vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,986 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """PyTorch Zamba2 model implementation for vLLM.
4
+
5
+ This module implements the Zamba2 architecture from
6
+ https://arxiv.org/abs/2411.15242, which combines Mamba and Transformer
7
+ architectures in a hybrid model optimized for efficient sequence modeling. The
8
+ model alternates between state space model layers and attention-based layers.
9
+ """
10
+
11
+ from collections.abc import Iterable
12
+ from itertools import cycle
13
+ from typing import Any
14
+
15
+ import torch
16
+ from torch import nn
17
+ from transformers import Zamba2Config
18
+
19
+ from vllm.attention.layer import Attention
20
+ from vllm.compilation.decorators import support_torch_compile
21
+ from vllm.config import CacheConfig, ModelConfig, VllmConfig
22
+ from vllm.distributed import get_tensor_model_parallel_world_size
23
+ from vllm.model_executor.layers.activation import GeluAndMul
24
+ from vllm.model_executor.layers.layernorm import RMSNorm
25
+ from vllm.model_executor.layers.linear import (
26
+ ColumnParallelLinear,
27
+ MergedColumnParallelLinear,
28
+ QKVParallelLinear,
29
+ ReplicatedLinear,
30
+ RowParallelLinear,
31
+ )
32
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
33
+ from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
34
+ from vllm.model_executor.layers.mamba.mamba_utils import (
35
+ MambaStateDtypeCalculator,
36
+ MambaStateShapeCalculator,
37
+ )
38
+ from vllm.model_executor.layers.quantization import QuantizationConfig
39
+ from vllm.model_executor.layers.rotary_embedding import get_rope
40
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
41
+ ParallelLMHead,
42
+ VocabParallelEmbedding,
43
+ )
44
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
45
+ from vllm.sequence import IntermediateTensors
46
+
47
+ from .interfaces import HasInnerState, IsHybrid, SupportsMambaPrefixCaching
48
+ from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
49
+
50
+
51
+ class Zamba2LoRA(nn.Module):
52
+ """LoRA layer for the Zamba2 model.
53
+
54
+ Implements a LoRA layer that is used in shared attention and gated MLP
55
+ blocks.
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ input_dim: int,
61
+ rank: int,
62
+ output_dim: int | list[int],
63
+ quant_config: QuantizationConfig | None = None,
64
+ prefix: str = "",
65
+ ):
66
+ """Initialize the attention layer.
67
+
68
+ Args:
69
+ input_dim: input dimension
70
+ rank: LoRA rank
71
+ output_dim: output dimension
72
+ quant_config: Configuration for model quantization
73
+ """
74
+ super().__init__()
75
+
76
+ self.A = ColumnParallelLinear(
77
+ input_dim,
78
+ rank,
79
+ bias=False,
80
+ quant_config=quant_config,
81
+ gather_output=True,
82
+ prefix=f"{prefix}.A",
83
+ )
84
+
85
+ if isinstance(output_dim, list):
86
+ B_class = MergedColumnParallelLinear
87
+ else:
88
+ B_class = ColumnParallelLinear
89
+ self.B = B_class(rank, output_dim, bias=False, quant_config=quant_config)
90
+
91
+ def forward(
92
+ self,
93
+ hidden_states: torch.Tensor,
94
+ ):
95
+ lora_output, _ = self.A(hidden_states)
96
+ lora_output, _ = self.B(lora_output)
97
+ return lora_output
98
+
99
+
100
+ class Zamba2Attention(nn.Module):
101
+ """Multi-head attention mechanism for the Zamba2 model.
102
+
103
+ Implements attention with parallel computation, QKV projections, optional
104
+ adapters and rotary position embeddings. The attention is computed across
105
+ distributed blocks for efficient processing.
106
+ """
107
+
108
+ def __init__(
109
+ self,
110
+ config: Zamba2Config,
111
+ bare_block_idx: int,
112
+ num_hybrid_layers: int,
113
+ cache_config: CacheConfig | None = None,
114
+ quant_config: QuantizationConfig | None = None,
115
+ prefix: str = "",
116
+ ) -> None:
117
+ """Initialize the attention layer.
