vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2284 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from collections.abc import Callable
6
+ from enum import Enum
7
+
8
+ import torch
9
+ from compressed_tensors import CompressionFormat
10
+ from compressed_tensors.quantization import ActivationOrdering, QuantizationStrategy
11
+
12
+ import vllm.envs as envs
13
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
14
+ from vllm import _custom_ops as ops
15
+ from vllm._aiter_ops import rocm_aiter_ops
16
+ from vllm.distributed import get_tensor_model_parallel_world_size
17
+ from vllm.logger import init_logger
18
+ from vllm.model_executor.layers.fused_moe import (
19
+ FusedMoE,
20
+ FusedMoEActivationFormat,
21
+ FusedMoEConfig,
22
+ FusedMoEMethodBase,
23
+ FusedMoEPermuteExpertsUnpermute,
24
+ FusedMoeWeightScaleSupported,
25
+ )
26
+ from vllm.model_executor.layers.fused_moe.config import (
27
+ FusedMoEQuantConfig,
28
+ fp8_w8a8_moe_quant_config,
29
+ int4_w4a16_moe_quant_config,
30
+ int8_w8a8_moe_quant_config,
31
+ int8_w8a16_moe_quant_config,
32
+ nvfp4_moe_quant_config,
33
+ )
34
+ from vllm.model_executor.layers.fused_moe.cpu_fused_moe import select_experts
35
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
36
+ is_valid_flashinfer_cutlass_fused_moe,
37
+ )
38
+ from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
39
+ BatchedMarlinExperts,
40
+ MarlinExperts,
41
+ fused_marlin_moe,
42
+ )
43
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
44
+ WNA16_SUPPORTED_BITS,
45
+ WNA16_SUPPORTED_TYPES_MAP,
46
+ )
47
+ from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
48
+ find_matched_target,
49
+ )
50
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
51
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
52
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize,
53
+ reorder_w1w3_to_w3w1,
54
+ select_nvfp4_gemm_impl,
55
+ )
56
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
57
+ expert_weight_is_col_major,
58
+ requant_weight_ue8m0_inplace,
59
+ )
60
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
61
+ check_moe_marlin_supports_layer,
62
+ marlin_make_workspace_new,
63
+ marlin_moe_permute_scales,
64
+ )
65
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
66
+ prepare_moe_fp4_layer_for_marlin,
67
+ )
68
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
69
+ prepare_moe_fp8_layer_for_marlin,
70
+ )
71
+ from vllm.model_executor.layers.quantization.utils.quant_utils import swizzle_blockscale
72
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
73
+ all_close_1d,
74
+ normalize_e4m3fn_to_e4m3fnuz,
75
+ per_tensor_dequantize,
76
+ )
77
+ from vllm.model_executor.utils import set_weight_attrs
78
+ from vllm.platforms import CpuArchEnum, current_platform
79
+ from vllm.scalar_type import scalar_types
80
+ from vllm.utils.deep_gemm import (
81
+ get_col_major_tma_aligned_tensor,
82
+ is_deep_gemm_e8m0_used,
83
+ )
84
+
85
+ logger = init_logger(__name__)
86
+
87
+
88
+ class GPTQMarlinState(Enum):
89
+ REPACK = enum.auto()
90
+ READY = enum.auto()
91
+
92
+
93
+ __all__ = [
94
+ "CompressedTensorsMoEMethod",
95
+ "CompressedTensorsW8A8Fp8MoEMethod",
96
+ "CompressedTensorsW8A8Int8MoEMethod",
97
+ "CompressedTensorsWNA16MarlinMoEMethod",
98
+ "CompressedTensorsWNA16MoEMethod",
99
+ "CompressedTensorsW4A4MoeMethod",
100
+ "CompressedTensorsW4A8Int8MoEMethod",
101
+ ]
102
+
103
+
104
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
105
+ @staticmethod
106
+ def get_moe_method(
107
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
108
+ layer: torch.nn.Module,
109
+ ) -> "CompressedTensorsMoEMethod":
110
+ # TODO: @dsikka: refactor this to use schemes as other kernels
111
+ # are supported + check if the layer is being ignored.
112
+ # Check if a using "Linear" to select schemes
113
+ if "Linear" in quant_config.target_scheme_map:
114
+ matched_target = "Linear"
115
+ else:
116
+ # May have instead defined the linear layers in the fused model
117
+
118
+ fused_layers = ["re:.*down_proj.*", "re:.*gate_proj.*", "re:.*up_proj.*"]
119
+ current_scheme = None
120
+ for fused_layer in fused_layers:
121
+ # Check if one of the fused layers are defined in quant_config
122
+ matched_target = find_matched_target(
123
+ layer_name=fused_layer,
124
+ module=layer,
125
+ targets=quant_config.target_scheme_map.keys(),
126
+ fused_mapping=quant_config.packed_modules_mapping,
127
+ )
128
+
129
+ # Only valid if down_proj, gate_proj, and up_proj
130
+ # are mapped to the same quant scheme in the quant_config
131
+ if current_scheme is None:
132
+ current_scheme = quant_config.target_scheme_map.get(matched_target)
133
+ else:
134
+ assert current_scheme == quant_config.target_scheme_map.get(
135
+ matched_target
136
+ )
137
+
138
+ weight_quant = quant_config.target_scheme_map[matched_target].get("weights")
139
+ input_quant = quant_config.target_scheme_map[matched_target].get(
140
+ "input_activations"
141
+ )
142
+
143
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
144
+ # group_size=None means channelwise
145
+ group_size = weight_quant.group_size or -1
146
+ # Prefer to use the MarlinMoE kernel when it is supported.
147
+ if (
148
+ not check_moe_marlin_supports_layer(layer, group_size)
149
+ or current_platform.is_rocm()
150
+ ):
151
+ if (
152
+ weight_quant.strategy == QuantizationStrategy.GROUP
153
+ and weight_quant.actorder
154
+ in (ActivationOrdering.GROUP, ActivationOrdering.DYNAMIC)
155
+ ):
156
+ raise ValueError(
157
+ "WNA16MoE is not supported with actorder=group/dynamic."
158
+ )
159
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
160
+ return CompressedTensorsWNA16MoEMethod(quant_config, layer.moe_config)
161
+ else:
162
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
163
+ return CompressedTensorsWNA16MarlinMoEMethod(
164
+ quant_config, layer.moe_config
165
+ )
166
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
167
+ return CompressedTensorsW4A4MoeMethod(layer.moe_config)
168
+ elif (
169
+ quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
170
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
171
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)
172
+ ):
173
+ return CompressedTensorsW8A8Fp8MoEMethod(quant_config, layer.moe_config)
174
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
175
+ return CompressedTensorsW8A8Int8MoEMethod(quant_config, layer.moe_config)
176
+ elif quant_config._is_dynamic_token_w4a8_int(weight_quant, input_quant):
177
+ return CompressedTensorsW4A8Int8MoEMethod(quant_config, layer.moe_config)
178
+ else:
179
+ raise RuntimeError(
180
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}"
181
+ )
182
+
183
+
184
+ class CompressedTensorsW4A4MoeMethod(CompressedTensorsMoEMethod):
185
+ def __init__(self, moe: FusedMoEConfig):
186
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
187
+ detect_nvfp4_moe_support,
188
+ )
189
+
190
+ super().__init__(moe)
191
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
192
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
193
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
194
+ self.use_marlin = _nvfp4.use_marlin
195
+ self.group_size = 16
196
+
197
+ def create_weights(
198
+ self,
199
+ layer: torch.nn.Module,
200
+ num_experts: int,
201
+ hidden_size: int,
202
+ intermediate_size_per_partition: int,
203
+ params_dtype: torch.dtype,
204
+ **extra_weight_attrs,
205
+ ):
206
+ layer.num_experts = num_experts
207
+ layer.params_dtype = params_dtype
208
+
209
+ w13_weight = torch.nn.Parameter(
210
+ torch.empty(
211
+ num_experts,
212
+ 2 * intermediate_size_per_partition,
213
+ # 2 fp4 items are packed in the input dimension
214
+ hidden_size // 2,
215
+ requires_grad=False,
216
+ dtype=torch.uint8,
217
+ ),
218
+ requires_grad=False,
219
+ )
220
+ layer.register_parameter("w13_weight_packed", w13_weight)
221
+ set_weight_attrs(w13_weight, extra_weight_attrs)
222
+
223
+ w2_weight = torch.nn.Parameter(
224
+ torch.empty(
225
+ num_experts,
226
+ hidden_size,
227
+ # 2 fp4 items are packed in the input dimension
228
+ intermediate_size_per_partition // 2,
229
+ dtype=torch.uint8,
230
+ ),
231
+ requires_grad=False,
232
+ )
233
+ layer.register_parameter("w2_weight_packed", w2_weight)
234
+ set_weight_attrs(w2_weight, extra_weight_attrs)
235
+
236
+ # Weight Scales
237
+ w13_weight_scale = torch.nn.Parameter(
238
+ torch.empty(
239
+ num_experts,
240
+ 2 * intermediate_size_per_partition,
241
+ # 2 fp4 items are packed in the input dimension
242
+ hidden_size // self.group_size,
243
+ dtype=torch.float8_e4m3fn,
244
+ ),
245
+ requires_grad=False,
246
+ )
247
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
248
+ extra_weight_attrs.update(
249
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
250
+ )
251
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
252
+
253
+ w2_weight_scale = torch.nn.Parameter(
254
+ torch.empty(
255
+ num_experts,
256
+ hidden_size,
257
+ # 2 fp4 items are packed in the input dimension
258
+ intermediate_size_per_partition // self.group_size,
259
+ dtype=torch.float8_e4m3fn,
260
+ ),
261
+ requires_grad=False,
262
+ )
263
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
264
+ extra_weight_attrs.update(
265
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
266
+ )
267
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
268
+
269
+ # Weight Global Scales
270
+ w13_weight_scale_2 = torch.nn.Parameter(
271
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
272
+ )
273
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
274
+ extra_weight_attrs.update(
275
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
276
+ )
277
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
278
+
279
+ w2_weight_scale_2 = torch.nn.Parameter(
280
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
281
+ )
282
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
283
+ extra_weight_attrs.update(
284
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
285
+ )
286
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
287
+
288
+ # Input Global Scales
289
+ w13_input_scale = torch.nn.Parameter(
290
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
291
+ )
292
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
293
+ extra_weight_attrs.update(
294
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
295
+ )
296
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
297
+
298
+ w2_input_scale = torch.nn.Parameter(
299
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
300
+ )
301
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
302
+ extra_weight_attrs.update(
303
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
304
+ )
305
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
306
+
307
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
308
+ # From packed to weight
309
+ layer.w13_weight = torch.nn.Parameter(
310
+ layer.w13_weight_packed.data, requires_grad=False
311
+ )
312
+ delattr(layer, "w13_weight_packed")
313
+
314
+ layer.w2_weight = torch.nn.Parameter(
315
+ layer.w2_weight_packed.data, requires_grad=False
316
+ )
317
+ delattr(layer, "w2_weight_packed")
318
+
319
+ # reorder GEMM1 weights and block scales for FlashInfer CUTLASS kernel.
