tensor:
1339
+ return torch.ops._C.machete_mm(
1340
+ a,
1341
+ b_q,
1342
+ b_type.id,
1343
+ out_type,
1344
+ b_group_scales,
1345
+ b_group_zeros,
1346
+ b_group_size,
1347
+ b_channel_scales,
1348
+ a_token_scales,
1349
+ schedule,
1350
+ )
1351
+
1352
+
1353
+ def machete_prepack_B(
1354
+ b_q_weight: torch.Tensor,
1355
+ a_type: torch.dtype,
1356
+ b_type: ScalarType,
1357
+ group_scales_type: torch.dtype | None,
1358
+ ) -> torch.Tensor:
1359
+ return torch.ops._C.machete_prepack_B(
1360
+ b_q_weight, a_type, b_type.id, group_scales_type
1361
+ )
1362
+
1363
+
1364
+ # CUTLASS W4A8
1365
+ def cutlass_w4a8_mm(
1366
+ a: torch.Tensor,
1367
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
1368
+ b_q: torch.Tensor,
1369
+ b_group_scales: torch.Tensor,
1370
+ b_group_size: int,
1371
+ b_channel_scales: torch.Tensor,
1372
+ a_token_scales: torch.Tensor,
1373
+ out_type: torch.dtype | None = None,
1374
+ maybe_schedule: str | None = None,
1375
+ ) -> torch.Tensor:
1376
+ return torch.ops._C.cutlass_w4a8_mm(
1377
+ a,
1378
+ b_q,
1379
+ b_group_scales,
1380
+ b_group_size,
1381
+ b_channel_scales,
1382
+ a_token_scales,
1383
+ out_type,
1384
+ maybe_schedule,
1385
+ )
1386
+
1387
+
1388
+ def cutlass_pack_scale_fp8(scales: torch.Tensor) -> torch.Tensor:
1389
+ return torch.ops._C.cutlass_pack_scale_fp8(scales)
1390
+
1391
+
1392
+ def cutlass_encode_and_reorder_int4b(b: torch.Tensor) -> torch.Tensor:
1393
+ return torch.ops._C.cutlass_encode_and_reorder_int4b(b)
1394
+
1395
+
1396
+ if hasattr(torch.ops._C, "permute_cols"):
1397
+
1398
+ @register_fake("_C::permute_cols")
1399
+ def _permute_cols_fake(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1400
+ return torch.empty_like(a)
1401
+
1402
+
1403
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1404
+ return torch.ops._C.permute_cols(a, perm)
1405
+
1406
+
1407
+ # fp4
1408
+ def scaled_fp4_quant(
1409
+ input: torch.Tensor, input_global_scale: torch.Tensor
1410
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1411
+ """
1412
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1413
+
1414
+ This function quantizes the last dimension of the given tensor `input`. For
1415
+ every 16 consecutive elements, a single dynamically computed scaling factor
1416
+ is shared. This scaling factor is quantized using the `input_global_scale`
1417
+ and is stored in a swizzled layout (see
1418
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1419
+
1420
+ Args:
1421
+ input: The input tensor to be quantized to FP4
1422
+ input_global_scale: A scalar scaling factor for the entire tensor.
1423
+
1424
+ Returns:
1425
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1426
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1427
+ in the sizzled layout.
1428
+ """
1429
+ assert not current_platform.is_rocm()
1430
+ assert input.ndim >= 1, f"input.ndim needs to be >= 1, but got {input.ndim}."
1431
+ other_dims = 1 if input.ndim == 1 else -1
1432
+ input = input.reshape(other_dims, input.shape[-1])
1433
+ m, n = input.shape
1434
+ block_size = 16
1435
+ device = input.device
1436
+
1437
+ assert n % block_size == 0, f"last dim has to be multiple of 16, but got {n}."
1438
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1439
+ f"input.dtype needs to be fp16 or bf16 but got {input.dtype}."
1440
+ )
1441
+
1442
+ # Two fp4 values will be packed into an uint8.
1443
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1444
+
1445
+ # We use the rounded values to store the swizzled values. Due to the
1446
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1447
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1448
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1449
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1450
+ round_up = lambda x, y: (x + y - 1) // y * y
1451
+ rounded_m = round_up(m, 128)
1452
+ scale_n = n // block_size
1453
+ rounded_n = round_up(scale_n, 4)
1454
+ output_scale = torch.empty(
1455
+ (rounded_m, rounded_n // 4), device=device, dtype=torch.int32
1456
+ )
1457
+
1458
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale, input_global_scale)
1459
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1460
+ return output, output_scale
1461
+
1462
+
1463
+ def scaled_fp4_experts_quant(
1464
+ input_tensor: torch.Tensor,
1465
+ input_global_scale: torch.Tensor,
1466
+ expert_offsets: torch.Tensor,
1467
+ blockscale_offsets: torch.Tensor,
1468
+ topk: int,
1469
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1470
+ """
1471
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1472
+ packed MoE Inputs.
1473
+ Args:
1474
+ input_tensor: The input tensor to be quantized to FP4
1475
+ input_global_scale: A scalar scaling factor for the entire tensor.
1476
+ expert_offsets: The expert offsets tensor
1477
+ blockscale_offsets: The blockscale offsets tensor
1478
+ Outputs:
1479
+ output: The quantized tensor in FP4
1480
+ output_scales: The blockscale tensor in FP8-E4M3
1481
+ """
1482
+ assert not current_platform.is_rocm()
1483
+ assert input_tensor.ndim == 2, (
1484
+ f"input.ndim needs to be == 2, but got {input_tensor.ndim}."
1485
+ )
1486
+
1487
+ # Control the maximum number of tokens per expert supported by the
1488
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1489
+ # from running out of memory. This value can also be increased to support
1490
+ # larger models.
1491
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1492
+ m_numtopk, k = input_tensor.shape
1493
+
1494
+ assert m_numtopk <= MAX_TOKENS_PER_EXPERT * topk, (
1495
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1496
+ f"{MAX_TOKENS_PER_EXPERT})"
1497
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1498
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value."
1499
+ )
1500
+ scales_k = k // 16
1501
+ padded_k = (scales_k + (4 - 1)) // 4
1502
+
1503
+ # output is uint8 and packed fp4 values
1504
+ output = torch.empty(
1505
+ m_numtopk, k // 2, device=input_tensor.device, dtype=torch.uint8
1506
+ )
1507
+ output_scales = torch.empty(
1508
+ MAX_TOKENS_PER_EXPERT * topk,
1509
+ padded_k,
1510
+ dtype=torch.int32,
1511
+ device=input_tensor.device,
1512
+ )
1513
+ torch.ops._C.scaled_fp4_experts_quant(
1514
+ output,
1515
+ output_scales,
1516
+ input_tensor,
1517
+ input_global_scale,
1518
+ expert_offsets,
1519
+ blockscale_offsets,
1520
+ )
1521
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1522
+ return output, output_scales
1523
+
1524
+
1525
+ # fp8
1526
+ def scaled_fp8_quant(
1527
+ input: torch.Tensor,
1528
+ scale: torch.Tensor | None = None,
1529
+ num_token_padding: int | None = None,
1530
+ scale_ub: torch.Tensor | None = None,
1531
+ use_per_token_if_dynamic: bool = False,
1532
+ output: torch.Tensor | None = None,
1533
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1534
+ """
1535
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1536
+
1537
+ This function supports both static and dynamic quantization: If you
1538
+ provide the scale, it will use static scaling and if you omit it,
1539
+ the scale will be determined dynamically. The function also allows
1540
+ optional padding of the output tensors for downstream kernels that
1541
+ will benefit from padding.