118
+
119
+ Args:
120
+ config: The Zamba2 model configuration
121
+ bare_block_idx: Index of the bare attention block
122
+ num_hybrid_layers: Total number of hybrid layers
123
+ cache_config: Configuration for key-value caching
124
+ quant_config: Configuration for model quantization
125
+ prefix: Optional prefix for parameter names
126
+ """
127
+ super().__init__()
128
+ tp_size = get_tensor_model_parallel_world_size()
129
+ self.config = config
130
+ self.num_hybrid_layers = num_hybrid_layers
131
+ self.rope_theta = config.rope_theta
132
+
133
+ self.attention_hidden_size = config.attention_hidden_size
134
+ self.total_num_attention_heads = config.num_attention_heads
135
+ assert self.total_num_attention_heads % tp_size == 0
136
+ self.num_attention_heads = config.num_attention_heads // tp_size
137
+ self.attention_head_dim = config.attention_head_dim
138
+ self.qkv_size = self.attention_hidden_size // tp_size
139
+ self.scale = (self.attention_head_dim / 2) ** -0.5
140
+
141
+ if (
142
+ self.attention_head_dim * self.total_num_attention_heads
143
+ ) != self.attention_hidden_size:
144
+ raise ValueError(
145
+ f"attention_hidden_size must be divisible by"
146
+ f" num_attention_heads"
147
+ f" (got `attention_hidden_size`: {self.attention_hidden_size}"
148
+ f" and `num_heads`: {self.num_attention_heads})."
149
+ )
150
+
151
+ self.qkv_proj = QKVParallelLinear(
152
+ self.attention_hidden_size,
153
+ self.attention_head_dim,
154
+ self.total_num_attention_heads,
155
+ bias=False,
156
+ quant_config=quant_config,
157
+ prefix=f"{prefix}.qkv_proj",
158
+ )
159
+ self.o_proj = RowParallelLinear(
160
+ self.attention_hidden_size,
161
+ config.hidden_size,
162
+ bias=False,
163
+ quant_config=quant_config,
164
+ prefix=f"{prefix}.o_proj",
165
+ )
166
+
167
+ # Even though in Zamba2 weights are shared between attention layers, KV
168
+ # cache is unique for every attention layer. Hence, we need to define
169
+ # separate Attention objects, because in recent vLLM KV cache tensors
170
+ # are tied to specific Attention objects.
171
+
172
+ # Initialize attention blocks with proper indexing
173
+ self.dpa_list = nn.ModuleList([])
174
+ j = (
175
+ bare_block_idx
176
+ * (self.num_hybrid_layers + config.num_mem_blocks - 1)
177
+ // config.num_mem_blocks
178
+ )
179
+ for block_idx in range(self.num_hybrid_layers):
180
+ if block_idx % config.num_mem_blocks == bare_block_idx:
181
+ dpa = Attention(
182
+ self.num_attention_heads,
183
+ self.attention_head_dim,
184
+ self.scale,
185
+ cache_config=cache_config,
186
+ prefix=f"{prefix}.attn.{j}",
187
+ )
188
+ j += 1
189
+ else:
190
+ dpa = nn.Identity()
191
+ self.dpa_list.append(dpa)
192
+
193
+ # Initialize adapter layers if enabled
194
+ if config.use_shared_attention_adapter:
195
+ self.linear_q_adapter_list = nn.ModuleList([])
196
+ self.linear_k_adapter_list = nn.ModuleList([])
197
+ self.linear_v_adapter_list = nn.ModuleList([])
198
+
199
+ for block_idx in range(self.num_hybrid_layers):
200
+ if block_idx % config.num_mem_blocks == bare_block_idx:
201
+ linear_q_adapter = Zamba2LoRA(
202
+ self.attention_hidden_size,
203
+ config.adapter_rank,
204
+ self.attention_hidden_size,
205
+ quant_config=quant_config,
206
+ prefix=f"{prefix}.linear_q_adapter",
207
+ )
208
+ linear_k_adapter = Zamba2LoRA(
209
+ self.attention_hidden_size,
210
+ config.adapter_rank,
211
+ self.attention_hidden_size,
212
+ quant_config=quant_config,
213
+ prefix=f"{prefix}.linear_k_adapter",
214
+ )
215
+ linear_v_adapter = Zamba2LoRA(
216
+ self.attention_hidden_size,
217
+ config.adapter_rank,
218
+ self.attention_hidden_size,
219
+ quant_config=quant_config,
220
+ prefix=f"{prefix}.linear_v_adapter",
221
+ )
222
+ else:
223
+ linear_q_adapter = nn.Identity()
224
+ linear_k_adapter = nn.Identity()
225
+ linear_v_adapter = nn.Identity()
226
+
227
+ self.linear_q_adapter_list.append(linear_q_adapter)
228
+ self.linear_k_adapter_list.append(linear_k_adapter)
229
+ self.linear_v_adapter_list.append(linear_v_adapter)
230
+
231
+ if config.use_mem_rope:
232
+ self.rotary_emb = get_rope(
233
+ head_size=self.attention_head_dim,
234
+ rotary_dim=self.attention_head_dim,
235
+ max_position=config.max_position_embeddings,
236
+ base=self.rope_theta,
237
+ rope_scaling=None,
238
+ is_neox_style=True,
239
+ )
240
+
241
+ def forward(
242
+ self,
243
+ hidden_states: torch.Tensor,
244
+ block_idx: int,
245
+ position_ids: torch.Tensor,
246
+ ) -> torch.Tensor:
247
+ """Forward pass through the attention layer.
