vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2175 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ """Fused MoE Triton kernels."""
4
+
5
+ import functools
6
+ import json
7
+ import os
8
+ from collections.abc import Callable
9
+ from typing import Any
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+
14
+ import vllm.envs as envs
15
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
16
+ from vllm import _custom_ops as ops
17
+ from vllm._aiter_ops import rocm_aiter_ops
18
+ from vllm.logger import init_logger
19
+ from vllm.model_executor.layers.batch_invariant import (
20
+ vllm_is_batch_invariant,
21
+ )
22
+ from vllm.model_executor.layers.fused_moe.config import (
23
+ FUSED_MOE_UNQUANTIZED_CONFIG,
24
+ FusedMoEQuantConfig,
25
+ _get_config_dtype_str,
26
+ )
27
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
28
+ _valid_cutlass_block_scaled_grouped_gemm,
29
+ run_cutlass_block_scaled_fused_experts,
30
+ )
31
+ from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
32
+ _valid_deep_gemm,
33
+ deep_gemm_moe_fp8,
34
+ )
35
+ from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
36
+ moe_align_block_size,
37
+ )
38
+ from vllm.model_executor.layers.fused_moe.prepare_finalize import (
39
+ MoEPrepareAndFinalizeNoEP,
40
+ )
41
+ from vllm.model_executor.layers.fused_moe.topk_weight_and_reduce import (
42
+ TopKWeightAndReduceNoOP,
43
+ )
44
+ from vllm.model_executor.layers.fused_moe.utils import (
45
+ _resize_cache,
46
+ activation_without_mul,
47
+ disable_inplace,
48
+ moe_kernel_quantize_input,
49
+ )
50
+ from vllm.model_executor.layers.quantization.utils.mxfp4_utils import dequant_mxfp4
51
+ from vllm.model_executor.layers.quantization.utils.mxfp6_utils import dequant_mxfp6
52
+ from vllm.model_executor.layers.quantization.utils.ocp_mx_utils import OCP_MX_Scheme
53
+ from vllm.model_executor.utils import maybe_disable_graph_partition
54
+ from vllm.platforms import current_platform
55
+ from vllm.triton_utils import tl, triton
56
+ from vllm.utils.deep_gemm import is_deep_gemm_e8m0_used
57
+ from vllm.utils.torch_utils import direct_register_custom_op, is_torch_equal_or_newer
58
+
59
+ logger = init_logger(__name__)
60
+
61
+
62
+ @triton.jit
63
+ def write_zeros_to_output(
64
+ c_ptr,
65
+ stride_cm,
66
+ stride_cn,
67
+ pid_n,
68
+ N,
69
+ offs_token,
70
+ token_mask,
71
+ BLOCK_SIZE_M,
72
+ BLOCK_SIZE_N,
73
+ compute_type,
74
+ ):
75
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=compute_type)
76
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
77
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
78
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
79
+ tl.store(c_ptrs, accumulator, mask=c_mask)
80
+
81
+
82
+ @triton.jit
83
+ def fused_moe_kernel_gptq_awq(
84
+ # Pointers to matrices
85
+ a_ptr,
86
+ b_ptr,
87
+ c_ptr,
88
+ b_scale_ptr,
89
+ b_zp_ptr,
90
+ topk_weights_ptr,
91
+ sorted_token_ids_ptr,
92
+ expert_ids_ptr,
93
+ num_tokens_post_padded_ptr,
94
+ # Matrix dimensions
95
+ N: tl.constexpr,
96
+ K: tl.constexpr,
97
+ EM,
98
+ num_valid_tokens,
99
+ # The stride variables represent how much to increase the ptr by when
100
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
101
+ # how much to increase `a_ptr` by to get the element one row down
102
+ # (A has M rows).
103
+ stride_am,
104
+ stride_ak,
105
+ stride_be,
106
+ stride_bk,
107
+ stride_bn,
108
+ stride_cm,
109
+ stride_cn,
110
+ stride_bse,
111
+ stride_bsk,
112
+ stride_bsn,
113
+ stride_bze,
114
+ stride_bzk,
115
+ stride_bzn,
116
+ block_k_diviable: tl.constexpr,
117
+ group_size: tl.constexpr,
118
+ # Meta-parameters
119
+ BLOCK_SIZE_M: tl.constexpr,
120
+ BLOCK_SIZE_N: tl.constexpr,
121
+ BLOCK_SIZE_K: tl.constexpr,
122
+ GROUP_SIZE_M: tl.constexpr,
123
+ SPLIT_K: tl.constexpr,
124
+ MUL_ROUTED_WEIGHT: tl.constexpr,
125
+ top_k: tl.constexpr,
126
+ compute_type: tl.constexpr,
127
+ has_zp: tl.constexpr,
128
+ use_int4_w4a16: tl.constexpr,
129
+ use_int8_w8a16: tl.constexpr,
130
+ ):
131
+ """
132
+ Implements the fused computation for a Mixture of Experts (MOE) using
133
+ token and expert matrices.
134
+
135
+ Key Parameters:
136
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
137
+ be any shape representing batches and K is the feature dimension of
138
+ each token.
139
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
140
+ the number of experts, K is the input feature dimension, and N is
141
+ the output feature dimension.
142
+ - C: The output cache tensor with shape (M, topk, N), where M is the
143
+ total number of tokens post padding, topk is the number of times
144
+ each token is repeated, and N is the output feature dimension.
145
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
146
+ repeated topk times and arranged by the expert index they are
147
+ assigned to.
148
+ - expert_ids: A tensor containing the indices of the expert for each
149
+ block. It determines which expert matrix from B should be used for
150
+ each block in A.
151
+ This kernel performs the multiplication of a token by its corresponding
152
+ expert matrix as determined by `expert_ids`. The sorting of
153
+ `sorted_token_ids` by expert index and padding ensures divisibility by
154
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
155
+ multiplication across different blocks processed by the same expert.
156
+ """
157
+ # -----------------------------------------------------------
158
+ # Map program ids `pid` to the block of C it should compute.
159
+ # This is done in a grouped ordering to promote L2 data reuse.
160
+ pid = tl.program_id(axis=0)
161
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
162
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
163
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
164
+ group_id = pid // num_pid_in_group
165
+ first_pid_m = group_id * GROUP_SIZE_M
166
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
167
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
168
+ pid_n = (pid % num_pid_in_group) // group_size_m
169
+
170
+ # ----------------------------------------------------------
171
+ # Create pointers for the first blocks of A and B.
172
+ # We will advance this pointer as we move in the K direction
173
+ # and accumulate
174
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
175
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
176
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
177
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
178
+ return
179
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
180
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
181
+ token_mask = offs_token < num_valid_tokens
182
+
183
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
184
+ if off_experts == -1:
185
+ # -----------------------------------------------------------
186
+ # Write back zeros to the output when the expert is not
187
+ # in the current expert parallel rank.
188
+ write_zeros_to_output(
189
+ c_ptr,
190
+ stride_cm,
191
+ stride_cn,
192
+ pid_n,
193
+ N,
194
+ offs_token,
195
+ token_mask,
196
+ BLOCK_SIZE_M,
197
+ BLOCK_SIZE_N,
198
+ compute_type,
199
+ )
200
+ return
201
+
202
+ offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
203
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
204
+ a_ptrs = a_ptr + (
205
+ offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
206
+ )
207
+
208
+ if use_int4_w4a16:
209
+ b_ptrs = (
210
+ b_ptr
211
+ + off_experts * stride_be
212
+ + (offs_k[:, None] // 2) * stride_bk
213
+ + offs_bn[None, :] * stride_bn
214
+ )
215
+ b_shifter = (offs_k[:, None] % 2) * 4
216
+ elif use_int8_w8a16:
217
+ b_ptrs = (
218
+ b_ptr
219
+ + off_experts * stride_be
220
+ + offs_k[:, None] * stride_bk
221
+ + offs_bn[None, :] * stride_bn
222
+ )
223
+
224
+ if not has_zp and use_int4_w4a16:
225
+ b_zp_num = 8
226
+ if not has_zp and use_int8_w8a16:
227
+ b_zp_num = 128
228
+ elif has_zp and use_int4_w4a16:
229
+ b_zp_shifter = (offs_bn[None, :] % 2) * 4
230
+
231
+ # -----------------------------------------------------------
232
+ # Iterate to compute a block of the C matrix.
233
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
234
+ # of fp32 values for higher accuracy.
235
+ # `accumulator` will be converted back to fp16 after the loop.
236
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
237
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
238
+ # Load the next block of A and B, generate a mask by checking the
239
+ # K dimension.
240
+
241
+ if not block_k_diviable:
242
+ k_mask = offs_k[:, None] < K - k * BLOCK_SIZE_K
243
+ k_other = 0.0
244
+ else:
245
+ k_mask = None
246
+ k_other = None
247
+
248
+ a = tl.load(
249
+ a_ptrs,
250
+ mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
251
+ other=0.0,
252
+ )
253
+ b = tl.load(b_ptrs)
254
+ if use_int4_w4a16:
255
+ b = (b >> b_shifter) & 0xF
256
+
257
+ b_scale_ptrs = (
258
+ b_scale_ptr
259
+ + off_experts * stride_bse
260
+ + offs_bn[None, :] * stride_bsn
261
+ + ((offs_k[:, None] + BLOCK_SIZE_K * k) // group_size) * stride_bsk
262
+ )
263
+ b_scale = tl.load(b_scale_ptrs, mask=k_mask, other=k_other)
264
+ b_scale = b_scale.to(tl.float32)
265
+
266
+ if has_zp and use_int4_w4a16:
267
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
268
+ b_zp_ptrs = (
269
+ b_zp_ptr
270
+ + off_experts * stride_bze
271
+ + (offs_bn[None, :] // 2) * stride_bzn
272
+ + offs_k_true * stride_bzk
273
+ )
274
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
275
+ b_zp = (b_zp >> b_zp_shifter) & 0xF
276
+ b_zp = b_zp.to(tl.float32)
277
+ elif has_zp and use_int8_w8a16:
278
+ offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
279
+ b_zp_ptrs = (
280
+ b_zp_ptr
281
+ + off_experts * stride_bze
282
+ + offs_bn[None, :] * stride_bzn
283
+ + offs_k_true * stride_bzk
284
+ )
285
+ b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
286
+ b_zp = b_zp.to(tl.float32)
287
+
288
+ # We accumulate along the K dimension.
289
+ if has_zp:
290
+ b = ((b.to(tl.float32) - b_zp) * b_scale).to(compute_type)
291
+ else:
292
+ b = ((b.to(tl.float32) - b_zp_num) * b_scale).to(compute_type)
293
+ accumulator = tl.dot(a, b, acc=accumulator)
294
+
295
+ # Advance the ptrs to the next K block.