1542
+
1543
+ Args:
1544
+ input: The input tensor to be quantized to FP8
1545
+ scale: Optional scaling factor for the FP8 quantization
1546
+ scale_ub: Optional upper bound for scaling factor in dynamic
1547
+ per token case
1548
+ num_token_padding: If specified, pad the first dimension
1549
+ of the output to at least this value.
1550
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1551
+ in the dynamic quantization case.
1552
+
1553
+ Returns:
1554
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1555
+ scaling factor.
1556
+ """
1557
+ # This code assumes batch_dim and num_tokens are flattened
1558
+ assert input.ndim == 2
1559
+ shape: tuple[int, int] | torch.Size = input.shape
1560
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1561
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1562
+ if num_token_padding:
1563
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1564
+ if output is None:
1565
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1566
+ else:
1567
+ assert num_token_padding is None, "padding not supported if output passed in"
1568
+ assert output.dtype == out_dtype
1569
+
1570
+ if scale is None:
1571
+ if use_per_token_if_dynamic:
1572
+ scale = torch.empty((shape[0], 1), device=input.device, dtype=torch.float32)
1573
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1574
+ output, input, scale, scale_ub
1575
+ )
1576
+ else:
1577
+ scale = torch.empty((1, 1), device=input.device, dtype=torch.float32)
1578
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1579
+ else:
1580
+ assert scale.numel() == 1, f"{scale.shape}"
1581
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1582
+
1583
+ return output, scale
1584
+
1585
+
1586
+ # gptq allspark
1587
+ def allspark_repack_weight(
1588
+ qweight: torch.Tensor,
1589
+ scale: torch.Tensor,
1590
+ zero_point: torch.Tensor | None = None,
1591
+ has_zp: bool = False,
1592
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1593
+ """
1594
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1595
+ for Ampere W8A16 Fused Gemm kernel
1596
+
1597
+ Args:
1598
+ qweight: uint8 weight tensor, original k x n format.
1599
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1600
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1601
+ Must be provided for asymmetric quantization.
1602
+ has_zp: if use symmetric quantization, has_zp = False.
1603
+ if use asymmetric quantization, has_zp = True.
1604
+
1605
+ Returns:
1606
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1607
+ rearranged weight, scale, and optionally zero_point.
1608
+ """
1609
+ K = qweight.shape[0]
1610
+ N = qweight.shape[1]
1611
+ N_32align = (N + 32 - 1) // 32 * 32
1612
+
1613
+ qweight_reorder = torch.empty(
1614
+ (N_32align, K), device=qweight.device, dtype=qweight.dtype
1615
+ )
1616
+ scale_reorder = torch.empty((1, N_32align), device=scale.device, dtype=scale.dtype)
1617
+ zero_point_reorder = None
1618
+ if has_zp:
1619
+ assert zero_point is not None, (
1620
+ "zero_point must be provided for asymmetric quantization."
1621
+ )
1622
+ zero_point_reorder = torch.empty(
1623
+ (1, N_32align), device=zero_point.device, dtype=zero_point.dtype
1624
+ )
1625
+
1626
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1627
+ qweight,
1628
+ scale,
1629
+ zero_point,
1630
+ has_zp,
1631
+ qweight_reorder,
1632
+ scale_reorder,
1633
+ zero_point_reorder,
1634
+ K,
1635
+ N,
1636
+ N_32align,
1637
+ )
1638
+
1639
+ return qweight_reorder, scale_reorder, zero_point_reorder
1640
+
1641
+
1642
+ def allspark_w8a16_gemm(
1643
+ a: torch.Tensor,
1644
+ b_qweight: torch.Tensor,
1645
+ b_scales: torch.Tensor,
1646
+ b_qzeros: torch.Tensor | None,
1647
+ n: int,
1648
+ group_size: int,
1649
+ sm_count: int,
1650
+ sm_version: int,
1651
+ CUBLAS_M_THRESHOLD: int,
1652
+ has_zp: bool,
1653
+ n32k16_reorder: bool,
1654
+ ) -> torch.Tensor:
1655
+ return torch.ops._C.allspark_w8a16_gemm(
1656
+ a,
1657
+ b_qweight,
1658
+ b_scales,
1659
+ b_qzeros,
1660
+ n,
1661
+ group_size,
1662
+ sm_count,
1663
+ sm_version,
1664
+ CUBLAS_M_THRESHOLD,
1665
+ has_zp,
1666
+ n32k16_reorder,
1667
+ )
1668
+
1669
+
1670
+ # int8
1671
+ def scaled_int8_quant(
1672
+ input: torch.Tensor,
1673
+ scale: torch.Tensor | None = None,
1674
+ azp: torch.Tensor | None = None,
1675
+ symmetric: bool = True,
1676
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
1677
+ """
1678
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1679
+
1680
+ Args:
1681
+ input: The input tensor to be quantized to int8.
1682
+ scale: Optional scaling factor for the int8 quantization.
1683
+ When not provided, we invoke dynamic-per-token quantization.
1684
+ azp: Optional zero-point for the int8 quantization.
1685
+ Must be provided for asymmetric quantization if `scale` is provided.
1686
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1687
+
1688
+ Returns:
1689
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1690
+ """
1691
+ output = torch.empty_like(input, dtype=torch.int8)
1692
+ if scale is not None:
1693
+ # static-per-tensor quantization.
1694
+ assert symmetric == (azp is None), (
1695
+ "azp must only be provided for asymmetric quantization."
1696
+ )
1697
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1698
+ return output, scale, azp
1699
+
1700
+ # dynamic-per-token quantization.