248
+
249
+ Args:
250
+ hidden_states: Input tensor [batch_size, seq_len, hidden_size]
251
+ position_ids: Position IDs for positional embeddings
252
+ block_idx: Current shared transformer block index
253
+
254
+ Returns:
255
+ Output tensor [batch_size, seq_len, hidden_size]
256
+ """
257
+ qkv, _ = self.qkv_proj(hidden_states)
258
+ query_states, key_states, value_states = qkv.split([self.qkv_size] * 3, dim=-1)
259
+
260
+ if self.config.use_shared_attention_adapter:
261
+ # Apply adapter transformations to Q, K, V if enabled
262
+ q_adapter = self.linear_q_adapter_list[block_idx]
263
+ assert not isinstance(q_adapter, nn.Identity)
264
+ q_lora_output = q_adapter(hidden_states)
265
+ query_states = query_states + q_lora_output
266
+
267
+ k_adapter = self.linear_k_adapter_list[block_idx]
268
+ assert not isinstance(k_adapter, nn.Identity)
269
+ k_lora_output = k_adapter(hidden_states)
270
+ key_states = key_states + k_lora_output
271
+
272
+ v_adapter = self.linear_v_adapter_list[block_idx]
273
+ assert not isinstance(v_adapter, nn.Identity)
274
+ v_lora_output = v_adapter(hidden_states)
275
+ value_states = value_states + v_lora_output
276
+
277
+ if self.config.use_mem_rope:
278
+ query_states, key_states = self.rotary_emb(
279
+ position_ids, query_states, key_states
280
+ )
281
+
282
+ y = self.dpa_list[block_idx](query_states, key_states, value_states)
283
+ y, _ = self.o_proj(y)
284
+ return y
285
+
286
+
287
+ class Zamba2MLP(nn.Module):
288
+ """Feed-forward MLP layer for the Zamba2 model.
289
+
290
+ Implements a gated feed-forward network that projects inputs to a larger
291
+ intermediate size, applies GELU activation with gating, then projects back
292
+ to the original size. Includes optional adapter layers for model adaptation.
293
+ """
294
+
295
+ def __init__(
296
+ self,
297
+ config: Zamba2Config,
298
+ bare_block_idx: int,
299
+ num_hybrid_layers: dict[int, int],
300
+ quant_config: QuantizationConfig | None = None,
301
+ prefix: str = "",
302
+ ) -> None:
303
+ """Initialize the MLP layer.
304
+
305
+ Args:
306
+ config: The Zamba2 model configuration
307
+ bare_block_idx: Index of the bare block in the model
308
+ num_hybrid_layers: Total number of hybrid layers
309
+ quant_config: Configuration for model quantization
310
+ """
311
+ super().__init__()
312
+ self.config = config
313
+ self.tp_size = get_tensor_model_parallel_world_size()
314
+ self.num_hybrid_layers = num_hybrid_layers
315
+ self.hidden_size = config.hidden_size
316
+ self.intermediate_size = config.intermediate_size
317
+
318
+ # Main projection layers with gating
319
+ self.gate_up_proj = MergedColumnParallelLinear(
320
+ self.hidden_size,
321
+ 2 * [self.intermediate_size], # 2x for gate and input projections
322
+ bias=self.config.add_bias_linear,
323
+ quant_config=quant_config,
324
+ prefix=f"{prefix}.gate_up_proj",
325
+ )
326
+
327
+ self.down_proj = RowParallelLinear(
328
+ self.intermediate_size,
329
+ self.hidden_size,
330
+ bias=self.config.add_bias_linear,
331
+ quant_config=quant_config,
332
+ prefix=f"{prefix}.down_proj",
333
+ )
334
+
335
+ # Only allow GELU activations
336
+ if config.hidden_act != "gelu":
337
+ raise ValueError(
338
+ f"Only GELU activation is supported "
339
+ f"(got `hidden_act`: {config.hidden_act})"
340
+ )
341
+ self.act_fn = GeluAndMul()
342
+
343
+ # Initialize adapter layers
344
+ self.gate_up_proj_adapter_list = nn.ModuleList([])
345
+ for block_idx in range(self.num_hybrid_layers):
346
+ if block_idx % config.num_mem_blocks == bare_block_idx:
347
+ gate_up_proj_adapter = Zamba2LoRA(
348
+ config.hidden_size,
349
+ config.adapter_rank,
350
+ 2 * [self.intermediate_size],
351
+ quant_config,
352
+ )
353
+ else:
354
+ gate_up_proj_adapter = nn.Identity()
355
+ self.gate_up_proj_adapter_list.append(gate_up_proj_adapter)
356
+
357
+ def forward(self, hidden_states: torch.Tensor, block_idx: int) -> torch.Tensor:
358
+ """Forward pass through the MLP layer.
