vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +983 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2863 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +18 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +391 -0
- vllm/attention/backends/registry.py +195 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +1052 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +121 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +414 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +105 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +178 -0
- vllm/attention/selector.py +231 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +109 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +38 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/serve.py +416 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +759 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +178 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +571 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +317 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +135 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +238 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +207 -0
- vllm/config/compilation.py +975 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +112 -0
- vllm/config/model.py +2162 -0
- vllm/config/multimodal.py +248 -0
- vllm/config/observability.py +123 -0
- vllm/config/parallel.py +655 -0
- vllm/config/pooler.py +122 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +654 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +92 -0
- vllm/config/utils.py +178 -0
- vllm/config/vllm.py +1166 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +660 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +107 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +837 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +431 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1759 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +543 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2144 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +170 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1690 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1768 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2096 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +3299 -0
- vllm/entrypoints/openai/run_batch.py +547 -0
- vllm/entrypoints/openai/serving_chat.py +1772 -0
- vllm/entrypoints/openai/serving_classification.py +235 -0
- vllm/entrypoints/openai/serving_completion.py +715 -0
- vllm/entrypoints/openai/serving_embedding.py +695 -0
- vllm/entrypoints/openai/serving_engine.py +1433 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_pooling.py +346 -0
- vllm/entrypoints/openai/serving_responses.py +2021 -0
- vllm/entrypoints/openai/serving_score.py +503 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +269 -0
- vllm/entrypoints/openai/serving_transcription.py +148 -0
- vllm/entrypoints/openai/speech_to_text.py +405 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +77 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +72 -0
- vllm/entrypoints/score_utils.py +242 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +209 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1659 -0
- vllm/forward_context.py +356 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +727 -0
- vllm/logger.py +267 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +77 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +208 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +41 -0
- vllm/lora/layers/base.py +67 -0
- vllm/lora/layers/base_linear.py +164 -0
- vllm/lora/layers/column_parallel_linear.py +578 -0
- vllm/lora/layers/fused_moe.py +472 -0
- vllm/lora/layers/logits_processor.py +252 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +181 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +166 -0
- vllm/lora/lora_weights.py +198 -0
- vllm/lora/models.py +890 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +492 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +411 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +359 -0
- vllm/lora/punica_wrapper/punica_xpu.py +279 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +293 -0
- vllm/lora/worker_manager.py +279 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +569 -0
- vllm/model_executor/layers/attention_layer_base.py +35 -0
- vllm/model_executor/layers/batch_invariant.py +854 -0
- vllm/model_executor/layers/conv.py +236 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +106 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +916 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
- vllm/model_executor/layers/fused_moe/layer.py +1944 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +448 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +729 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +71 -0
- vllm/model_executor/layers/mamba/linear_attn.py +402 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +264 -0
- vllm/model_executor/layers/mla.py +168 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +174 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +240 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1333 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +643 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1788 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
- vllm/model_executor/layers/quantization/petit.py +320 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +528 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +652 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
- vllm/model_executor/layers/rotary_embedding/base.py +235 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +148 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +327 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +176 -0
- vllm/model_executor/model_loader/online_quantization.py +224 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +288 -0
- vllm/model_executor/model_loader/weight_utils.py +1084 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +711 -0
- vllm/model_executor/models/aimv2.py +247 -0
- vllm/model_executor/models/apertus.py +587 -0
- vllm/model_executor/models/arcee.py +439 -0
- vllm/model_executor/models/arctic.py +635 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +496 -0
- vllm/model_executor/models/bailing_moe.py +646 -0
- vllm/model_executor/models/bamba.py +522 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +349 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1120 -0
- vllm/model_executor/models/chatglm.py +498 -0
- vllm/model_executor/models/clip.py +965 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +473 -0
- vllm/model_executor/models/config.py +503 -0
- vllm/model_executor/models/dbrx.py +482 -0
- vllm/model_executor/models/deepencoder.py +673 -0
- vllm/model_executor/models/deepseek_eagle.py +260 -0
- vllm/model_executor/models/deepseek_mtp.py +360 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1649 -0
- vllm/model_executor/models/deepseek_vl2.py +655 -0
- vllm/model_executor/models/dots1.py +574 -0
- vllm/model_executor/models/dots_ocr.py +900 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +759 -0
- vllm/model_executor/models/ernie45_vl.py +1742 -0
- vllm/model_executor/models/ernie45_vl_moe.py +803 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +545 -0
- vllm/model_executor/models/exaone4.py +531 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +545 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +439 -0
- vllm/model_executor/models/gemma3.py +571 -0
- vllm/model_executor/models/gemma3_mm.py +741 -0
- vllm/model_executor/models/gemma3n.py +1165 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1821 -0
- vllm/model_executor/models/glm4_moe.py +747 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +784 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +344 -0
- vllm/model_executor/models/gpt_oss.py +738 -0
- vllm/model_executor/models/granite.py +516 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +569 -0
- vllm/model_executor/models/granitemoehybrid.py +709 -0
- vllm/model_executor/models/granitemoeshared.py +333 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +558 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1053 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +426 -0
- vllm/model_executor/models/idefics3.py +717 -0
- vllm/model_executor/models/interfaces.py +1092 -0
- vllm/model_executor/models/interfaces_base.py +214 -0
- vllm/model_executor/models/intern_vit.py +453 -0
- vllm/model_executor/models/internlm2.py +460 -0
- vllm/model_executor/models/internlm2_ve.py +142 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +432 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +610 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1761 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +663 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +532 -0
- vllm/model_executor/models/lfm2_moe.py +762 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +732 -0
- vllm/model_executor/models/llama4.py +859 -0
- vllm/model_executor/models/llama4_eagle.py +223 -0
- vllm/model_executor/models/llama_eagle.py +218 -0
- vllm/model_executor/models/llama_eagle3.py +367 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +749 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +289 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +827 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +664 -0
- vllm/model_executor/models/minicpm3.py +242 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1745 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1012 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mixtral.py +621 -0
- vllm/model_executor/models/mllama4.py +1147 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +450 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1555 -0
- vllm/model_executor/models/moonvit.py +677 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
- vllm/model_executor/models/nemotron.py +518 -0
- vllm/model_executor/models/nemotron_h.py +852 -0
- vllm/model_executor/models/nemotron_nas.py +491 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +414 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/openpangu.py +1062 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +372 -0
- vllm/model_executor/models/ouro.py +516 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1407 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +377 -0
- vllm/model_executor/models/phi.py +374 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +675 -0
- vllm/model_executor/models/pixtral.py +1352 -0
- vllm/model_executor/models/plamo2.py +981 -0
- vllm/model_executor/models/qwen.py +368 -0
- vllm/model_executor/models/qwen2.py +541 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
- vllm/model_executor/models/qwen2_5_vl.py +1613 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +596 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +336 -0
- vllm/model_executor/models/qwen3_moe.py +744 -0
- vllm/model_executor/models/qwen3_next.py +1395 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
- vllm/model_executor/models/qwen3_vl.py +1673 -0
- vllm/model_executor/models/qwen3_vl_moe.py +415 -0
- vllm/model_executor/models/qwen_vl.py +802 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1155 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +497 -0
- vllm/model_executor/models/siglip.py +1174 -0
- vllm/model_executor/models/siglip2navit.py +724 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +502 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +367 -0
- vllm/model_executor/models/step3_text.py +559 -0
- vllm/model_executor/models/step3_vl.py +1148 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +318 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +207 -0
- vllm/model_executor/models/ultravox.py +681 -0
- vllm/model_executor/models/utils.py +877 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +845 -0
- vllm/model_executor/models/whisper.py +959 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +118 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +755 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2186 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +360 -0
- vllm/multimodal/utils.py +512 -0
- vllm/multimodal/video.py +306 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +414 -0
- vllm/platforms/cuda.py +657 -0
- vllm/platforms/interface.py +639 -0
- vllm/platforms/rocm.py +466 -0
- vllm/platforms/tpu.py +276 -0
- vllm/platforms/xpu.py +274 -0
- vllm/plugins/__init__.py +78 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +228 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +37 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +26 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +669 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1203 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +70 -0
- vllm/transformers_utils/configs/afmoe.py +84 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +77 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +144 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +159 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +174 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +212 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +79 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +274 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +174 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/detokenizer_utils.py +198 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/processor.py +402 -0
- vllm/transformers_utils/processors/__init__.py +15 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +155 -0
- vllm/transformers_utils/tokenizers/__init__.py +16 -0
- vllm/transformers_utils/tokenizers/mistral.py +502 -0
- vllm/transformers_utils/utils.py +130 -0
- vllm/triton_utils/__init__.py +19 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +82 -0
- vllm/utils/argparse_utils.py +487 -0
- vllm/utils/async_utils.py +303 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +139 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +391 -0
- vllm/utils/flashinfer.py +490 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +147 -0
- vllm/utils/hashing.py +63 -0
- vllm/utils/import_utils.py +411 -0
- vllm/utils/jsontree.py +165 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +49 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +229 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +657 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +496 -0
- vllm/v1/attention/backends/flash_attn.py +1028 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +926 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +74 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +115 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +2031 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
- vllm/v1/attention/backends/mla/flashmla.py +314 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
- vllm/v1/attention/backends/mla/indexer.py +362 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
- vllm/v1/attention/backends/rocm_attn.py +362 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +425 -0
- vllm/v1/attention/backends/triton_attn.py +373 -0
- vllm/v1/attention/backends/utils.py +1116 -0
- vllm/v1/attention/backends/xformers.py +417 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +428 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +480 -0
- vllm/v1/core/kv_cache_manager.py +420 -0
- vllm/v1/core/kv_cache_utils.py +1340 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +62 -0
- vllm/v1/core/sched/interface.py +181 -0
- vllm/v1/core/sched/output.py +202 -0
- vllm/v1/core/sched/request_queue.py +221 -0
- vllm/v1/core/sched/scheduler.py +1617 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +736 -0
- vllm/v1/cudagraph_dispatcher.py +148 -0
- vllm/v1/engine/__init__.py +206 -0
- vllm/v1/engine/async_llm.py +797 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1420 -0
- vllm/v1/engine/core_client.py +1400 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/llm_engine.py +408 -0
- vllm/v1/engine/logprobs.py +182 -0
- vllm/v1/engine/output_processor.py +642 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +621 -0
- vllm/v1/engine/utils.py +1072 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +877 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +403 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +93 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +62 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1238 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +169 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +420 -0
- vllm/v1/outputs.py +249 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +259 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +274 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
- vllm/v1/sample/rejection_sampler.py +793 -0
- vllm/v1/sample/sampler.py +316 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1225 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +224 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +103 -0
- vllm/v1/spec_decode/utils.py +16 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +327 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +206 -0
- vllm/v1/worker/dp_utils.py +230 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +975 -0
- vllm/v1/worker/gpu_model_runner.py +5102 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
- vllm/v1/worker/gpu_worker.py +894 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
- vllm/v1/worker/lora_model_runner_mixin.py +213 -0
- vllm/v1/worker/tpu_input_batch.py +593 -0
- vllm/v1/worker/tpu_model_runner.py +2173 -0
- vllm/v1/worker/tpu_worker.py +355 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +366 -0
- vllm/v1/worker/worker_base.py +375 -0
- vllm/v1/worker/xpu_model_runner.py +55 -0
- vllm/v1/worker/xpu_worker.py +189 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1351 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