1701
+ input_scales = torch.empty(
1702
+ (input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32
1703
+ )
1704
+ input_azp = None if symmetric else torch.empty_like(input_scales, dtype=torch.int32)
1705
+ torch.ops._C.dynamic_scaled_int8_quant(
1706
+ output, input.contiguous(), input_scales, input_azp
1707
+ )
1708
+ return output, input_scales, input_azp
1709
+
1710
+
1711
+ # gguf
1712
+ def ggml_dequantize(
1713
+ W: torch.Tensor, quant_type: int, m: int, n: int, dtype: torch.dtype | None
1714
+ ) -> torch.Tensor:
1715
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1716
+
1717
+
1718
+ def ggml_mul_mat_vec_a8(
1719
+ W: torch.Tensor,
1720
+ X: torch.Tensor,
1721
+ quant_type: int,
1722
+ row: int,
1723
+ ) -> torch.Tensor:
1724
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1725
+
1726
+
1727
+ def ggml_mul_mat_a8(
1728
+ W: torch.Tensor,
1729
+ X: torch.Tensor,
1730
+ quant_type: int,
1731
+ row: int,
1732
+ ) -> torch.Tensor:
1733
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1734
+
1735
+
1736
+ def ggml_moe_a8(
1737
+ X: torch.Tensor,
1738
+ W: torch.Tensor,
1739
+ sorted_token_ids: torch.Tensor,
1740
+ expert_ids: torch.Tensor,
1741
+ num_tokens_post_padded: torch.Tensor,
1742
+ quant_type: int,
1743
+ row: int,
1744
+ top_k: int,
1745
+ tokens: int,
1746
+ ) -> torch.Tensor:
1747
+ return torch.ops._C.ggml_moe_a8(
1748
+ X,
1749
+ W,
1750
+ sorted_token_ids,
1751
+ expert_ids,
1752
+ num_tokens_post_padded,
1753
+ quant_type,
1754
+ row,
1755
+ top_k,
1756
+ tokens,
1757
+ )
1758
+
1759
+
1760
+ def ggml_moe_a8_vec(
1761
+ X: torch.Tensor,
1762
+ W: torch.Tensor,
1763
+ topk_ids: torch.Tensor,
1764
+ top_k: int,
1765
+ quant_type: int,
1766
+ row: torch.SymInt,
1767
+ tokens: torch.SymInt,
1768
+ ) -> torch.Tensor:
1769
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row, tokens)
1770
+
1771
+
1772
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1773
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1774
+
1775
+
1776
+ # mamba
1777
+ def selective_scan_fwd(
1778
+ u: torch.Tensor,
1779
+ delta: torch.Tensor,
1780
+ A: torch.Tensor,
1781
+ B: torch.Tensor,
1782
+ C: torch.Tensor,
1783
+ D_: torch.Tensor | None,
1784
+ z_: torch.Tensor | None,
1785
+ delta_bias_: torch.Tensor | None,
1786
+ delta_softplus: bool,
1787
+ query_start_loc: torch.Tensor | None,
1788
+ cache_indices: torch.Tensor | None,
1789
+ has_initial_state: torch.Tensor | None,
1790
+ ssm_states: torch.Tensor,
1791
+ pad_slot_id: int,
1792
+ block_size: int = 1024,
1793
+ block_idx_first_scheduled_token: torch.Tensor | None = None,
1794
+ block_idx_last_scheduled_token: torch.Tensor | None = None,
1795
+ initial_state_idx: torch.Tensor | None = None,
1796
+ ):
1797
+ torch.ops._C.selective_scan_fwd(
1798
+ u,
1799
+ delta,
1800
+ A,
1801
+ B,
1802
+ C,
1803
+ D_,
1804
+ z_,
1805
+ delta_bias_,
1806
+ delta_softplus,
1807
+ query_start_loc,
1808
+ cache_indices,
1809
+ has_initial_state,
1810
+ ssm_states,
1811
+ pad_slot_id,
1812
+ block_size,
1813
+ block_idx_first_scheduled_token,
1814
+ block_idx_last_scheduled_token,
1815
+ initial_state_idx,
1816
+ )
1817
+
1818
+
1819
+ # ROCm skinny gemms
1820
+ def LLMM1(a: torch.Tensor, b: torch.Tensor, rows_per_block: int) -> torch.Tensor:
1821
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1822
+
1823
+
1824
+ def wvSplitK(
1825
+ a: torch.Tensor, b: torch.Tensor, cu_count: int, bias: torch.Tensor = None
1826
+ ) -> torch.Tensor:
1827
+ return torch.ops._rocm_C.wvSplitK(a, b, bias, cu_count)
1828
+
1829
+
1830
+ def wvSplitKQ(
1831
+ a: torch.Tensor,
1832
+ b: torch.Tensor,
1833
+ out_dtype: torch.dtype,
1834
+ scale_a: torch.Tensor,
1835
+ scale_b: torch.Tensor,
1836
+ cu_count: int,
1837
+ bias: torch.Tensor = None,
1838
+ ) -> torch.Tensor:
1839
+ out = torch.empty((b.shape[0], a.shape[0]), dtype=out_dtype, device=b.device)
1840
+ torch.ops._rocm_C.wvSplitKQ(a, b, bias, out, scale_a, scale_b, cu_count)
1841
+ return out
1842
+
1843
+
1844
+ # moe
1845
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1846
+ torch.ops._moe_C.moe_sum(input, output)
1847
+
1848
+
1849
+ def moe_align_block_size(
1850
+ topk_ids: torch.Tensor,
1851
+ num_experts: int,
1852
+ block_size: int,
1853
+ sorted_token_ids: torch.Tensor,
1854
+ experts_ids: torch.Tensor,
1855
+ num_tokens_post_pad: torch.Tensor,
1856
+ ) -> None:
1857
+ torch.ops._moe_C.moe_align_block_size(
1858
+ topk_ids,
1859
+ num_experts,
1860
+ block_size,
1861
+ sorted_token_ids,
1862
+ experts_ids,
1863
+ num_tokens_post_pad,
1864
+ )
1865
+
1866
+
1867
+ def batched_moe_align_block_size(
1868
+ max_tokens_per_batch: int,
1869
+ block_size: int,
1870
+ expert_num_tokens: torch.Tensor,
1871
+ sorted_ids: torch.Tensor,
1872
+ expert_ids: torch.Tensor,
1873
+ num_tokens_post_pad: torch.Tensor,
1874
+ ) -> None:
1875
+ torch.ops._moe_C.batched_moe_align_block_size(
1876
+ max_tokens_per_batch,
1877
+ block_size,
1878
+ expert_num_tokens,
1879
+ sorted_ids,
1880
+ expert_ids,
1881
+ num_tokens_post_pad,
1882
+ )
1883
+
1884
+
1885
+ def moe_lora_align_block_size(
1886
+ topk_ids: torch.Tensor,
1887
+ token_lora_mapping: torch.Tensor,
1888
+ num_experts: int,
1889
+ block_size: int,
1890
+ max_loras: int,
1891
+ max_num_tokens_padded: int,
1892
+ max_num_m_blocks: int,
1893
+ sorted_token_ids: torch.Tensor,
1894
+ experts_ids: torch.Tensor,
1895
+ num_tokens_post_pad: torch.Tensor,
1896
+ adapter_enabled: torch.Tensor,
1897
+ lora_ids: torch.Tensor,
1898
+ ) -> None:
1899
+ torch.ops._moe_C.moe_lora_align_block_size(
1900
+ topk_ids,
1901
+ token_lora_mapping,
1902
+ num_experts,
1903
+ block_size,
1904
+ max_loras,
1905
+ max_num_tokens_padded,
1906
+ max_num_m_blocks,
1907
+ sorted_token_ids,
1908
+ experts_ids,
1909
+ num_tokens_post_pad,
1910
+ adapter_enabled,
1911
+ lora_ids,
1912
+ )
1913
+
1914
+
1915
+ def moe_wna16_gemm(
1916
+ input: torch.Tensor,
1917
+ output: torch.Tensor,
1918
+ b_qweight: torch.Tensor,
1919
+ b_scales: torch.Tensor,
1920
+ b_qzeros: torch.Tensor | None,
1921
+ topk_weights: torch.Tensor | None,
1922
+ sorted_token_ids: torch.Tensor,
1923
+ experts_ids: torch.Tensor,
1924
+ num_tokens_post_pad: torch.Tensor,
1925
+ top_k: int,
1926
+ BLOCK_SIZE_M: int,
1927
+ BLOCK_SIZE_N: int,
1928
+ BLOCK_SIZE_K: int,
1929
+ bit: int,
1930
+ ) -> torch.Tensor:
1931
+ if not current_platform.is_cuda():
1932
+ raise NotImplementedError(
1933
+ "The optimized moe_wna16_gemm kernel is only available on CUDA platforms"
1934
+ )
1935
+ torch.ops._moe_C.moe_wna16_gemm(
1936
+ input,
1937
+ output,
1938
+ b_qweight,
1939
+ b_scales,
1940
+ b_qzeros,
1941
+ topk_weights,
1942
+ sorted_token_ids,
1943
+ experts_ids,
1944
+ num_tokens_post_pad,
1945
+ top_k,
1946
+ BLOCK_SIZE_M,
1947
+ BLOCK_SIZE_N,
1948
+ BLOCK_SIZE_K,
1949
+ bit,
1950
+ )
1951
+
1952
+
1953
+ def topk_softmax(
1954
+ topk_weights: torch.Tensor,
1955
+ topk_ids: torch.Tensor,
1956
+ token_expert_indices: torch.Tensor,
1957
+ gating_output: torch.Tensor,
1958
+ renormalize: bool = False,
1959
+ ) -> None:
1960
+ torch.ops._moe_C.topk_softmax(
1961
+ topk_weights, topk_ids, token_expert_indices, gating_output, renormalize
1962
+ )
1963
+
1964
+
1965
+ def grouped_topk(
1966
+ scores: torch.Tensor,
1967
+ num_expert_group: int,
1968
+ topk_group: int,
1969
+ topk: int,
1970
+ renormalize: bool,
1971
+ routed_scaling_factor: float,
1972
+ bias: torch.Tensor,
1973
+ scoring_func: int = 0,
1974
+ ):
1975
+ """
1976
+ Perform grouped top-k routing for mixture of experts.