359
+
360
+ Args:
361
+ hidden_states: Input tensor [batch_size, seq_len, hidden_size]
362
+ block_idx: Current shared transformer block index
363
+
364
+ Returns:
365
+ Output tensor [batch_size, seq_len, hidden_size] after applying
366
+ gated feed-forward transformation
367
+ """
368
+ # Project input to intermediate size with gating
369
+ gate_up_states, _ = self.gate_up_proj(hidden_states)
370
+
371
+ # Apply adapter transformation if present
372
+ adapter = self.gate_up_proj_adapter_list[block_idx]
373
+ assert not isinstance(adapter, nn.Identity)
374
+ lora_output = adapter(hidden_states)
375
+ gate_up_states = gate_up_states + lora_output
376
+
377
+ # Apply GELU activation with gating
378
+ hidden_states = self.act_fn(gate_up_states)
379
+
380
+ # Project back to hidden size
381
+ output, _ = self.down_proj(hidden_states)
382
+ return output
383
+
384
+
385
+ class Zamba2AttentionDecoderLayer(nn.Module):
386
+ """Single decoder layer combining attention and feed-forward networks.
387
+
388
+ This layer implements a standard transformer block with:
389
+ - Input layer normalization
390
+ - Multi-head self-attention
391
+ - Pre-feed-forward layer normalization
392
+ - Feed-forward network (MLP)
393
+ """
394
+
395
+ def __init__(
396
+ self,
397
+ config: Zamba2Config,
398
+ bare_block_idx: int,
399
+ num_hybrid_layers: int,
400
+ cache_config: CacheConfig | None = None,
401
+ quant_config: QuantizationConfig | None = None,
402
+ prefix: str = "",
403
+ ) -> None:
404
+ """Initialize the decoder layer.
405
+
406
+ Args:
407
+ config: The Zamba2 model configuration
408
+ bare_block_idx: Index of the bare block
409
+ num_hybrid_layers: Total number of hybrid layers
410
+ cache_config: Configuration for key-value caching
411
+ quant_config: Configuration for model quantization
412
+ prefix: Optional prefix for parameter names
413
+ """
414
+ super().__init__()
415
+
416
+ # Initialize attention sublayer
417
+ self.self_attn = Zamba2Attention(
418
+ config,
419
+ bare_block_idx=bare_block_idx,
420
+ num_hybrid_layers=num_hybrid_layers,
421
+ cache_config=cache_config,
422
+ quant_config=quant_config,
423
+ prefix=prefix,
424
+ )
425
+
426
+ # Initialize feed-forward sublayer
427
+ self.feed_forward = Zamba2MLP(
428
+ config,
429
+ bare_block_idx=bare_block_idx,
430
+ num_hybrid_layers=num_hybrid_layers,
431
+ quant_config=quant_config,
432
+ prefix=f"{prefix}.feed_forward",
433
+ )
434
+
435
+ # Initialize layer normalizations
436
+ # Input normalization operates on concatenated states
437
+ self.input_layernorm = RMSNorm(2 * config.hidden_size, eps=config.rms_norm_eps)
438
+ # Pre-FF normalization operates on attention output
439
+ self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
440
+
441
+ def forward(
442
+ self,
443
+ hidden_states: torch.Tensor,
444
+ original_hidden_states: torch.Tensor,
445
+ block_idx: int,
446
+ positions: torch.Tensor,
447
+ ) -> torch.Tensor:
448
+ """Forward pass through the decoder layer.
449
+
450
+ Args:
451
+ hidden_states: Input tensor from previous layer
452
+ original_hidden_states: Original input tensor for residual
453
+ connection
454
+ block_idx: Current shared transformer block index
455
+ positions: IDs for positional embeddings
456
+
457
+ Returns:
458
+ Transformed hidden states after attention and feed-forward
459
+ """
460
+
461
+ # The argument original_hidden_states is concatenated with hidden_states
462
+ # (which is the output of the previous (mamba) layer).
463
+ # The concatenated tensor is then used as input of the pre-attention
464
+ # RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712).