# SPDX-FileCopyrightText: Songlin Yang, Yu Zhang
|
|
4
|
+
#
|
|
5
|
+
# This file contains code copied from the flash-linear-attention project.
|
|
6
|
+
# The original source code was licensed under the MIT license and included
|
|
7
|
+
# the following copyright notice:
|
|
8
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
|
9
|
+
# ruff: noqa: E501
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
import torch
|
|
13
|
+
import torch.nn as nn
|
|
14
|
+
|
|
15
|
+
from vllm.triton_utils import tl, triton
|
|
16
|
+
from vllm.utils.math_utils import cdiv, next_power_of_2
|
|
17
|
+
|
|
18
|
+
from .chunk_delta_h import chunk_gated_delta_rule_fwd_h
|
|
19
|
+
from .cumsum import chunk_local_cumsum
|
|
20
|
+
from .fused_recurrent import fused_recurrent_gated_delta_rule_fwd_kernel
|
|
21
|
+
from .index import prepare_chunk_indices
|
|
22
|
+
from .l2norm import l2norm_fwd
|
|
23
|
+
from .op import exp, log
|
|
24
|
+
from .solve_tril import solve_tril
|
|
25
|
+
from .utils import is_amd
|
|
26
|
+
|
|
27
|
+
BT_LIST_AUTOTUNE = [32, 64, 128]
|
|
28
|
+
NUM_WARPS_AUTOTUNE = [2, 4, 8, 16] if is_amd else [4, 8, 16, 32]
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def fused_recurrent_kda_fwd(
|
|
32
|
+
q: torch.Tensor,
|
|
33
|
+
k: torch.Tensor,
|
|
34
|
+
v: torch.Tensor,
|
|
35
|
+
g: torch.Tensor,
|
|
36
|
+
beta: torch.Tensor,
|
|
37
|
+
scale: float,
|
|
38
|
+
initial_state: torch.Tensor,
|
|
39
|
+
inplace_final_state: bool = True,
|
|
40
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
41
|
+
ssm_state_indices: torch.Tensor | None = None,
|
|
42
|
+
num_accepted_tokens: torch.Tensor | None = None,
|
|
43
|
+
use_qk_l2norm_in_kernel: bool = False,
|
|
44
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
45
|
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
|
46
|
+
HV = v.shape[2]
|
|
47
|
+
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
|
48
|
+
BK, BV = next_power_of_2(K), min(next_power_of_2(V), 8)
|
|
49
|
+
NK, NV = cdiv(K, BK), cdiv(V, BV)
|
|
50
|
+
assert NK == 1, "NK > 1 is not supported yet"
|
|
51
|
+
num_stages = 3
|
|
52
|
+
num_warps = 1
|
|
53
|
+
|
|
54
|
+
o = torch.empty_like(k)
|
|
55
|
+
if inplace_final_state:
|
|
56
|
+
final_state = initial_state
|
|
57
|
+
else:
|
|
58
|
+
final_state = q.new_empty(T, HV, K, V, dtype=initial_state.dtype)
|
|
59
|
+
|
|
60
|
+
stride_init_state_token = initial_state.stride(0)
|
|
61
|
+
stride_final_state_token = final_state.stride(0)
|
|
62
|
+
|
|
63
|
+
if ssm_state_indices is None:
|
|
64
|
+
stride_indices_seq, stride_indices_tok = 1, 1
|
|
65
|
+
elif ssm_state_indices.ndim == 1:
|
|
66
|
+
stride_indices_seq, stride_indices_tok = ssm_state_indices.stride(0), 1
|
|
67
|
+
else:
|
|
68
|
+
stride_indices_seq, stride_indices_tok = ssm_state_indices.stride()
|
|
69
|
+
|
|
70
|
+
grid = (NK, NV, N * HV)
|
|
71
|
+
fused_recurrent_gated_delta_rule_fwd_kernel[grid](
|
|
72
|
+
q=q,
|
|
73
|
+
k=k,
|
|
74
|
+
v=v,
|
|
75
|
+
g=g,
|
|
76
|
+
beta=beta,
|
|
77
|
+
o=o,
|
|
78
|
+
h0=initial_state,
|
|
79
|
+
ht=final_state,
|
|
80
|
+
cu_seqlens=cu_seqlens,
|
|
81
|
+
ssm_state_indices=ssm_state_indices,
|
|
82
|
+
num_accepted_tokens=num_accepted_tokens,
|
|
83
|
+
scale=scale,
|
|
84
|
+
N=N,
|
|
85
|
+
T=T,
|
|
86
|
+
B=B,
|
|
87
|
+
H=H,
|
|
88
|
+
HV=HV,
|
|
89
|
+
K=K,
|
|
90
|
+
V=V,
|
|
91
|
+
BK=BK,
|
|
92
|
+
BV=BV,
|
|
93
|
+
stride_init_state_token=stride_init_state_token,
|
|
94
|
+
stride_final_state_token=stride_final_state_token,
|
|
95
|
+
stride_indices_seq=stride_indices_seq,
|
|
96
|
+
stride_indices_tok=stride_indices_tok,
|
|
97
|
+
IS_BETA_HEADWISE=beta.ndim == v.ndim,
|
|
98
|
+
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
|
99
|
+
INPLACE_FINAL_STATE=inplace_final_state,
|
|
100
|
+
IS_KDA=True,
|
|
101
|
+
num_warps=num_warps,
|
|
102
|
+
num_stages=num_stages,
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
return o, final_state
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def fused_recurrent_kda(
|
|
109
|
+
q: torch.Tensor,
|
|
110
|
+
k: torch.Tensor,
|
|
111
|
+
v: torch.Tensor,
|
|
112
|
+
g: torch.Tensor,
|
|
113
|
+
beta: torch.Tensor = None,
|
|
114
|
+
scale: float = None,
|
|
115
|
+
initial_state: torch.Tensor = None,
|
|
116
|
+
inplace_final_state: bool = True,
|
|
117
|
+
use_qk_l2norm_in_kernel: bool = True,
|
|
118
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
119
|
+
ssm_state_indices: torch.LongTensor | None = None,
|
|
120
|
+
**kwargs,
|
|
121
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
122
|
+
if cu_seqlens is not None and q.shape[0] != 1:
|
|
123
|
+
raise ValueError(
|
|
124
|
+
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
|
125
|
+
f"Please flatten variable-length inputs before processing."