1977
+
1978
+ Args:
1979
+ scores: Raw inputs (logits if scoring_func=1, scores if scoring_func=0)
1980
+ num_expert_group: Number of expert groups
1981
+ topk_group: Number of groups to select
1982
+ topk: Number of experts to select per token
1983
+ renormalize: Whether to renormalize the output weights
1984
+ routed_scaling_factor: Scaling factor for routing weights
1985
+ bias: Bias tensor (e_score_correction_bias). Always fused in kernel.
1986
+ scoring_func: 0=none (no activation), 1=sigmoid
1987
+ """
1988
+ if not current_platform.is_cuda():
1989
+ raise NotImplementedError(
1990
+ "The fused grouped_topk kernel is only available on CUDA platforms"
1991
+ )
1992
+ return torch.ops._moe_C.grouped_topk(
1993
+ scores,
1994
+ num_expert_group,
1995
+ topk_group,
1996
+ topk,
1997
+ renormalize,
1998
+ routed_scaling_factor,
1999
+ bias,
2000
+ scoring_func,
2001
+ )
2002
+
2003
+
2004
+ def moe_wna16_marlin_gemm(
2005
+ input: torch.Tensor,
2006
+ output: torch.Tensor | None,
2007
+ b_qweight: torch.Tensor,
2008
+ b_bias: torch.Tensor | None,
2009
+ b_scales: torch.Tensor,
2010
+ global_scale: torch.Tensor | None,
2011
+ b_qzeros: torch.Tensor | None,
2012
+ g_idx: torch.Tensor | None,
2013
+ perm: torch.Tensor | None,
2014
+ workspace: torch.Tensor,
2015
+ sorted_token_ids: torch.Tensor,
2016
+ expert_ids: torch.Tensor,
2017
+ num_tokens_past_padded: torch.Tensor,
2018
+ topk_weights: torch.Tensor,
2019
+ moe_block_size: int,
2020
+ top_k: int,
2021
+ mul_topk_weights: bool,
2022
+ is_ep: bool,
2023
+ b_q_type: ScalarType,
2024
+ size_m: int,
2025
+ size_n: int,
2026
+ size_k: int,
2027
+ is_k_full: bool,
2028
+ use_atomic_add: bool,
2029
+ use_fp32_reduce: bool,
2030
+ is_zp_float: bool,
2031
+ ) -> torch.Tensor:
2032
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
2033
+ input,
2034
+ output,
2035
+ b_qweight,
2036
+ b_bias,
2037
+ b_scales,
2038
+ global_scale,
2039
+ b_qzeros,
2040
+ g_idx,
2041
+ perm,
2042
+ workspace,
2043
+ sorted_token_ids,
2044
+ expert_ids,
2045
+ num_tokens_past_padded,
2046
+ topk_weights,
2047
+ moe_block_size,
2048
+ top_k,
2049
+ mul_topk_weights,
2050
+ is_ep,
2051
+ b_q_type.id,
2052
+ size_m,
2053
+ size_n,
2054
+ size_k,
2055
+ is_k_full,
2056
+ use_atomic_add,
2057
+ use_fp32_reduce,
2058
+ is_zp_float,
2059
+ )
2060
+
2061
+
2062
+ if hasattr(torch.ops, "_moe_C") and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
2063
+
2064
+ @register_fake("_moe_C::marlin_gemm_moe")
2065
+ def marlin_gemm_moe_fake(
2066
+ a: torch.Tensor,
2067
+ b_q_weights: torch.Tensor,
2068
+ sorted_ids: torch.Tensor,
2069
+ topk_weights: torch.Tensor,
2070
+ topk_ids: torch.Tensor,
2071
+ b_scales: torch.Tensor,
2072
+ b_zero_points: torch.Tensor,
2073
+ g_idx: torch.Tensor,
2074
+ perm: torch.Tensor,
2075
+ workspace: torch.Tensor,
2076
+ b_q_type: ScalarType,
2077
+ size_m: torch.SymInt,
2078
+ size_n: torch.SymInt,
2079
+ size_k: torch.SymInt,
2080
+ is_k_full: bool,
2081
+ num_experts: int,
2082
+ topk: int,
2083
+ moe_block_size: int,
2084
+ replicate_input: bool,
2085
+ apply_weights: bool,
2086
+ ) -> torch.Tensor:
2087
+ return torch.empty((size_m, topk, size_n), dtype=a.dtype, device=a.device)
2088
+
2089
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
2090
+ def moe_wna16_marlin_gemm_fake(
2091
+ input: torch.Tensor,
2092
+ output: torch.Tensor | None,
2093
+ b_qweight: torch.Tensor,
2094
+ b_scales: torch.Tensor,
2095
+ b_qzeros: torch.Tensor | None,
2096
+ g_idx: torch.Tensor | None,
2097
+ perm: torch.Tensor | None,
2098
+ workspace: torch.Tensor,
2099
+ sorted_token_ids: torch.Tensor,
2100
+ expert_ids: torch.Tensor,
2101
+ num_tokens_past_padded: torch.Tensor,
2102
+ topk_weights: torch.Tensor,
2103
+ moe_block_size: int,
2104
+ top_k: int,
2105
+ mul_topk_weights: bool,
2106
+ is_ep: bool,
2107
+ b_q_type: ScalarType,
2108
+ size_m: int,
2109
+ size_n: int,
2110
+ size_k: int,
2111
+ is_k_full: bool,
2112
+ use_atomic_add: bool,
2113
+ use_fp32_reduce: bool,
2114
+ is_zp_float: bool,
2115
+ ) -> torch.Tensor:
2116
+ return torch.empty(
2117
+ (size_m * top_k, size_n), dtype=input.dtype, device=input.device
2118
+ )
2119
+
2120
+
2121
+ def reshape_and_cache(
2122
+ key: torch.Tensor,
2123
+ value: torch.Tensor,
2124
+ key_cache: torch.Tensor,
2125
+ value_cache: torch.Tensor,
2126
+ slot_mapping: torch.Tensor,
2127
+ kv_cache_dtype: str,
2128
+ k_scale: torch.Tensor,
2129
+ v_scale: torch.Tensor,
2130
+ ) -> None:
2131
+ torch.ops._C_cache_ops.reshape_and_cache(
2132
+ key,
2133
+ value,
2134
+ key_cache,
2135
+ value_cache,
2136
+ slot_mapping,
2137
+ kv_cache_dtype,
2138
+ k_scale,
2139
+ v_scale,
2140
+ )
2141
+
2142
+
2143
+ def reshape_and_cache_flash(
2144
+ key: torch.Tensor,
2145
+ value: torch.Tensor,
2146
+ key_cache: torch.Tensor,
2147
+ value_cache: torch.Tensor,
2148
+ slot_mapping: torch.Tensor,
2149
+ kv_cache_dtype: str,
2150
+ k_scale: torch.Tensor,
2151
+ v_scale: torch.Tensor,
2152
+ ) -> None:
2153
+ torch.ops._C_cache_ops.reshape_and_cache_flash(
2154
+ key,
2155
+ value,
2156
+ key_cache,
2157
+ value_cache,
2158
+ slot_mapping,
2159
+ kv_cache_dtype,
2160
+ k_scale,
2161
+ v_scale,
2162
+ )
2163
+
2164
+
2165
+ def concat_and_cache_mla(
2166
+ kv_c: torch.Tensor,
2167
+ k_pe: torch.Tensor,
2168
+ kv_cache: torch.Tensor,
2169
+ slot_mapping: torch.Tensor,
2170
+ kv_cache_dtype: str,
2171
+ scale: torch.Tensor,
2172
+ ) -> None:
2173
+ torch.ops._C_cache_ops.concat_and_cache_mla(
2174
+ kv_c, k_pe, kv_cache, slot_mapping, kv_cache_dtype, scale
2175
+ )
2176
+
2177