465
+ hidden_states = torch.concatenate(
466
+ [hidden_states, original_hidden_states], dim=-1
467
+ )
468
+
469
+ # Layer norm before attention
470
+ hidden_states = self.input_layernorm(hidden_states)
471
+
472
+ # Self attention
473
+ hidden_states = self.self_attn(
474
+ hidden_states,
475
+ position_ids=positions,
476
+ block_idx=block_idx,
477
+ )
478
+
479
+ # Layer norm before feed-forward
480
+ hidden_states = self.pre_ff_layernorm(hidden_states)
481
+
482
+ # Feed-forward network
483
+ hidden_states = self.feed_forward(hidden_states, block_idx=block_idx)
484
+
485
+ return hidden_states
486
+
487
+
488
+ class Zamba2MambaDecoderLayer(nn.Module):
489
+ """Single Mamba decoder layer with normalization.
490
+
491
+ This implements a Mamba block. It includes input normalization
492
+ and can process sequences using either chunked or full
493
+ computation depending on configuration.
494
+ """
495
+
496
+ def __init__(
497
+ self,
498
+ config: Zamba2Config,
499
+ model_config: ModelConfig | None = None,
500
+ cache_config: CacheConfig | None = None,
501
+ quant_config: QuantizationConfig | None = None,
502
+ prefix: str = "",
503
+ ) -> None:
504
+ """Initialize the Mamba decoder layer.
505
+
506
+ Args:
507
+ config: The Zamba2 model configuration
508
+ quant_config: Configuration for model quantization
509
+ """
510
+ super().__init__()
511
+
512
+ # Initialize Mamba mixer with expanded intermediate size
513
+ intermediate_size = config.mamba_expand * config.hidden_size
514
+ self.mamba = MambaMixer2(
515
+ hidden_size=config.hidden_size,
516
+ ssm_state_size=config.mamba_d_state,
517
+ conv_kernel_size=config.mamba_d_conv,
518
+ intermediate_size=intermediate_size,
519
+ use_conv_bias=config.use_conv_bias,
520
+ use_bias=config.add_bias_linear,
521
+ n_groups=config.mamba_ngroups,
522
+ num_heads=config.n_mamba_heads,
523
+ head_dim=intermediate_size // config.n_mamba_heads,
524
+ rms_norm_eps=config.rms_norm_eps,
525
+ activation="silu",
526
+ model_config=model_config,
527
+ cache_config=cache_config,
528
+ quant_config=quant_config,
529
+ prefix=f"{prefix}.mixer",
530
+ )
531
+
532
+ # Input normalization
533
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
534
+
535
+ def forward(
536
+ self,
537
+ hidden_states: torch.Tensor,
538
+ transformer_hidden_states: torch.Tensor | None = None,
539
+ positions: torch.Tensor | None = None,
540
+ original_hidden_states: torch.Tensor | None = None,
541
+ ) -> torch.Tensor:
542
+ """Forward pass through the Mamba decoder layer.
543
+
544
+ Args:
545
+ hidden_states: Input tensor [batch_size, seq_len, hidden_size]
546
+ transformer_hidden_states: Optional output from transformer path
547
+ Added to input if provided (used in hybrid architecture)
548
+ positions: Optional position IDs (unused in Mamba)
549
+ original_hidden_states: Optional original inputs (unused in Mamba)
550
+
551
+ Returns:
552
+ Transformed hidden states with residual connection applied
553
+ """
554
+ # Store input for residual connection
555
+ residual = hidden_states
556
+
557
+ # `transformer_hidden_states` is the output from shared
558
+ # transformer + linear layer (see fig. 2 in
559
+ # https://arxiv.org/pdf/2405.16712).
560
+ # `transformer_hidden_states` is then added to the input to the mamba
561
+ # layer below (as described in eq. (6) of
562
+ # https://arxiv.org/pdf/2405.16712).
563
+ if transformer_hidden_states is not None:
564
+ hidden_states = hidden_states + transformer_hidden_states
565
+
566
+ # Apply input normalization
567
+ hidden_states = self.input_layernorm(hidden_states)
568
+
569
+ # Process through Mamba mixer
570
+ output = torch.empty_like(hidden_states)
571
+ self.mamba(
572
+ hidden_states,
573
+ output,
574
+ )
575
+
576
+ # residual connection after mamba
577
+ hidden_states = residual + output
578
+
579
+ return hidden_states
580
+
581
+
582
+ class Zamba2HybridLayer(nn.Module):
583
+ """Hybrid layer combining Transformer and Mamba architectures.
584
+
585
+ This layer implements the hybrid architecture described in the Zamba paper,
586
+ where a shared transformer pathway processes input in parallel with a Mamba
587
+ pathway. The transformer output is projected and added to the Mamba input
588
+ for enhanced representation learning.