320
+ if self.allow_flashinfer:
321
+ w, s = reorder_w1w3_to_w3w1(
322
+ layer.w13_weight.data, layer.w13_weight_scale.data, dim=-2
323
+ )
324
+ layer.w13_weight = torch.nn.Parameter(w, requires_grad=False)
325
+ layer.w13_weight_scale = torch.nn.Parameter(s, requires_grad=False)
326
+
327
+ if not torch.allclose(
328
+ layer.w13_weight_global_scale[:, 0], layer.w13_weight_global_scale[:, 1]
329
+ ):
330
+ logger.warning_once(
331
+ "w1_weight_global_scale must match w3_weight_global_scale. "
332
+ "Accuracy may be affected."
333
+ )
334
+
335
+ # Take inverse of global scale saved to disk
336
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
337
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False
338
+ )
339
+
340
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
341
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False
342
+ )
343
+
344
+ if self.use_marlin:
345
+ prepare_moe_fp4_layer_for_marlin(layer)
346
+ return
347
+
348
+ # swizzle weight scales
349
+ layer.w13_weight_scale = torch.nn.Parameter(
350
+ swizzle_blockscale(layer.w13_weight_scale), requires_grad=False
351
+ )
352
+
353
+ layer.w2_weight_scale = torch.nn.Parameter(
354
+ swizzle_blockscale(layer.w2_weight_scale), requires_grad=False
355
+ )
356
+
357
+ # w13
358
+ w13_input_global_scale = layer.w13_input_global_scale.max(dim=1).values.to(
359
+ torch.float32
360
+ )
361
+
362
+ layer.g1_alphas = torch.nn.Parameter(
363
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
364
+ requires_grad=False,
365
+ )
366
+
367
+ layer.w13_input_scale_quant = torch.nn.Parameter(
368
+ (w13_input_global_scale), requires_grad=False
369
+ )
370
+
371
+ # w2
372
+ layer.g2_alphas = torch.nn.Parameter(
373
+ ((1 / layer.w2_input_global_scale) * layer.w2_weight_scale_2).to(
374
+ torch.float32
375
+ ),
376
+ requires_grad=False,
377
+ )
378
+
379
+ layer.w2_input_scale_quant = torch.nn.Parameter(
380
+ (layer.w2_input_global_scale), requires_grad=False
381
+ )
382
+
383
+ def maybe_make_prepare_finalize(self) -> mk.FusedMoEPrepareAndFinalize | None:
384
+ if self.use_marlin:
385
+ return None
386
+ elif not self.allow_flashinfer:
387
+ return super().maybe_make_prepare_finalize()
388
+
389
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(self.moe)
390
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
391
+ return prepare_finalize
392
+
393
+ def select_gemm_impl(
394
+ self,
395
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
396
+ layer: torch.nn.Module,
397
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
398
+ assert self.moe_quant_config is not None
399
+ """Return the appropriate GEMM experts implementation."""
400
+ experts = select_nvfp4_gemm_impl(
401
+ self.moe,
402
+ self.moe_quant_config,
403
+ allow_flashinfer=self.allow_flashinfer,
404
+ )
405
+ logger.debug_once("Using %s", experts.__class__.__name__)
406
+ return experts
407
+
408
+ def get_fused_moe_quant_config(
409
+ self, layer: torch.nn.Module
410
+ ) -> FusedMoEQuantConfig | None:
411
+ if self.use_marlin:
412
+ return None
413
+
414
+ return nvfp4_moe_quant_config(
415
+ g1_alphas=layer.g1_alphas,
416
+ g2_alphas=layer.g2_alphas,
417
+ a1_gscale=layer.w13_input_scale_quant,
418
+ a2_gscale=layer.w2_input_scale_quant,
419
+ w1_scale=layer.w13_weight_scale,
420
+ w2_scale=layer.w2_weight_scale,
421
+ )
422
+
423
+ def apply(
424
+ self,
425
+ layer: torch.nn.Module,
426
+ x: torch.Tensor,
427
+ router_logits: torch.Tensor,
428
+ top_k: int,
429
+ renormalize: bool,
430
+ use_grouped_topk: bool = False,
431
+ topk_group: int | None = None,
432
+ num_expert_group: int | None = None,
433
+ global_num_experts: int = -1,
434
+ expert_map: torch.Tensor | None = None,
435
+ custom_routing_function: Callable | None = None,
436
+ scoring_func: str = "softmax",
437
+ routed_scaling_factor: float = 1.0,
438
+ e_score_correction_bias: torch.Tensor | None = None,
439
+ apply_router_weight_on_input: bool = False,
440
+ activation: str = "silu",
441
+ enable_eplb: bool = False,
442
+ expert_load_view: torch.Tensor | None = None,
443
+ logical_to_physical_map: torch.Tensor | None = None,
444
+ logical_replica_count: torch.Tensor | None = None,
445
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
446
+ if enable_eplb:
447
+ raise NotImplementedError(
448
+ "EPLB not supported for `CompressedTensorsW4A4MoeMethod` yet."
449
+ )
450
+ assert activation == "silu", "Only SiLU activation is supported."
451
+
452
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
453
+ hidden_states=x,
454
+ router_logits=router_logits,
455
+ use_grouped_topk=use_grouped_topk,
456
+ top_k=top_k,
457
+ renormalize=renormalize,
458
+ topk_group=topk_group,
459
+ num_expert_group=num_expert_group,
460
+ custom_routing_function=custom_routing_function,
461
+ scoring_func=scoring_func,
462
+ routed_scaling_factor=routed_scaling_factor,
463
+ e_score_correction_bias=e_score_correction_bias,
464
+ indices_type=self.topk_indices_dtype,
465
+ )
466
+
467
+ if self.use_marlin:
468
+ return fused_marlin_moe(
469
+ x,
470
+ layer.w13_weight,
471
+ layer.w2_weight,
472
+ None,
473
+ None,
474
+ layer.w13_weight_scale,
475
+ layer.w2_weight_scale,
476
+ router_logits,
477
+ topk_weights,
478
+ topk_ids,
479
+ global_scale1=layer.w13_weight_scale_2,
480
+ global_scale2=layer.w2_weight_scale_2,
481
+ quant_type_id=scalar_types.float4_e2m1f.id,
482
+ apply_router_weight_on_input=apply_router_weight_on_input,
483
+ global_num_experts=global_num_experts,
484
+ expert_map=expert_map,
485
+ workspace=layer.workspace,
486
+ )
487
+
488
+ # FlashInfer fused experts path
489
+ elif self.allow_flashinfer:
490
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
491
+ flashinfer_cutlass_moe_fp4,
492
+ )
493
+
494
+ assert is_valid_flashinfer_cutlass_fused_moe(
495
+ x, layer.w13_weight, layer.w2_weight
496
+ ), "Flashinfer CUTLASS Fused MoE not applicable!"
497
+
498
+ assert self.moe_quant_config is not None
499
+
500
+ return flashinfer_cutlass_moe_fp4(
501
+ hidden_states=x,
502
+ w1=layer.w13_weight,
503
+ w2=layer.w2_weight,
504
+ topk_weights=topk_weights,
505
+ topk_ids=topk_ids,
506
+ quant_config=self.moe_quant_config,
507
+ inplace=False, # TODO(shuw): fix later, now output is high prec
508
+ activation=activation,
509
+ global_num_experts=global_num_experts,
510
+ expert_map=expert_map,
511
+ apply_router_weight_on_input=apply_router_weight_on_input,
512
+ )
513
+ else:
514
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
515
+
516
+ assert expert_map is None, (
517
+ "Expert Parallelism / expert_map "
518
+ "is currently not supported for "
519
+ "CompressedTensorsW4A4MoeMethod."
520
+ )
521
+ assert self.moe_quant_config is not None
522
+
523
+ # Cutlass moe takes in activations in BF16/Half precision
524
+ # and fp4 quantized weights loaded from the checkpoint
525
+ return cutlass_moe_fp4(
526
+ a=x,
527
+ w1_fp4=layer.w13_weight,
528
+ w2_fp4=layer.w2_weight,
529
+ topk_weights=topk_weights,
530
+ topk_ids=topk_ids,
531
+ quant_config=self.moe_quant_config,
532
+ apply_router_weight_on_input=apply_router_weight_on_input,
533
+ # TODO(bnell): derive these from arguments
534
+ m=x.shape[0],
535
+ n=layer.w2_weight.shape[2] * 2,
536
+ k=x.shape[1],
537
+ e=layer.w13_weight.shape[0],
538
+ ).to(x.dtype)
539
+
540
+
541
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
542
+ def __init__(
543
+ self,
544
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
545
+ moe: FusedMoEConfig,
546
+ ):
547
+ super().__init__(moe)
548
+ self.quant_config = quant_config
549
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get("weights")
550
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
551
+ "input_activations"
552
+ )
553
+
554
+ per_tensor = (
555
+ self.weight_quant.strategy == QuantizationStrategy.TENSOR
556
+ and self.input_quant.strategy == QuantizationStrategy.TENSOR
557
+ )
558
+ per_channel = (
559
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
560
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
561
+ )
562
+ if not (per_tensor or per_channel):
563
+ assert self.weight_quant.strategy == QuantizationStrategy.BLOCK
564
+ self.weight_block_size = self.weight_quant.block_structure
565
+ assert self.weight_quant.dynamic is not None
566
+ else:
567
+ self.weight_block_size = None
568
+ self.block_quant = self.weight_block_size is not None
569
+
570
+ self.static_input_scales = not self.input_quant.dynamic
571
+ if self.static_input_scales and per_channel:
572
+ raise ValueError(
573
+ "For FP8 Fused MoE layer, we require either per tensor or "
574
+ "channelwise, dynamic per token quantization."