|
|
126
|
+
)
|
|
127
|
+
if scale is None:
|
|
128
|
+
scale = k.shape[-1] ** -0.5
|
|
129
|
+
|
|
130
|
+
o, final_state = fused_recurrent_kda_fwd(
|
|
131
|
+
q=q.contiguous(),
|
|
132
|
+
k=k.contiguous(),
|
|
133
|
+
v=v.contiguous(),
|
|
134
|
+
g=g.contiguous(),
|
|
135
|
+
beta=beta.contiguous(),
|
|
136
|
+
scale=scale,
|
|
137
|
+
initial_state=initial_state,
|
|
138
|
+
inplace_final_state=inplace_final_state,
|
|
139
|
+
cu_seqlens=cu_seqlens,
|
|
140
|
+
ssm_state_indices=ssm_state_indices,
|
|
141
|
+
num_accepted_tokens=None,
|
|
142
|
+
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
|
|
143
|
+
)
|
|
144
|
+
return o, final_state
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@triton.heuristics(
|
|
148
|
+
{
|
|
149
|
+
"STORE_RESIDUAL_OUT": lambda args: args["residual_out"] is not None,
|
|
150
|
+
"HAS_RESIDUAL": lambda args: args["residual"] is not None,
|
|
151
|
+
"HAS_WEIGHT": lambda args: args["w"] is not None,
|
|
152
|
+
"HAS_BIAS": lambda args: args["b"] is not None,
|
|
153
|
+
}
|
|
154
|
+
)
|
|
155
|
+
@triton.jit
|
|
156
|
+
def layer_norm_gated_fwd_kernel(
|
|
157
|
+
x, # pointer to the input
|
|
158
|
+
g, # pointer to the gate
|
|
159
|
+
y, # pointer to the output
|
|
160
|
+
w, # pointer to the weights
|
|
161
|
+
b, # pointer to the biases
|
|
162
|
+
residual, # pointer to the residual
|
|
163
|
+
residual_out, # pointer to the residual
|
|
164
|
+
mean, # pointer to the mean
|
|
165
|
+
rstd, # pointer to the 1/std
|
|
166
|
+
eps, # epsilon to avoid division by zero
|
|
167
|
+
T, # number of rows in x
|
|
168
|
+
D: tl.constexpr, # number of columns in x
|
|
169
|
+
BT: tl.constexpr,
|
|
170
|
+
BD: tl.constexpr,
|
|
171
|
+
ACTIVATION: tl.constexpr,
|
|
172
|
+
IS_RMS_NORM: tl.constexpr,
|
|
173
|
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
|
174
|
+
HAS_RESIDUAL: tl.constexpr,
|
|
175
|
+
HAS_WEIGHT: tl.constexpr,
|
|
176
|
+
HAS_BIAS: tl.constexpr,
|
|
177
|
+
):
|
|
178
|
+
i_t = tl.program_id(0)
|
|
179
|
+
|
|
180
|
+
o_d = tl.arange(0, BD)
|
|
181
|
+
m_d = o_d < D
|
|
182
|
+
|
|
183
|
+
p_x = tl.make_block_ptr(x, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
|
|
184
|
+
b_x = tl.load(p_x, boundary_check=(0, 1)).to(tl.float32)
|
|
185
|
+
if HAS_RESIDUAL:
|
|
186
|
+
p_res = tl.make_block_ptr(
|
|
187
|
+
residual, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0)
|
|
188
|
+
)
|
|
189
|
+
b_x += tl.load(p_res, boundary_check=(0, 1)).to(tl.float32)
|
|
190
|
+
if STORE_RESIDUAL_OUT:
|
|
191
|
+
p_res_out = tl.make_block_ptr(
|
|
192
|
+
residual_out, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0)
|
|
193
|
+
)
|
|
194
|
+
tl.store(p_res_out, b_x.to(p_res_out.dtype.element_ty), boundary_check=(0, 1))
|
|
195
|
+
if not IS_RMS_NORM:
|
|
196
|
+
b_mean = tl.sum(b_x, axis=1) / D
|
|
197
|
+
p_mean = tl.make_block_ptr(mean, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
|
198
|
+
tl.store(p_mean, b_mean.to(p_mean.dtype.element_ty), boundary_check=(0,))
|
|
199
|
+
b_xbar = tl.where(m_d[None, :], b_x - b_mean[:, None], 0.0)
|
|
200
|
+
b_var = tl.sum(b_xbar * b_xbar, axis=1) / D
|
|
201
|
+
else:
|
|
202
|
+
b_xbar = tl.where(m_d[None, :], b_x, 0.0)
|
|
203
|
+
b_var = tl.sum(b_xbar * b_xbar, axis=1) / D
|
|
204
|
+
b_rstd = 1 / tl.sqrt(b_var + eps)
|
|
205
|
+
|
|
206
|
+
p_rstd = tl.make_block_ptr(rstd, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
|
207
|
+
tl.store(p_rstd, b_rstd.to(p_rstd.dtype.element_ty), boundary_check=(0,))
|
|
208
|
+
|
|
209
|
+
if HAS_WEIGHT:
|
|
210
|
+
b_w = tl.load(w + o_d, mask=m_d).to(tl.float32)
|
|
211
|
+
if HAS_BIAS:
|
|
212
|
+
b_b = tl.load(b + o_d, mask=m_d).to(tl.float32)
|
|
213
|
+
b_x_hat = (
|
|
214
|
+
(b_x - b_mean[:, None]) * b_rstd[:, None]
|
|
215
|
+
if not IS_RMS_NORM
|
|
216
|
+
else b_x * b_rstd[:, None]
|
|
217
|
+
)
|
|
218
|
+
b_y = b_x_hat * b_w[None, :] if HAS_WEIGHT else b_x_hat
|
|
219
|
+
if HAS_BIAS:
|
|
220
|
+
b_y = b_y + b_b[None, :]
|
|
221
|
+
|
|
222
|
+
# swish/sigmoid output gate
|
|
223
|
+
p_g = tl.make_block_ptr(g, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
|
|
224
|
+
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
|
|
225
|
+
if ACTIVATION == "swish" or ACTIVATION == "silu":
|
|
226
|
+
b_y = b_y * b_g * tl.sigmoid(b_g)
|
|
227
|
+
elif ACTIVATION == "sigmoid":
|
|
228
|
+
b_y = b_y * tl.sigmoid(b_g)
|
|
229
|
+
|
|
230
|
+
# Write output
|
|
231
|
+
p_y = tl.make_block_ptr(y, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
|
|
232
|
+
tl.store(p_y, b_y.to(p_y.dtype.element_ty), boundary_check=(0, 1))
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
@triton.heuristics(
|
|
236
|
+
{
|
|
237
|
+
"STORE_RESIDUAL_OUT": lambda args: args["residual_out"] is not None,
|
|
238
|
+
"HAS_RESIDUAL": lambda args: args["residual"] is not None,
|
|
239
|
+
"HAS_WEIGHT": lambda args: args["w"] is not None,
|
|
240
|
+
"HAS_BIAS": lambda args: args["b"] is not None,
|
|
241
|
+
}
|
|
242
|
+
)
|
|
243
|
+
@triton.jit
|
|
244
|
+
def layer_norm_gated_fwd_kernel1(
|
|
245
|
+
x, # pointer to the input
|
|
246
|
+
g, # pointer to the gate
|
|
247
|
+
y, # pointer to the output
|
|
248
|
+
w, # pointer to the weights
|
|
249
|
+
b, # pointer to the biases
|
|
250
|
+
residual, # pointer to the residual
|
|
251
|
+
residual_out, # pointer to the residual
|
|
252
|
+
mean, # pointer to the mean
|
|
253
|
+
rstd, # pointer to the 1/std
|
|
254
|
+
eps, # epsilon to avoid division by zero
|
|
255
|
+
D: tl.constexpr, # number of columns in x
|
|
256
|
+
BD: tl.constexpr,
|
|
257
|
+
ACTIVATION: tl.constexpr,
|
|
258
|
+
IS_RMS_NORM: tl.constexpr,
|
|
259
|
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
|
260
|
+
HAS_RESIDUAL: tl.constexpr,
|
|
261
|
+
HAS_WEIGHT: tl.constexpr,
|
|
262
|
+
HAS_BIAS: tl.constexpr,
|
|
263
|
+
):
|
|
264
|
+
i_t = tl.program_id(0)
|
|
265
|
+
x += i_t * D
|
|
266
|
+
y += i_t * D
|
|
267
|
+
g += i_t * D
|
|
268
|
+
if HAS_RESIDUAL:
|
|
269
|
+
residual += i_t * D
|
|
270
|
+
if STORE_RESIDUAL_OUT:
|
|
271
|
+
residual_out += i_t * D
|
|
272
|
+
|
|
273
|
+
o_d = tl.arange(0, BD)
|
|
274
|
+
m_d = o_d < D
|
|
275
|
+
b_x = tl.load(x + o_d, mask=m_d, other=0.0).to(tl.float32)
|
|
276
|
+
if HAS_RESIDUAL:
|
|
277
|
+
b_x += tl.load(residual + o_d, mask=m_d, other=0.0).to(tl.float32)
|
|
278
|
+
if STORE_RESIDUAL_OUT:
|
|
279
|
+
tl.store(residual_out + o_d, b_x, mask=m_d)
|
|
280
|
+
if not IS_RMS_NORM:
|
|
281
|
+
b_mean = tl.sum(b_x, axis=0) / D
|
|
282
|
+
tl.store(mean + i_t, b_mean)
|
|
283
|
+
b_xbar = tl.where(m_d, b_x - b_mean, 0.0)
|
|
284
|
+
b_var = tl.sum(b_xbar * b_xbar, axis=0) / D
|
|
285
|
+
else:
|
|
286
|
+
b_xbar = tl.where(m_d, b_x, 0.0)
|
|
287
|
+
b_var = tl.sum(b_xbar * b_xbar, axis=0) / D
|
|
288
|
+
b_rstd = 1 / tl.sqrt(b_var + eps)
|
|
289
|
+
tl.store(rstd + i_t, b_rstd)
|
|
290
|
+
|
|
291
|
+
if HAS_WEIGHT:
|
|
292
|
+
b_w = tl.load(w + o_d, mask=m_d).to(tl.float32)
|
|
293
|
+
if HAS_BIAS:
|
|
294
|
+
b_b = tl.load(b + o_d, mask=m_d).to(tl.float32)
|
|
295
|
+
b_x_hat = (b_x - b_mean) * b_rstd if not IS_RMS_NORM else b_x * b_rstd
|
|
296
|
+
b_y = b_x_hat * b_w if HAS_WEIGHT else b_x_hat
|
|
297
|
+
if HAS_BIAS:
|
|
298
|
+
b_y = b_y + b_b
|
|
299
|
+
|
|
300
|
+
# swish/sigmoid output gate
|
|
301
|
+
b_g = tl.load(g + o_d, mask=m_d, other=0.0).to(tl.float32)
|
|
302
|
+
if ACTIVATION == "swish" or ACTIVATION == "silu":