589
+ """
590
+
591
+ def __init__(
592
+ self,
593
+ shared_transformer: Zamba2AttentionDecoderLayer,
594
+ config: Zamba2Config,
595
+ block_idx: int,
596
+ model_config: ModelConfig | None = None,
597
+ cache_config: CacheConfig | None = None,
598
+ quant_config: QuantizationConfig | None = None,
599
+ prefix: str = "",
600
+ ) -> None:
601
+ """Initialize the hybrid layer.
602
+
603
+ Args:
604
+ shared_transformer: Transformer decoder layer for attention pathway
605
+ """
606
+ super().__init__()
607
+ self.block_idx = block_idx
608
+ self.shared_transformer = shared_transformer
609
+ self.linear = ReplicatedLinear(
610
+ config.hidden_size,
611
+ config.hidden_size,
612
+ bias=False,
613
+ quant_config=quant_config,
614
+ prefix=f"{prefix}.linear",
615
+ )
616
+ self.mamba_decoder = Zamba2MambaDecoderLayer(
617
+ config,
618
+ model_config=model_config,
619
+ cache_config=cache_config,
620
+ quant_config=quant_config,
621
+ prefix=prefix,
622
+ )
623
+
624
+ def forward(
625
+ self,
626
+ hidden_states: torch.Tensor,
627
+ original_hidden_states: torch.Tensor,
628
+ positions: torch.Tensor,
629
+ ) -> torch.Tensor:
630
+ """Forward pass through the hybrid layer.
631
+
632
+ Processes input through parallel transformer and Mamba paths:
633
+ 1. Transformer path processes input with attention
634
+ 2. Transformer output is projected to match hidden size
635
+ 3. Projected output is added to Mamba path input
636
+ 4. Final output combines both paths' representations
637
+
638
+ Args:
639
+ hidden_states: Input tensor [batch_size, seq_len, hidden_size]
640
+ original_hidden_states: Original input for transformer residual
641
+ connection
642
+ positions: Position IDs for positional embeddings
643
+
644
+ Returns:
645
+ Output tensor combining transformer and Mamba representations
646
+ """
647
+ # Process through transformer pathway
648
+ transformer_hidden_states = self.shared_transformer(
649
+ hidden_states,
650
+ original_hidden_states=original_hidden_states,
651
+ block_idx=self.block_idx,
652
+ positions=positions,
653
+ )
654
+
655
+ # Project transformer output
656
+ transformer_hidden_states, _ = self.linear(transformer_hidden_states)
657
+
658
+ # Process through Mamba pathway with transformer injection
659
+ layer_outputs = self.mamba_decoder(
660
+ hidden_states,
661
+ transformer_hidden_states=transformer_hidden_states,
662
+ )
663
+
664
+ return layer_outputs
665
+
666
+
667
+ @support_torch_compile
668
+ class Zamba2Model(nn.Module):
669
+ """Core Zamba2 model combining transformer and Mamba architectures.
670
+
671
+ The model processes input through a sequence of hybrid and Mamba-only
672
+ layers, using token embeddings and final layer normalization.
673
+ """
674
+
675
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
676
+ """Initialize the Zamba2 model.
677
+
678
+ Args:
679
+ vllm_config: Configuration object containing model, cache,
680
+ quantization and LoRA settings
681
+ prefix: Optional prefix for parameter names in state dict
682
+ """
683
+ super().__init__()
684
+
685
+ config = vllm_config.model_config.hf_config
686
+ model_config = vllm_config.model_config
687
+ cache_config = vllm_config.cache_config
688
+ quant_config = vllm_config.quant_config
689
+ lora_config = vllm_config.lora_config
690
+ is_lora_enabled = bool(lora_config)
691
+ assert not is_lora_enabled
692
+
693
+ self.config = config
694
+
695
+ self.vocab_size = config.vocab_size
696
+
697
+ # Initialize token embeddings
698
+ self.embed_tokens = VocabParallelEmbedding(
699
+ self.vocab_size,
700
+ config.hidden_size,
701
+ )
702
+
703
+ # Map hybrid layer indices to block indices
704
+ layer2block_map = {
705
+ layer_idx: block_idx
706
+ for block_idx, layer_idx in enumerate(config.hybrid_layer_ids)
707
+ }
708
+
709
+ # Create cyclic iterator of transformer blocks
710
+ blocks = cycle(
711
+ [
712
+ Zamba2AttentionDecoderLayer(
713
+ config,
714
+ bare_block_idx=idx,
715
+ num_hybrid_layers=len(layer2block_map),
716
+ cache_config=cache_config,
717
+ quant_config=quant_config,
718
+ prefix=f"{prefix}",
719
+ )
720
+ for idx in range(config.num_mem_blocks)
721
+ ]
722
+ )
723
+
724
+ # Initialize layers according to block type configuration
725
+ layers = []
726
+ for layer_idx, layer_type in enumerate(config.layers_block_type):
727
+ # tdoublep: avoid layers getting same index
728
+ # somewhat hacky but correct (I think)
729
+ prefix = str(len(layer2block_map) + layer_idx)
730
+ if layer_type == "hybrid":
731
+ block = next(blocks)
732
+ block_idx = layer2block_map[layer_idx]
733
+ layers.append(
734
+ Zamba2HybridLayer(
735
+ block,
736
+ config,
737
+ block_idx,
738
+ model_config=model_config,
739
+ cache_config=cache_config,
740
+ quant_config=quant_config,
741
+ prefix=prefix,
742
+ )
743
+ )
744
+ else:
745
+ layers.append(
746
+ Zamba2MambaDecoderLayer(
747
+ config,
748
+ model_config=model_config,
749
+ cache_config=cache_config,
750
+ quant_config=quant_config,
751
+ prefix=prefix,
752
+ )
753
+ )
754
+ self.layers = nn.ModuleList(layers)
755
+
756
+ # Final layer normalization
757
+ self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
758
+
759
+ def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
760
+ """Convert input token IDs to embeddings.