296
+ a_ptrs += BLOCK_SIZE_K * stride_ak
297
+ if use_int4_w4a16:
298
+ b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
299
+ else:
300
+ b_ptrs += BLOCK_SIZE_K * stride_bk
301
+
302
+ if MUL_ROUTED_WEIGHT:
303
+ moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
304
+ accumulator = accumulator * moe_weight[:, None]
305
+
306
+ accumulator = accumulator.to(compute_type)
307
+ # -----------------------------------------------------------
308
+ # Write back the block of the output
309
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
310
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
311
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
312
+ tl.store(c_ptrs, accumulator, mask=c_mask)
313
+
314
+
315
+ @triton.jit
316
+ def fused_moe_kernel(
317
+ # Pointers to matrices
318
+ a_ptr,
319
+ b_ptr,
320
+ c_ptr,
321
+ b_bias_ptr,
322
+ a_scale_ptr,
323
+ b_scale_ptr,
324
+ topk_weights_ptr,
325
+ sorted_token_ids_ptr,
326
+ expert_ids_ptr,
327
+ num_tokens_post_padded_ptr,
328
+ # Matrix dimensions
329
+ N,
330
+ K,
331
+ EM,
332
+ num_valid_tokens,
333
+ # The stride variables represent how much to increase the ptr by when
334
+ # moving by 1 element in a particular dimension. E.g. `stride_am` is
335
+ # how much to increase `a_ptr` by to get the element one row down
336
+ # (A has M rows).
337
+ stride_am,
338
+ stride_ak,
339
+ stride_be,
340
+ stride_bk,
341
+ stride_bn,
342
+ stride_cm,
343
+ stride_cn,
344
+ stride_asm,
345
+ stride_ask,
346
+ stride_bse,
347
+ stride_bsk,
348
+ stride_bsn,
349
+ stride_bbe, # bias expert stride
350
+ stride_bbn, # bias N stride
351
+ # Block size for block-wise quantization
352
+ group_n: tl.constexpr,
353
+ group_k: tl.constexpr,
354
+ # Meta-parameters
355
+ BLOCK_SIZE_M: tl.constexpr,
356
+ BLOCK_SIZE_N: tl.constexpr,
357
+ BLOCK_SIZE_K: tl.constexpr,
358
+ GROUP_SIZE_M: tl.constexpr,
359
+ SPLIT_K: tl.constexpr,
360
+ MUL_ROUTED_WEIGHT: tl.constexpr,
361
+ top_k: tl.constexpr,
362
+ compute_type: tl.constexpr,
363
+ use_fp8_w8a8: tl.constexpr,
364
+ use_int8_w8a8: tl.constexpr,
365
+ use_int8_w8a16: tl.constexpr,
366
+ per_channel_quant: tl.constexpr,
367
+ HAS_BIAS: tl.constexpr,
368
+ ):
369
+ """
370
+ Implements the fused computation for a Mixture of Experts (MOE) using
371
+ token and expert matrices.
372
+
373
+ Key Parameters:
374
+ - A: The input tensor representing tokens with shape (*, K), where '*' can
375
+ be any shape representing batches and K is the feature dimension of
376
+ each token.
377
+ - B: The stacked MOE weight tensor with shape (E, N, K), where E is
378
+ the number of experts, K is the input feature dimension, and N is
379
+ the output feature dimension.
380
+ - C: The output cache tensor with shape (M, topk, N), where M is the
381
+ total number of tokens post padding, topk is the number of times
382
+ each token is repeated, and N is the output feature dimension.
383
+ - sorted_token_ids: A tensor containing the sorted indices of tokens,
384
+ repeated topk times and arranged by the expert index they are
385
+ assigned to.
386
+ - expert_ids: A tensor containing the indices of the expert for each
387
+ block. It determines which expert matrix from B should be used for
388
+ each block in A.
389
+ This kernel performs the multiplication of a token by its corresponding
390
+ expert matrix as determined by `expert_ids`. The sorting of
391
+ `sorted_token_ids` by expert index and padding ensures divisibility by
392
+ BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
393
+ multiplication across different blocks processed by the same expert.
394
+ """
395
+ # -----------------------------------------------------------
396
+ # Map program ids `pid` to the block of C it should compute.
397
+ # This is done in a grouped ordering to promote L2 data reuse.
398
+ pid = tl.program_id(axis=0)
399
+ num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
400
+ num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
401
+ num_pid_in_group = GROUP_SIZE_M * num_pid_n
402
+ group_id = pid // num_pid_in_group
403
+ first_pid_m = group_id * GROUP_SIZE_M
404
+ group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
405
+ pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
406
+ pid_n = (pid % num_pid_in_group) // group_size_m
407
+
408
+ # ----------------------------------------------------------
409
+ # Create pointers for the first blocks of A and B.
410
+ # We will advance this pointer as we move in the K direction
411
+ # and accumulate
412
+ # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
413
+ # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
414
+ num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
415
+ if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
416
+ return
417
+ offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
418
+ offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
419
+ token_mask = offs_token < num_valid_tokens
420
+
421
+ off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
422
+ if off_experts == -1:
423
+ # -----------------------------------------------------------
424
+ # Write back zeros to the output when the expert is not
425
+ # in the current expert parallel rank.
426
+ write_zeros_to_output(
427
+ c_ptr,
428
+ stride_cm,
429
+ stride_cn,
430
+ pid_n,
431
+ N,
432
+ offs_token,
433
+ token_mask,
434
+ BLOCK_SIZE_M,
435
+ BLOCK_SIZE_N,
436
+ compute_type,
437
+ )
438
+ return
439
+
440
+ offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
441
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
442
+ a_ptrs = a_ptr + (
443
+ offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
444
+ )
445
+
446
+ b_ptrs = (
447
+ b_ptr
448
+ + off_experts * stride_be
449
+ + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
450
+ )
451
+ if use_int8_w8a16:
452
+ b_scale_ptrs = (
453
+ b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
454
+ )
455
+ b_scale = tl.load(b_scale_ptrs)
456
+
457
+ if use_fp8_w8a8 or use_int8_w8a8:
458
+ # block-wise
459
+ if group_k > 0 and group_n > 0:
460
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
461
+ offs_bsn = offs_bn // group_n
462
+ b_scale_ptrs = (
463
+ b_scale_ptr + off_experts * stride_bse + offs_bsn * stride_bsn
464
+ )
465
+ # channel-wise
466
+ elif per_channel_quant:
467
+ b_scale_ptrs = (
468
+ b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
469
+ )
470
+ b_scale = tl.load(b_scale_ptrs)
471
+ # Load per-token scale for activations
472
+ a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
473
+ a_scale = tl.load(a_scale_ptrs, mask=token_mask, other=0.0)[:, None]
474
+ # tensor-wise
475
+ else:
476
+ a_scale = tl.load(a_scale_ptr)
477
+ b_scale = tl.load(b_scale_ptr + off_experts)
478
+ if HAS_BIAS:
479
+ # bias shape: [num_experts, N]
480
+ bias_ptrs = b_bias_ptr + off_experts * stride_bbe + offs_bn * stride_bbn
481
+ bias = tl.load(bias_ptrs, mask=(offs_bn < N), other=0.0)
482
+ # -----------------------------------------------------------
483
+ # Iterate to compute a block of the C matrix.
484
+ # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
485
+ # of fp32 values for higher accuracy.
486
+ # `accumulator` will be converted back to fp16 after the loop.
487
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
488
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
489
+ # Load the next block of A and B, generate a mask by checking the
490
+ # K dimension.
491
+ a = tl.load(
492
+ a_ptrs,
493
+ mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
494
+ other=0.0,
495
+ )
496
+ b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
497
+ # We accumulate along the K dimension.
498
+ if use_int8_w8a16:
499
+ accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
500
+ elif use_fp8_w8a8 or use_int8_w8a8:
501
+ if group_k > 0 and group_n > 0:
502
+ k_start = k * BLOCK_SIZE_K
503
+ offs_ks = k_start // group_k
504
+ a_scale = tl.load(
505
+ a_scale_ptrs + offs_ks * stride_ask, mask=token_mask, other=0.0
506
+ )
507
+ b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
508
+
509
+ accumulator += tl.dot(a, b) * a_scale[:, None] * b_scale[None, :]
510
+ else:
511
+ if use_fp8_w8a8:
512
+ # acc used to enable fp8_fast_accum
513
+ accumulator = tl.dot(a, b, acc=accumulator)
514
+ else:
515
+ accumulator += tl.dot(a, b)
516
+ else:
517
+ accumulator += tl.dot(a, b)
518
+ # Advance the ptrs to the next K block.
519
+ a_ptrs += BLOCK_SIZE_K * stride_ak
520
+ b_ptrs += BLOCK_SIZE_K * stride_bk
521
+ if HAS_BIAS:
522
+ accumulator = accumulator + bias[None, :]
523
+ if MUL_ROUTED_WEIGHT:
524
+ moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
525
+ accumulator = accumulator * moe_weight[:, None]
526
+ if use_int8_w8a16:
527
+ accumulator = (accumulator * b_scale).to(compute_type)
528
+ elif use_fp8_w8a8 or use_int8_w8a8:
529
+ if group_k > 0 and group_n > 0:
530
+ accumulator = accumulator.to(compute_type)
531
+ else:
532
+ accumulator = (accumulator * a_scale * b_scale).to(compute_type)
533
+ else:
534
+ accumulator = accumulator.to(compute_type)
535
+
536
+ # -----------------------------------------------------------
537
+ # Write back the block of the output
538
+ offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
539
+ c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
540
+ c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
541
+ tl.store(c_ptrs, accumulator, mask=c_mask)
542
+
543
+
544
+ def invoke_fused_moe_kernel(
545
+ A: torch.Tensor,
546
+ B: torch.Tensor,
547
+ C: torch.Tensor,
548
+ A_scale: torch.Tensor | None,
549
+ B_scale: torch.Tensor | None,
550
+ B_zp: torch.Tensor | None,
551
+ topk_weights: torch.Tensor | None,
552
+ sorted_token_ids: torch.Tensor,
553
+ expert_ids: torch.Tensor,
554
+ num_tokens_post_padded: torch.Tensor,
555
+ mul_routed_weight: bool,
556
+ top_k: int,
557
+ config: dict[str, Any],
558
+ compute_type: tl.dtype,
559
+ use_fp8_w8a8: bool,
560
+ use_int8_w8a8: bool,
561
+ use_int8_w8a16: bool,
562
+ use_int4_w4a16: bool,
563
+ per_channel_quant: bool,
564
+ block_shape: list[int] | None = None,
565
+ B_bias: torch.Tensor | None = None,
566
+ ) -> None:
567
+ assert topk_weights is not None or not mul_routed_weight
568
+ assert topk_weights is None or topk_weights.stride(1) == 1
569
+ assert sorted_token_ids.stride(0) == 1
570
+
571
+ if use_fp8_w8a8 or use_int8_w8a8:
572
+ assert B_scale is not None
573
+ assert block_shape is None or triton.cdiv(
574
+ B.size(-2), block_shape[0]
575
+ ) == B_scale.size(-2)
576
+ assert block_shape is None or triton.cdiv(
577
+ B.size(-1), block_shape[1]
578
+ ) == B_scale.size(-1)
579
+
580
+ elif use_int8_w8a16 or use_int4_w4a16:
581
+ assert B_scale is not None
582
+ assert block_shape is None or block_shape[0] == 0
583
+ else:
584
+ assert A_scale is None
585
+ assert B_scale is None
586
+
587
+ M = A.size(0)
588
+ num_tokens = M * top_k
589
+
590
+ EM = sorted_token_ids.size(0)
591
+ if A.size(0) < config["BLOCK_SIZE_M"]:
592
+ # optimize for small batch_size.