|
|
303
|
+
b_y = b_y * b_g * tl.sigmoid(b_g)
|
|
304
|
+
elif ACTIVATION == "sigmoid":
|
|
305
|
+
b_y = b_y * tl.sigmoid(b_g)
|
|
306
|
+
|
|
307
|
+
# Write output
|
|
308
|
+
tl.store(y + o_d, b_y, mask=m_d)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
def layer_norm_gated_fwd(
|
|
312
|
+
x: torch.Tensor,
|
|
313
|
+
g: torch.Tensor,
|
|
314
|
+
weight: torch.Tensor,
|
|
315
|
+
bias: torch.Tensor,
|
|
316
|
+
activation: str = "swish",
|
|
317
|
+
eps: float = 1e-5,
|
|
318
|
+
residual: torch.Tensor = None,
|
|
319
|
+
out_dtype: torch.dtype = None,
|
|
320
|
+
residual_dtype: torch.dtype = None,
|
|
321
|
+
is_rms_norm: bool = False,
|
|
322
|
+
):
|
|
323
|
+
if residual is not None:
|
|
324
|
+
residual_dtype = residual.dtype
|
|
325
|
+
T, D = x.shape
|
|
326
|
+
if residual is not None:
|
|
327
|
+
assert residual.shape == (T, D)
|
|
328
|
+
if weight is not None:
|
|
329
|
+
assert weight.shape == (D,)
|
|
330
|
+
if bias is not None:
|
|
331
|
+
assert bias.shape == (D,)
|
|
332
|
+
# allocate output
|
|
333
|
+
y = x if out_dtype is None else torch.empty_like(x, dtype=out_dtype)
|
|
334
|
+
if residual is not None or (
|
|
335
|
+
residual_dtype is not None and residual_dtype != x.dtype
|
|
336
|
+
):
|
|
337
|
+
residual_out = torch.empty(T, D, device=x.device, dtype=residual_dtype)
|
|
338
|
+
else:
|
|
339
|
+
residual_out = None
|
|
340
|
+
mean = (
|
|
341
|
+
torch.empty((T,), dtype=torch.float, device=x.device)
|
|
342
|
+
if not is_rms_norm
|
|
343
|
+
else None
|
|
344
|
+
)
|
|
345
|
+
rstd = torch.empty((T,), dtype=torch.float, device=x.device)
|
|
346
|
+
# Less than 64KB per feature: enqueue fused kernel
|
|
347
|
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
|
348
|
+
BD = min(MAX_FUSED_SIZE, next_power_of_2(D))
|
|
349
|
+
if D > BD:
|
|
350
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
|
351
|
+
# heuristics for number of warps
|
|
352
|
+
|
|
353
|
+
if D <= 512:
|
|
354
|
+
BT = 32
|
|
355
|
+
layer_norm_gated_fwd_kernel[(cdiv(T, BT),)](
|
|
356
|
+
x=x,
|
|
357
|
+
g=g,
|
|
358
|
+
y=y,
|
|
359
|
+
w=weight,
|
|
360
|
+
b=bias,
|
|
361
|
+
residual=residual,
|
|
362
|
+
residual_out=residual_out,
|
|
363
|
+
mean=mean,
|
|
364
|
+
rstd=rstd,
|
|
365
|
+
eps=eps,
|
|
366
|
+
T=T,
|
|
367
|
+
D=D,
|
|
368
|
+
BD=BD,
|
|
369
|
+
BT=BT,
|
|
370
|
+
ACTIVATION=activation,
|
|
371
|
+
IS_RMS_NORM=is_rms_norm,
|
|
372
|
+
num_warps=4,
|
|
373
|
+
)
|
|
374
|
+
else:
|
|
375
|
+
layer_norm_gated_fwd_kernel1[(T,)](
|
|
376
|
+
x=x,
|
|
377
|
+
g=g,
|
|
378
|
+
y=y,
|
|
379
|
+
w=weight,
|
|
380
|
+
b=bias,
|
|
381
|
+
residual=residual,
|
|
382
|
+
residual_out=residual_out,
|
|
383
|
+
mean=mean,
|
|
384
|
+
rstd=rstd,
|
|
385
|
+
eps=eps,
|
|
386
|
+
D=D,
|
|
387
|
+
BD=BD,
|
|
388
|
+
ACTIVATION=activation,
|
|
389
|
+
IS_RMS_NORM=is_rms_norm,
|
|
390
|
+
num_warps=4,
|
|
391
|
+
)
|
|
392
|
+
# residual_out is None if residual is None and residual_dtype == input_dtype
|
|
393
|
+
return y, mean, rstd, residual_out if residual_out is not None else x
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
def rms_norm_gated(
|
|
397
|
+
x: torch.Tensor,
|
|
398
|
+
g: torch.Tensor,
|
|
399
|
+
weight: torch.Tensor,
|
|
400
|
+
bias: torch.Tensor,
|
|
401
|
+
activation: str = "swish",
|
|
402
|
+
residual: torch.Tensor | None = None,
|
|
403
|
+
prenorm: bool = False,
|
|
404
|
+
residual_in_fp32: bool = False,
|
|
405
|
+
eps: float = 1e-6,
|
|
406
|
+
):
|
|
407
|
+
x_shape_og = x.shape
|
|
408
|
+
# reshape input data into 2D tensor
|
|
409
|
+
x = x.contiguous().reshape(-1, x.shape[-1])
|
|
410
|
+
g = g.contiguous().reshape(-1, g.shape[-1])
|
|
411
|
+
if residual is not None:
|
|
412
|
+
assert residual.shape == x_shape_og
|
|
413
|
+
residual = residual.contiguous().reshape(-1, residual.shape[-1])
|
|
414
|
+
residual_dtype = (
|
|
415
|
+
residual.dtype
|
|
416
|
+
if residual is not None
|
|
417
|
+
else (torch.float if residual_in_fp32 else None)
|
|
418
|
+
)
|
|
419
|
+
y, _, _, residual_out = layer_norm_gated_fwd(
|
|
420
|
+
x=x,
|
|
421
|
+
g=g,
|
|
422
|
+
weight=weight,
|
|
423
|
+
bias=bias,
|
|
424
|
+
activation=activation,
|
|
425
|
+
eps=eps,
|
|
426
|
+
residual=residual,
|
|
427
|
+
residual_dtype=residual_dtype,
|
|
428
|
+
is_rms_norm=True,
|
|
429
|
+
)
|
|
430
|
+
y = y.reshape(x_shape_og)
|
|
431
|
+
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
|
|
432
|
+
|
|
433
|
+
|
|
434
|
+
class FusedRMSNormGated(nn.Module):
|
|
435
|
+
def __init__(
|
|
436
|
+
self,
|
|
437
|
+
hidden_size: int,
|
|
438
|
+
elementwise_affine: bool = True,
|
|
439
|
+
eps: float = 1e-5,
|
|
440
|
+
activation: str = "swish",
|
|
441
|
+
device: torch.device | None = None,
|
|
442
|
+
dtype: torch.dtype | None = None,
|
|
443
|
+
) -> None:
|
|
444
|
+
factory_kwargs = {"device": device, "dtype": dtype}
|
|
445
|
+
super().__init__()
|
|
446
|
+
|
|
447
|
+
self.hidden_size = hidden_size
|
|
448
|
+
self.elementwise_affine = elementwise_affine
|
|
449
|
+
self.eps = eps
|
|
450
|
+
self.activation = activation
|
|
451
|
+
|
|
452
|
+
if self.activation not in ["swish", "silu", "sigmoid"]:
|
|
453
|
+
raise ValueError(f"Unsupported activation: {self.activation}")
|
|
454
|
+
|
|
455
|
+
if elementwise_affine:
|
|
456
|
+
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
|
457
|
+
else:
|
|
458
|
+
self.register_parameter("weight", None)
|
|
459
|
+
self.register_parameter("bias", None)
|
|
460
|
+
|
|
461
|
+
def forward(
|
|
462
|
+
self,
|
|
463
|
+
x: torch.Tensor,
|
|
464
|
+
g: torch.Tensor,
|
|
465
|
+
residual: torch.Tensor | None = None,
|
|
466
|
+
prenorm: bool = False,
|
|
467
|
+
residual_in_fp32: bool = False,
|
|
468
|
+
) -> torch.Tensor:
|
|
469
|
+
return rms_norm_gated(
|
|
470
|
+
x,
|
|
471
|
+
g,
|
|
472
|
+
self.weight,
|
|
473
|
+
self.bias,
|
|
474
|
+
self.activation,
|
|
475
|
+
residual=residual,
|
|
476
|
+
eps=self.eps,
|
|
477
|
+
prenorm=prenorm,
|
|
478
|
+
residual_in_fp32=residual_in_fp32,
|
|
479
|
+
)
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
@triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
|
|
483
|
+
@triton.autotune(
|
|
484
|
+
configs=[
|
|
485
|
+
triton.Config({"BK": BK}, num_warps=num_warps, num_stages=num_stages)
|
|
486
|
+
for BK in [32, 64]
|
|
487
|
+
for num_warps in [1, 2, 4, 8]
|
|
488
|
+
for num_stages in [2, 3, 4]
|
|
489
|
+
],
|
|
490
|
+
key=["BC"],
|
|
491
|
+
)
|
|
492
|
+
@triton.jit(do_not_specialize=["T"])
|
|
493
|
+
def chunk_kda_scaled_dot_kkt_fwd_kernel_intra_sub_inter(
|
|
494
|
+
q,
|
|
495
|
+
k,
|
|
496
|
+
g,
|
|
497
|
+
beta,
|
|
498
|
+
A,
|
|
499
|
+
Aqk,
|
|
500
|
+
scale,
|
|
501
|
+
cu_seqlens,
|
|
502
|
+
chunk_indices,
|
|
503
|
+
T,
|
|
504
|
+
H: tl.constexpr,
|
|
505
|
+
K: tl.constexpr,
|
|
506
|
+
BT: tl.constexpr,
|
|
507
|
+
BC: tl.constexpr,
|
|
508
|
+
BK: tl.constexpr,
|
|
509
|
+
NC: tl.constexpr,
|
|
510
|
+
IS_VARLEN: tl.constexpr,
|
|
511
|
+
):
|
|
512
|
+
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
513
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
514
|
+
i_i, i_j = i_c // NC, i_c % NC
|
|
515
|
+
if IS_VARLEN:
|
|
516
|
+
i_n, i_t = (
|
|
517
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
518
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
519
|
+
)
|
|
520
|
+
bos, eos = (
|
|
521
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