+
2178
+ def copy_blocks(
2179
+ key_caches: list[torch.Tensor],
2180
+ value_caches: list[torch.Tensor],
2181
+ block_mapping: torch.Tensor,
2182
+ ) -> None:
2183
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
2184
+
2185
+
2186
+ def copy_blocks_mla(kv_caches: list[torch.Tensor], block_mapping: torch.Tensor) -> None:
2187
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
2188
+
2189
+
2190
+ def swap_blocks(
2191
+ src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
2192
+ ) -> None:
2193
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
2194
+
2195
+
2196
+ def convert_fp8(
2197
+ output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
2198
+ ) -> None:
2199
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
2200
+
2201
+
2202
+ def gather_and_maybe_dequant_cache(
2203
+ src_cache: torch.Tensor,
2204
+ dst: torch.Tensor,
2205
+ block_table: torch.Tensor,
2206
+ cu_seq_lens: torch.Tensor,
2207
+ batch_size: int,
2208
+ kv_cache_dtype: str,
2209
+ scale: torch.Tensor,
2210
+ seq_starts: torch.Tensor | None = None,
2211
+ ) -> None:
2212
+ torch.ops._C_cache_ops.gather_and_maybe_dequant_cache(
2213
+ src_cache,
2214
+ dst,
2215
+ block_table,
2216
+ cu_seq_lens,
2217
+ batch_size,
2218
+ kv_cache_dtype,
2219
+ scale,
2220
+ seq_starts,
2221
+ )
2222
+
2223
+
2224
+ def cp_gather_cache(
2225
+ src_cache: torch.Tensor,
2226
+ dst: torch.Tensor,
2227
+ block_table: torch.Tensor,
2228
+ cu_seq_lens: torch.Tensor,
2229
+ batch_size: int,
2230
+ seq_starts: torch.Tensor | None = None,
2231
+ ) -> None:
2232
+ torch.ops._C_cache_ops.cp_gather_cache(
2233
+ src_cache, dst, block_table, cu_seq_lens, batch_size, seq_starts
2234
+ )
2235
+
2236
+
2237
+ def indexer_k_quant_and_cache(
2238
+ k: torch.Tensor,
2239
+ kv_cache: torch.Tensor,
2240
+ slot_mapping: torch.Tensor,
2241
+ quant_block_size: int,
2242
+ kv_cache_dtype: str,
2243
+ ) -> None:
2244
+ torch.ops._C_cache_ops.indexer_k_quant_and_cache(
2245
+ k, kv_cache, slot_mapping, quant_block_size, kv_cache_dtype
2246
+ )
2247
+
2248
+
2249
+ def cp_gather_indexer_k_quant_cache(
2250
+ kv_cache: torch.Tensor,
2251
+ dst_k: torch.Tensor,
2252
+ dst_scale: torch.Tensor,
2253
+ block_table: torch.Tensor,
2254
+ cu_seq_lens: torch.Tensor,
2255
+ ) -> None:
2256
+ torch.ops._C_cache_ops.cp_gather_indexer_k_quant_cache(
2257
+ kv_cache, dst_k, dst_scale, block_table, cu_seq_lens
2258
+ )
2259
+
2260
+
2261
+ def get_device_attribute(attribute: int, device: int) -> int:
2262
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
2263
+
2264
+
2265
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
2266
+ # ruff: noqa: E501
2267
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
2268
+ device
2269
+ )
2270
+
2271
+
2272
+ # custom ar
2273
+ def init_custom_ar(
2274
+ ipc_tensors: list[torch.Tensor],
2275
+ rank_data: torch.Tensor,
2276
+ rank: int,
2277
+ fully_connected: bool,
2278
+ ) -> int:
2279
+ return torch.ops._C_custom_ar.init_custom_ar(
2280
+ ipc_tensors, rank_data, rank, fully_connected
2281
+ )
2282
+
2283
+
2284
+ def all_reduce(
2285
+ fa: int,
2286
+ inp: torch.Tensor,
2287
+ out: torch.Tensor,
2288
+ reg_buffer: int,
2289
+ reg_buffer_sz_bytes: int,
2290
+ ) -> None:
2291
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
2292
+
2293
+
2294
+ def dispose(fa: int) -> None:
2295
+ torch.ops._C_custom_ar.dispose(fa)
2296
+
2297
+
2298
+ def meta_size() -> int:
2299
+ return torch.ops._C_custom_ar.meta_size()
2300
+
2301
+
2302
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
2303
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
2304
+
2305
+
2306
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
2307
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
2308
+
2309
+
2310
+ def register_graph_buffers(
2311
+ fa: int, handles: list[list[int]], offsets: list[list[int]]
2312
+ ) -> None:
2313
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
2314
+
2315
+
2316
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
2317
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
2318
+
2319
+
2320
+ def open_mem_handle(mem_handle: torch.Tensor):
2321
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
2322
+
2323
+
2324
+ def free_shared_buffer(ptr: int) -> None:
2325
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
2326
+
2327
+
2328
+ # quick all reduce
2329
+ def init_custom_qr(rank: int, world_size: int, qr_max_size: int | None = None) -> int:
2330
+ return torch.ops._C_custom_ar.init_custom_qr(rank, world_size, qr_max_size)
2331
+
2332
+
2333
+ def qr_destroy(fa: int) -> None:
2334
+ torch.ops._C_custom_ar.qr_destroy(fa)
2335
+
2336
+
2337
+ def qr_all_reduce(
2338
+ fa: int,
2339
+ inp: torch.Tensor,
2340
+ out: torch.Tensor,
2341
+ quant_level: int,
2342
+ cast_bf2half: bool = False,
2343
+ ) -> None:
2344
+ torch.ops._C_custom_ar.qr_all_reduce(fa, inp, out, quant_level, cast_bf2half)
2345
+
2346
+
2347
+ def qr_get_handle(fa: int) -> torch.Tensor:
2348
+ return torch.ops._C_custom_ar.qr_get_handle(fa)
2349
+
2350
+
2351
+ def qr_open_handles(fa: int, handles: list[torch.Tensor]) -> None:
2352
+ return torch.ops._C_custom_ar.qr_open_handles(fa, handles)
2353
+
2354
+
2355
+ def qr_max_size() -> int:
2356
+ return torch.ops._C_custom_ar.qr_max_size()
2357
+
2358
+
2359
+ def get_flash_mla_metadata(
2360
+ cache_seqlens: torch.Tensor,
2361
+ num_heads_per_head_k: int,
2362
+ num_heads_k: int,
2363
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2364
+ """
2365
+ Arguments:
2366
+ cache_seqlens: (batch_size), dtype torch.int32.