761
+
762
+ Args:
763
+ input_ids: Tensor of input token IDs
764
+
765
+ Returns:
766
+ Embedded representation of the input tokens
767
+ """
768
+ return self.embed_tokens(input_ids)
769
+
770
+ def forward(
771
+ self,
772
+ input_ids: torch.Tensor,
773
+ positions: torch.Tensor,
774
+ inputs_embeds: torch.Tensor | None = None,
775
+ ) -> torch.Tensor | IntermediateTensors:
776
+ """Forward pass through the model.
777
+
778
+ Args:
779
+ input_ids: Input token IDs
780
+ positions: Position IDs for embeddings
781
+ inputs_embeds: Optional pre-computed input embeddings
782
+
783
+ Returns:
784
+ Either final hidden states or intermediate tensors for pipeline
785
+ parallelism
786
+ """
787
+ # Handle pipeline parallelism for first rank
788
+ if inputs_embeds is None:
789
+ inputs_embeds = self.embed_input_ids(input_ids)
790
+ hidden_states = inputs_embeds
791
+
792
+ # Process through layers
793
+ original_hidden_states = torch.clone(hidden_states)
794
+ for layer_idx, layer in enumerate(self.layers):
795
+ layer_outputs = layer(
796
+ hidden_states,
797
+ original_hidden_states=original_hidden_states,
798
+ positions=positions,
799
+ )
800
+ hidden_states = layer_outputs
801
+
802
+ hidden_states = self.final_layernorm(hidden_states)
803
+ return hidden_states
804
+
805
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
806
+ stacked_params_mapping = [
807
+ # (param_name, shard_name, shard_id)
808
+ ("qkv_proj", "q_proj", "q"),
809
+ ("qkv_proj", "k_proj", "k"),
810
+ ("qkv_proj", "v_proj", "v"),
811
+ ]
812
+
813
+ params_dict = dict(self.named_parameters())
814
+ loaded_params: set[str] = set()
815
+ for chkpt_weight_name, loaded_weight in weights:
816
+ for param_name, weight_name, shard_id in stacked_params_mapping:
817
+ if weight_name not in chkpt_weight_name:
818
+ continue
819
+ chkpt_weight_name = chkpt_weight_name.replace(weight_name, param_name)
820
+ param = params_dict[chkpt_weight_name]
821
+ weight_loader = param.weight_loader
822
+ weight_loader(param, loaded_weight, shard_id)
823
+ break
824
+ else:
825
+ if chkpt_weight_name not in params_dict:
826
+ continue
827
+ param = params_dict[chkpt_weight_name]
828
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
829
+ weight_loader(param, loaded_weight)
830
+ loaded_params.add(chkpt_weight_name)
831
+ return loaded_params
832
+
833
+
834
+ class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid, SupportsMambaPrefixCaching):
835
+ """Zamba2 model with causal language modeling head.
836
+
837
+ This class wraps the core Zamba2 model and adds:
838
+ - A language modeling head for next token prediction
839
+ - Mamba state caching functionality
840
+ - Support for model parallelism and quantization
841
+ - Sampling capabilities for text generation
842
+ """
843
+
844
+ # To ensure correct weight loading and mapping.