575
+ )
576
+
577
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
578
+ # kernel for fast weight-only FP8 quantization
579
+ self.use_marlin = (
580
+ not current_platform.has_device_capability(89)
581
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN
582
+ and not self.block_quant
583
+ )
584
+ # Disable marlin for rocm
585
+ if current_platform.is_rocm():
586
+ self.use_marlin = False
587
+
588
+ self.rocm_aiter_moe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
589
+
590
+ # cutlass path
591
+ self.is_fp8_w8a8_sm100 = quant_config._is_fp8_w8a8_sm100(
592
+ self.weight_quant, self.input_quant
593
+ )
594
+ self.use_cutlass = not self.block_quant and (
595
+ quant_config._is_fp8_w8a8_sm90(self.weight_quant, self.input_quant)
596
+ or self.is_fp8_w8a8_sm100
597
+ )
598
+ self.disable_expert_map = False
599
+
600
+ def create_weights(
601
+ self,
602
+ layer: torch.nn.Module,
603
+ num_experts: int,
604
+ hidden_size: int,
605
+ intermediate_size_per_partition: int,
606
+ params_dtype: torch.dtype,
607
+ **extra_weight_attrs,
608
+ ):
609
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
610
+ layer.hidden_size = hidden_size
611
+ layer.num_experts = num_experts
612
+ layer.orig_dtype = params_dtype
613
+ layer.weight_block_size = None
614
+
615
+ params_dtype = torch.float8_e4m3fn
616
+
617
+ if self.block_quant:
618
+ assert self.weight_block_size is not None
619
+ layer.weight_block_size = self.weight_block_size
620
+ tp_size = get_tensor_model_parallel_world_size()
621
+ block_n, block_k = (
622
+ self.weight_block_size[0],
623
+ self.weight_block_size[1],
624
+ )
625
+ # NOTE: To ensure proper alignment of the block-wise quantization
626
+ # scales, the output_size of the weights for both the gate and up
627
+ # layers must be divisible by block_n.
628
+ # Required by column parallel or enabling merged weights
629
+ if intermediate_size_per_partition % block_n != 0:
630
+ raise ValueError(
631
+ f"The output_size of gate's and up's weight = "
632
+ f"{intermediate_size_per_partition} is not divisible by "
633
+ f"weight quantization block_n = {block_n}."
634
+ )
635
+ if tp_size > 1 and intermediate_size_per_partition % block_k != 0:
636
+ # Required by row parallel
637
+ raise ValueError(
638
+ f"The input_size of down's weight = "
639
+ f"{intermediate_size_per_partition} is not divisible by "
640
+ f"weight quantization block_k = {block_k}."
641
+ )
642
+
643
+ # WEIGHTS
644
+ w13_weight = torch.nn.Parameter(
645
+ torch.empty(
646
+ num_experts,
647
+ 2 * intermediate_size_per_partition,
648
+ hidden_size,
649
+ dtype=params_dtype,
650
+ ),
651
+ requires_grad=False,
652
+ )
653
+ layer.register_parameter("w13_weight", w13_weight)
654
+ set_weight_attrs(w13_weight, extra_weight_attrs)
655
+
656
+ w2_weight = torch.nn.Parameter(
657
+ torch.empty(
658
+ num_experts,
659
+ hidden_size,
660
+ intermediate_size_per_partition,
661
+ dtype=params_dtype,
662
+ ),
663
+ requires_grad=False,
664
+ )
665
+ layer.register_parameter("w2_weight", w2_weight)
666
+ set_weight_attrs(w2_weight, extra_weight_attrs)
667
+
668
+ # WEIGHT_SCALES
669
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
670
+ # Allocate 2 scales for w1 and w3 respectively.
671
+ # They are combined to a single scale after weight loading.
672
+ w13_weight_scale = torch.nn.Parameter(
673
+ torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
674
+ )
675
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
676
+ w2_weight_scale = torch.nn.Parameter(
677
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
678
+ )
679
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
680
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
681
+ extra_weight_attrs.update(
682
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
683
+ )
684
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
685
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
686
+
687
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
688
+ w13_weight_scale = torch.nn.Parameter(
689
+ torch.ones(
690
+ num_experts,
691
+ 2 * intermediate_size_per_partition,
692
+ 1,
693
+ dtype=torch.float32,
694
+ ),
695
+ requires_grad=False,
696
+ )
697
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
698
+ w2_weight_scale = torch.nn.Parameter(
699
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
700
+ requires_grad=False,
701
+ )
702
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
703
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
704
+ extra_weight_attrs.update(
705
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
706
+ )
707
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
708
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
709
+
710
+ elif self.weight_quant.strategy == QuantizationStrategy.BLOCK:
711
+ w13_weight_scale = torch.nn.Parameter(
712
+ torch.ones(
713
+ num_experts,
714
+ 2 * ((intermediate_size_per_partition + block_n - 1) // block_n),
715
+ (hidden_size + block_k - 1) // block_k,
716
+ dtype=torch.float32,
717
+ ),
718
+ requires_grad=False,
719
+ )
720
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
721
+ w2_weight_scale = torch.nn.Parameter(
722
+ torch.ones(
723
+ num_experts,
724
+ (hidden_size + block_n - 1) // block_n,
725
+ (intermediate_size_per_partition + block_k - 1) // block_k,
726
+ dtype=torch.float32,
727
+ ),
728
+ requires_grad=False,
729
+ )
730
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
731
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
732
+ extra_weight_attrs.update(
733
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
734
+ )
735
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
736
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
737
+
738
+ # INPUT_SCALES
739
+ if self.static_input_scales:
740
+ w13_input_scale = torch.nn.Parameter(
741
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
742
+ )
743
+ layer.register_parameter("w13_input_scale", w13_input_scale)
744
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
745
+
746
+ w2_input_scale = torch.nn.Parameter(
747
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
748
+ )
749
+ layer.register_parameter("w2_input_scale", w2_input_scale)
750
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
751
+ else:
752
+ layer.w13_input_scale = None
753
+ layer.w2_input_scale = None
754
+
755
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
756
+ # Fp8 moe kernels require a single activation scale.
757
+ # We take the max of all the scales in case they differ.
758
+ if self.static_input_scales:
759
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
760
+ if layer.w13_input_scale is None or layer.w2_input_scale is None:
761
+ raise ValueError(
762
+ "QuantConfig has static quantization, but found "
763
+ "activation scales are None."
764
+ )
765
+ if not all_close_1d(layer.w13_input_scale) or not all_close_1d(
766
+ layer.w2_input_scale
767
+ ):
768
+ logger.warning_once(
769
+ "Found input_scales that are not equal for "
770
+ "fp8 MoE layer. Using the maximum across experts "
771
+ "for each layer."
772
+ )
773
+ layer.w13_input_scale = torch.nn.Parameter(
774
+ layer.w13_input_scale.max(), requires_grad=False
775
+ )
776
+ layer.w2_input_scale = torch.nn.Parameter(
777
+ layer.w2_input_scale.max(), requires_grad=False
778
+ )
779
+
780
+ if current_platform.is_fp8_fnuz():
781
+ # Normalize the weights and scales
782
+ w13_weight, w13_weight_scale, w13_input_scale = (
783
+ normalize_e4m3fn_to_e4m3fnuz(
784
+ layer.w13_weight, layer.w13_weight_scale, layer.w13_input_scale
785
+ )
786
+ )
787
+ w2_weight, w2_weight_scale, w2_input_scale = normalize_e4m3fn_to_e4m3fnuz(
788
+ layer.w2_weight, layer.w2_weight_scale, layer.w2_input_scale
789
+ )
790
+ # Reset the parameter
791
+ layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
792
+ layer.w13_weight_scale = torch.nn.Parameter(
793
+ w13_weight_scale, requires_grad=False
794
+ )
795
+ if w13_input_scale is not None:
796
+ layer.w13_input_scale = torch.nn.Parameter(
797
+ w13_input_scale, requires_grad=False
798
+ )
799
+ layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
800
+ layer.w2_weight_scale = torch.nn.Parameter(
801
+ w2_weight_scale, requires_grad=False
802
+ )
803
+ if w2_input_scale is not None:
804
+ layer.w2_input_scale = torch.nn.Parameter(
805
+ w2_input_scale, requires_grad=False
806
+ )
807
+
808
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
809
+ # for w13 per expert. Use max then dequant and requant each expert.
810
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
811
+ assert layer.w13_weight_scale is not None
812
+ shard_size = layer.intermediate_size_per_partition
813
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
814
+ for expert_id in range(layer.local_num_experts):
815
+ start = 0
816
+ for shard_id in range(2):
817
+ dq_weight = per_tensor_dequantize(
818
+ layer.w13_weight[expert_id][start : start + shard_size, :],
819
+ layer.w13_weight_scale[expert_id][shard_id],
820
+ )
821
+ layer.w13_weight[expert_id][start : start + shard_size, :], _ = (
822
+ ops.scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
823
+ )
824
+ start += shard_size
825
+ layer.w13_weight_scale = torch.nn.Parameter(
826
+ max_w13_scales, requires_grad=False
827
+ )
828
+
829
+ # Property to determine if AITER is used
830
+ if self.rocm_aiter_moe_enabled:
831
+ # reshaping weights is required for aiter moe kernel.
832
+ shuffled_w13, shuffled_w2 = rocm_aiter_ops.shuffle_weights(
833
+ layer.w13_weight.data, layer.w2_weight.data
834
+ )
835
+
836
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13, requires_grad=False)
837
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2, requires_grad=False)
838
+
839
+ elif self.use_marlin:
840
+ prepare_moe_fp8_layer_for_marlin(layer, False)
841
+ # Activations not quantized for marlin.
842
+ del layer.w13_input_scale
843
+ del layer.w2_input_scale
844
+
845
+ if self.use_cutlass:
846
+ assert self.weight_quant.strategy != QuantizationStrategy.BLOCK
847
+ device = layer.w13_weight.device
848
+ # ab_strides1 and c_strides2 are the same
849
+ self.ab_strides1_c_strides2 = torch.full(
850
+ (layer.local_num_experts,),
851
+ layer.hidden_size,
852
+ device=device,
853
+ dtype=torch.int64,
854
+ )
855
+ self.ab_strides2 = torch.full(
856
+ (layer.local_num_experts,),
857
+ layer.intermediate_size_per_partition,
858
+ device=device,
859
+ dtype=torch.int64,
860
+ )
861
+ self.c_strides1 = torch.full(
862
+ (layer.local_num_experts,),
863
+ 2 * layer.intermediate_size_per_partition,
864
+ device=device,
865
+ dtype=torch.int64,
866
+ )
867
+
868
+ if is_deep_gemm_e8m0_used() and self.block_quant:
869
+ assert layer.weight_block_size is not None
870
+ # Re-quantise the expert weights so their scales are UE8M0.
871
+ block_sz = tuple(layer.weight_block_size)
872
+ requant_weight_ue8m0_inplace(
873
+ layer.w13_weight.data,
874
+ layer.w13_weight_scale.data,
875
+ block_sz,
876
+ )
877
+ requant_weight_ue8m0_inplace(
878
+ layer.w2_weight.data,
879
+ layer.w2_weight_scale.data,
880
+ block_sz,
881
+ )
882
+
883
+ # Ensure column-major TMA alignment expected by DeepGEMM.