593
+ # We assume that top_ids of each token is unique,
594
+ # so num_valid_experts <= batch_size <= BLOCK_SIZE_M,
595
+ # and we can skip some invalid blocks.
596
+ EM = min(sorted_token_ids.size(0), A.size(0) * top_k * config["BLOCK_SIZE_M"])
597
+ grid = lambda META: (
598
+ triton.cdiv(EM, META["BLOCK_SIZE_M"])
599
+ * triton.cdiv(B.size(1), META["BLOCK_SIZE_N"]),
600
+ )
601
+ HAS_BIAS = B_bias is not None
602
+ if (
603
+ (use_int8_w8a16 or use_int4_w4a16)
604
+ and block_shape is not None
605
+ and block_shape[1] > 0
606
+ ):
607
+ assert B_scale is not None and B_scale.ndim == 3
608
+ assert B_zp is None or B_zp.ndim == 3
609
+
610
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(
611
+ num_valid_tokens=num_tokens,
612
+ group_size=block_shape[1],
613
+ num_experts=B.size(0),
614
+ bit=4 if use_int4_w4a16 else 8,
615
+ )
616
+ config = config.copy()
617
+ config.update(
618
+ get_moe_wna16_block_config(
619
+ config=config,
620
+ use_moe_wna16_cuda=use_moe_wna16_cuda,
621
+ num_valid_tokens=num_tokens,
622
+ size_k=A.size(1),
623
+ size_n=B.size(1),
624
+ num_experts=B.size(1),
625
+ group_size=block_shape[1],
626
+ real_top_k=top_k,
627
+ block_size_m=config["BLOCK_SIZE_M"],
628
+ )
629
+ )
630
+
631
+ if use_moe_wna16_cuda:
632
+ bit = 4 if use_int4_w4a16 else 8
633
+ ops.moe_wna16_gemm(
634
+ A,
635
+ C,
636
+ B,
637
+ B_scale,
638
+ B_zp,
639
+ topk_weights if mul_routed_weight else None,
640
+ sorted_token_ids,
641
+ expert_ids,
642
+ num_tokens_post_padded,
643
+ top_k,
644
+ config["BLOCK_SIZE_M"],
645
+ config["BLOCK_SIZE_N"],
646
+ config["BLOCK_SIZE_K"],
647
+ bit,
648
+ )
649
+ return
650
+ fused_moe_kernel_gptq_awq[grid](
651
+ A,
652
+ B,
653
+ C,
654
+ B_scale,
655
+ B_zp,
656
+ topk_weights,
657
+ sorted_token_ids,
658
+ expert_ids,
659
+ num_tokens_post_padded,
660
+ B.size(1),
661
+ A.size(1),
662
+ EM,
663
+ num_tokens,
664
+ A.stride(0),
665
+ A.stride(1),
666
+ B.stride(0),
667
+ B.stride(2),
668
+ B.stride(1),
669
+ C.stride(1),
670
+ C.stride(2),
671
+ B_scale.stride(0),
672
+ B_scale.stride(2),
673
+ B_scale.stride(1),
674
+ B_zp.stride(0) if B_zp is not None else 0,
675
+ B_zp.stride(2) if B_zp is not None else 0,
676
+ B_zp.stride(1) if B_zp is not None else 0,
677
+ block_k_diviable=A.size(1) % config["BLOCK_SIZE_K"] == 0,
678
+ group_size=block_shape[1],
679
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
680
+ top_k=top_k,
681
+ compute_type=compute_type,
682
+ has_zp=B_zp is not None,
683
+ use_int4_w4a16=use_int4_w4a16,
684
+ use_int8_w8a16=use_int8_w8a16,
685
+ **config,
686
+ )
687
+ else:
688
+ config = config.copy()
689
+ config["SPLIT_K"] = 1
690
+ BLOCK_SIZE_K = config.pop("BLOCK_SIZE_K")
691
+ if block_shape is not None:
692
+ BLOCK_SIZE_K = min(BLOCK_SIZE_K, min(block_shape[0], block_shape[1]))
693
+ fused_moe_kernel[grid](
694
+ A,
695
+ B,
696
+ C,
697
+ B_bias,
698
+ A_scale,
699
+ B_scale,
700
+ topk_weights,
701
+ sorted_token_ids,
702
+ expert_ids,
703
+ num_tokens_post_padded,
704
+ B.size(1),
705
+ B.size(2),
706
+ EM,
707
+ num_tokens,
708
+ A.stride(0),
709
+ A.stride(1),
710
+ B.stride(0),
711
+ B.stride(2),
712
+ B.stride(1),
713
+ C.stride(1),
714
+ C.stride(2),
715
+ A_scale.stride(0) if A_scale is not None and A_scale.ndim == 2 else 0,
716
+ A_scale.stride(1) if A_scale is not None and A_scale.ndim == 2 else 0,
717
+ B_scale.stride(0) if B_scale is not None and B_scale.ndim >= 2 else 0,
718
+ B_scale.stride(2) if B_scale is not None and B_scale.ndim == 3 else 0,
719
+ B_scale.stride(1) if B_scale is not None and B_scale.ndim >= 2 else 0,
720
+ B_bias.stride(0) if B_bias is not None else 0,
721
+ B_bias.stride(1) if B_bias is not None else 0,
722
+ 0 if block_shape is None else block_shape[0],
723
+ 0 if block_shape is None else block_shape[1],
724
+ MUL_ROUTED_WEIGHT=mul_routed_weight,
725
+ top_k=top_k,
726
+ compute_type=compute_type,
727
+ use_fp8_w8a8=use_fp8_w8a8,
728
+ use_int8_w8a8=use_int8_w8a8,
729
+ use_int8_w8a16=use_int8_w8a16,
730
+ per_channel_quant=per_channel_quant,
731
+ HAS_BIAS=HAS_BIAS,
732
+ BLOCK_SIZE_K=BLOCK_SIZE_K,
733
+ **config,
734
+ )
735
+
736
+
737
+ @triton.jit
738
+ def compute_identity_kernel(
739
+ top_k: int,
740
+ hidden_states_ptr: tl.tensor,
741
+ expert_scales_ptr: tl.tensor,
742
+ num_tokens: int,
743
+ output_ptr: tl.tensor,
744
+ hidden_dim: int,
745
+ scales_stride: int,
746
+ BLOCK_SIZE: tl.constexpr,
747
+ ) -> None:
748
+ pid = tl.program_id(0)
749
+
750
+ batch_id = pid // (hidden_dim // BLOCK_SIZE)
751
+ dim_offset = pid % (hidden_dim // BLOCK_SIZE) * BLOCK_SIZE
752
+
753
+ if batch_id >= num_tokens or dim_offset >= hidden_dim:
754
+ return
755
+
756
+ h = tl.load(
757
+ hidden_states_ptr
758
+ + batch_id * hidden_dim
759
+ + dim_offset
760
+ + tl.arange(0, BLOCK_SIZE),
761
+ mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
762
+ )
763
+
764
+ result = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
765
+ for i in range(top_k):
766
+ scale = tl.load(expert_scales_ptr + batch_id * scales_stride + i)
767
+ result += h * scale
768
+
769
+ tl.store(
770
+ output_ptr + batch_id * hidden_dim + dim_offset + tl.arange(0, BLOCK_SIZE),
771
+ result,
772
+ mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
773
+ )
774
+
775
+
776
+ def zero_experts_compute_triton(
777
+ expert_indices: torch.Tensor,
778
+ expert_scales: torch.Tensor,
779
+ num_experts: int,
780
+ zero_expert_type: str,
781
+ hidden_states: torch.Tensor,
782
+ ) -> torch.Tensor:
783
+ N = expert_indices.numel()
784
+ top_k = expert_indices.size(-1)
785
+ grid = lambda meta: (triton.cdiv(N, meta["BLOCK_SIZE"]),)
786
+
787
+ if zero_expert_type == "identity":
788
+ zero_expert_mask = expert_indices < num_experts
789
+ zero_expert_scales = expert_scales.clone()
790
+ zero_expert_scales[zero_expert_mask] = 0.0
791
+
792
+ normal_expert_mask = expert_indices >= num_experts
793
+ expert_indices[normal_expert_mask] = 0
794
+ expert_scales[normal_expert_mask] = 0.0
795
+
796
+ output = torch.zeros_like(hidden_states).to(hidden_states.device)
797
+ hidden_dim = hidden_states.size(-1)
798
+ num_tokens = hidden_states.size(0)
799
+
800
+ grid = lambda meta: (num_tokens * (hidden_dim // meta["BLOCK_SIZE"]),)
801
+ compute_identity_kernel[grid](
802
+ top_k,
803
+ hidden_states,
804
+ zero_expert_scales,
805
+ num_tokens,
806
+ output,
807
+ hidden_dim,
808
+ zero_expert_scales.stride(0),
809
+ BLOCK_SIZE=256,
810
+ )
811
+
812
+ return output
813
+
814
+
815
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
816
+ def get_config_file_name(
817
+ E: int, N: int, dtype: str | None, block_shape: list[int] | None = None
818
+ ) -> str:
819
+ device_name = current_platform.get_device_name().replace(" ", "_")
820
+ # Set device_name to H200 if a device from the H200 family is detected
821
+ if "H200" in device_name.split("_"):
822
+ device_name = "NVIDIA_H200"
823
+ dtype_selector = "" if not dtype else f",dtype={dtype}"
824
+ block_shape_selector = (
825
+ "" if not block_shape or not all(block_shape) else f",block_shape={block_shape}"
826
+ ).replace(" ", "")
827
+ return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json" # noqa: E501
828
+
829
+
830
+ # Adapted from: https://github.com/sgl-project/sglang/pull/2628
831
+ @functools.lru_cache
832
+ def get_moe_configs(
833
+ E: int,
834
+ N: int,
835
+ dtype: str | None,
836
+ block_n: int | None = None,
837
+ block_k: int | None = None,
838
+ ) -> dict[int, Any] | None:
839
+ """
840
+ Return optimized configurations for the fused MoE kernel.