522
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
523
|
+
)
|
|
524
|
+
T = eos - bos
|
|
525
|
+
else:
|
|
526
|
+
bos, eos = i_b * T, i_b * T + T
|
|
527
|
+
|
|
528
|
+
if i_t * BT + i_i * BC >= T:
|
|
529
|
+
return
|
|
530
|
+
if i_i <= i_j:
|
|
531
|
+
return
|
|
532
|
+
|
|
533
|
+
q += (bos * H + i_h) * K
|
|
534
|
+
k += (bos * H + i_h) * K
|
|
535
|
+
g += (bos * H + i_h) * K
|
|
536
|
+
A += (bos * H + i_h) * BT
|
|
537
|
+
Aqk += (bos * H + i_h) * BT
|
|
538
|
+
|
|
539
|
+
p_b = tl.make_block_ptr(
|
|
540
|
+
beta + bos * H + i_h, (T,), (H,), (i_t * BT + i_i * BC,), (BC,), (0,)
|
|
541
|
+
)
|
|
542
|
+
b_b = tl.load(p_b, boundary_check=(0,))
|
|
543
|
+
|
|
544
|
+
b_A = tl.zeros([BC, BC], dtype=tl.float32)
|
|
545
|
+
b_Aqk = tl.zeros([BC, BC], dtype=tl.float32)
|
|
546
|
+
for i_k in range(tl.cdiv(K, BK)):
|
|
547
|
+
p_q = tl.make_block_ptr(
|
|
548
|
+
q, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)
|
|
549
|
+
)
|
|
550
|
+
p_k = tl.make_block_ptr(
|
|
551
|
+
k, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)
|
|
552
|
+
)
|
|
553
|
+
p_g = tl.make_block_ptr(
|
|
554
|
+
g, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)
|
|
555
|
+
)
|
|
556
|
+
b_kt = tl.make_block_ptr(
|
|
557
|
+
k, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)
|
|
558
|
+
)
|
|
559
|
+
p_gk = tl.make_block_ptr(
|
|
560
|
+
g, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)
|
|
561
|
+
)
|
|
562
|
+
|
|
563
|
+
o_k = i_k * BK + tl.arange(0, BK)
|
|
564
|
+
m_k = o_k < K
|
|
565
|
+
# [BK,]
|
|
566
|
+
b_gn = tl.load(g + (i_t * BT + i_i * BC) * H * K + o_k, mask=m_k, other=0)
|
|
567
|
+
# [BC, BK]
|
|
568
|
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
|
569
|
+
b_k = tl.load(p_k, boundary_check=(0, 1)) * exp(b_g - b_gn[None, :])
|
|
570
|
+
# [BK, BC]
|
|
571
|
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
|
572
|
+
b_kt = tl.load(b_kt, boundary_check=(0, 1))
|
|
573
|
+
# [BC, BC]
|
|
574
|
+
b_ktg = b_kt * exp(b_gn[:, None] - b_gk)
|
|
575
|
+
b_A += tl.dot(b_k, b_ktg)
|
|
576
|
+
|
|
577
|
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
|
578
|
+
b_qg = b_q * exp(b_g - b_gn[None, :]) * scale
|
|
579
|
+
b_Aqk += tl.dot(b_qg, b_ktg)
|
|
580
|
+
|
|
581
|
+
b_A *= b_b[:, None]
|
|
582
|
+
|
|
583
|
+
p_A = tl.make_block_ptr(
|
|
584
|
+
A, (T, BT), (H * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)
|
|
585
|
+
)
|
|
586
|
+
tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1))
|
|
587
|
+
p_Aqk = tl.make_block_ptr(
|
|
588
|
+
Aqk, (T, BT), (H * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)
|
|
589
|
+
)
|
|
590
|
+
tl.store(p_Aqk, b_Aqk.to(Aqk.dtype.element_ty), boundary_check=(0, 1))
|
|
591
|
+
|
|
592
|
+
|
|
593
|
+
@triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
|
|
594
|
+
@triton.autotune(
|
|
595
|
+
configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]],
|
|
596
|
+
key=["BK", "BT"],
|
|
597
|
+
)
|
|
598
|
+
@triton.jit(do_not_specialize=["T"])
|
|
599
|
+
def chunk_kda_scaled_dot_kkt_fwd_kernel_intra_sub_intra(
|
|
600
|
+
q,
|
|
601
|
+
k,
|
|
602
|
+
g,
|
|
603
|
+
beta,
|
|
604
|
+
A,
|
|
605
|
+
Aqk,
|
|
606
|
+
scale,
|
|
607
|
+
cu_seqlens,
|
|
608
|
+
chunk_indices,
|
|
609
|
+
T,
|
|
610
|
+
H: tl.constexpr,
|
|
611
|
+
K: tl.constexpr,
|
|
612
|
+
BT: tl.constexpr,
|
|
613
|
+
BC: tl.constexpr,
|
|
614
|
+
BK: tl.constexpr,
|
|
615
|
+
IS_VARLEN: tl.constexpr,
|
|
616
|
+
):
|
|
617
|
+
i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
618
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
619
|
+
if IS_VARLEN:
|
|
620
|
+
i_n, i_t = (
|
|
621
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
622
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
623
|
+
)
|
|
624
|
+
bos, eos = (
|
|
625
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
626
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
627
|
+
)
|
|
628
|
+
T = eos - bos
|
|
629
|
+
else:
|
|
630
|
+
bos, eos = i_b * T, i_b * T + T
|
|
631
|
+
|
|
632
|
+
if i_t * BT + i_i * BC >= T:
|
|
633
|
+
return
|
|
634
|
+
|
|
635
|
+
o_i = tl.arange(0, BC)
|
|
636
|
+
o_k = tl.arange(0, BK)
|
|
637
|
+
m_k = o_k < K
|
|
638
|
+
m_A = (i_t * BT + i_i * BC + o_i) < T
|
|
639
|
+
o_A = (bos + i_t * BT + i_i * BC + o_i) * H * BT + i_h * BT + i_i * BC
|
|
640
|
+
|
|
641
|
+
p_q = tl.make_block_ptr(
|
|
642
|
+
q + (bos * H + i_h) * K,
|
|
643
|
+
(T, K),
|
|
644
|
+
(H * K, 1),
|
|
645
|
+
(i_t * BT + i_i * BC, 0),
|
|
646
|
+
(BC, BK),
|
|
647
|
+
(1, 0),
|
|
648
|
+
)
|
|
649
|
+
p_k = tl.make_block_ptr(
|
|
650
|
+
k + (bos * H + i_h) * K,
|
|
651
|
+
(T, K),
|
|
652
|
+
(H * K, 1),
|
|
653
|
+
(i_t * BT + i_i * BC, 0),
|
|
654
|
+
(BC, BK),
|
|
655
|
+
(1, 0),
|
|
656
|
+
)
|
|
657
|
+
p_g = tl.make_block_ptr(
|
|
658
|
+
g + (bos * H + i_h) * K,
|
|
659
|
+
(T, K),
|
|
660
|
+
(H * K, 1),
|
|
661
|
+
(i_t * BT + i_i * BC, 0),
|
|
662
|
+
(BC, BK),
|
|
663
|
+
(1, 0),
|
|
664
|
+
)
|
|
665
|
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
|
666
|
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
|
667
|
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
|
668
|
+
|
|
669
|
+
p_b = beta + (bos + i_t * BT + i_i * BC + o_i) * H + i_h
|
|
670
|
+
b_k = b_k * tl.load(p_b, mask=m_A, other=0)[:, None]
|
|
671
|
+
|
|
672
|
+
p_kt = k + (bos + i_t * BT + i_i * BC) * H * K + i_h * K + o_k
|
|
673
|
+
p_gk = g + (bos + i_t * BT + i_i * BC) * H * K + i_h * K + o_k
|
|
674
|
+
|
|
675
|
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
|
676
|
+
b_kt = tl.load(p_kt, mask=m_k, other=0).to(tl.float32)
|
|
677
|
+
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32)
|
|
678
|
+
b_ktg = b_kt[None, :] * exp(b_g - b_gk[None, :])
|
|
679
|
+
b_A = tl.sum(b_k * b_ktg, 1)
|
|
680
|
+
b_A = tl.where(o_i > j, b_A, 0.0)
|
|
681
|
+
b_Aqk = tl.sum(b_q * b_ktg, 1)
|
|
682
|
+
b_Aqk = tl.where(o_i >= j, b_Aqk * scale, 0.0)
|
|
683
|
+
tl.store(A + o_A + j, b_A, mask=m_A)
|
|
684
|
+
tl.store(Aqk + o_A + j, b_Aqk, mask=m_A)
|
|
685
|
+
p_kt += H * K
|
|
686
|
+
p_gk += H * K
|
|
687
|
+
|
|
688
|
+
|
|
689
|
+
def chunk_kda_scaled_dot_kkt_fwd(
|
|
690
|
+
q: torch.Tensor,
|
|
691
|
+
k: torch.Tensor,
|
|
692
|
+
gk: torch.Tensor | None = None,
|
|
693
|
+
beta: torch.Tensor | None = None,
|
|
694
|
+
scale: float | None = None,
|
|
695
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
696
|
+
chunk_size: int = 64,
|
|
697
|
+
output_dtype: torch.dtype = torch.float32,
|
|
698
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
699
|
+
r"""
|
|
700
|
+
Compute beta * K * K^T.
|
|
701
|
+
|
|
702
|
+
Args:
|
|
703
|
+
k (torch.Tensor):
|
|
704
|
+
The key tensor of shape `[B, T, H, K]`.
|
|
705
|
+
beta (torch.Tensor):
|
|
706
|
+
The beta tensor of shape `[B, T, H]`.
|
|
707
|
+
gk (torch.Tensor):
|
|
708
|
+
The cumulative sum of the gate tensor of shape `[B, T, H, K]` applied to the key tensor. Default: `None`.
|
|
709
|
+
cu_seqlens (torch.LongTensor):
|
|
710
|
+
The cumulative sequence lengths of the input tensor.
|
|
711
|
+
Default: None
|
|
712
|
+
chunk_size (int):
|
|
713
|
+
The chunk size. Default: 64.
|
|
714
|
+
output_dtype (torch.dtype):
|
|
715
|
+
The dtype of the output tensor. Default: `torch.float32`
|
|
716
|
+
|
|
717
|
+
Returns:
|
|
718
|
+
beta * K * K^T of shape `[B, T, H, BT]` where `BT` is the chunk size.