884
+ if expert_weight_is_col_major(layer.w13_weight_scale):
885
+ layer.w13_weight_scale = get_col_major_tma_aligned_tensor(
886
+ layer.w13_weight_scale
887
+ )
888
+ if expert_weight_is_col_major(layer.w2_weight_scale):
889
+ layer.w2_weight_scale = get_col_major_tma_aligned_tensor(
890
+ layer.w2_weight_scale
891
+ )
892
+
893
+ def maybe_make_prepare_finalize(self) -> mk.FusedMoEPrepareAndFinalize | None:
894
+ if self.use_marlin or self.rocm_aiter_moe_enabled:
895
+ return None
896
+ else:
897
+ return super().maybe_make_prepare_finalize()
898
+
899
+ def select_gemm_impl(
900
+ self,
901
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
902
+ layer: torch.nn.Module,
903
+ ) -> FusedMoEPermuteExpertsUnpermute:
904
+ # cutlass path
905
+ assert self.moe_quant_config is not None
906
+ if self.use_cutlass:
907
+ from vllm.model_executor.layers.fused_moe import (
908
+ CutlassBatchedExpertsFp8,
909
+ CutlassExpertsFp8,
910
+ )
911
+
912
+ experts: FusedMoEPermuteExpertsUnpermute
913
+
914
+ num_dispatchers = prepare_finalize.num_dispatchers()
915
+
916
+ if (
917
+ prepare_finalize.activation_format
918
+ == FusedMoEActivationFormat.BatchedExperts
919
+ ):
920
+ logger.debug("CutlassBatchedExpertsFp8(%s)", self.__class__.__name__)
921
+ experts = CutlassBatchedExpertsFp8(
922
+ self.moe.num_local_experts,
923
+ num_dispatchers,
924
+ self.moe.in_dtype,
925
+ ab_strides1=self.ab_strides1_c_strides2,
926
+ ab_strides2=self.ab_strides2,
927
+ c_strides1=self.c_strides1,
928
+ c_strides2=self.ab_strides1_c_strides2,
929
+ quant_config=self.moe_quant_config,
930
+ )
931
+ else:
932
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
933
+ experts = CutlassExpertsFp8(
934
+ self.moe.in_dtype,
935
+ ab_strides1=self.ab_strides1_c_strides2,
936
+ ab_strides2=self.ab_strides2,
937
+ c_strides1=self.c_strides1,
938
+ c_strides2=self.ab_strides1_c_strides2,
939
+ quant_config=self.moe_quant_config,
940
+ )
941
+
942
+ self.disable_expert_map = (
943
+ num_dispatchers > 1 or not experts.supports_expert_map()
944
+ )
945
+
946
+ return experts
947
+
948
+ # triton path
949
+ from vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe import ( # noqa: E501
950
+ BatchedTritonOrDeepGemmExperts,
951
+ )
952
+ from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
953
+ TritonOrDeepGemmExperts,
954
+ )
955
+
956
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
957
+
958
+ if (
959
+ prepare_finalize.activation_format
960
+ == FusedMoEActivationFormat.BatchedExperts
961
+ ):
962
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
963
+ assert max_num_tokens_per_rank is not None
964
+
965
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
966
+ return BatchedTritonOrDeepGemmExperts(
967
+ max_num_tokens=max_num_tokens_per_rank,
968
+ num_dispatchers=prepare_finalize.num_dispatchers(),
969
+ quant_config=self.moe_quant_config,
970
+ allow_deep_gemm=(
971
+ envs.VLLM_USE_DEEP_GEMM and envs.VLLM_MOE_USE_DEEP_GEMM
972
+ ),
973
+ )
974
+ else:
975
+ logger.debug("TritonOrDeepGemmExperts(%s)", self.__class__.__name__)
976
+ return TritonOrDeepGemmExperts(
977
+ self.moe_quant_config,
978
+ allow_deep_gemm=(
979
+ envs.VLLM_USE_DEEP_GEMM and envs.VLLM_MOE_USE_DEEP_GEMM
980
+ ),
981
+ )
982
+
983
+ def get_fused_moe_quant_config(
984
+ self, layer: torch.nn.Module
985
+ ) -> FusedMoEQuantConfig | None:
986
+ if self.use_marlin:
987
+ return None
988
+
989
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
990
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
991
+
992
+ return fp8_w8a8_moe_quant_config(
993
+ w1_scale=layer.w13_weight_scale,
994
+ w2_scale=layer.w2_weight_scale,
995
+ a1_scale=layer.w13_input_scale,
996
+ a2_scale=layer.w2_input_scale,
997
+ per_act_token_quant=per_act_token,
998
+ per_out_ch_quant=per_channel_quant,
999
+ block_shape=layer.weight_block_size,
1000
+ )
1001
+
1002
+ def apply(
1003
+ self,
1004
+ layer: torch.nn.Module,
1005
+ x: torch.Tensor,
1006
+ router_logits: torch.Tensor,
1007
+ top_k: int,
1008
+ renormalize: bool,
1009
+ use_grouped_topk: bool = False,
1010
+ topk_group: int | None = None,
1011
+ num_expert_group: int | None = None,
1012
+ global_num_experts: int = -1,
1013
+ expert_map: torch.Tensor | None = None,
1014
+ custom_routing_function: Callable | None = None,
1015
+ scoring_func: str = "softmax",
1016
+ routed_scaling_factor: float = 1.0,
1017
+ e_score_correction_bias: torch.Tensor | None = None,
1018
+ apply_router_weight_on_input: bool = False,
1019
+ activation: str = "silu",
1020
+ enable_eplb: bool = False,
1021
+ expert_load_view: torch.Tensor | None = None,
1022
+ logical_to_physical_map: torch.Tensor | None = None,
1023
+ logical_replica_count: torch.Tensor | None = None,
1024
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1025
+ if enable_eplb:
1026
+ assert expert_load_view is not None
1027
+ assert logical_to_physical_map is not None
1028
+ assert logical_replica_count is not None
1029
+ assert isinstance(layer, FusedMoE)
1030
+
1031
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1032
+ hidden_states=x,
1033
+ router_logits=router_logits,
1034
+ use_grouped_topk=use_grouped_topk,
1035
+ top_k=top_k,
1036
+ renormalize=renormalize,
1037
+ topk_group=topk_group,
1038
+ num_expert_group=num_expert_group,
1039
+ custom_routing_function=custom_routing_function,
1040
+ scoring_func=scoring_func,
1041
+ routed_scaling_factor=routed_scaling_factor,
1042
+ e_score_correction_bias=e_score_correction_bias,
1043
+ indices_type=self.topk_indices_dtype,
1044
+ num_fused_shared_experts=layer.num_fused_shared_experts,
1045
+ enable_eplb=enable_eplb,
1046
+ expert_map=expert_map,
1047
+ expert_load_view=expert_load_view,
1048
+ logical_to_physical_map=logical_to_physical_map,
1049
+ logical_replica_count=logical_replica_count,
1050
+ )
1051
+
1052
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
1053
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1054
+
1055
+ if self.use_marlin:
1056
+ assert activation == "silu", f"{activation} not supported for Marlin MoE."
1057
+ return fused_marlin_moe(
1058
+ x,
1059
+ layer.w13_weight,
1060
+ layer.w2_weight,
1061
+ None,
1062
+ None,
1063
+ layer.w13_weight_scale,
1064
+ layer.w2_weight_scale,
1065
+ router_logits,
1066
+ topk_weights,
1067
+ topk_ids,
1068
+ quant_type_id=scalar_types.float8_e4m3fn.id,
1069
+ apply_router_weight_on_input=apply_router_weight_on_input,
1070
+ global_num_experts=global_num_experts,
1071
+ expert_map=expert_map,
1072
+ workspace=layer.workspace,
1073
+ )
1074
+
1075
+ elif self.rocm_aiter_moe_enabled:
1076
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
1077
+ rocm_aiter_fused_experts,
1078
+ )
1079
+
1080
+ assert per_act_token == per_channel_quant
1081
+ assert self.moe_quant_config is not None
1082
+ return rocm_aiter_fused_experts(
1083
+ hidden_states=x,
1084
+ w1=layer.w13_weight,
1085
+ w2=layer.w2_weight,
1086
+ topk_weights=topk_weights,
1087
+ topk_ids=topk_ids,
1088
+ activation=activation,
1089
+ apply_router_weight_on_input=apply_router_weight_on_input,
1090
+ expert_map=expert_map,
1091
+ quant_config=self.moe_quant_config,
1092
+ )
1093
+
1094
+ # cutlass path
1095
+ elif self.use_cutlass:
1096
+ assert self.moe_quant_config is not None
1097
+
1098
+ # small-batch fallback on SM100
1099
+ if self.is_fp8_w8a8_sm100 and topk_ids.shape[0] <= 8:
1100
+ from vllm.model_executor.layers.fused_moe import fused_experts
1101
+
1102
+ assert per_act_token == per_channel_quant
1103
+ return fused_experts(
1104
+ hidden_states=x,
1105
+ w1=layer.w13_weight,
1106
+ w2=layer.w2_weight,
1107
+ topk_weights=topk_weights,
1108
+ topk_ids=topk_ids,
1109
+ inplace=True,
1110
+ activation=activation,
1111
+ apply_router_weight_on_input=apply_router_weight_on_input,
1112
+ global_num_experts=global_num_experts,
1113
+ expert_map=None if self.disable_expert_map else expert_map,
1114
+ quant_config=self.moe_quant_config,
1115
+ )
1116
+ else:
1117
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
1118
+ cutlass_moe_fp8,
1119
+ )
1120
+
1121
+ assert per_act_token == per_channel_quant
1122
+ assert self.moe_quant_config is not None
1123
+ return cutlass_moe_fp8(
1124
+ x,
1125
+ layer.w13_weight,
1126
+ layer.w2_weight,
1127
+ topk_weights,
1128
+ topk_ids,
1129
+ quant_config=self.moe_quant_config,
1130
+ activation=activation,
1131
+ global_num_experts=global_num_experts,
1132
+ expert_map=None if self.disable_expert_map else expert_map,
1133
+ ab_strides1=self.ab_strides1_c_strides2,
1134
+ ab_strides2=self.ab_strides2,
1135
+ c_strides1=self.c_strides1,
1136
+ c_strides2=self.ab_strides1_c_strides2,
1137
+ )
1138
+
1139
+ else:
1140
+ from vllm.model_executor.layers.fused_moe import fused_experts
1141
+
1142
+ assert per_act_token == per_channel_quant
1143
+ assert self.moe_quant_config is not None
1144
+ return fused_experts(
1145
+ hidden_states=x,
1146
+ w1=layer.w13_weight,
1147
+ w2=layer.w2_weight,
1148
+ topk_weights=topk_weights,
1149
+ topk_ids=topk_ids,
1150
+ inplace=True,
1151
+ activation=activation,
1152
+ apply_router_weight_on_input=apply_router_weight_on_input,
1153
+ global_num_experts=global_num_experts,
1154
+ expert_map=expert_map,
1155
+ quant_config=self.moe_quant_config,
1156
+ )
1157
+
1158
+ @property
1159
+ def supports_eplb(self) -> bool:
1160
+ return True
1161
+
1162
+
1163
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
1164
+ def __init__(
1165
+ self,
1166
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1167
+ moe: FusedMoEConfig,
1168
+ ):
1169
+ super().__init__(moe)
1170
+ self.quant_config = quant_config
1171
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get("weights")
1172
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
1173
+ "input_activations"
1174
+ )
1175
+
1176
+ per_channel = (
1177
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1178
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
1179
+ )
1180
+ if not per_channel:
1181
+ raise ValueError(
1182
+ "For INT8 Fused MoE layers, we require channelwise, "
1183
+ "dynamic per token quantization. Found "
1184
+ f"{self.weight_quant}, {self.input_quant}"
1185
+ )
1186
+
1187
+ self.static_input_scales = not self.input_quant.dynamic
1188
+ if self.static_input_scales:
1189
+ raise ValueError(
1190
+ "For INT8 Fused MoE layers, we require channelwise, "
1191
+ "dynamic per token quantization. Found static input scales."