841
+
842
+ The return value will be a dictionary that maps an irregular grid of
843
+ batch sizes to configurations of the fused_moe kernel. To evaluate the
844
+ kernel on a given batch size bs, the closest batch size in the grid should
845
+ be picked and the associated configuration chosen to invoke the kernel.
846
+ """
847
+
848
+ # Avoid optimizing for the batch invariant case. Use default config
849
+ if vllm_is_batch_invariant():
850
+ return None
851
+
852
+ # First look up if an optimized configuration is available in the configs
853
+ # directory
854
+ block_shape = [block_n, block_k] if block_n and block_k else None
855
+ json_file_name = get_config_file_name(E, N, dtype, block_shape)
856
+
857
+ config_file_paths = []
858
+
859
+ # note that we prioritize user defined config
860
+ user_defined_config_folder = envs.VLLM_TUNED_CONFIG_FOLDER
861
+ if user_defined_config_folder is not None:
862
+ user_defined_config_file_path = os.path.join(
863
+ user_defined_config_folder, json_file_name
864
+ )
865
+ config_file_paths.append(user_defined_config_file_path)
866
+
867
+ default_config_file_path = os.path.join(
868
+ os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
869
+ )
870
+ config_file_paths.append(default_config_file_path)
871
+
872
+ for config_file_path in config_file_paths:
873
+ if os.path.exists(config_file_path):
874
+ with open(config_file_path) as f:
875
+ logger.info(
876
+ "Using configuration from %s for MoE layer.", config_file_path
877
+ )
878
+ # If a configuration has been found, return it
879
+ tuned_config = json.load(f)
880
+ # Delete triton_version from tuned_config
881
+ tuned_config.pop("triton_version", None)
882
+ return {int(key): val for key, val in tuned_config.items()}
883
+
884
+ # If no optimized configuration is available, we will use the default
885
+ # configuration
886
+ logger.warning(
887
+ (
888
+ "Using default MoE config. Performance might be sub-optimal! "
889
+ "Config file not found at %s"
890
+ ),
891
+ config_file_paths,
892
+ )
893
+ return None
894
+
895
+
896
+ def get_moe_wna16_block_config(
897
+ config: dict[str, int],
898
+ use_moe_wna16_cuda: bool,
899
+ num_valid_tokens: int,
900
+ size_k: int,
901
+ size_n: int,
902
+ num_experts: int,
903
+ group_size: int,
904
+ real_top_k: int,
905
+ block_size_m: int,
906
+ ):
907
+ if "BLOCK_SIZE_N" in config and "BLOCK_SIZE_K" in config:
908
+ # optimal block config is set
909
+ return {}
910
+ if not use_moe_wna16_cuda:
911
+ # triton moe wna16 kernel
912
+ if num_valid_tokens // real_top_k == 1:
913
+ # if bs=1, use a smaller BLOCK_SIZE_N
914
+ return {"BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 64}
915
+ else:
916
+ return {"BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32}
917
+ else:
918
+ # cuda moe wna16 kernel
919
+ # set default block_size 128, and increase them when num_blocks
920
+ # is too large.
921
+ block_size_n = 128
922
+ block_size_k = 128
923
+ if block_size_k <= group_size:
924
+ block_size_k = group_size
925
+
926
+ num_n_blocks = size_k // block_size_k
927
+ num_k_blocks = size_n // block_size_k
928
+ num_m_blocks = (
929
+ num_valid_tokens + block_size_m - 1
930
+ ) / block_size_m + num_experts
931
+ if num_valid_tokens // real_top_k <= block_size_m:
932
+ num_m_blocks = min(num_m_blocks, num_valid_tokens)
933
+ num_blocks = num_m_blocks * num_n_blocks * num_k_blocks
934
+
935
+ if size_k % 256 == 0 and num_blocks >= 256 and block_size_k < 256:
936
+ block_size_k = 256
937
+ num_blocks = num_blocks // (256 // block_size_k)
938
+
939
+ if (
940
+ num_m_blocks <= 16
941
+ and size_k % (block_size_k * 2) == 0
942
+ and size_k % (block_size_k * 2) == 0
943
+ and block_size_k <= 512
944
+ and num_blocks >= 512
945
+ ):
946
+ block_size_k = block_size_k * 2
947
+ num_blocks = num_blocks // 2
948
+
949
+ if num_blocks > 1024:
950
+ block_size_n = 256
951
+ num_n_blocks = num_n_blocks // 2
952
+ num_blocks = num_blocks // 2
953
+
954
+ if size_n <= 1024 and num_blocks >= 1024:
955
+ # The kernel performance got much better with BLOCK_SIZE_N=1024
956
+ # when num_blocks is large, event when N is small.
957
+ # Not sure why, maybe it force the CUDA SM process only one block
958
+ # at the same time.
959
+ block_size_n = 1024
960
+
961
+ return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
962
+
963
+
964
+ def should_moe_wna16_use_cuda(
965
+ num_valid_tokens: int, group_size: int, num_experts: int, bit: int
966
+ ):
967
+ return (
968
+ current_platform.is_cuda()
969
+ and bit == 4
970
+ and group_size in [32, 64, 128]
971
+ and num_valid_tokens / num_experts <= 6
972
+ )
973
+
974
+
975
+ def get_default_config(
976
+ M: int,
977
+ E: int,
978
+ N: int,
979
+ K: int,
980
+ topk: int,
981
+ dtype: str | None,
982
+ block_shape: list[int] | None = None,
983
+ ) -> dict[str, int]:
984
+ if vllm_is_batch_invariant():
985
+ config = {
986
+ "BLOCK_SIZE_M": 64,
987
+ "BLOCK_SIZE_N": 64,
988
+ "BLOCK_SIZE_K": 32,
989
+ "GROUP_SIZE_M": 8,
990
+ "SPLIT_K": 1,
991
+ }
992
+ return config
993
+
994
+ if dtype == "fp8_w8a8" and block_shape is not None:
995
+ # Block-wise quant: BLOCK_SIZE_N must be divisible by block_shape[0]
996
+ # BLOCK_SIZE_K must be divisible by block_shape[1]
997
+ # num_stages=3 can cause triton.runtime.errors.OutOfResources
998
+ # on ROCm, set it to 2 instead.
999
+ config = {
1000
+ "BLOCK_SIZE_M": 64,
1001
+ "BLOCK_SIZE_N": block_shape[0],
1002
+ "BLOCK_SIZE_K": block_shape[1],
1003
+ "GROUP_SIZE_M": 32,
1004
+ "SPLIT_K": 1,
1005
+ "num_warps": 4,
1006
+ "num_stages": 3 if not current_platform.is_rocm() else 2,
1007
+ }
1008
+ elif dtype in ["int4_w4a16", "int8_w8a16"] and block_shape is not None:
1009
+ # moe wna16 kernels
1010
+ # only set BLOCK_SIZE_M
1011
+ # BLOCK_SIZE_N and BLOCK_SIZE_K would be set later
1012
+ bit = 4 if dtype == "int4_w4a16" else 8
1013
+ use_moe_wna16_cuda = should_moe_wna16_use_cuda(M * topk, block_shape[1], E, bit)
1014
+ if use_moe_wna16_cuda:
1015
+ config = {"BLOCK_SIZE_M": min(16, M), "SPLIT_K": 1}
1016
+ elif M <= 20:
1017
+ config = {"BLOCK_SIZE_M": 16, "GROUP_SIZE_M": 1, "SPLIT_K": 1}
1018
+ elif M <= 40:
1019
+ config = {"BLOCK_SIZE_M": 32, "GROUP_SIZE_M": 1, "SPLIT_K": 1}
1020
+ else:
1021
+ config = {"BLOCK_SIZE_M": 64, "GROUP_SIZE_M": 1, "SPLIT_K": 1}
1022
+ elif M <= E:
1023
+ config = {
1024
+ "BLOCK_SIZE_M": 16,
1025
+ "BLOCK_SIZE_N": 32,
1026
+ "BLOCK_SIZE_K": 64,
1027
+ "GROUP_SIZE_M": 1,
1028
+ "SPLIT_K": 1,
1029
+ }
1030
+ else:
1031
+ config = {
1032
+ "BLOCK_SIZE_M": 64,
1033
+ "BLOCK_SIZE_N": 64,
1034
+ "BLOCK_SIZE_K": 32,
1035
+ "GROUP_SIZE_M": 8,
1036
+ "SPLIT_K": 1,
1037
+ }
1038
+ return config
1039
+
1040
+
1041
+ def try_get_optimal_moe_config(
1042
+ w1_shape: tuple[int, ...],
1043
+ w2_shape: tuple[int, ...],
1044
+ top_k: int,
1045
+ dtype: str | None,
1046
+ M: int,
1047
+ block_shape: list[int] | None = None,
1048
+ ) -> dict[str, int]:
1049
+ from vllm.model_executor.layers.fused_moe import get_config
1050
+
1051
+ override_config = get_config()
1052
+ if override_config:
1053
+ config = override_config
1054
+ else:
1055
+ # First try to load optimal config from the file
1056
+ E, _, N = w2_shape
1057
+ if dtype == "int4_w4a16":
1058
+ N = N * 2
1059
+ block_n = block_shape[0] if block_shape else 0
1060
+ block_k = block_shape[1] if block_shape else 0
1061
+ configs = get_moe_configs(E, N, dtype, block_n, block_k)
1062
+
1063
+ if configs:
1064
+ # If an optimal configuration map has been found, look up the
1065
+ # optimal config
1066
+ config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
1067
+ else:
1068
+ # Else use the default config
1069
+ config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, block_shape)
1070
+ return config
1071
+
1072
+
1073
+ def vllm_topk_softmax(
1074
+ topk_weights: torch.Tensor,
1075
+ topk_indices: torch.Tensor,
1076
+ token_expert_indices: torch.Tensor,
1077
+ gating_output: torch.Tensor,
1078
+ renormalize: bool,
1079
+ ) -> tuple[torch.Tensor, ...]:
1080
+ ops.topk_softmax(
1081
+ topk_weights,
1082
+ topk_indices,
1083
+ token_expert_indices,
1084
+ gating_output,
1085
+ renormalize,
1086
+ )
1087
+
1088
+ return topk_weights, topk_indices
1089
+
1090
+
1091
+ def dispatch_topk_func(