845
+ hf_to_vllm_mapper = WeightsMapper(
846
+ orig_to_new_substr={
847
+ "A_log": "A",
848
+ "0.weight": "A.weight",
849
+ "1.weight": "B.weight",
850
+ }
851
+ )
852
+
853
+ @classmethod
854
+ def get_mamba_state_dtype_from_config(
855
+ cls,
856
+ vllm_config: "VllmConfig",
857
+ ) -> tuple[torch.dtype, torch.dtype]:
858
+ return MambaStateDtypeCalculator.mamba2_state_dtype(
859
+ vllm_config.model_config.dtype,
860
+ vllm_config.cache_config.mamba_cache_dtype,
861
+ vllm_config.cache_config.mamba_ssm_cache_dtype,
862
+ )
863
+
864
+ @classmethod
865
+ def get_mamba_state_shape_from_config(
866
+ cls,
867
+ vllm_config: "VllmConfig",
868
+ ) -> tuple[tuple[int, int], tuple[int, int, int]]:
869
+ """Calculate shapes for Mamba's convolutional and state caches.
870
+
871
+ Args:
872
+ vllm_config: vLLM config
873
+
874
+ Returns:
875
+ Tuple containing:
876
+ - conv_state_shape: Shape for convolutional state cache
877
+ - temporal_state_shape: Shape for state space model cache
878
+ """
879
+
880
+ parallel_config = vllm_config.parallel_config
881
+ hf_config = vllm_config.model_config.hf_config
882
+ intermediate_size = hf_config.mamba_expand * hf_config.hidden_size
883
+
884
+ return MambaStateShapeCalculator.mamba2_state_shape(
885
+ intermediate_size=intermediate_size,
886
+ tp_world_size=parallel_config.tensor_parallel_size,
887
+ n_groups=hf_config.mamba_ngroups,
888
+ num_heads=hf_config.n_mamba_heads,
889
+ head_dim=hf_config.mamba_headdim,
890
+ state_size=hf_config.mamba_d_state,
891
+ conv_kernel=hf_config.mamba_d_conv,
892
+ )
893
+
894
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
895
+ """Initialize the Zamba2 model for causal language modeling.
896
+
897
+ Args:
898
+ vllm_config: Configuration containing model, cache, quantization,
899
+ LoRA and scheduler settings
900
+ prefix: Optional prefix for parameter names
901
+
902
+ Raises:
903
+ AssertionError: If prefix caching is enabled
904
+ (not supported by Mamba)
905
+ """
906
+ config = vllm_config.model_config.hf_config
907
+
908
+ scheduler_config = vllm_config.scheduler_config
909
+
910
+ super().__init__()
911
+ self.config = config
912
+ self.vllm_config = vllm_config
913
+ self.scheduler_config = scheduler_config
914
+ self.model_config = vllm_config.model_config
915
+
916
+ # Initialize core model
917
+ self.model = Zamba2Model(
918
+ vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
919
+ )
920
+
921
+ # Initialize language modeling head
922
+ self.lm_head = ParallelLMHead(
923
+ config.vocab_size,
924
+ config.hidden_size,
925
+ prefix=maybe_prefix(prefix, "lm_head"),
926
+ )
927
+ # Tie weights with input embeddings if using same dimensions
928
+ self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
929
+
930
+ # Initialize logits processing and sampling
931
+ self.logits_processor = LogitsProcessor(config.vocab_size)
932
+
933
+ def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
934
+ """Convert input token IDs to embeddings.
935
+ Args:
936
+ input_ids: Tensor of input token IDs
937
+ Returns:
938
+ Embedded representation of the input tokens
939
+ """
940
+ return self.model.embed_input_ids(input_ids)
941
+
942
+ def forward(
943
+ self,
944
+ input_ids: torch.Tensor,
945
+ positions: torch.Tensor,
946
+ inputs_embeds: torch.Tensor | None = None,
947
+ **kwargs: Any,
948
+ ) -> torch.Tensor:
949
+ """Forward pass through the model.
950
+
951
+ Args:
952
+ input_ids: Input token IDs
953
+ positions: Position IDs for embeddings
954
+ inputs_embeds: Optional pre-computed input embeddings
955
+ **kwargs: Additional arguments passed to cache manager
956
+
957
+ Returns:
958
+ Output hidden states
959
+ """
960
+ # Forward pass through model
961
+ hidden_states = self.model(
962
+ input_ids,
963
+ positions,
964
+ inputs_embeds,
965
+ )
966
+
967
+ return hidden_states
968
+
969
+ def compute_logits(
970
+ self,
971
+ hidden_states: torch.Tensor,
972
+ ) -> torch.Tensor | None:
973
+ """Compute logits for next token prediction.
974
+
975
+ Args:
976
+ hidden_states: Hidden states from model forward pass
977
+
978
+ Returns:
979
+ Logits for next token prediction
980
+ """
981
+ logits = self.logits_processor(self.lm_head, hidden_states)
982
+ return logits
983
+
984
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
985
+ loader = AutoWeightsLoader(self)
986
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)