1192
+ )
1193
+
1194
+ def create_weights(
1195
+ self,
1196
+ layer: torch.nn.Module,
1197
+ num_experts: int,
1198
+ hidden_size: int,
1199
+ intermediate_size_per_partition: int,
1200
+ params_dtype: torch.dtype,
1201
+ **extra_weight_attrs,
1202
+ ):
1203
+ params_dtype = torch.int8
1204
+
1205
+ # WEIGHTS
1206
+ w13_weight = torch.nn.Parameter(
1207
+ torch.empty(
1208
+ num_experts,
1209
+ 2 * intermediate_size_per_partition,
1210
+ hidden_size,
1211
+ dtype=params_dtype,
1212
+ ),
1213
+ requires_grad=False,
1214
+ )
1215
+ layer.register_parameter("w13_weight", w13_weight)
1216
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1217
+
1218
+ w2_weight = torch.nn.Parameter(
1219
+ torch.empty(
1220
+ num_experts,
1221
+ hidden_size,
1222
+ intermediate_size_per_partition,
1223
+ dtype=params_dtype,
1224
+ ),
1225
+ requires_grad=False,
1226
+ )
1227
+ layer.register_parameter("w2_weight", w2_weight)
1228
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1229
+
1230
+ # WEIGHT_SCALES
1231
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1232
+ w13_weight_scale = torch.nn.Parameter(
1233
+ torch.ones(
1234
+ num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
1235
+ ),
1236
+ requires_grad=False,
1237
+ )
1238
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1239
+ w2_weight_scale = torch.nn.Parameter(
1240
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
1241
+ requires_grad=False,
1242
+ )
1243
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1244
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1245
+ extra_weight_attrs.update(
1246
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
1247
+ )
1248
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1249
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1250
+
1251
+ # INPUT_SCALES
1252
+ assert not self.static_input_scales
1253
+ layer.w13_input_scale = None
1254
+ layer.w2_input_scale = None
1255
+
1256
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1257
+ pass
1258
+
1259
+ def get_fused_moe_quant_config(
1260
+ self, layer: torch.nn.Module
1261
+ ) -> FusedMoEQuantConfig | None:
1262
+ return int8_w8a8_moe_quant_config(
1263
+ w1_scale=layer.w13_weight_scale,
1264
+ w2_scale=layer.w2_weight_scale,
1265
+ a1_scale=layer.w13_input_scale,
1266
+ a2_scale=layer.w2_input_scale,
1267
+ per_act_token_quant=True,
1268
+ )
1269
+
1270
+ def apply(
1271
+ self,
1272
+ layer: torch.nn.Module,
1273
+ x: torch.Tensor,
1274
+ router_logits: torch.Tensor,
1275
+ top_k: int,
1276
+ renormalize: bool,
1277
+ use_grouped_topk: bool = False,
1278
+ topk_group: int | None = None,
1279
+ num_expert_group: int | None = None,
1280
+ global_num_experts: int = -1,
1281
+ expert_map: torch.Tensor | None = None,
1282
+ custom_routing_function: Callable | None = None,
1283
+ scoring_func: str = "softmax",
1284
+ routed_scaling_factor: float = 1.0,
1285
+ e_score_correction_bias: torch.Tensor | None = None,
1286
+ apply_router_weight_on_input: bool = False,
1287
+ activation: str = "silu",
1288
+ enable_eplb: bool = False,
1289
+ expert_load_view: torch.Tensor | None = None,
1290
+ logical_to_physical_map: torch.Tensor | None = None,
1291
+ logical_replica_count: torch.Tensor | None = None,
1292
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1293
+ if enable_eplb:
1294
+ raise NotImplementedError(
1295
+ "EPLB not supported for `CompressedTensorsW8A8Int8MoEMethod` yet."
1296
+ )
1297
+
1298
+ from vllm.model_executor.layers.fused_moe import fused_experts
1299
+
1300
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1301
+ hidden_states=x,
1302
+ router_logits=router_logits,
1303
+ use_grouped_topk=use_grouped_topk,
1304
+ top_k=top_k,
1305
+ renormalize=renormalize,
1306
+ topk_group=topk_group,
1307
+ num_expert_group=num_expert_group,
1308
+ custom_routing_function=custom_routing_function,
1309
+ scoring_func=scoring_func,
1310
+ routed_scaling_factor=routed_scaling_factor,
1311
+ e_score_correction_bias=e_score_correction_bias,
1312
+ indices_type=self.topk_indices_dtype,
1313
+ )
1314
+
1315
+ return fused_experts(
1316
+ hidden_states=x,
1317
+ w1=layer.w13_weight,
1318
+ w2=layer.w2_weight,
1319
+ topk_weights=topk_weights,
1320
+ topk_ids=topk_ids,
1321
+ inplace=True,
1322
+ activation=activation,
1323
+ apply_router_weight_on_input=apply_router_weight_on_input,
1324
+ global_num_experts=global_num_experts,
1325
+ expert_map=expert_map,
1326
+ quant_config=self.moe_quant_config,
1327
+ )
1328
+
1329
+
1330
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1331
+ def __init__(
1332
+ self,
1333
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1334
+ moe: FusedMoEConfig,
1335
+ ):
1336
+ super().__init__(moe)
1337
+ self.quant_config = quant_config
1338
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1339
+ # are supported + check if the layer is being ignored.
1340
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1341
+ self.num_bits = config.num_bits
1342
+ self.packed_factor = 32 // config.num_bits
1343
+ self.strategy = config.strategy
1344
+ self.group_size = config.group_size
1345
+ self.actorder = config.actorder
1346
+ assert config.symmetric, "Only symmetric quantization is supported for MoE"
1347
+
1348
+ if not (
1349
+ self.quant_config.quant_format == CompressionFormat.pack_quantized.value
1350
+ and self.num_bits in WNA16_SUPPORTED_BITS
1351
+ ):
1352
+ raise ValueError(
1353
+ "For Fused MoE layers, only ",
1354
+ f"{CompressionFormat.pack_quantized.value} ",
1355
+ "is supported for the following bits: ",
1356
+ f"{WNA16_SUPPORTED_BITS}",
1357
+ )
1358
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1359
+ self.use_marlin = True
1360
+
1361
+ def create_weights(
1362
+ self,
1363
+ layer: torch.nn.Module,
1364
+ num_experts: int,
1365
+ hidden_size: int,
1366
+ intermediate_size_per_partition: int,
1367
+ params_dtype: torch.dtype,
1368
+ **extra_weight_attrs,
1369
+ ):
1370
+ intermediate_size_full = extra_weight_attrs.pop("intermediate_size_full")
1371
+
1372
+ # Will transpose the loaded weight along the
1373
+ # intermediate and hidden dim sizes. Will
1374
+ # shard for TP along the transposed dims
1375
+ extra_weight_attrs.update(
1376
+ {"is_transposed": True, "quant_method": self.strategy}
1377
+ )
1378
+ w13_weight = torch.nn.Parameter(
1379
+ torch.empty(
1380
+ num_experts,
1381
+ hidden_size // self.packed_factor,
1382
+ 2 * intermediate_size_per_partition,
1383
+ dtype=torch.int32,
1384
+ ),
1385
+ requires_grad=False,
1386
+ )
1387
+ layer.register_parameter("w13_weight_packed", w13_weight)
1388
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1389
+
1390
+ w2_weight = torch.nn.Parameter(
1391
+ torch.empty(
1392
+ num_experts,
1393
+ intermediate_size_per_partition // self.packed_factor,
1394
+ hidden_size,
1395
+ dtype=torch.int32,
1396
+ ),
1397
+ requires_grad=False,
1398
+ )
1399
+ layer.register_parameter("w2_weight_packed", w2_weight)
1400
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1401
+
1402
+ # In the case where we have actorder/g_idx,
1403
+ # we do not partition the w2 scales
1404
+ load_full_w2 = self.actorder and self.group_size != -1
1405
+ w2_scales_size = (
1406
+ intermediate_size_full if load_full_w2 else intermediate_size_per_partition
1407
+ )
1408
+
1409
+ self.is_k_full = (not self.actorder) or (
1410
+ intermediate_size_per_partition == intermediate_size_full
1411
+ )
1412
+
1413
+ if self.strategy == "channel":
1414
+ num_groups_w2 = num_groups_w13 = 1
1415
+ self.group_size = -1
1416
+ else:
1417
+ num_groups_w2 = w2_scales_size // self.group_size
1418
+ num_groups_w13 = hidden_size // self.group_size
1419
+
1420
+ w13_scale = torch.nn.Parameter(
1421
+ torch.ones(
1422
+ num_experts,
1423
+ num_groups_w13,
1424
+ 2 * intermediate_size_per_partition,
1425
+ dtype=params_dtype,
1426
+ ),
1427
+ requires_grad=False,
1428
+ )
1429
+ layer.register_parameter("w13_weight_scale", w13_scale)
1430
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1431
+
1432
+ w2_scale = torch.nn.Parameter(
1433
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1434
+ requires_grad=False,
1435
+ )
1436
+ layer.register_parameter("w2_weight_scale", w2_scale)
1437
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1438
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1439
+
1440
+ w2_weight_shape = torch.nn.Parameter(
1441
+ torch.empty(num_experts, 2), requires_grad=False
1442
+ )
1443
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1444
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1445
+ w13_weight_shape = torch.nn.Parameter(
1446
+ torch.empty(num_experts, 2), requires_grad=False
1447
+ )
1448
+
1449
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1450
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1451
+
1452
+ w13_g_idx = torch.nn.Parameter(
1453
+ torch.empty(
1454
+ num_experts,
1455
+ hidden_size,
1456
+ dtype=torch.int32,
1457
+ ),
1458
+ requires_grad=False,
1459
+ )
1460
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1461