1092
+ use_rocm_aiter: bool = False,
1093
+ ) -> Callable[..., tuple[torch.Tensor, ...]]:
1094
+ if use_rocm_aiter:
1095
+ return rocm_aiter_ops.topk_softmax
1096
+ return vllm_topk_softmax
1097
+
1098
+
1099
+ def fused_topk(
1100
+ hidden_states: torch.Tensor,
1101
+ gating_output: torch.Tensor,
1102
+ topk: int,
1103
+ renormalize: bool,
1104
+ indices_type: torch.dtype | None = None,
1105
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1106
+ assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
1107
+
1108
+ M, _ = hidden_states.size()
1109
+
1110
+ topk_weights = torch.empty(
1111
+ M, topk, dtype=torch.float32, device=hidden_states.device
1112
+ )
1113
+ topk_ids = torch.empty(
1114
+ M,
1115
+ topk,
1116
+ dtype=torch.int32 if indices_type is None else indices_type,
1117
+ device=hidden_states.device,
1118
+ )
1119
+ token_expert_indices = torch.empty(
1120
+ M, topk, dtype=torch.int32, device=hidden_states.device
1121
+ )
1122
+
1123
+ topk_func = dispatch_topk_func(use_rocm_aiter=rocm_aiter_ops.is_fused_moe_enabled())
1124
+ topk_weights, topk_ids = topk_func(
1125
+ topk_weights, topk_ids, token_expert_indices, gating_output, renormalize
1126
+ )
1127
+
1128
+ return topk_weights, topk_ids, token_expert_indices
1129
+
1130
+
1131
+ def fused_topk_bias(
1132
+ hidden_states: torch.Tensor,
1133
+ gating_output: torch.Tensor,
1134
+ e_score_correction_bias: torch.Tensor,
1135
+ topk: int,
1136
+ renormalize: bool,
1137
+ ):
1138
+ n_routed_experts = gating_output.shape[-1]
1139
+ scores = gating_output.softmax(dim=-1)
1140
+ scores_for_choice = scores.view(
1141
+ -1, n_routed_experts
1142
+ ) + e_score_correction_bias.unsqueeze(0)
1143
+
1144
+ # For batch invariance, use sorted=True to ensure deterministic expert selection
1145
+ use_sorted = vllm_is_batch_invariant()
1146
+ topk_indices = torch.topk(scores_for_choice, k=topk, dim=-1, sorted=use_sorted)[1]
1147
+ topk_weights = scores.gather(1, topk_indices)
1148
+ if renormalize:
1149
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
1150
+ return topk_weights.to(torch.float32), topk_indices.to(torch.int32)
1151
+
1152
+
1153
+ # This is used by the Deepseek-V2 and Deepseek-V3 model
1154
+ @torch.compile(
1155
+ dynamic=True,
1156
+ backend=current_platform.simple_compile_backend,
1157
+ options=maybe_disable_graph_partition(current_platform.simple_compile_backend),
1158
+ )
1159
+ def grouped_topk(
1160
+ hidden_states: torch.Tensor,
1161
+ gating_output: torch.Tensor,
1162
+ topk: int,
1163
+ renormalize: bool,
1164
+ num_expert_group: int = 0,
1165
+ topk_group: int = 0,
1166
+ scoring_func: str = "softmax",
1167
+ routed_scaling_factor: float = 1.0,
1168
+ e_score_correction_bias: torch.Tensor | None = None,
1169
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1170
+ if (
1171
+ envs.VLLM_USE_FUSED_MOE_GROUPED_TOPK
1172
+ and current_platform.is_cuda()
1173
+ and num_expert_group <= 32
1174
+ and topk <= 32
1175
+ and e_score_correction_bias is not None
1176
+ ):
1177
+ return fused_grouped_topk(
1178
+ hidden_states=hidden_states,
1179
+ gating_output=gating_output,
1180
+ topk=topk,
1181
+ renormalize=renormalize,
1182
+ e_score_correction_bias=e_score_correction_bias,
1183
+ num_expert_group=num_expert_group,
1184
+ topk_group=topk_group,
1185
+ scoring_func=scoring_func,
1186
+ routed_scaling_factor=routed_scaling_factor,
1187
+ )
1188
+
1189
+ assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
1190
+
1191
+ if scoring_func == "softmax":
1192
+ scores = torch.softmax(gating_output, dim=-1)
1193
+ elif scoring_func == "sigmoid":
1194
+ scores = gating_output.sigmoid()
1195
+ else:
1196
+ raise ValueError(f"Unsupported scoring function: {scoring_func}")
1197
+
1198
+ num_token = scores.size(0)
1199
+ if e_score_correction_bias is not None:
1200
+ # Store original scores before applying correction bias. We use biased
1201
+ # scores for expert selection but original scores for routing weights
1202
+ original_scores = scores
1203
+ scores = scores + e_score_correction_bias.unsqueeze(0)
1204
+ group_scores = (
1205
+ scores.view(num_token, num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
1206
+ )
1207
+ else:
1208
+ group_scores = (
1209
+ scores.view(num_token, num_expert_group, -1).max(dim=-1).values
1210
+ ) # [n, n_group]
1211
+
1212
+ # For batch invariance, use sorted=True to ensure deterministic expert selection
1213
+ use_sorted = vllm_is_batch_invariant()
1214
+ group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=use_sorted)[
1215
+ 1
1216
+ ] # [n, top_k_group]
1217
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
1218
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
1219
+ score_mask = (
1220
+ group_mask.unsqueeze(-1)
1221
+ .expand(num_token, num_expert_group, scores.size(-1) // num_expert_group)
1222
+ .reshape(num_token, -1)
1223
+ ) # [n, e]
1224
+ tmp_scores = scores.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
1225
+
1226
+ if e_score_correction_bias is not None:
1227
+ topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=use_sorted)[1]
1228
+ # Use original unbiased scores for the routing weights
1229
+ topk_weights = original_scores.gather(1, topk_ids)
1230
+ else:
1231
+ topk_weights, topk_ids = torch.topk(
1232
+ tmp_scores, k=topk, dim=-1, sorted=use_sorted
1233
+ )
1234
+
1235
+ if renormalize:
1236
+ topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
1237
+
1238
+ if routed_scaling_factor != 1.0:
1239
+ topk_weights = topk_weights * routed_scaling_factor
1240
+ return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
1241
+
1242
+
1243
+ @torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
1244
+ def eplb_map_to_physical_and_record(
1245
+ topk_ids: torch.Tensor,
1246
+ expert_load_view: torch.Tensor,
1247
+ logical_to_physical_map: torch.Tensor,
1248
+ logical_replica_count: torch.Tensor,
1249
+ indices_type: torch.dtype | None = None,
1250
+ ) -> torch.Tensor:
1251
+ """
1252
+ Map the logical expert ids to physical expert ids
1253
+ and record the expert load metrics.
1254
+
1255
+ This will select a pseudo-random replica for each logical expert.
1256
+ Only used for EPLB.
1257
+
1258
+ Args:
1259
+ topk_ids: The logical expert ids.
1260
+ expert_load_view: The expert load view.
1261
+ logical_to_physical_map: The logical to physical map.
1262
+ logical_replica_count: The logical replica count.
1263
+ indices_type: The indices type.
1264
+
1265
+ Returns:
1266
+ The physical expert ids.
1267
+ """
1268
+
1269
+ # 1. Convert the logical expert ids to physical expert ids
1270
+ # Directly select a random replica for each logical expert
1271
+
1272
+ # In case `indices_type` is not `torch.long` or `torch.int`,
1273
+ # e.g. `torch.uint32` as required by dispatch/combine kernels
1274
+ topk_ids_long = topk_ids.long()
1275
+ # Use (token position) modulo (replica count)
1276
+ # to deterministically choose a replica
1277
+ replica_count = logical_replica_count[topk_ids_long]
1278
+ # Flatten-position based index, reshaped back to `topk_ids` shape
1279
+ pos_indices = torch.arange(
1280
+ topk_ids.numel(), device=topk_ids.device, dtype=torch.long
1281
+ ).reshape_as(topk_ids)
1282
+ # Compute pseudo-random indices by modulo
1283
+ replica_indices = (pos_indices % replica_count).unsqueeze(-1)
1284
+ physical_ids = (
1285
+ logical_to_physical_map[topk_ids_long].gather(-1, replica_indices).squeeze(-1)
1286
+ )
1287
+
1288
+ topk_ids = physical_ids
1289
+
1290
+ # 2. Record expert load metrics.
1291
+
1292
+ # TODO(bowen): When using `FusedMoEModularKernel`, this
1293
+ # can be done in a more unified way, since
1294
+ # `FusedMoEPrepareAndFinalize` will return the expert
1295
+ # token count, in some cases directly from the kernel.
1296
+ # However, now there are many code paths not using
1297
+ # the modular kernel, e.g. calling `fused_experts`,
1298
+ # so we decide to keep the logic here.
1299
+ #
1300
+ # If later refactor moved all the MoE kernel calls
1301
+ # to the modular kernel, we can move this logic there
1302
+ # to achieve better efficiency.
1303
+
1304
+ # `expert_load_view`: (num_physical_experts,)
1305
+
1306
+ # `torch.bincount` is not compilable, so use `scatter_add_` instead.