|
|
719
|
+
"""
|
|
720
|
+
B, T, H, K = k.shape
|
|
721
|
+
assert K <= 256
|
|
722
|
+
BT = chunk_size
|
|
723
|
+
chunk_indices = (
|
|
724
|
+
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
|
725
|
+
)
|
|
726
|
+
NT = cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
|
727
|
+
|
|
728
|
+
BC = min(16, BT)
|
|
729
|
+
NC = cdiv(BT, BC)
|
|
730
|
+
BK = max(next_power_of_2(K), 16)
|
|
731
|
+
A = torch.zeros(B, T, H, BT, device=k.device, dtype=output_dtype)
|
|
732
|
+
Aqk = torch.zeros(B, T, H, BT, device=k.device, dtype=output_dtype)
|
|
733
|
+
grid = (NT, NC * NC, B * H)
|
|
734
|
+
chunk_kda_scaled_dot_kkt_fwd_kernel_intra_sub_inter[grid](
|
|
735
|
+
q=q,
|
|
736
|
+
k=k,
|
|
737
|
+
g=gk,
|
|
738
|
+
beta=beta,
|
|
739
|
+
A=A,
|
|
740
|
+
Aqk=Aqk,
|
|
741
|
+
scale=scale,
|
|
742
|
+
cu_seqlens=cu_seqlens,
|
|
743
|
+
chunk_indices=chunk_indices,
|
|
744
|
+
T=T,
|
|
745
|
+
H=H,
|
|
746
|
+
K=K,
|
|
747
|
+
BT=BT,
|
|
748
|
+
BC=BC,
|
|
749
|
+
NC=NC,
|
|
750
|
+
)
|
|
751
|
+
|
|
752
|
+
grid = (NT, NC, B * H)
|
|
753
|
+
chunk_kda_scaled_dot_kkt_fwd_kernel_intra_sub_intra[grid](
|
|
754
|
+
q=q,
|
|
755
|
+
k=k,
|
|
756
|
+
g=gk,
|
|
757
|
+
beta=beta,
|
|
758
|
+
A=A,
|
|
759
|
+
Aqk=Aqk,
|
|
760
|
+
scale=scale,
|
|
761
|
+
cu_seqlens=cu_seqlens,
|
|
762
|
+
chunk_indices=chunk_indices,
|
|
763
|
+
T=T,
|
|
764
|
+
H=H,
|
|
765
|
+
K=K,
|
|
766
|
+
BT=BT,
|
|
767
|
+
BC=BC,
|
|
768
|
+
BK=BK,
|
|
769
|
+
)
|
|
770
|
+
return A, Aqk
|
|
771
|
+
|
|
772
|
+
|
|
773
|
+
@triton.heuristics(
|
|
774
|
+
{
|
|
775
|
+
"STORE_QG": lambda args: args["qg"] is not None,
|
|
776
|
+
"STORE_KG": lambda args: args["kg"] is not None,
|
|
777
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
|
778
|
+
}
|
|
779
|
+
)
|
|
780
|
+
@triton.autotune(
|
|
781
|
+
configs=[
|
|
782
|
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
|
783
|
+
for num_warps in [2, 4, 8]
|
|
784
|
+
for num_stages in [2, 3, 4]
|
|
785
|
+
],
|
|
786
|
+
key=["H", "K", "V", "BT", "BK", "BV", "IS_VARLEN"],
|
|
787
|
+
)
|
|
788
|
+
@triton.jit(do_not_specialize=["T"])
|
|
789
|
+
def recompute_w_u_fwd_kernel(
|
|
790
|
+
q,
|
|
791
|
+
k,
|
|
792
|
+
qg,
|
|
793
|
+
kg,
|
|
794
|
+
v,
|
|
795
|
+
beta,
|
|
796
|
+
w,
|
|
797
|
+
u,
|
|
798
|
+
A,
|
|
799
|
+
gk,
|
|
800
|
+
cu_seqlens,
|
|
801
|
+
chunk_indices,
|
|
802
|
+
T,
|
|
803
|
+
H: tl.constexpr,
|
|
804
|
+
K: tl.constexpr,
|
|
805
|
+
V: tl.constexpr,
|
|
806
|
+
BT: tl.constexpr,
|
|
807
|
+
BK: tl.constexpr,
|
|
808
|
+
BV: tl.constexpr,
|
|
809
|
+
STORE_QG: tl.constexpr,
|
|
810
|
+
STORE_KG: tl.constexpr,
|
|
811
|
+
IS_VARLEN: tl.constexpr,
|
|
812
|
+
DOT_PRECISION: tl.constexpr,
|
|
813
|
+
):
|
|
814
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
|
815
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
816
|
+
if IS_VARLEN:
|
|
817
|
+
i_n, i_t = (
|
|
818
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
819
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
820
|
+
)
|
|
821
|
+
bos, eos = (
|
|
822
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
823
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
824
|
+
)
|
|
825
|
+
T = eos - bos
|
|
826
|
+
else:
|
|
827
|
+
bos, eos = i_b * T, i_b * T + T
|
|
828
|
+
p_b = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
|
829
|
+
b_b = tl.load(p_b, boundary_check=(0,))
|
|
830
|
+
|
|
831
|
+
p_A = tl.make_block_ptr(
|
|
832
|
+
A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)
|
|
833
|
+
)
|
|
834
|
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
|
835
|
+
|
|
836
|
+
for i_v in range(tl.cdiv(V, BV)):
|
|
837
|
+
p_v = tl.make_block_ptr(
|
|
838
|
+
v + (bos * H + i_h) * V,
|
|
839
|
+
(T, V),
|
|
840
|
+
(H * V, 1),
|
|
841
|
+
(i_t * BT, i_v * BV),
|
|
842
|
+
(BT, BV),
|
|
843
|
+
(1, 0),
|
|
844
|
+
)
|
|
845
|
+
p_u = tl.make_block_ptr(
|
|
846
|
+
u + (bos * H + i_h) * V,
|
|
847
|
+
(T, V),
|
|
848
|
+
(H * V, 1),
|
|
849
|
+
(i_t * BT, i_v * BV),
|
|
850
|
+
(BT, BV),
|
|
851
|
+
(1, 0),
|
|
852
|
+
)
|
|
853
|
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
|
854
|
+
b_vb = (b_v * b_b[:, None]).to(b_v.dtype)
|
|
855
|
+
b_u = tl.dot(b_A, b_vb, input_precision=DOT_PRECISION)
|
|
856
|
+
tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1))
|
|
857
|
+
|
|
858
|
+
for i_k in range(tl.cdiv(K, BK)):
|
|
859
|
+
p_w = tl.make_block_ptr(
|
|
860
|
+
w + (bos * H + i_h) * K,
|
|
861
|
+
(T, K),
|
|
862
|
+
(H * K, 1),
|
|
863
|
+
(i_t * BT, i_k * BK),
|
|
864
|
+
(BT, BK),
|
|
865
|
+
(1, 0),
|
|
866
|
+
)
|
|
867
|
+
p_k = tl.make_block_ptr(
|
|
868
|
+
k + (bos * H + i_h) * K,
|
|
869
|
+
(T, K),
|
|
870
|
+
(H * K, 1),
|
|
871
|
+
(i_t * BT, i_k * BK),
|
|
872
|
+
(BT, BK),
|
|
873
|
+
(1, 0),
|
|
874
|
+
)
|
|
875
|
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
|
876
|
+
b_kb = b_k * b_b[:, None]
|
|
877
|
+
|
|
878
|
+
p_gk = tl.make_block_ptr(
|
|
879
|
+
gk + (bos * H + i_h) * K,
|
|
880
|
+
(T, K),
|
|
881
|
+
(H * K, 1),
|
|
882
|
+
(i_t * BT, i_k * BK),
|
|
883
|
+
(BT, BK),
|
|
884
|
+
(1, 0),
|
|
885
|
+
)
|
|
886
|
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
|
887
|
+
b_kb *= exp(b_gk)
|
|
888
|
+
if STORE_QG:
|
|
889
|
+
p_q = tl.make_block_ptr(
|
|
890
|
+
q + (bos * H + i_h) * K,
|
|
891
|
+
(T, K),
|
|
892
|
+
(H * K, 1),
|
|
893
|
+
(i_t * BT, i_k * BK),
|
|
894
|
+
(BT, BK),
|
|
895
|
+
(1, 0),
|
|
896
|
+
)
|
|
897
|
+
p_qg = tl.make_block_ptr(
|
|
898
|
+
qg + (bos * H + i_h) * K,
|
|
899
|
+
(T, K),
|
|
900
|
+
(H * K, 1),
|
|
901
|
+
(i_t * BT, i_k * BK),
|
|
902
|
+
(BT, BK),
|
|
903
|
+
(1, 0),
|
|
904
|
+
)
|
|
905
|
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
|
906
|
+
b_qg = b_q * exp(b_gk)
|
|
907
|
+
tl.store(p_qg, b_qg.to(p_qg.dtype.element_ty), boundary_check=(0, 1))
|
|
908
|
+
if STORE_KG:
|
|
909
|
+
last_idx = min(i_t * BT + BT, T) - 1
|
|
910
|
+
|
|
911
|
+
o_k = i_k * BK + tl.arange(0, BK)
|
|
912
|
+
m_k = o_k < K
|
|
913
|
+
b_gn = tl.load(
|
|
914
|
+
gk + ((bos + last_idx) * H + i_h) * K + o_k, mask=m_k, other=0.0
|
|
915
|
+
)
|
|
916
|
+
b_kg = b_k * exp(b_gn - b_gk)
|
|
917
|
+
|
|
918
|
+
p_kg = tl.make_block_ptr(
|
|
919
|
+
kg + (bos * H + i_h) * K,
|
|
920
|
+
(T, K),
|
|
921
|
+
(H * K, 1),
|
|
922
|
+
(i_t * BT, i_k * BK),
|
|
923
|
+
(BT, BK),
|
|
924
|
+
(1, 0),
|
|
925
|
+
)
|
|
926
|
+
tl.store(p_kg, b_kg.to(p_kg.dtype.element_ty), boundary_check=(0, 1))
|
|
927
|
+
|
|
928
|
+
b_w = tl.dot(b_A, b_kb.to(b_k.dtype))
|
|
929
|
+
tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
|
|
930
|
+
|
|
931
|
+
|
|