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1462
+
1463
+ w2_g_idx = torch.nn.Parameter(
1464
+ torch.empty(
1465
+ num_experts,
1466
+ intermediate_size_per_partition,
1467
+ dtype=torch.int32,
1468
+ ),
1469
+ requires_grad=False,
1470
+ )
1471
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1472
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1473
+
1474
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1475
+ torch.empty(
1476
+ num_experts,
1477
+ hidden_size,
1478
+ dtype=torch.int32,
1479
+ ),
1480
+ requires_grad=False,
1481
+ )
1482
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1483
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1484
+
1485
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1486
+ torch.empty(
1487
+ num_experts,
1488
+ intermediate_size_per_partition,
1489
+ dtype=torch.int32,
1490
+ ),
1491
+ requires_grad=False,
1492
+ )
1493
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1494
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1495
+
1496
+ layer.a13_scale = None
1497
+ layer.a2_scale = None
1498
+ layer.marlin_state = GPTQMarlinState.REPACK
1499
+
1500
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1501
+ num_experts = layer.w13_weight_g_idx.shape[0]
1502
+ device = layer.w13_weight_g_idx.device
1503
+
1504
+ # when running models with grouped act order,
1505
+ # resort to g_idx values provided in checkpoint
1506
+ if self.actorder == "group":
1507
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1508
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1509
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1510
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1511
+
1512
+ for e in range(num_experts):
1513
+ w13_g_idx_sort_indices[e] = torch.argsort(layer.w13_weight_g_idx[e]).to(
1514
+ torch.int32
1515
+ )
1516
+ w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_weight_g_idx[e]).to(
1517
+ torch.int32
1518
+ )
1519
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1520
+ w13_g_idx_sort_indices[e]
1521
+ ]
1522
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][w2_g_idx_sort_indices[e]]
1523
+
1524
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1525
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1526
+ replace_parameter(layer, "w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1527
+ replace_parameter(layer, "w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1528
+
1529
+ else:
1530
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1531
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1532
+ requires_grad=False,
1533
+ )
1534
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1535
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1536
+ requires_grad=False,
1537
+ )
1538
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1539
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1540
+ requires_grad=False,
1541
+ )
1542
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1543
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1544
+ requires_grad=False,
1545
+ )
1546
+
1547
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1548
+ layer.w13_weight_packed,
1549
+ layer.w13_g_idx_sort_indices,
1550
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1551
+ layer.w13_weight_packed.shape[2],
1552
+ self.num_bits,
1553
+ )
1554
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1555
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1556
+ layer.w2_weight_packed,
1557
+ layer.w2_g_idx_sort_indices,
1558
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1559
+ layer.w2_weight_packed.shape[2],
1560
+ self.num_bits,
1561
+ )
1562
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1563
+ # Repack scales
1564
+ marlin_w13_scales = marlin_moe_permute_scales(
1565
+ s=layer.w13_weight_scale,
1566
+ size_k=layer.w13_weight_packed.shape[2],
1567
+ size_n=layer.w13_weight_scale.shape[2],
1568
+ group_size=self.group_size,
1569
+ )
1570
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1571
+ marlin_w2_scales = marlin_moe_permute_scales(
1572
+ s=layer.w2_weight_scale,
1573
+ size_k=layer.w2_weight_scale.shape[1]
1574
+ * (self.group_size if self.group_size != -1 else self.packed_factor),
1575
+ size_n=layer.w2_weight_scale.shape[2],
1576
+ group_size=self.group_size,
1577
+ )
1578
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1579
+
1580
+ layer.workspace = marlin_make_workspace_new(device, 4)
1581
+
1582
+ def get_fused_moe_quant_config(
1583
+ self, layer: torch.nn.Module
1584
+ ) -> FusedMoEQuantConfig | None:
1585
+ if self.num_bits != 4:
1586
+ return None
1587
+ return int4_w4a16_moe_quant_config(
1588
+ w1_scale=layer.w13_weight_scale,
1589
+ w2_scale=layer.w2_weight_scale,
1590
+ w1_zp=None,
1591
+ w2_zp=None,
1592
+ block_shape=[0, self.group_size],
1593
+ )
1594
+
1595
+ def select_gemm_impl(
1596
+ self,
1597
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1598
+ layer: torch.nn.Module,
1599
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1600
+ assert self.num_bits == 4, "only supporting w4"
1601
+ layer.w13_weight = layer.w13_weight_packed
1602
+ layer.w2_weight = layer.w2_weight_packed
1603
+ assert all([w is not None for w in [layer.w13_weight, layer.w2_weight]])
1604
+ assert self.moe_quant_config is not None
1605
+ if (
1606
+ prepare_finalize.activation_format
1607
+ == mk.FusedMoEActivationFormat.BatchedExperts
1608
+ ):
1609
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1610
+ assert max_num_tokens_per_rank is not None
1611
+ return BatchedMarlinExperts(
1612
+ max_num_tokens=max_num_tokens_per_rank,
1613
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1614
+ quant_config=self.moe_quant_config,
1615
+ w13_g_idx=layer.w13_weight_g_idx,
1616
+ w2_g_idx=layer.w2_weight_g_idx,
1617
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1618
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1619
+ is_k_full=self.is_k_full,
1620
+ )
1621
+ else:
1622
+ return MarlinExperts(
1623
+ quant_config=self.moe_quant_config,
1624
+ w13_g_idx=layer.w13_weight_g_idx,
1625
+ w2_g_idx=layer.w2_weight_g_idx,
1626
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1627
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1628
+ is_k_full=self.is_k_full,
1629
+ )
1630
+
1631
+ def apply(
1632
+ self,
1633
+ layer: torch.nn.Module,
1634
+ x: torch.Tensor,
1635
+ router_logits: torch.Tensor,
1636
+ top_k: int,
1637
+ renormalize: bool,
1638
+ use_grouped_topk: bool = False,
1639
+ topk_group: int | None = None,
1640
+ num_expert_group: int | None = None,
1641
+ global_num_experts: int = -1,
1642
+ expert_map: torch.Tensor | None = None,
1643
+ custom_routing_function: Callable | None = None,
1644
+ scoring_func: str = "softmax",
1645
+ routed_scaling_factor: float = 1.0,
1646
+ e_score_correction_bias: torch.Tensor | None = None,
1647
+ apply_router_weight_on_input: bool = False,
1648
+ activation: str = "silu",
1649
+ enable_eplb: bool = False,
1650
+ expert_load_view: torch.Tensor | None = None,
1651
+ logical_to_physical_map: torch.Tensor | None = None,
1652
+ logical_replica_count: torch.Tensor | None = None,
1653
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1654
+ if enable_eplb:
1655
+ raise NotImplementedError(
1656
+ "EPLB not supported for `CompressedTensorsWNA16MarlinMoEMethod` yet."
1657
+ )
1658
+
1659
+ assert activation == "silu", f"{activation} not supported for Marlin MoE."
1660
+
1661
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1662
+ hidden_states=x,
1663
+ router_logits=router_logits,
1664
+ use_grouped_topk=use_grouped_topk,
1665
+ top_k=top_k,
1666
+ renormalize=renormalize,
1667
+ topk_group=topk_group,
1668
+ num_expert_group=num_expert_group,
1669
+ custom_routing_function=custom_routing_function,
1670
+ scoring_func=scoring_func,
1671
+ routed_scaling_factor=routed_scaling_factor,
1672
+ e_score_correction_bias=e_score_correction_bias,
1673
+ indices_type=self.topk_indices_dtype,
1674
+ )
1675
+
1676
+ return fused_marlin_moe(
1677
+ x,
1678
+ layer.w13_weight_packed,
1679
+ layer.w2_weight_packed,
1680
+ None,
1681
+ None,
1682
+ layer.w13_weight_scale,
1683
+ layer.w2_weight_scale,
1684
+ router_logits,
1685
+ topk_weights,
1686
+ topk_ids,
1687
+ quant_type_id=self.quant_type.id,
1688
+ apply_router_weight_on_input=apply_router_weight_on_input,
1689
+ global_num_experts=global_num_experts,
1690
+ expert_map=expert_map,
1691
+ g_idx1=layer.w13_weight_g_idx,
1692
+ g_idx2=layer.w2_weight_g_idx,
1693
+ sort_indices1=layer.w13_g_idx_sort_indices,
1694
+ sort_indices2=layer.w2_g_idx_sort_indices,
1695
+ workspace=layer.workspace,
1696
+ is_k_full=self.is_k_full,
1697
+ )
1698
+
1699
+
1700
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1701
+ def __init__(
1702
+ self,
1703
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1704
+ moe: FusedMoEConfig,
1705
+ ):
1706
+ super().__init__(moe)
1707
+ self.quant_config = quant_config
1708
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1709
+ # are supported + check if the layer is being ignored.