1307
+ topk_ids_flatten = topk_ids.flatten()
1308
+ expert_load_view.scatter_add_(
1309
+ dim=0,
1310
+ index=topk_ids_flatten.long(),
1311
+ src=torch.ones_like(topk_ids_flatten).to(expert_load_view),
1312
+ )
1313
+
1314
+ if indices_type is not None:
1315
+ topk_ids = topk_ids.to(dtype=indices_type)
1316
+ return topk_ids
1317
+
1318
+
1319
+ def fused_grouped_topk(
1320
+ hidden_states: torch.Tensor,
1321
+ gating_output: torch.Tensor,
1322
+ topk: int,
1323
+ renormalize: bool,
1324
+ e_score_correction_bias: torch.Tensor,
1325
+ num_expert_group: int = 0,
1326
+ topk_group: int = 0,
1327
+ scoring_func: str = "softmax",
1328
+ routed_scaling_factor: float = 1.0,
1329
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1330
+ assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
1331
+
1332
+ if scoring_func == "sigmoid":
1333
+ # Fully fused kernel path for sigmoid
1334
+ topk_values, topk_indices = ops.grouped_topk(
1335
+ gating_output, # raw logits
1336
+ num_expert_group,
1337
+ topk_group,
1338
+ topk,
1339
+ renormalize,
1340
+ routed_scaling_factor,
1341
+ e_score_correction_bias.to(gating_output.dtype),
1342
+ 1, # scoring_func=1 for sigmoid
1343
+ )
1344
+ elif scoring_func == "softmax":
1345
+ # Apply softmax in Python, then use fused kernel
1346
+ # TODO: Add support for softmax in kernel
1347
+ scores = torch.softmax(gating_output, dim=-1)
1348
+ topk_values, topk_indices = ops.grouped_topk(
1349
+ scores, # pre-computed scores
1350
+ num_expert_group,
1351
+ topk_group,
1352
+ topk,
1353
+ renormalize,
1354
+ routed_scaling_factor,
1355
+ e_score_correction_bias.to(gating_output.dtype),
1356
+ 0, # scoring_func=0 (no activation, scores already computed)
1357
+ )
1358
+ else:
1359
+ raise ValueError(f"Unsupported scoring function: {scoring_func}")
1360
+
1361
+ # Fused kernel outputs float32 values and int32 indices directly
1362
+ return topk_values, topk_indices
1363
+
1364
+
1365
+ def inplace_fused_experts(
1366
+ hidden_states: torch.Tensor,
1367
+ w1: torch.Tensor,
1368
+ w2: torch.Tensor,
1369
+ topk_weights: torch.Tensor,
1370
+ topk_ids: torch.Tensor,
1371
+ activation: str = "silu",
1372
+ apply_router_weight_on_input: bool = False,
1373
+ use_fp8_w8a8: bool = False,
1374
+ use_int8_w8a8: bool = False,
1375
+ use_int8_w8a16: bool = False,
1376
+ use_int4_w4a16: bool = False,
1377
+ ocp_mx_scheme: str | None = None,
1378
+ per_channel_quant: bool = False,
1379
+ global_num_experts: int = -1,
1380
+ expert_map: torch.Tensor | None = None,
1381
+ w1_scale: torch.Tensor | None = None,
1382
+ w2_scale: torch.Tensor | None = None,
1383
+ w1_zp: torch.Tensor | None = None,
1384
+ w2_zp: torch.Tensor | None = None,
1385
+ a1_scale: torch.Tensor | None = None,
1386
+ a2_scale: torch.Tensor | None = None,
1387
+ block_shape: list[int] | None = None,
1388
+ w1_bias: torch.Tensor | None = None,
1389
+ w2_bias: torch.Tensor | None = None,
1390
+ ) -> None:
1391
+ fused_experts_impl(
1392
+ hidden_states,
1393
+ w1,
1394
+ w2,
1395
+ topk_weights,
1396
+ topk_ids,
1397
+ True,
1398
+ activation,
1399
+ apply_router_weight_on_input,
1400
+ use_fp8_w8a8,
1401
+ use_int8_w8a8,
1402
+ use_int8_w8a16,
1403
+ use_int4_w4a16,
1404
+ ocp_mx_scheme,
1405
+ per_channel_quant,
1406
+ global_num_experts,
1407
+ expert_map,
1408
+ w1_scale,
1409
+ w2_scale,
1410
+ w1_zp,
1411
+ w2_zp,
1412
+ a1_scale,
1413
+ a2_scale,
1414
+ block_shape,
1415
+ w1_bias,
1416
+ w2_bias,
1417
+ )
1418
+
1419
+
1420
+ def inplace_fused_experts_fake(
1421
+ hidden_states: torch.Tensor,
1422
+ w1: torch.Tensor,
1423
+ w2: torch.Tensor,
1424
+ topk_weights: torch.Tensor,
1425
+ topk_ids: torch.Tensor,
1426
+ activation: str = "silu",
1427
+ apply_router_weight_on_input: bool = False,
1428
+ use_fp8_w8a8: bool = False,
1429
+ use_int8_w8a8: bool = False,
1430
+ use_int8_w8a16: bool = False,
1431
+ use_int4_w4a16: bool = False,
1432
+ ocp_mx_scheme: str | None = None,
1433
+ per_channel_quant: bool = False,
1434
+ global_num_experts: int = -1,
1435
+ expert_map: torch.Tensor | None = None,
1436
+ w1_scale: torch.Tensor | None = None,
1437
+ w2_scale: torch.Tensor | None = None,
1438
+ w1_zp: torch.Tensor | None = None,
1439
+ w2_zp: torch.Tensor | None = None,
1440
+ a1_scale: torch.Tensor | None = None,
1441
+ a2_scale: torch.Tensor | None = None,
1442
+ block_shape: list[int] | None = None,
1443
+ w1_bias: torch.Tensor | None = None,
1444
+ w2_bias: torch.Tensor | None = None,
1445
+ ) -> None:
1446
+ pass
1447
+
1448
+
1449
+ direct_register_custom_op(
1450
+ op_name="inplace_fused_experts",
1451
+ op_func=inplace_fused_experts,
1452
+ mutates_args=["hidden_states"],
1453
+ fake_impl=inplace_fused_experts_fake,
1454
+ tags=(
1455
+ ()
1456
+ if is_torch_equal_or_newer("2.7.0")
1457
+ else (torch.Tag.needs_fixed_stride_order,)
1458
+ ),
1459
+ )
1460
+
1461
+
1462
+ def outplace_fused_experts(
1463
+ hidden_states: torch.Tensor,
1464
+ w1: torch.Tensor,
1465
+ w2: torch.Tensor,
1466
+ topk_weights: torch.Tensor,
1467
+ topk_ids: torch.Tensor,
1468
+ activation: str = "silu",
1469
+ apply_router_weight_on_input: bool = False,
1470
+ use_fp8_w8a8: bool = False,
1471
+ use_int8_w8a8: bool = False,
1472
+ use_int8_w8a16: bool = False,
1473
+ use_int4_w4a16: bool = False,
1474
+ ocp_mx_scheme: str | None = None,
1475
+ per_channel_quant: bool = False,
1476
+ global_num_experts: int = -1,
1477
+ expert_map: torch.Tensor | None = None,
1478
+ w1_scale: torch.Tensor | None = None,
1479
+ w2_scale: torch.Tensor | None = None,
1480
+ w1_zp: torch.Tensor | None = None,
1481
+ w2_zp: torch.Tensor | None = None,
1482
+ a1_scale: torch.Tensor | None = None,
1483
+ a2_scale: torch.Tensor | None = None,
1484
+ block_shape: list[int] | None = None,
1485
+ w1_bias: torch.Tensor | None = None,
1486
+ w2_bias: torch.Tensor | None = None,
1487
+ ) -> torch.Tensor:
1488
+ return fused_experts_impl(
1489
+ hidden_states,
1490
+ w1,
1491
+ w2,
1492
+ topk_weights,
1493
+ topk_ids,
1494
+ False,
1495
+ activation,
1496
+ apply_router_weight_on_input,
1497
+ use_fp8_w8a8,
1498
+ use_int8_w8a8,
1499
+ use_int8_w8a16,
1500
+ use_int4_w4a16,
1501
+ ocp_mx_scheme,
1502
+ per_channel_quant,
1503
+ global_num_experts,
1504
+ expert_map,
1505
+ w1_scale,
1506
+ w2_scale,
1507
+ w1_zp,
1508
+ w2_zp,
1509
+ a1_scale,
1510
+ a2_scale,
1511
+ block_shape,
1512
+ w1_bias,
1513
+ w2_bias,
1514
+ )
1515
+
1516
+
1517
+ def outplace_fused_experts_fake(
1518
+ hidden_states: torch.Tensor,
1519
+ w1: torch.Tensor,
1520
+ w2: torch.Tensor,
1521
+ topk_weights: torch.Tensor,
1522
+ topk_ids: torch.Tensor,
1523
+ activation: str = "silu",
1524
+ use_fp8_w8a8: bool = False,
1525
+ use_int8_w8a8: bool = False,
1526
+ use_int8_w8a16: bool = False,
1527
+ use_int4_w4a16: bool = False,
1528
+ ocp_mx_scheme: str | None = None,
1529
+ per_channel_quant: bool = False,
1530
+ global_num_experts: int = -1,
1531
+ expert_map: torch.Tensor | None = None,
1532
+ w1_scale: torch.Tensor | None = None,
1533
+ w2_scale: torch.Tensor | None = None,
1534
+ w1_zp: torch.Tensor | None = None,
1535
+ w2_zp: torch.Tensor | None = None,
1536
+ a1_scale: torch.Tensor | None = None,
1537
+ a2_scale: torch.Tensor | None = None,
1538
+ block_shape: list[int] | None = None,
1539
+ w1_bias: torch.Tensor | None = None,
1540
+ w2_bias: torch.Tensor | None = None,
1541
+ ) -> torch.Tensor:
1542
+ return torch.empty_like(hidden_states)
1543
+
1544
+
1545
+ direct_register_custom_op(
1546
+ op_name="outplace_fused_experts",
1547
+ op_func=outplace_fused_experts,
1548
+ fake_impl=outplace_fused_experts_fake,
1549
+ tags=(
1550
+ ()
1551
+ if is_torch_equal_or_newer("2.7.0")
1552
+ else (torch.Tag.needs_fixed_stride_order,)
1553
+ ),
1554
+ )
1555
+
1556
+
1557
+ def torch_vllm_inplace_fused_experts(**kwargs) -> torch.Tensor:
1558
+ torch.ops.vllm.inplace_fused_experts(**kwargs)
1559
+ hidden_states = kwargs["hidden_states"]
1560
+ return hidden_states
1561
+
1562
+
1563
+ def torch_vllm_outplace_fused_experts(**kwargs) -> torch.Tensor:
1564
+ return torch.ops.vllm.outplace_fused_experts(**kwargs)
1565
+
1566
+
1567
+ def dispatch_fused_experts_func(inplace: bool) -> Callable[..., torch.Tensor]:
1568
+ if inplace and not disable_inplace():
1569
+ return torch_vllm_inplace_fused_experts
1570
+ return torch_vllm_outplace_fused_experts
1571
+
1572
+
1573
+ # TODO (bnell): replace this with modular op. Can get rid of inplace/outplace
1574
+ # torch ops.
1575
+ def fused_experts(
1576
+ hidden_states: torch.Tensor,
1577
+ w1: torch.Tensor,
1578
+ w2: torch.Tensor,
1579
+ topk_weights: torch.Tensor,
1580
+ topk_ids: torch.Tensor,
1581
+ inplace: bool = False,
1582
+ activation: str = "silu",
1583
+ apply_router_weight_on_input: bool = False,
1584
+ global_num_experts: int = -1,
1585
+ expert_map: torch.Tensor | None = None,
1586
+ quant_config: FusedMoEQuantConfig | None = None,
1587
+ allow_deep_gemm: bool = False,
1588
+ allow_cutlass_block_scaled_grouped_gemm: bool = False,
1589
+ ) -> torch.Tensor:
1590
+ if quant_config is None:
1591
+ quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
1592
+ use_fp8_w8a8 = quant_config.use_fp8_w8a8
1593
+
1594
+ # For now, disable DeepGemm for small N (<= 512) until better
1595
+ # permute/unpermute ops are available.
1596
+ # However, on B200, we use DeepGemm for all cases because they only support
1597
+ # E8M0 scale, which means we requantize the weight and input to the specific
1598
+ # scale. Fallen back to cutlass or triton for some cases would cause
1599
+ # accuracy issue.