2367
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
2368
+ num_heads_k: num_heads_k.
2369
+
2370
+ Return:
2371
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
2372
+ num_splits: (batch_size + 1), dtype torch.int32.
2373
+ """
2374
+ return torch.ops._C.get_flash_mla_metadata(
2375
+ cache_seqlens, num_heads_per_head_k, num_heads_k
2376
+ )
2377
+
2378
+
2379
+ def flash_mla_with_kvcache(
2380
+ q: torch.Tensor,
2381
+ k_cache: torch.Tensor,
2382
+ block_table: torch.Tensor,
2383
+ cache_seqlens: torch.Tensor,
2384
+ head_dim_v: int,
2385
+ tile_scheduler_metadata: torch.Tensor,
2386
+ num_splits: torch.Tensor,
2387
+ softmax_scale: float | None = None,
2388
+ causal: bool = False,
2389
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2390
+ """
2391
+ Arguments:
2392
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
2393
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
2394
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
2395
+ cache_seqlens: (batch_size), torch.int32.
2396
+ head_dim_v: Head_dim of v.
2397
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
2398
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
2399
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
2400
+ causal: bool. Whether to apply causal attention mask.
2401
+
2402
+ Return:
2403
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
2404
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
2405
+ """
2406
+ if softmax_scale is None:
2407
+ softmax_scale = q.shape[-1] ** (-0.5)
2408
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
2409
+ q,
2410
+ k_cache,
2411
+ None,
2412
+ head_dim_v,
2413
+ cache_seqlens,
2414
+ block_table,
2415
+ softmax_scale,
2416
+ causal,
2417
+ tile_scheduler_metadata,
2418
+ num_splits,
2419
+ )
2420
+ return out, softmax_lse
2421
+
2422
+
2423
+ def sm100_cutlass_mla_decode(
2424
+ out: torch.Tensor,
2425
+ lse: torch.Tensor,
2426
+ q_nope: torch.Tensor,
2427
+ q_pe: torch.Tensor,
2428
+ kv_c_and_k_pe_cache: torch.Tensor,
2429
+ seq_lens: torch.Tensor,
2430
+ page_table: torch.Tensor,
2431
+ workspace: torch.Tensor,
2432
+ scale: float,
2433
+ num_kv_splits: int,
2434
+ ) -> torch.Tensor:
2435
+ torch.ops._C.sm100_cutlass_mla_decode(
2436
+ out,
2437
+ lse,
2438
+ q_nope,
2439
+ q_pe,
2440
+ kv_c_and_k_pe_cache,
2441
+ seq_lens,
2442
+ page_table,
2443
+ workspace,
2444
+ scale,
2445
+ num_kv_splits,
2446
+ )
2447
+ return out
2448
+
2449
+
2450
+ def sm100_cutlass_mla_get_workspace_size(
2451
+ max_seq_len: int, num_batches: int, sm_count: int, num_kv_splits: int
2452
+ ) -> int:
2453
+ return torch.ops._C.sm100_cutlass_mla_get_workspace_size(
2454
+ max_seq_len, num_batches, sm_count, num_kv_splits
2455
+ )
2456
+
2457
+
2458
+ if hasattr(torch.ops._C, "weight_packed_linear"):
2459
+
2460
+ @register_fake("_C::weight_packed_linear")
2461
+ def weight_packed_linear_fake(
2462
+ mat1: torch.Tensor,
2463
+ mat2: torch.Tensor,
2464
+ bias: torch.Tensor | None,
2465
+ is_vnni: bool,
2466
+ ) -> torch.Tensor:
2467
+ return torch.empty(
2468
+ (mat1.size(0), mat2.size(0)), dtype=mat1.dtype, device=mat2.device
2469
+ )
2470
+
2471
+
2472
+ if hasattr(torch.ops._C, "fused_experts_cpu"):
2473
+
2474
+ @register_fake("_C::fused_experts_cpu")
2475
+ def fused_experts_cpu_fake(
2476
+ hidden_states: torch.Tensor,
2477
+ w1: torch.Tensor,
2478
+ w2: torch.Tensor,
2479
+ topk_weights: torch.Tensor,
2480
+ topk_ids: torch.Tensor,
2481
+ inplace: bool,
2482
+ use_int8_w8a8: bool,
2483
+ use_fp8_w8a16: bool,
2484
+ w1_scale: torch.Tensor | None,
2485
+ w2_scale: torch.Tensor | None,
2486
+ block_size: list[int] | None,
2487
+ a1_scale: torch.Tensor | None,
2488
+ a2_scale: torch.Tensor | None,
2489
+ is_vnni: bool,
2490
+ ) -> torch.Tensor:
2491
+ return torch.empty_like(hidden_states)
2492
+
2493
+
2494
+ if hasattr(torch.ops._C, "int8_scaled_mm_with_quant"):
2495
+
2496
+ @register_fake("_C::int8_scaled_mm_with_quant")
2497
+ def int8_scaled_mm_with_quant_fake(
2498
+ mat1: torch.Tensor,
2499
+ mat2: torch.Tensor,
2500
+ scales2: torch.Tensor,
2501
+ bias: torch.Tensor | None,
2502
+ out_dtype: torch.dtype,
2503
+ is_vnni: bool,
2504
+ ) -> torch.Tensor:
2505
+ M = mat1.size(0)
2506
+ N = mat2.size(0)
2507
+ return torch.empty((M, N), dtype=out_dtype)
2508
+
2509
+
2510
+ class CPUDNNLGEMMHandler:
2511
+ def __init__(self) -> None:
2512
+ self.handler: int | None = None
2513
+ self.n = -1
2514
+ self.k = -1
2515
+
2516
+ def __del__(self):
2517
+ if self.handler is not None:
2518
+ torch.ops._C.release_dnnl_matmul_handler(self.handler)
2519
+
2520
+
2521
+ _supports_onednn = bool(hasattr(torch.ops._C, "create_onednn_mm_handler"))
2522
+
2523
+
2524
+ def is_onednn_acl_supported():
2525
+ return torch.ops._C.is_onednn_acl_supported()
2526
+
2527
+
2528
+ def create_onednn_mm(
2529
+ weight: torch.Tensor, # [K, N]
2530
+ primitive_cache_size: int = 128,
2531
+ ) -> CPUDNNLGEMMHandler:
2532
+ handler = CPUDNNLGEMMHandler()
2533
+ handler.k, handler.n = weight.size()
2534
+ handler.handler = torch.ops._C.create_onednn_mm_handler(
2535
+ weight, primitive_cache_size
2536
+ )
2537
+ return handler
2538
+
2539
+
2540
+ def onednn_mm(
2541
+ dnnl_handler: CPUDNNLGEMMHandler,
2542
+ x: torch.Tensor,
2543
+ bias: torch.Tensor | None,
2544
+ ) -> torch.Tensor:
2545
+ output = torch.empty((*x.shape[0:-1], dnnl_handler.n), dtype=x.dtype)
2546
+ torch.ops._C.onednn_mm(
2547
+ output, x.reshape(-1, dnnl_handler.k), bias, dnnl_handler.handler
2548
+ )
2549
+
2550
+ return output
2551
+
2552
+
2553
+ def create_onednn_scaled_mm(
2554
+ weight: torch.Tensor, # [K, N]
2555
+ weight_scales: torch.Tensor,
2556
+ output_type: torch.dtype,
2557
+ dynamic_quant: bool,
2558
+ use_azp: bool,
2559
+ primitive_cache_size: int = 128,
2560
+ ) -> CPUDNNLGEMMHandler:
2561
+ handler = CPUDNNLGEMMHandler()
2562
+ handler.k, handler.n = weight.size()
2563
+ handler.handler = torch.ops._C.create_onednn_scaled_mm_handler(
2564
+ weight, weight_scales, output_type, dynamic_quant, use_azp, primitive_cache_size
2565
+ )
2566
+ return handler
2567
+
2568
+
2569
+ def onednn_scaled_int8_quant(
2570
+ input: torch.Tensor,
2571
+ scale: torch.Tensor | None = None,
2572
+ azp: torch.Tensor | None = None,
2573
+ symmetric: bool = True,
2574
+ ):
2575
+ """
2576
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
2577
+
2578
+ Args:
2579
+ input: The input tensor to be quantized to int8.