932
|
+
def recompute_w_u_fwd(
|
|
933
|
+
k: torch.Tensor,
|
|
934
|
+
v: torch.Tensor,
|
|
935
|
+
beta: torch.Tensor,
|
|
936
|
+
A: torch.Tensor,
|
|
937
|
+
q: torch.Tensor | None = None,
|
|
938
|
+
gk: torch.Tensor | None = None,
|
|
939
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
940
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
941
|
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
|
942
|
+
BT = A.shape[-1]
|
|
943
|
+
BK = 64
|
|
944
|
+
BV = 64
|
|
945
|
+
|
|
946
|
+
chunk_indices = (
|
|
947
|
+
prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
|
948
|
+
)
|
|
949
|
+
NT = cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
|
950
|
+
|
|
951
|
+
w = torch.empty_like(k)
|
|
952
|
+
u = torch.empty_like(v)
|
|
953
|
+
kg = torch.empty_like(k) if gk is not None else None
|
|
954
|
+
recompute_w_u_fwd_kernel[(NT, B * H)](
|
|
955
|
+
q=q,
|
|
956
|
+
k=k,
|
|
957
|
+
qg=None,
|
|
958
|
+
kg=kg,
|
|
959
|
+
v=v,
|
|
960
|
+
beta=beta,
|
|
961
|
+
w=w,
|
|
962
|
+
u=u,
|
|
963
|
+
A=A,
|
|
964
|
+
gk=gk,
|
|
965
|
+
cu_seqlens=cu_seqlens,
|
|
966
|
+
chunk_indices=chunk_indices,
|
|
967
|
+
T=T,
|
|
968
|
+
H=H,
|
|
969
|
+
K=K,
|
|
970
|
+
V=V,
|
|
971
|
+
BT=BT,
|
|
972
|
+
BK=BK,
|
|
973
|
+
BV=BV,
|
|
974
|
+
DOT_PRECISION="ieee",
|
|
975
|
+
)
|
|
976
|
+
return w, u, None, kg
|
|
977
|
+
|
|
978
|
+
|
|
979
|
+
@triton.heuristics({"IS_VARLEN": lambda args: args["cu_seqlens"] is not None})
|
|
980
|
+
@triton.autotune(
|
|
981
|
+
configs=[
|
|
982
|
+
triton.Config({"BK": BK, "BV": BV}, num_warps=num_warps, num_stages=num_stages)
|
|
983
|
+
for BK in [32, 64]
|
|
984
|
+
for BV in [64, 128]
|
|
985
|
+
for num_warps in [2, 4, 8]
|
|
986
|
+
for num_stages in [2, 3, 4]
|
|
987
|
+
],
|
|
988
|
+
key=["BT"],
|
|
989
|
+
)
|
|
990
|
+
@triton.jit(do_not_specialize=["T"])
|
|
991
|
+
def chunk_gla_fwd_kernel_o(
|
|
992
|
+
q,
|
|
993
|
+
v,
|
|
994
|
+
g,
|
|
995
|
+
h,
|
|
996
|
+
o,
|
|
997
|
+
A,
|
|
998
|
+
cu_seqlens,
|
|
999
|
+
chunk_indices,
|
|
1000
|
+
scale,
|
|
1001
|
+
T,
|
|
1002
|
+
H: tl.constexpr,
|
|
1003
|
+
K: tl.constexpr,
|
|
1004
|
+
V: tl.constexpr,
|
|
1005
|
+
BT: tl.constexpr,
|
|
1006
|
+
BK: tl.constexpr,
|
|
1007
|
+
BV: tl.constexpr,
|
|
1008
|
+
IS_VARLEN: tl.constexpr,
|
|
1009
|
+
):
|
|
1010
|
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
1011
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
1012
|
+
if IS_VARLEN:
|
|
1013
|
+
i_tg = i_t
|
|
1014
|
+
i_n, i_t = (
|
|
1015
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
1016
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
1017
|
+
)
|
|
1018
|
+
bos, eos = (
|
|
1019
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
1020
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
1021
|
+
)
|
|
1022
|
+
T = eos - bos
|
|
1023
|
+
NT = tl.cdiv(T, BT)
|
|
1024
|
+
else:
|
|
1025
|
+
NT = tl.cdiv(T, BT)
|
|
1026
|
+
i_tg = i_b * NT + i_t
|
|
1027
|
+
bos, eos = i_b * T, i_b * T + T
|
|
1028
|
+
|
|
1029
|
+
m_s = tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :]
|
|
1030
|
+
|
|
1031
|
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
|
1032
|
+
for i_k in range(tl.cdiv(K, BK)):
|
|
1033
|
+
p_q = tl.make_block_ptr(
|
|
1034
|
+
q + (bos * H + i_h) * K,
|
|
1035
|
+
(T, K),
|
|
1036
|
+
(H * K, 1),
|
|
1037
|
+
(i_t * BT, i_k * BK),
|
|
1038
|
+
(BT, BK),
|
|
1039
|
+
(1, 0),
|
|
1040
|
+
)
|
|
1041
|
+
p_g = tl.make_block_ptr(
|
|
1042
|
+
g + (bos * H + i_h) * K,
|
|
1043
|
+
(T, K),
|
|
1044
|
+
(H * K, 1),
|
|
1045
|
+
(i_t * BT, i_k * BK),
|
|
1046
|
+
(BT, BK),
|
|
1047
|
+
(1, 0),
|
|
1048
|
+
)
|
|
1049
|
+
p_h = tl.make_block_ptr(
|
|
1050
|
+
h + (i_tg * H + i_h) * K * V,
|
|
1051
|
+
(K, V),
|
|
1052
|
+
(V, 1),
|
|
1053
|
+
(i_k * BK, i_v * BV),
|
|
1054
|
+
(BK, BV),
|
|
1055
|
+
(1, 0),
|
|
1056
|
+
)
|
|
1057
|
+
|
|
1058
|
+
# [BT, BK]
|
|
1059
|
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
|
1060
|
+
b_q = (b_q * scale).to(b_q.dtype)
|
|
1061
|
+
# [BT, BK]
|
|
1062
|
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
|
1063
|
+
# [BT, BK]
|
|
1064
|
+
b_qg = (b_q * exp(b_g)).to(b_q.dtype)
|
|
1065
|
+
# [BK, BV]
|
|
1066
|
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
|
1067
|
+
# works but dkw, owing to divine benevolence
|
|
1068
|
+
# [BT, BV]
|
|
1069
|
+
if i_k >= 0:
|
|
1070
|
+
b_o += tl.dot(b_qg, b_h.to(b_qg.dtype))
|
|
1071
|
+
p_v = tl.make_block_ptr(
|
|
1072
|
+
v + (bos * H + i_h) * V,
|
|
1073
|
+
(T, V),
|
|
1074
|
+
(H * V, 1),
|
|
1075
|
+
(i_t * BT, i_v * BV),
|
|
1076
|
+
(BT, BV),
|
|
1077
|
+
(1, 0),
|
|
1078
|
+
)
|
|
1079
|
+
p_o = tl.make_block_ptr(
|
|
1080
|
+
o + (bos * H + i_h) * V,
|
|
1081
|
+
(T, V),
|
|
1082
|
+
(H * V, 1),
|
|
1083
|
+
(i_t * BT, i_v * BV),
|
|
1084
|
+
(BT, BV),
|
|
1085
|
+
(1, 0),
|
|
1086
|
+
)
|
|
1087
|
+
p_A = tl.make_block_ptr(
|
|
1088
|
+
A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)
|
|
1089
|
+
)
|
|
1090
|
+
# [BT, BV]
|
|
1091
|
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
|
1092
|
+
# [BT, BT]
|
|
1093
|
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
|
1094
|
+
b_A = tl.where(m_s, b_A, 0.0).to(b_v.dtype)
|
|
1095
|
+
b_o += tl.dot(b_A, b_v, allow_tf32=False)
|
|
1096
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
|
1097
|
+
|
|
1098
|
+
|
|
1099
|
+
def chunk_gla_fwd_o_gk(
|
|
1100
|
+
q: torch.Tensor,
|
|
1101
|
+
v: torch.Tensor,
|
|
1102
|
+
g: torch.Tensor,
|
|
1103
|
+
A: torch.Tensor,
|
|
1104
|
+
h: torch.Tensor,
|
|
1105
|
+
o: torch.Tensor,
|
|
1106
|
+
scale: float,
|
|
1107
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
1108
|
+
chunk_size: int = 64,
|
|
1109
|
+
):
|
|
1110
|
+
B, T, H, K, V = *q.shape, v.shape[-1]
|
|
1111
|
+
BT = chunk_size
|
|
1112
|
+
|
|
1113
|
+
chunk_indices = (
|
|
1114
|
+
prepare_chunk_indices(cu_seqlens, chunk_size)
|
|
1115
|
+
if cu_seqlens is not None
|
|
1116
|
+
else None
|
|
1117
|
+
)
|
|
1118
|
+
NT = cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
|
|
1119
|
+
|
|
1120
|
+
def grid(meta):
|
|
1121
|
+
return (cdiv(V, meta["BV"]), NT, B * H)
|
|
1122
|
+
|
|
1123
|
+
chunk_gla_fwd_kernel_o[grid](
|
|
1124
|
+
q=q,
|
|
1125
|
+
v=v,
|
|
1126
|
+
g=g,
|
|
1127
|
+
h=h,
|
|
1128
|
+
o=o,
|
|
1129
|
+
A=A,
|
|
1130
|
+
cu_seqlens=cu_seqlens,
|
|
1131
|
+
chunk_indices=chunk_indices,
|
|
1132
|
+
scale=scale,
|
|
1133
|
+
T=T,
|
|
1134
|
+
H=H,
|
|
1135
|
+
K=K,
|
|
1136
|
+
V=V,
|
|
1137
|
+
BT=BT,
|
|
1138
|
+
)
|
|
1139
|
+
return o
|
|
1140
|
+
|
|
1141
|
+
|
|
1142
|
+
def chunk_kda_fwd(
|
|
1143
|
+