1600
+ if (
1601
+ allow_deep_gemm
1602
+ and quant_config.use_fp8_w8a8
1603
+ and (is_deep_gemm_e8m0_used() or _valid_deep_gemm(hidden_states, w1, w2))
1604
+ ):
1605
+ assert quant_config is not None
1606
+ assert apply_router_weight_on_input is False
1607
+ return deep_gemm_moe_fp8(
1608
+ hidden_states=hidden_states,
1609
+ w1=w1,
1610
+ w2=w2,
1611
+ topk_weights=topk_weights,
1612
+ topk_ids=topk_ids,
1613
+ inplace=inplace,
1614
+ activation=activation,
1615
+ global_num_experts=global_num_experts,
1616
+ expert_map=expert_map,
1617
+ w1_scale=quant_config.w1_scale,
1618
+ w2_scale=quant_config.w2_scale,
1619
+ a1_scale=quant_config.a1_scale,
1620
+ a2_scale=quant_config.a2_scale,
1621
+ apply_router_weight_on_input=apply_router_weight_on_input,
1622
+ )
1623
+ elif (
1624
+ allow_cutlass_block_scaled_grouped_gemm
1625
+ and use_fp8_w8a8
1626
+ and _valid_cutlass_block_scaled_grouped_gemm(
1627
+ w1, w2, inplace, activation, apply_router_weight_on_input, expert_map
1628
+ )
1629
+ ):
1630
+ assert quant_config is not None
1631
+ return run_cutlass_block_scaled_fused_experts(
1632
+ a=hidden_states,
1633
+ w1=w1,
1634
+ w2=w2,
1635
+ w1_scale=quant_config.w1_scale,
1636
+ w2_scale=quant_config.w2_scale,
1637
+ topk_weights=topk_weights,
1638
+ topk_ids=topk_ids,
1639
+ )
1640
+ else:
1641
+ return dispatch_fused_experts_func(inplace)(
1642
+ hidden_states=hidden_states,
1643
+ w1=w1,
1644
+ w2=w2,
1645
+ topk_weights=topk_weights,
1646
+ topk_ids=topk_ids,
1647
+ activation=activation,
1648
+ apply_router_weight_on_input=apply_router_weight_on_input,
1649
+ use_fp8_w8a8=quant_config.use_fp8_w8a8,
1650
+ use_int8_w8a8=quant_config.use_int8_w8a8,
1651
+ use_int8_w8a16=quant_config.use_int8_w8a16,
1652
+ use_int4_w4a16=quant_config.use_int4_w4a16,
1653
+ ocp_mx_scheme=quant_config.ocp_mx_scheme,
1654
+ per_channel_quant=quant_config.per_act_token_quant,
1655
+ global_num_experts=global_num_experts,
1656
+ expert_map=expert_map,
1657
+ w1_scale=quant_config.w1_scale,
1658
+ w2_scale=quant_config.w2_scale,
1659
+ w1_zp=quant_config.w1_zp,
1660
+ w2_zp=quant_config.w2_zp,
1661
+ a1_scale=quant_config.a1_scale,
1662
+ a2_scale=quant_config.a2_scale,
1663
+ block_shape=quant_config.block_shape,
1664
+ w1_bias=quant_config.w1_bias,
1665
+ w2_bias=quant_config.w2_bias,
1666
+ )
1667
+
1668
+
1669
+ SILU_NO_MUL: str = activation_without_mul("silu")
1670
+ GELU_NO_MUL: str = activation_without_mul("gelu")
1671
+ RELU2_NO_MUL: str = activation_without_mul("relu2")
1672
+
1673
+
1674
+ def _get_config_quant_dtype(
1675
+ use_fp8_w8a8: bool,
1676
+ use_int8_w8a8: bool,
1677
+ ocp_mx_scheme: str | None,
1678
+ ) -> None | torch.dtype | str:
1679
+ """
1680
+ Get the quantization type based on the quantization strategy flags.
1681
+ We don't have a quant_config at this point so we need to work backwards.
1682
+ A return type of None means no quantization is required because the
1683
+ input is unquantized or has been quantized prior to calling
1684
+ fused_experts_impl.
1685
+ """
1686
+ if use_fp8_w8a8:
1687
+ return torch.float8_e4m3fn
1688
+ elif use_int8_w8a8:
1689
+ return torch.int8
1690
+ elif ocp_mx_scheme == "w_mxfp4_a_mxfp4":
1691
+ return "mxfp4"
1692
+ elif ocp_mx_scheme in {"w_mxfp4_a_mxfp6_e3m2", "w_mxfp6_e3m2_a_mxfp6_e3m2"}:
1693
+ return "mxfp6_e3m2"
1694
+ elif ocp_mx_scheme in {"w_mxfp4_a_mxfp6_e2m3", "w_mxfp6_e2m3_a_mxfp6_e2m3"}:
1695
+ return "mxfp6_e2m3"
1696
+ return None
1697
+
1698
+
1699
+ def fused_experts_impl(
1700
+ hidden_states: torch.Tensor,
1701
+ w1: torch.Tensor,
1702
+ w2: torch.Tensor,
1703
+ topk_weights: torch.Tensor,
1704
+ topk_ids: torch.Tensor,
1705
+ inplace: bool = False,
1706
+ activation: str = "silu",
1707
+ apply_router_weight_on_input: bool = False,
1708
+ use_fp8_w8a8: bool = False,
1709
+ use_int8_w8a8: bool = False,
1710
+ use_int8_w8a16: bool = False,
1711
+ use_int4_w4a16: bool = False,
1712
+ ocp_mx_scheme: str | None = None,
1713
+ per_channel_quant: bool = False,
1714
+ global_num_experts: int = -1,
1715
+ expert_map: torch.Tensor | None = None,
1716
+ w1_scale: torch.Tensor | None = None,
1717
+ w2_scale: torch.Tensor | None = None,
1718
+ w1_zp: torch.Tensor | None = None,
1719
+ w2_zp: torch.Tensor | None = None,
1720
+ a1_scale: torch.Tensor | None = None,
1721
+ a2_scale: torch.Tensor | None = None,
1722
+ block_shape: list[int] | None = None,
1723
+ w1_bias: torch.Tensor | None = None,
1724
+ w2_bias: torch.Tensor | None = None,
1725
+ ) -> torch.Tensor:
1726
+ # Check constraints.
1727
+ if use_int4_w4a16:
1728
+ assert hidden_states.size(1) // 2 == w1.size(2), "Hidden size mismatch"
1729
+ elif ocp_mx_scheme is not None:
1730
+ if ocp_mx_scheme in {
1731
+ "w_mxfp4_a_mxfp4",
1732
+ "w_mxfp4_a_mxfp6_e3m2",
1733
+ "w_mxfp4_a_mxfp6_e2m3",
1734
+ }:
1735
+ # 16bit activation and fp4x2 packed weight
1736
+ assert hidden_states.size(1) == w1.size(2) * 2, "hidden size mismatch"
1737
+ elif ocp_mx_scheme in {
1738
+ "w_mxfp6_e3m2_a_mxfp6_e3m2",
1739
+ "w_mxfp6_e2m3_a_mxfp6_e2m3",
1740
+ }:
1741
+ assert hidden_states.size(1) == (w1.size(2) * 4) // 3, (
1742
+ "hidden size mismatch"
1743
+ )
1744
+ else:
1745
+ raise NotImplementedError(f"Unsupported ocp_mx_scheme={ocp_mx_scheme}")
1746
+ else:
1747
+ assert hidden_states.size(1) == w1.size(2), (
1748
+ f"Hidden size mismatch {hidden_states.size(1)} != {w1.size(2)}"
1749
+ )
1750
+
1751
+ assert topk_weights.size() == topk_ids.size(), "topk shape mismatch"
1752
+ assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
1753
+ assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
1754
+ assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
1755
+ assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
1756
+
1757
+ num_tokens = hidden_states.size(0)
1758
+ E, N, _ = w1.size()
1759
+ K = w2.size(1)
1760
+ if global_num_experts == -1:
1761
+ global_num_experts = E
1762
+ top_k_num = topk_ids.size(1)
1763
+ # We execute the fused_moe kernel in chunks to circumvent this issue:
1764
+ # https://github.com/vllm-project/vllm/issues/5938
1765
+ CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
1766
+ M = min(num_tokens, CHUNK_SIZE)
1767
+
1768
+ config_dtype = _get_config_dtype_str(
1769
+ use_fp8_w8a8=use_fp8_w8a8,
1770
+ use_int8_w8a16=use_int8_w8a16,
1771
+ use_int4_w4a16=use_int4_w4a16,
1772
+ ocp_mx_scheme=ocp_mx_scheme,
1773
+ dtype=hidden_states.dtype,
1774
+ )
1775
+
1776
+ # Note: for use_int8_w8a16 or use_int4_w4a16, the activations are
1777
+ # quantized prior to calling fused_experts.
1778
+ quant_dtype = _get_config_quant_dtype(
1779
+ use_fp8_w8a8=use_fp8_w8a8,
1780
+ use_int8_w8a8=use_int8_w8a8,
1781
+ ocp_mx_scheme=ocp_mx_scheme,
1782
+ )
1783
+
1784
+ get_config_func = functools.partial(
1785
+ try_get_optimal_moe_config,
1786
+ w1.size(),
1787
+ w2.size(),
1788
+ top_k_num,
1789
+ config_dtype,
1790
+ block_shape=block_shape,
1791
+ )
1792
+
1793
+ config = get_config_func(M)
1794
+
1795
+ # We can reuse the memory between these because by the time we need
1796
+ # cache3, we're done with cache1
1797
+ cache13 = torch.empty(
1798
+ M * top_k_num * max(N, K),
1799
+ device=hidden_states.device,
1800
+ dtype=hidden_states.dtype,
1801
+ )
1802
+ intermediate_cache1 = cache13[: M * top_k_num * N].view(M, top_k_num, N)
1803
+ intermediate_cache3 = cache13[: M * top_k_num * K].view(M, top_k_num, K)
1804
+
1805
+ # This needs separate memory since it's used concurrently with cache1
1806
+ intermediate_cache2 = torch.empty(
1807
+ (M * top_k_num, N // 2), device=hidden_states.device, dtype=hidden_states.dtype
1808
+ )
1809
+
1810
+ if hidden_states.dtype == torch.bfloat16:
1811
+ compute_type = tl.bfloat16
1812
+ elif hidden_states.dtype == torch.float16:
1813
+ compute_type = tl.float16
1814
+ elif hidden_states.dtype == torch.float32:
1815
+ compute_type = tl.float32
1816
+ else:
1817
+ raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
1818
+
1819
+ if inplace and not disable_inplace():
1820
+ out_hidden_states = hidden_states
1821
+ else:
1822
+ out_hidden_states = torch.empty_like(hidden_states)
1823
+
1824
+ if ocp_mx_scheme is not None:
1825
+ # TODO: On platforms for which `current_platform.supports_mx()` is True
1826
+ # and for which we have a native OCP mx fused MOE kernel,
1827
+ # this dequantization step should not be done.