1710
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1711
+ self.num_bits = config.num_bits
1712
+ self.packed_factor = 32 // config.num_bits
1713
+ self.strategy = config.strategy
1714
+ # channelwise is not supported by this kernel
1715
+ assert config.strategy == "group"
1716
+ self.group_size = config.group_size
1717
+ # grouped actorder isn't supported by this kernel
1718
+ assert config.actorder != "group"
1719
+ assert config.symmetric, "Only symmetric quantization is supported for MoE"
1720
+
1721
+ if not (
1722
+ self.quant_config.quant_format == CompressionFormat.pack_quantized.value
1723
+ and self.num_bits in WNA16_SUPPORTED_BITS
1724
+ ):
1725
+ raise ValueError(
1726
+ "For Fused MoE layers, only ",
1727
+ f"{CompressionFormat.pack_quantized.value} ",
1728
+ "is supported for the following bits: ",
1729
+ f"{WNA16_SUPPORTED_BITS}",
1730
+ )
1731
+
1732
+ def create_weights(
1733
+ self,
1734
+ layer: torch.nn.Module,
1735
+ num_experts: int,
1736
+ hidden_size: int,
1737
+ intermediate_size_per_partition: int,
1738
+ params_dtype: torch.dtype,
1739
+ **extra_weight_attrs,
1740
+ ):
1741
+ # Will transpose the loaded weight along the
1742
+ # intermediate and hidden dim sizes. Will
1743
+ # shard for TP along the transposed dims
1744
+ extra_weight_attrs.update(
1745
+ {"is_transposed": True, "quant_method": self.strategy}
1746
+ )
1747
+ w13_weight = torch.nn.Parameter(
1748
+ torch.empty(
1749
+ num_experts,
1750
+ hidden_size // self.packed_factor,
1751
+ 2 * intermediate_size_per_partition,
1752
+ dtype=torch.int32,
1753
+ ),
1754
+ requires_grad=False,
1755
+ )
1756
+ layer.register_parameter("w13_weight_packed", w13_weight)
1757
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1758
+
1759
+ w2_weight = torch.nn.Parameter(
1760
+ torch.empty(
1761
+ num_experts,
1762
+ intermediate_size_per_partition // self.packed_factor,
1763
+ hidden_size,
1764
+ dtype=torch.int32,
1765
+ ),
1766
+ requires_grad=False,
1767
+ )
1768
+ layer.register_parameter("w2_weight_packed", w2_weight)
1769
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1770
+
1771
+ w2_scales_size = intermediate_size_per_partition
1772
+
1773
+ if self.strategy == "channel":
1774
+ num_groups_w2 = num_groups_w13 = 1
1775
+ self.group_size = -1
1776
+ else:
1777
+ num_groups_w2 = w2_scales_size // self.group_size
1778
+ num_groups_w13 = hidden_size // self.group_size
1779
+
1780
+ w13_scale = torch.nn.Parameter(
1781
+ torch.ones(
1782
+ num_experts,
1783
+ num_groups_w13,
1784
+ 2 * intermediate_size_per_partition,
1785
+ dtype=params_dtype,
1786
+ ),
1787
+ requires_grad=False,
1788
+ )
1789
+ layer.register_parameter("w13_weight_scale", w13_scale)
1790
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1791
+
1792
+ w2_scale = torch.nn.Parameter(
1793
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1794
+ requires_grad=False,
1795
+ )
1796
+ layer.register_parameter("w2_weight_scale", w2_scale)
1797
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1798
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1799
+
1800
+ w2_weight_shape = torch.nn.Parameter(
1801
+ torch.empty(num_experts, 2), requires_grad=False
1802
+ )
1803
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1804
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1805
+ w13_weight_shape = torch.nn.Parameter(
1806
+ torch.empty(num_experts, 2), requires_grad=False
1807
+ )
1808
+
1809
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1810
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1811
+
1812
+ w13_g_idx = torch.nn.Parameter(
1813
+ torch.empty(
1814
+ num_experts,
1815
+ hidden_size,
1816
+ dtype=torch.int32,
1817
+ ),
1818
+ requires_grad=False,
1819
+ )
1820
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1821
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1822
+
1823
+ w2_g_idx = torch.nn.Parameter(
1824
+ torch.empty(
1825
+ num_experts,
1826
+ intermediate_size_per_partition,
1827
+ dtype=torch.int32,
1828
+ ),
1829
+ requires_grad=False,
1830
+ )
1831
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1832
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1833
+
1834
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1835
+ torch.empty(
1836
+ num_experts,
1837
+ hidden_size,
1838
+ dtype=torch.int32,
1839
+ ),
1840
+ requires_grad=False,
1841
+ )
1842
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1843
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1844
+
1845
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1846
+ torch.empty(
1847
+ num_experts,
1848
+ intermediate_size_per_partition,
1849
+ dtype=torch.int32,
1850
+ ),
1851
+ requires_grad=False,
1852
+ )
1853
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1854
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1855
+
1856
+ layer.a13_scale = None
1857
+ layer.a2_scale = None
1858
+
1859
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1860
+ # Reconfigure packed weights and scales to match moe_wna16 format
1861
+ layer.w13_weight_packed = torch.nn.Parameter(
1862
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1863
+ requires_grad=False,
1864
+ )
1865
+ layer.w2_weight_packed = torch.nn.Parameter(
1866
+ layer.w2_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1867
+ requires_grad=False,
1868
+ )
1869
+ layer.w13_weight_scale = torch.nn.Parameter(
1870
+ layer.w13_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1871
+ )
1872
+ layer.w2_weight_scale = torch.nn.Parameter(
1873
+ layer.w2_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1874
+ )
1875
+
1876
+ def get_fused_moe_quant_config(
1877
+ self, layer: torch.nn.Module
1878
+ ) -> FusedMoEQuantConfig | None:
1879
+ assert self.num_bits == 4 or self.num_bits == 8
1880
+ config_builder = (
1881
+ int4_w4a16_moe_quant_config
1882
+ if self.num_bits == 4
1883
+ else int8_w8a16_moe_quant_config
1884
+ )
1885
+
1886
+ return config_builder(
1887
+ w1_scale=layer.w13_weight_scale,
1888
+ w2_scale=layer.w2_weight_scale,
1889
+ w1_zp=None,
1890
+ w2_zp=None,
1891
+ block_shape=[0, self.group_size],
1892
+ )
1893
+
1894
+ def apply(
1895
+ self,
1896
+ layer: torch.nn.Module,
1897
+ x: torch.Tensor,
1898
+ router_logits: torch.Tensor,
1899
+ top_k: int,
1900
+ renormalize: bool,
1901
+ use_grouped_topk: bool = False,
1902
+ topk_group: int | None = None,
1903
+ num_expert_group: int | None = None,
1904
+ global_num_experts: int = -1,
1905
+ expert_map: torch.Tensor | None = None,
1906
+ custom_routing_function: Callable | None = None,
1907
+ scoring_func: str = "softmax",
1908
+ routed_scaling_factor: float = 1.0,
1909
+ e_score_correction_bias: torch.Tensor | None = None,
1910
+ apply_router_weight_on_input: bool = False,
1911
+ activation: str = "silu",
1912
+ enable_eplb: bool = False,
1913
+ expert_load_view: torch.Tensor | None = None,
1914
+ logical_to_physical_map: torch.Tensor | None = None,
1915
+ logical_replica_count: torch.Tensor | None = None,
1916
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1917
+ if enable_eplb:
1918
+ raise NotImplementedError(
1919
+ "EPLB not supported for `CompressedTensorsWNA16MoEMethod` yet."
1920
+ )
1921
+
1922
+ from vllm.model_executor.layers.fused_moe import fused_experts
1923
+
1924
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1925
+ hidden_states=x,
1926
+ router_logits=router_logits,
1927
+ use_grouped_topk=use_grouped_topk,
1928
+ top_k=top_k,
1929
+ renormalize=renormalize,
1930
+ topk_group=topk_group,
1931
+ num_expert_group=num_expert_group,
1932
+ custom_routing_function=custom_routing_function,
1933
+ scoring_func=scoring_func,
1934
+ routed_scaling_factor=routed_scaling_factor,
1935
+ e_score_correction_bias=e_score_correction_bias,
1936
+ indices_type=self.topk_indices_dtype,
1937
+ )
1938
+
1939
+ return fused_experts(
1940
+ x,
1941
+ layer.w13_weight_packed,
1942
+ layer.w2_weight_packed,
1943
+ topk_weights=topk_weights,
1944
+ topk_ids=topk_ids,
1945
+ inplace=True,
1946
+ activation=activation,
1947
+ apply_router_weight_on_input=apply_router_weight_on_input,
1948
+ global_num_experts=global_num_experts,
1949
+ expert_map=expert_map,
1950
+ quant_config=self.moe_quant_config,
1951
+ )
1952
+
1953
+
1954
+ class CompressedTensorsW4A8Int8MoEMethod(CompressedTensorsMoEMethod):
1955
+ """
1956
+ CPU-only MoE method using dynamic 4-bit matmul kernels on Arm Platform
1957
+ - Weights: int4 (stored as int8 values in [-8,7], packed to uint8 nibbles)
1958
+ - Scales: Fp32 for Channelwise , bf16 for groupwise quantization
1959
+ - Bias: Same data type as original weights
1960
+ - Activations: FP32/Bf16 dynamic per-token (A8 Int),
1961
+ quantized inside the kernel
1962
+ """
1963
+
1964
+ def __init__(
1965
+ self,
1966
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1967
+ moe: FusedMoEConfig,
1968
+ ):
1969
+ super().__init__(moe)
1970
+ self.has_bias = self.moe.has_bias
1971
+ self.quant_config = quant_config
1972
+
1973
+ # Validate scheme: weights=W4 (channel or group),
1974
+ # activations=dynamic TOKEN (A8)
1975
+ wq = self.quant_config.target_scheme_map["Linear"].get("weights")
1976
+ aq = self.quant_config.target_scheme_map["Linear"].get("input_activations")
1977
+
1978
+ # Must be dynamic per-token activations
1979
+ if aq.strategy != QuantizationStrategy.TOKEN or not aq.dynamic:
1980
+ raise ValueError(
1981
+ "W4A8-int MoE needs dynamic per-token activation quantization."
1982
+ )
1983
+
1984
+ # Weight can be channel-wise (group_size=None) or group-wise
1985
+ self.group_size = wq.group_size if (wq.group_size is not None) else -1
1986
+ if wq.num_bits != 4:
1987
+ raise ValueError("This method only supports 4-bit weights (num_bits=4).")
1988
+
1989
+ # CPU only
1990
+ if not current_platform.is_cpu():
1991
+ raise ValueError("CompressedTensorsW4A8Int8MoEMethod is CPU-only.")
1992
+
1993
+ # Arm: check _dyn ops availability
1994
+ if current_platform.get_cpu_architecture() == CpuArchEnum.ARM:
1995
+ try:
1996
+ _ = torch.ops.aten._dyn_quant_matmul_4bit
1997
+ _ = torch.ops.aten._dyn_quant_pack_4bit_weight
1998
+ except AttributeError as err:
1999
+ raise RuntimeError(
2000
+ f"""PyTorch {torch.__version__} lacks _dyn_quant_* 4bit ops;
2001
+ install a newer build."""
2002
+ ) from err
2003
+ self.static_input_scales = False # always dynamic per token
2004
+
2005
+ # ---- parameter creation ----
2006
+ def create_weights(
2007
+ self,
2008
+ layer: torch.nn.Module,
2009
+ num_experts: int,
2010
+ hidden_size: int,
2011
+ intermediate_size_per_partition: int,
2012
+ params_dtype: torch.dtype,
2013
+ **extra_weight_attrs,
2014
+ ):
2015
+ # Shapes per local rank (TP/EP):
2016
+ # w13: [E, 2*I_local, H] int8 (int4 values in [-8,7])
2017
+ # w2 : [E, H, I_local] int8
2018
+ # Scales:
2019
+ # channel-wise: group_size=-1 -> per-output-row, single scale per row
2020
+ # group-wise : group_size=g ->
2021
+ # per-output-row, (in_features/g) scales
2022
+
2023
+ E = num_experts
2024
+ H = hidden_size
2025
+ IN = intermediate_size_per_partition
2026
+ g = self.group_size
2027
+
2028
+ # Per-row scale columns
2029
+ def _n_scale_cols(in_features: int) -> int:
2030
+ return 1 if g == -1 else (in_features // g)
2031
+
2032
+ # Register unpacked int4-as-int8 weights the loader will fill.