q: torch.Tensor,
|
|
1144
|
+
k: torch.Tensor,
|
|
1145
|
+
v: torch.Tensor,
|
|
1146
|
+
g: torch.Tensor,
|
|
1147
|
+
beta: torch.Tensor,
|
|
1148
|
+
scale: float,
|
|
1149
|
+
initial_state: torch.Tensor,
|
|
1150
|
+
output_final_state: bool,
|
|
1151
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
1152
|
+
):
|
|
1153
|
+
chunk_size = 64
|
|
1154
|
+
g = chunk_local_cumsum(g, chunk_size=chunk_size, cu_seqlens=cu_seqlens)
|
|
1155
|
+
# the intra Aqk is kept in fp32
|
|
1156
|
+
# the computation has very marginal effect on the entire throughput
|
|
1157
|
+
A, Aqk = chunk_kda_scaled_dot_kkt_fwd(
|
|
1158
|
+
q=q,
|
|
1159
|
+
k=k,
|
|
1160
|
+
gk=g,
|
|
1161
|
+
beta=beta,
|
|
1162
|
+
scale=scale,
|
|
1163
|
+
cu_seqlens=cu_seqlens,
|
|
1164
|
+
output_dtype=torch.float32,
|
|
1165
|
+
)
|
|
1166
|
+
A = solve_tril(A=A, cu_seqlens=cu_seqlens, output_dtype=k.dtype)
|
|
1167
|
+
w, u, _, kg = recompute_w_u_fwd(
|
|
1168
|
+
k=k,
|
|
1169
|
+
v=v,
|
|
1170
|
+
beta=beta,
|
|
1171
|
+
A=A,
|
|
1172
|
+
gk=g,
|
|
1173
|
+
cu_seqlens=cu_seqlens,
|
|
1174
|
+
)
|
|
1175
|
+
del A
|
|
1176
|
+
h, v_new, final_state = chunk_gated_delta_rule_fwd_h(
|
|
1177
|
+
k=kg,
|
|
1178
|
+
w=w,
|
|
1179
|
+
u=u,
|
|
1180
|
+
gk=g,
|
|
1181
|
+
initial_state=initial_state,
|
|
1182
|
+
output_final_state=output_final_state,
|
|
1183
|
+
cu_seqlens=cu_seqlens,
|
|
1184
|
+
)
|
|
1185
|
+
del w, u, kg
|
|
1186
|
+
o = chunk_gla_fwd_o_gk(
|
|
1187
|
+
q=q,
|
|
1188
|
+
v=v_new,
|
|
1189
|
+
g=g,
|
|
1190
|
+
A=Aqk,
|
|
1191
|
+
h=h,
|
|
1192
|
+
o=v,
|
|
1193
|
+
scale=scale,
|
|
1194
|
+
cu_seqlens=cu_seqlens,
|
|
1195
|
+
chunk_size=chunk_size,
|
|
1196
|
+
)
|
|
1197
|
+
del Aqk, v_new, h
|
|
1198
|
+
return o, final_state
|
|
1199
|
+
|
|
1200
|
+
|
|
1201
|
+
def chunk_kda(
|
|
1202
|
+
q: torch.Tensor,
|
|
1203
|
+
k: torch.Tensor,
|
|
1204
|
+
v: torch.Tensor,
|
|
1205
|
+
g: torch.Tensor,
|
|
1206
|
+
beta: torch.Tensor,
|
|
1207
|
+
scale: float = None,
|
|
1208
|
+
initial_state: torch.Tensor = None,
|
|
1209
|
+
output_final_state: bool = False,
|
|
1210
|
+
use_qk_l2norm_in_kernel: bool = False,
|
|
1211
|
+
cu_seqlens: torch.LongTensor | None = None,
|
|
1212
|
+
**kwargs,
|
|
1213
|
+
):
|
|
1214
|
+
if scale is None:
|
|
1215
|
+
scale = k.shape[-1] ** -0.5
|
|
1216
|
+
|
|
1217
|
+
if use_qk_l2norm_in_kernel:
|
|
1218
|
+
q = l2norm_fwd(q.contiguous())
|
|
1219
|
+
k = l2norm_fwd(k.contiguous())
|
|
1220
|
+
|
|
1221
|
+
o, final_state = chunk_kda_fwd(
|
|
1222
|
+
q=q,
|
|
1223
|
+
k=k,
|
|
1224
|
+
v=v.contiguous(),
|
|
1225
|
+
g=g.contiguous(),
|
|
1226
|
+
beta=beta.contiguous(),
|
|
1227
|
+
scale=scale,
|
|
1228
|
+
initial_state=initial_state.contiguous(),
|
|
1229
|
+
output_final_state=output_final_state,
|
|
1230
|
+
cu_seqlens=cu_seqlens,
|
|
1231
|
+
)
|
|
1232
|
+
return o, final_state
|
|
1233
|
+
|
|
1234
|
+
|
|
1235
|
+
@triton.autotune(
|
|
1236
|
+
configs=[
|
|
1237
|
+
triton.Config({"BT": bt}, num_warps=nw, num_stages=ns)
|
|
1238
|
+
for bt in BT_LIST_AUTOTUNE
|
|
1239
|
+
for nw in NUM_WARPS_AUTOTUNE
|
|
1240
|
+
for ns in [2, 3]
|
|
1241
|
+
],
|
|
1242
|
+
key=["H", "D"],
|
|
1243
|
+
)
|
|
1244
|
+
@triton.jit
|
|
1245
|
+
def kda_gate_fwd_kernel(
|
|
1246
|
+
g,
|
|
1247
|
+
A,
|
|
1248
|
+
y,
|
|
1249
|
+
g_bias,
|
|
1250
|
+
beta: tl.constexpr,
|
|
1251
|
+
threshold: tl.constexpr,
|
|
1252
|
+
T,
|
|
1253
|
+
H,
|
|
1254
|
+
D: tl.constexpr,
|
|
1255
|
+
BT: tl.constexpr,
|
|
1256
|
+
BD: tl.constexpr,
|
|
1257
|
+
HAS_BIAS: tl.constexpr,
|
|
1258
|
+
):
|
|
1259
|
+
i_t, i_h = tl.program_id(0), tl.program_id(1)
|
|
1260
|
+
n_t = i_t * BT
|
|
1261
|
+
|
|
1262
|
+
b_a = tl.load(A + i_h).to(tl.float32)
|
|
1263
|
+
b_a = -tl.exp(b_a)
|
|
1264
|
+
|
|
1265
|
+
stride_row = H * D
|
|
1266
|
+
stride_col = 1
|
|
1267
|
+
|
|
1268
|
+
g_ptr = tl.make_block_ptr(
|
|
1269
|
+
base=g + i_h * D,
|
|
1270
|
+
shape=(T, D),
|
|
1271
|
+
strides=(stride_row, stride_col),
|
|
1272
|
+
offsets=(n_t, 0),
|
|
1273
|
+
block_shape=(BT, BD),
|
|
1274
|
+
order=(1, 0),
|
|
1275
|
+
)
|
|
1276
|
+
|
|
1277
|
+
y_ptr = tl.make_block_ptr(
|
|
1278
|
+
base=y + i_h * D,
|
|
1279
|
+
shape=(T, D),
|
|
1280
|
+
strides=(stride_row, stride_col),
|
|
1281
|
+
offsets=(n_t, 0),
|
|
1282
|
+
block_shape=(BT, BD),
|
|
1283
|
+
order=(1, 0),
|
|
1284
|
+
)
|
|
1285
|
+
|
|
1286
|
+
b_g = tl.load(g_ptr, boundary_check=(0, 1)).to(tl.float32)
|
|
1287
|
+
|
|
1288
|
+
if HAS_BIAS:
|
|
1289
|
+
n_d = tl.arange(0, BD)
|
|
1290
|
+
bias_mask = n_d < D
|
|
1291
|
+
b_bias = tl.load(g_bias + i_h * D + n_d, mask=bias_mask, other=0.0).to(
|
|
1292
|
+
tl.float32
|
|
1293
|
+
)
|
|
1294
|
+
b_g = b_g + b_bias[None, :]
|
|
1295
|
+
|
|
1296
|
+
# softplus(x, beta) = (1/beta) * log(1 + exp(beta * x))
|
|
1297
|
+
# When beta * x > threshold, use linear approximation x
|
|
1298
|
+
# Use threshold to switch to linear when beta*x > threshold
|
|
1299
|
+
g_scaled = b_g * beta
|
|
1300
|
+
use_linear = g_scaled > threshold
|
|
1301
|
+
sp = tl.where(use_linear, b_g, (1.0 / beta) * log(1.0 + tl.exp(g_scaled)))
|
|
1302
|
+
b_y = b_a * sp
|
|
1303
|
+
|
|
1304
|
+
tl.store(y_ptr, b_y.to(y.dtype.element_ty), boundary_check=(0, 1))
|
|
1305
|
+
|
|
1306
|
+
|
|
1307
|
+
def fused_kda_gate(
|
|
1308
|
+
g: torch.Tensor,
|
|
1309
|
+
A: torch.Tensor,
|
|
1310
|
+
head_k_dim: int,
|
|
1311
|
+
g_bias: torch.Tensor | None = None,
|
|
1312
|
+
beta: float = 1.0,
|
|
1313
|
+
threshold: float = 20.0,
|
|
1314
|
+
) -> torch.Tensor:
|
|
1315
|
+
"""
|
|
1316
|
+
Forward pass for KDA gate:
|
|
1317
|
+
input g: [..., H*D]
|
|
1318
|
+
param A: [H] or [1, 1, H, 1]
|
|
1319
|
+
beta: softplus beta parameter
|
|
1320
|
+
threshold: softplus threshold parameter
|
|
1321
|
+
return : [..., H, D]
|
|
1322
|
+
"""
|
|
1323
|
+
orig_shape = g.shape[:-1]
|
|
1324
|
+
|
|
1325
|
+
g = g.view(-1, g.shape[-1])
|
|
1326
|
+
T = g.shape[0]
|
|
1327
|
+
HD = g.shape[1]
|
|
1328
|
+
H = A.numel()
|
|
1329
|
+
assert H * head_k_dim == HD
|
|
1330
|
+
|
|
1331
|
+
y = torch.empty_like(g, dtype=torch.float32)
|
|
1332
|
+
|
|
1333
|
+
def grid(meta):
|
|
1334
|
+
return (cdiv(T, meta["BT"]), H)
|
|
1335
|
+
|
|
1336
|
+
kda_gate_fwd_kernel[grid](
|
|
1337
|
+
g,
|
|
1338
|
+
A,
|
|
1339
|
+
y,
|
|
1340
|
+
g_bias,
|
|
1341
|
+
beta,
|
|
1342
|
+
threshold,
|
|
1343
|
+
T,
|
|
1344
|
+
H,
|
|
1345
|
+
head_k_dim,
|
|
1346
|
+
BD=next_power_of_2(head_k_dim),
|
|
1347
|
+
HAS_BIAS=g_bias is not None,
|
|
1348
|
+
)
|
|
1349
|
+
|
|
1350
|
+
y = y.view(*orig_shape, H, head_k_dim)
|
|
1351
|
+
return y
|