2580
+ scale: Optional scaling factor for the int8 quantization.
2581
+ When not provided, we invoke dynamic-per-token quantization.
2582
+ azp: Optional zero-point for the int8 quantization.
2583
+ Must be provided for asymmetric quantization if `scale` is provided.
2584
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
2585
+
2586
+ Returns:
2587
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
2588
+ """
2589
+ output = torch.empty_like(input, dtype=torch.int8)
2590
+ token_num = input.numel() // input.shape[-1]
2591
+ input = input.view((token_num, input.shape[-1]))
2592
+ if scale is not None:
2593
+ # static-per-tensor quantization.
2594
+ assert symmetric == (azp is None), (
2595
+ "azp must only be provided for asymmetric quantization."
2596
+ )
2597
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
2598
+ return output, scale, azp
2599
+
2600
+ # dynamic-per-token quantization.
2601
+ input_scales = torch.empty((token_num, 1), device=input.device, dtype=torch.float32)
2602
+ input_azp = None if symmetric else torch.empty_like(input_scales, dtype=torch.int32)
2603
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales, input_azp)
2604
+ return output, input_scales, input_azp
2605
+
2606
+
2607
+ def onednn_scaled_mm(
2608
+ dnnl_handler: CPUDNNLGEMMHandler,
2609
+ x: torch.Tensor,
2610
+ output: torch.Tensor,
2611
+ input_scale: torch.Tensor | None,
2612
+ input_zp: torch.Tensor | None,
2613
+ input_zp_adj: torch.Tensor | None,
2614
+ bias: torch.Tensor | None,
2615
+ ) -> torch.Tensor:
2616
+ torch.ops._C.onednn_scaled_mm(
2617
+ output, x, input_scale, input_zp, input_zp_adj, bias, dnnl_handler.handler
2618
+ )
2619
+
2620
+ return output
2621
+
2622
+
2623
+ def cpu_attn_get_scheduler_metadata(
2624
+ num_reqs: int,
2625
+ num_heads: int,
2626
+ num_kv_heads: int,
2627
+ head_dim: int,
2628
+ seq_lens: torch.Tensor,
2629
+ dtype: torch.dtype,
2630
+ query_start_loc: torch.Tensor,
2631
+ causal: bool,
2632
+ sliding_window_size: int,
2633
+ isa: str,
2634
+ enable_kv_split: bool,
2635
+ ) -> torch.Tensor:
2636
+ sheduler_metadata = torch.ops._C.get_scheduler_metadata(
2637
+ num_reqs,
2638
+ num_heads,
2639
+ num_kv_heads,
2640
+ head_dim,
2641
+ seq_lens,
2642
+ dtype,
2643
+ query_start_loc,
2644
+ causal,
2645
+ sliding_window_size,
2646
+ isa,
2647
+ enable_kv_split,
2648
+ )
2649
+ return sheduler_metadata
2650
+
2651
+
2652
+ def cpu_attn_reshape_and_cache(
2653
+ key: torch.Tensor,
2654
+ value: torch.Tensor,
2655
+ key_cache: torch.Tensor,
2656
+ value_cache: torch.Tensor,
2657
+ slot_mapping: torch.Tensor,
2658
+ isa: str,
2659
+ ) -> None:
2660
+ torch.ops._C.cpu_attn_reshape_and_cache(
2661
+ key,
2662
+ value,
2663
+ key_cache,
2664
+ value_cache,
2665
+ slot_mapping,
2666
+ isa,
2667
+ )
2668
+
2669
+
2670
+ def cpu_attention_with_kv_cache(
2671
+ query: torch.Tensor,
2672
+ key_cache: torch.Tensor,
2673
+ value_cache: torch.Tensor,
2674
+ output: torch.Tensor,
2675
+ query_start_loc: torch.Tensor,
2676
+ seq_lens: torch.Tensor,
2677
+ scale: float,
2678
+ causal: bool,
2679
+ alibi_slopes: torch.Tensor | None,
2680
+ sliding_window: tuple[int, int],
2681
+ block_table: torch.Tensor,
2682
+ softcap: float,
2683
+ scheduler_metadata: torch.Tensor,
2684
+ s_aux: torch.Tensor | None,
2685
+ ) -> None:
2686
+ torch.ops._C.cpu_attention_with_kv_cache(
2687
+ query,
2688
+ key_cache,
2689
+ value_cache,
2690
+ output,
2691
+ query_start_loc,
2692
+ seq_lens,
2693
+ scale,
2694
+ causal,
2695
+ alibi_slopes,
2696
+ sliding_window[0],
2697
+ sliding_window[1],
2698
+ block_table,
2699
+ softcap,
2700
+ scheduler_metadata,
2701
+ s_aux,
2702
+ )
2703
+
2704
+
2705
+ if hasattr(torch.ops._qutlass_C, "matmul_mxf4_bf16_tn"):
2706
+
2707
+ @register_fake("_qutlass_C::matmul_mxf4_bf16_tn")
2708
+ def _fake_matmul_mxf4_bf16_tn(
2709
+ a: torch.Tensor,
2710
+ b: torch.Tensor,
2711
+ a_sf: torch.Tensor,
2712
+ b_sf: torch.Tensor,
2713
+ alpha: torch.Tensor,
2714
+ ):
2715
+ return a.new_empty(*a.shape[:-1], b.shape[0], dtype=torch.bfloat16)
2716
+
2717
+
2718
+ def matmul_mxf4_bf16_tn(
2719
+ a: torch.Tensor,
2720
+ b: torch.Tensor,
2721
+ a_sf: torch.Tensor,
2722
+ b_sf: torch.Tensor,
2723
+ alpha: torch.Tensor,
2724
+ ) -> torch.Tensor:
2725
+ return torch.ops._qutlass_C.matmul_mxf4_bf16_tn(a, b, a_sf, b_sf, alpha)
2726
+
2727
+
2728
+ if hasattr(torch.ops._qutlass_C, "matmul_ada_mxf4_bf16_tn"):
2729
+
2730
+ @register_fake("_qutlass_C::matmul_ada_mxf4_bf16_tn")
2731
+ def _fake_matmul_ada_mxf4_bf16_tn(
2732
+ a: torch.Tensor,
2733
+ b: torch.Tensor,
2734
+ a_sf: torch.Tensor,
2735
+ b_sf: torch.Tensor,
2736
+ alpha: torch.Tensor,
2737
+ ):
2738