2033
+ w13 = torch.nn.Parameter(
2034
+ torch.empty(E, 2 * IN, H, dtype=torch.int8), requires_grad=False
2035
+ )
2036
+ set_weight_attrs(w13, extra_weight_attrs)
2037
+ layer.register_parameter("w13_weight", w13)
2038
+
2039
+ w2 = torch.nn.Parameter(
2040
+ torch.empty(E, H, IN, dtype=torch.int8), requires_grad=False
2041
+ )
2042
+ set_weight_attrs(w2, extra_weight_attrs)
2043
+ layer.register_parameter("w2_weight", w2)
2044
+
2045
+ # Register scales
2046
+ # KleidiAI groupwise kernels accepts float32 scales
2047
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2048
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2049
+
2050
+ w13_s = torch.nn.Parameter(
2051
+ torch.ones(E, 2 * IN, _n_scale_cols(H), dtype=scale_dtype),
2052
+ requires_grad=False,
2053
+ )
2054
+ set_weight_attrs(
2055
+ w13_s,
2056
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2057
+ )
2058
+ layer.register_parameter("w13_weight_scale", w13_s)
2059
+
2060
+ w2_s = torch.nn.Parameter(
2061
+ torch.ones(E, H, _n_scale_cols(IN), dtype=scale_dtype), requires_grad=False
2062
+ )
2063
+ set_weight_attrs(
2064
+ w2_s,
2065
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2066
+ )
2067
+ layer.register_parameter("w2_weight_scale", w2_s)
2068
+
2069
+ if self.has_bias:
2070
+ w13_bias = torch.nn.Parameter(
2071
+ torch.zeros(E, 2 * IN, dtype=params_dtype), requires_grad=False
2072
+ )
2073
+ layer.register_parameter("w13_bias", w13_bias)
2074
+ set_weight_attrs(w13_bias, extra_weight_attrs)
2075
+
2076
+ w2_bias = torch.nn.Parameter(
2077
+ torch.zeros(num_experts, hidden_size, dtype=params_dtype),
2078
+ requires_grad=False,
2079
+ )
2080
+ layer.register_parameter("w2_bias", w2_bias)
2081
+ set_weight_attrs(w2_bias, extra_weight_attrs)
2082
+
2083
+ # Placeholders for packed weights (will be replaced after packing)
2084
+ layer.register_parameter(
2085
+ "w13_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2086
+ )
2087
+ set_weight_attrs(layer.w13_weight_packed, extra_weight_attrs)
2088
+
2089
+ layer.register_parameter(
2090
+ "w2_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2091
+ )
2092
+ set_weight_attrs(layer.w2_weight_packed, extra_weight_attrs)
2093
+
2094
+ # dims for 4 bit fused matmuls
2095
+ layer.w13_in_features = H
2096
+ layer.w13_out_features = 2 * IN
2097
+ layer.w2_in_features = IN
2098
+ layer.w2_out_features = H
2099
+ layer.group_size = g
2100
+
2101
+ # post-load packing to dyn-4bit KleidiAI kernel's format
2102
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
2103
+ E = layer.w13_weight.shape[0]
2104
+ H = layer.w13_in_features
2105
+ I2 = layer.w13_out_features
2106
+ IN = layer.w2_in_features
2107
+ g = layer.group_size
2108
+
2109
+ def _pack_matrix(
2110
+ int4_as_int8_2d: torch.Tensor,
2111
+ scales_2d: torch.Tensor,
2112
+ bias_1d: torch.Tensor | None,
2113
+ in_features: int,
2114
+ out_features: int,
2115
+ ) -> torch.Tensor:
2116
+ # int4 values are stored as int8 in [-8,7].
2117
+ # Shift to unsigned nibble and pack pairs along input-dim.
2118
+ tmp = int4_as_int8_2d.add(8) # [out, in]
2119
+ uint8_nibbles = ((tmp[:, 1::2] << 4) | tmp[:, ::2]).to(
2120
+ torch.uint8
2121
+ ) # [out, in//2]
2122
+
2123
+ # KleidiAI groupwise kernels accepts float32 scales
2124
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2125
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2126
+ scales = scales_2d.to(scale_dtype)
2127
+ bias = None if bias_1d is None else bias_1d.to(torch.float32)
2128
+ return torch.ops.aten._dyn_quant_pack_4bit_weight(
2129
+ uint8_nibbles,
2130
+ scales,
2131
+ bias,
2132
+ g if g != -1 else in_features,
2133
+ in_features,
2134
+ out_features,
2135
+ )
2136
+
2137
+ # Pack per expert
2138
+ w13_packed_list = []
2139
+ w2_packed_list = []
2140
+
2141
+ has_w13_bias = hasattr(layer, "w13_bias") and layer.w13_bias is not None
2142
+ has_w2_bias = hasattr(layer, "w2_bias") and layer.w2_bias is not None
2143
+
2144
+ for e in range(E):
2145
+ w13_packed_list.append(
2146
+ _pack_matrix(
2147
+ layer.w13_weight[e], # [2I, H]
2148
+ layer.w13_weight_scale[e], # [2I, H/g or 1]
2149
+ layer.w13_bias[e] if has_w13_bias else None, # [2I]
2150
+ H,
2151
+ I2,
2152
+ )
2153
+ )
2154
+ w2_packed_list.append(
2155
+ _pack_matrix(
2156
+ # w2 shape is [H, IN]; we need [out, in] == [H, IN].
2157
+ layer.w2_weight[e], # [H, IN]
2158
+ layer.w2_weight_scale[e], # [H, IN/g or 1]
2159
+ layer.w2_bias[e] if has_w2_bias else None, # [H]
2160
+ IN,
2161
+ layer.w2_out_features, # in_features=IN, out_features=H
2162
+ )
2163
+ )
2164
+
2165
+ # each packed tensor has identical shape per expert; stack on dim 0
2166
+ w13_packed = torch.stack(w13_packed_list, dim=0)
2167
+ w2_packed = torch.stack(w2_packed_list, dim=0)
2168
+
2169
+ replace_parameter(
2170
+ layer,
2171
+ "w13_weight_packed",
2172
+ torch.nn.Parameter(w13_packed, requires_grad=False),
2173
+ )
2174
+ replace_parameter(
2175
+ layer,
2176
+ "w2_weight_packed",
2177
+ torch.nn.Parameter(w2_packed, requires_grad=False),
2178
+ )
2179
+
2180
+ # free raw tensors/scales/bias now that they're packed into the payload.
2181
+ replace_parameter(
2182
+ layer, "w13_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2183
+ )
2184
+ replace_parameter(
2185
+ layer, "w2_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2186
+ )
2187
+ replace_parameter(
2188
+ layer,
2189
+ "w13_weight_scale",
2190
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2191
+ )
2192
+ replace_parameter(
2193
+ layer,
2194
+ "w2_weight_scale",
2195
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2196
+ )
2197
+ if has_w13_bias:
2198
+ replace_parameter(
2199
+ layer,
2200
+ "w13_bias",
2201
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2202
+ )
2203
+ if has_w2_bias:
2204
+ replace_parameter(
2205
+ layer,
2206
+ "w2_bias",
2207
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2208
+ )
2209
+
2210
+ def get_fused_moe_quant_config(
2211
+ self, layer: torch.nn.Module
2212
+ ) -> FusedMoEQuantConfig | None:
2213
+ # CPU dynamic 4-bit MoE path does not use modular kernels or
2214
+ # fused_experts; quant config is not needed.
2215
+ return None
2216
+
2217
+ def apply(
2218
+ self,
2219
+ layer: torch.nn.Module,
2220
+ x: torch.Tensor,
2221
+ router_logits: torch.Tensor,
2222
+ top_k: int,
2223
+ renormalize: bool,
2224
+ use_grouped_topk: bool = False,
2225
+ topk_group: int | None = None,
2226
+ num_expert_group: int | None = None,
2227
+ global_num_experts: int = -1,
2228
+ expert_map: torch.Tensor | None = None,
2229
+ custom_routing_function: Callable | None = None,
2230
+ scoring_func: str = "softmax",
2231
+ routed_scaling_factor: float = 1.0,
2232
+ e_score_correction_bias: torch.Tensor | None = None,
2233
+ apply_router_weight_on_input: bool = False,
2234
+ activation: str = "silu",
2235
+ enable_eplb: bool = False,
2236
+ expert_load_view: torch.Tensor | None = None,
2237
+ logical_to_physical_map: torch.Tensor | None = None,
2238
+ logical_replica_count: torch.Tensor | None = None,
2239
+ ) -> torch.Tensor:
2240
+ assert not enable_eplb, "EPLB not supported for W4A8-int MoE yet."
2241
+ assert activation in ("silu", "swigluoai", "swiglu"), (
2242
+ "Only SiLU/SwiGLUGU/SwiGLUUG are supported."
2243
+ )
2244
+ assert expert_map is None, """expert_map/EP not implemented
2245
+ for CPU dyn-4bit MoE."""
2246
+
2247
+ def _act_kind(s: str) -> int:
2248
+ # 0 = SwiGLU_Gu (SiLU(g)*u), 1 = SwiGLU_Ug (SiLU(u)*g), 2 = SiLU
2249
+ if s == "swiglu":
2250
+ return 0
2251
+ if s == "swigluoai":
2252
+ return 1
2253
+ if s == "silu":
2254
+ return 2
2255
+ raise ValueError(f"Unknown activation '{s}'")
2256
+
2257
+ # Apply topk softmax on router output
2258
+ topk_weights, topk_ids = select_experts(
2259
+ hidden_states=x,
2260
+ router_logits=router_logits,
2261
+ use_grouped_topk=use_grouped_topk,
2262
+ top_k=top_k,
2263
+ renormalize=renormalize,
2264
+ topk_group=topk_group,
2265
+ num_expert_group=num_expert_group,
2266
+ custom_routing_function=custom_routing_function,
2267
+ scoring_func=scoring_func,
2268
+ routed_scaling_factor=routed_scaling_factor,
2269
+ e_score_correction_bias=e_score_correction_bias,
2270
+ )
2271
+
2272
+ return torch.ops._C.dynamic_4bit_int_moe(
2273
+ x,
2274
+ topk_ids.to(torch.long),
2275
+ topk_weights,
2276
+ layer.w13_weight_packed,
2277
+ layer.w2_weight_packed,
2278
+ layer.w2_out_features,
2279
+ layer.w2_in_features,
2280
+ layer.w13_out_features,
2281
+ layer.group_size,
2282
+ apply_router_weight_on_input,
2283
+ int(_act_kind(activation)),
2284
+ )