+ return a.new_empty(*a.shape[:-1], b.shape[0], dtype=torch.bfloat16)
2739
+
2740
+
2741
+ def matmul_ada_mxf4_bf16_tn(
2742
+ a: torch.Tensor,
2743
+ b: torch.Tensor,
2744
+ a_sf: torch.Tensor,
2745
+ b_sf: torch.Tensor,
2746
+ alpha: torch.Tensor,
2747
+ ) -> torch.Tensor:
2748
+ return torch.ops._qutlass_C.matmul_ada_mxf4_bf16_tn(a, b, a_sf, b_sf, alpha)
2749
+
2750
+
2751
+ def ceil_div(a, b):
2752
+ return (a + b - 1) // b
2753
+
2754
+
2755
+ if hasattr(torch.ops._qutlass_C, "fusedQuantizeMxQuest"):
2756
+
2757
+ @register_fake("_qutlass_C::fusedQuantizeMxQuest")
2758
+ def _fake_fused_quantize_mx_quest(
2759
+ a: torch.Tensor, b: torch.Tensor, xh_e2m1: torch.Tensor, xh_e8m0: torch.Tensor
2760
+ ):
2761
+ return xh_e2m1, xh_e8m0
2762
+
2763
+
2764
+ if hasattr(torch.ops._qutlass_C, "fusedQuantizeMxAbsMax"):
2765
+
2766
+ @register_fake("_qutlass_C::fusedQuantizeMxAbsMax")
2767
+ def _fake_fused_quantize_mx_absmax(
2768
+ a: torch.Tensor, b: torch.Tensor, xh_e2m1: torch.Tensor, xh_e8m0: torch.Tensor
2769
+ ):
2770
+ return xh_e2m1, xh_e8m0
2771
+
2772
+
2773
+ def fusedQuantizeMx(
2774
+ a: torch.Tensor, b: torch.Tensor, *, method: Literal["quest", "abs_max"] = "quest"
2775
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2776
+ if a.dim() == 0:
2777
+ raise ValueError("`a` must have at least 1 dimension.")
2778
+ if a.size(-1) % 32 != 0:
2779
+ raise ValueError(f"last dim of `a` must be divisible by 32, got {a.size(-1)}.")
2780
+ if b.device != a.device:
2781
+ raise ValueError("`a` and `b` must be on the same device.")
2782
+
2783
+ xh_e2m1 = torch.empty(
2784
+ *a.shape[:-1], a.size(-1) // 2, dtype=torch.uint8, device=a.device
2785
+ )
2786
+
2787
+ rows, cols = a.numel() // a.size(-1), a.size(-1) // 32
2788
+ n_row_blocks = ceil_div(rows, 128)
2789
+ n_col_blocks = ceil_div(cols, 4)
2790
+ padded_rows = n_row_blocks * 128
2791
+ padded_cols = n_col_blocks * 4
2792
+
2793
+ xh_e8m0 = torch.empty(
2794
+ padded_rows, padded_cols, dtype=torch.float8_e8m0fnu, device=a.device
2795
+ )
2796
+
2797
+ if not hasattr(torch.ops, "_qutlass_C"):
2798
+ raise RuntimeError(
2799
+ "The `_qutlass_C` extension is not loaded. "
2800
+ "Make sure your custom op library is imported before calling fusedQuantizeMx."
2801
+ )
2802
+
2803
+ if method == "quest":
2804
+ return torch.ops._qutlass_C.fusedQuantizeMxQuest(a, b, xh_e2m1, xh_e8m0)
2805
+ elif method == "abs_max":
2806
+ return torch.ops._qutlass_C.fusedQuantizeMxAbsMax(a, b, xh_e2m1, xh_e8m0)
2807
+ else:
2808
+ raise ValueError(f"invalid method {method!r}, must be 'quest' or 'abs_max'")
2809
+
2810
+
2811
+ if hasattr(torch.ops._qutlass_C, "fusedQuantizeNv"):
2812
+
2813
+ @register_fake("_qutlass_C::fusedQuantizeNv")
2814
+ def _fake_fused_quantize_nv(
2815
+ a: torch.Tensor,
2816
+ b: torch.Tensor,
2817
+ xh_e2m1: torch.Tensor,
2818
+ xh_e4m3: torch.Tensor,
2819
+ global_scale: torch.Tensor,
2820
+ ):
2821
+ return xh_e2m1, xh_e4m3
2822
+
2823
+
2824
+ def fusedQuantizeNv(
2825
+ a: torch.Tensor, b: torch.Tensor, global_scale: torch.Tensor
2826
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2827
+ xh_e2m1 = torch.empty(
2828
+ *a.shape[:-1], a.size(-1) // 2, dtype=torch.uint8, device=a.device
2829
+ )
2830
+
2831
+ rows, cols = a.numel() // a.size(-1), a.size(-1) // 16
2832
+ n_row_blocks = ceil_div(rows, 128)
2833
+ n_col_blocks = ceil_div(cols, 4)
2834
+ padded_rows = n_row_blocks * 128
2835
+ padded_cols = n_col_blocks * 4
2836
+ xh_e4m3 = torch.empty(
2837
+ padded_rows, padded_cols, dtype=torch.float8_e4m3fn, device=a.device
2838
+ )
2839
+
2840
+ return torch.ops._qutlass_C.fusedQuantizeNv(a, b, xh_e2m1, xh_e4m3, global_scale)
2841
+
2842
+
2843
+ def hadacore_transform(x: torch.Tensor, inplace: bool = True) -> torch.Tensor:
2844
+ """
2845
+ Perform Hadamard transforms using [Hadacore](https://arxiv.org/abs/2412.08832)
2846
+ kernels. Note that these kernels exploit the recursive properties of
2847
+ Sylvester Hadamards, and therefore do not require transform weight data
2848
+
2849
+ Note that sylvester hadamard transforms are also symmetric, which means that
2850
+ this function is also applies the (transpose <=> inverse) transform.
2851
+
2852
+ :param x: value to be transformed inplace
2853
+ :param inplace: modify value in place
2854
+ :return: value after transformation
2855
+ """
2856
+ return torch.ops._C.hadacore_transform(x, inplace)
2857
+
2858
+
2859
+ if hasattr(torch.ops._C, "hadacore_transform"):
2860
+
2861
+ @register_fake("_C::hadacore_transform")
2862
+ def _hadacore_transform_fake(x: torch.Tensor, inplace: bool) -> torch.Tensor:
2863
+ return torch.empty_like(x) if not inplace else x