1828
+ if ocp_mx_scheme in {
1829
+ OCP_MX_Scheme.w_mxfp4_a_mxfp4,
1830
+ OCP_MX_Scheme.w_mxfp4_a_mxfp6_e3m2,
1831
+ OCP_MX_Scheme.w_mxfp4_a_mxfp6_e2m3,
1832
+ }:
1833
+ # Weight has to be dequantized for mxfp4 emulation.
1834
+ w1 = dequant_mxfp4(w1, w1_scale, hidden_states.dtype)
1835
+ w1_scale = None
1836
+ w2 = dequant_mxfp4(w2, w2_scale, hidden_states.dtype)
1837
+ w2_scale = None
1838
+ elif ocp_mx_scheme == OCP_MX_Scheme.w_mxfp6_e3m2_a_mxfp6_e3m2:
1839
+ w1 = dequant_mxfp6(
1840
+ w1, w1_scale, quant_dtype="fp6_e3m2", float_dtype=hidden_states.dtype
1841
+ )
1842
+ w1_scale = None
1843
+ w2 = dequant_mxfp6(
1844
+ w2, w2_scale, quant_dtype="fp6_e3m2", float_dtype=hidden_states.dtype
1845
+ )
1846
+ w2_scale = None
1847
+ elif ocp_mx_scheme == OCP_MX_Scheme.w_mxfp6_e2m3_a_mxfp6_e2m3:
1848
+ w1 = dequant_mxfp6(
1849
+ w1, w1_scale, quant_dtype="fp6_e2m3", float_dtype=hidden_states.dtype
1850
+ )
1851
+ w1_scale = None
1852
+ w2 = dequant_mxfp6(
1853
+ w2, w2_scale, quant_dtype="fp6_e2m3", float_dtype=hidden_states.dtype
1854
+ )
1855
+ w2_scale = None
1856
+ else:
1857
+ raise NotImplementedError(f"Unsupported ocp_mx_scheme={ocp_mx_scheme}")
1858
+
1859
+ for chunk in range((num_tokens // CHUNK_SIZE) + 1):
1860
+ begin_chunk_idx, end_chunk_idx = (
1861
+ chunk * CHUNK_SIZE,
1862
+ min((chunk + 1) * CHUNK_SIZE, num_tokens),
1863
+ )
1864
+ curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
1865
+ tokens_in_chunk, _ = curr_hidden_states.size()
1866
+
1867
+ if tokens_in_chunk == 0:
1868
+ break
1869
+
1870
+ if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
1871
+ # Adjust the intermediate cache size and config for the last
1872
+ # chunk. Note that in most cases we only have one chunk
1873
+ # so the cache size and config are already set correctly and
1874
+ # do not need to be adjusted.
1875
+ intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
1876
+ intermediate_cache2 = intermediate_cache2[
1877
+ : tokens_in_chunk * topk_ids.size(1)
1878
+ ]
1879
+ intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
1880
+ config = get_config_func(tokens_in_chunk)
1881
+
1882
+ curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
1883
+ curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
1884
+ qcurr_hidden_states, a1q_scale = moe_kernel_quantize_input(
1885
+ A=curr_hidden_states,
1886
+ A_scale=a1_scale,
1887
+ quant_dtype=quant_dtype,
1888
+ per_act_token_quant=per_channel_quant,
1889
+ block_shape=block_shape,
1890
+ )
1891
+
1892
+ sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
1893
+ curr_topk_ids, config["BLOCK_SIZE_M"], global_num_experts, expert_map
1894
+ )
1895
+
1896
+ invoke_fused_moe_kernel(
1897
+ qcurr_hidden_states,
1898
+ w1,
1899
+ intermediate_cache1,
1900
+ a1q_scale,
1901
+ w1_scale,
1902
+ w1_zp,
1903
+ curr_topk_weights,
1904
+ sorted_token_ids,
1905
+ expert_ids,
1906
+ num_tokens_post_padded,
1907
+ apply_router_weight_on_input,
1908
+ top_k_num,
1909
+ config,
1910
+ compute_type=compute_type,
1911
+ use_fp8_w8a8=use_fp8_w8a8,
1912
+ use_int8_w8a8=use_int8_w8a8,
1913
+ use_int8_w8a16=use_int8_w8a16,
1914
+ use_int4_w4a16=use_int4_w4a16,
1915
+ per_channel_quant=per_channel_quant,
1916
+ block_shape=block_shape,
1917
+ B_bias=w1_bias,
1918
+ )
1919
+
1920
+ # Activation function with multiplication
1921
+ if activation == "silu":
1922
+ torch.ops._C.silu_and_mul(
1923
+ intermediate_cache2, intermediate_cache1.view(-1, N)
1924
+ )
1925
+ elif activation == "gelu":
1926
+ torch.ops._C.gelu_and_mul(
1927
+ intermediate_cache2, intermediate_cache1.view(-1, N)
1928
+ )
1929
+ elif activation == "swigluoai":
1930
+ # alpha = 1.702, limit = 7.0
1931
+ torch.ops._C.swigluoai_and_mul(
1932
+ intermediate_cache2, intermediate_cache1.view(-1, N)
1933
+ )
1934
+ # Activation function without multiplication
1935
+ elif activation == SILU_NO_MUL:
1936
+ intermediate_cache2 = F.silu(intermediate_cache1.view(-1, N))
1937
+ elif activation == GELU_NO_MUL:
1938
+ intermediate_cache2 = F.gelu(intermediate_cache1.view(-1, N))
1939
+ elif activation == RELU2_NO_MUL:
1940
+ intermediate_cache2 = torch.square(F.relu(intermediate_cache1.view(-1, N)))
1941
+ else:
1942
+ raise ValueError(f"Unsupported FusedMoe activation: {activation}.")
1943
+
1944
+ qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
1945
+ A=intermediate_cache2,
1946
+ A_scale=a2_scale,
1947
+ quant_dtype=quant_dtype,
1948
+ per_act_token_quant=per_channel_quant,
1949
+ block_shape=block_shape,
1950
+ )
1951
+
1952
+ invoke_fused_moe_kernel(
1953
+ qintermediate_cache2,
1954
+ w2,
1955
+ intermediate_cache3,
1956
+ a2q_scale,
1957
+ w2_scale,
1958
+ w2_zp,
1959
+ curr_topk_weights,
1960
+ sorted_token_ids,
1961
+ expert_ids,
1962
+ num_tokens_post_padded,
1963
+ not apply_router_weight_on_input,
1964
+ 1,
1965
+ config,
1966
+ compute_type=compute_type,
1967
+ use_fp8_w8a8=use_fp8_w8a8,
1968
+ use_int8_w8a8=use_int8_w8a8,
1969
+ use_int8_w8a16=use_int8_w8a16,
1970
+ use_int4_w4a16=use_int4_w4a16,
1971
+ per_channel_quant=per_channel_quant,
1972
+ block_shape=block_shape,
1973
+ B_bias=w2_bias,
1974
+ )
1975
+
1976
+ ops.moe_sum(
1977
+ intermediate_cache3.view(*intermediate_cache3.size()),
1978
+ out_hidden_states[begin_chunk_idx:end_chunk_idx],
1979
+ )
1980
+
1981
+ return out_hidden_states
1982
+
1983
+
1984
+ class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
1985
+ def __init__(
1986
+ self,
1987
+ quant_config: FusedMoEQuantConfig,
1988
+ ):
1989
+ super().__init__(quant_config)
1990
+
1991
+ @property
1992
+ def activation_formats(
1993
+ self,
1994
+ ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
1995
+ return (
1996
+ mk.FusedMoEActivationFormat.Standard,
1997
+ mk.FusedMoEActivationFormat.Standard,
1998
+ )
1999
+
2000
+ def supports_chunking(self) -> bool:
2001
+ return True
2002
+
2003
+ def supports_expert_map(self) -> bool:
2004
+ return True
2005
+
2006
+ def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
2007
+ return TopKWeightAndReduceNoOP()
2008
+
2009
+ def workspace_shapes(
2010
+ self,
2011
+ M: int,
2012
+ N: int,
2013
+ K: int,
2014
+ topk: int,
2015
+ global_num_experts: int,
2016
+ local_num_experts: int,
2017
+ expert_tokens_meta: mk.ExpertTokensMetadata | None,
2018
+ ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
2019
+ workspace1 = (M, topk, max(N // 2, K))
2020
+ workspace2 = (M, topk, max(N, K))
2021
+ output = (M, K)
2022
+ return (workspace1, workspace2, output)
2023
+
2024
+ def apply(
2025
+ self,
2026
+ output: torch.Tensor,
2027
+ hidden_states: torch.Tensor,
2028
+ w1: torch.Tensor,
2029
+ w2: torch.Tensor,
2030
+ topk_weights: torch.Tensor,
2031
+ topk_ids: torch.Tensor,
2032
+ activation: str,
2033
+ global_num_experts: int,
2034
+ expert_map: torch.Tensor | None,
2035
+ a1q_scale: torch.Tensor | None,
2036
+ a2_scale: torch.Tensor | None,
2037
+ workspace13: torch.Tensor,
2038
+ workspace2: torch.Tensor,
2039
+ expert_tokens_meta: mk.ExpertTokensMetadata | None,
2040
+ apply_router_weight_on_input: bool,
2041
+ ):
2042
+ # Check constraints.
2043
+ if self.quant_config.use_int4_w4a16:
2044
+ assert hidden_states.size(-1) // 2 == w1.size(2), "Hidden size mismatch"
2045
+ else:
2046
+ assert hidden_states.size(-1) == w1.size(2), (
2047
+ f"Hidden size mismatch {hidden_states.size(-1)} != {w1.size(2)}"
2048
+ )
2049
+
2050
+ assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
2051
+ assert hidden_states.dim() == 2
2052
+ assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
2053
+ assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
2054
+ assert hidden_states.dtype in [
2055
+ torch.float32,
2056
+ torch.float16,
2057
+ torch.bfloat16,
2058
+ torch.float8_e4m3fn,
2059
+ ]
2060
+
2061
+ E, num_tokens, N, K, top_k_num = self.moe_problem_size(
2062
+ hidden_states, w1, w2, topk_ids
2063
+ )
2064
+
2065
+ if global_num_experts == -1:
2066
+ global_num_experts = E
2067
+
2068
+ config = try_get_optimal_moe_config(
2069
+ w1.size(),
2070
+ w2.size(),
2071
+ top_k_num,
2072
+ self.quant_config.config_name(hidden_states.dtype),
2073
+ num_tokens,
2074
+ block_shape=self.block_shape,
2075
+ )
2076
+
2077
+ if hidden_states.dtype == torch.bfloat16:
2078
+ compute_type = tl.bfloat16
2079
+ elif hidden_states.dtype == torch.float16:
2080
+ compute_type = tl.float16
2081
+ elif hidden_states.dtype == torch.float32:
2082
+ compute_type = tl.float32
2083
+ elif hidden_states.dtype == torch.float8_e4m3fn:
2084
+ compute_type = tl.bfloat16
2085
+ else:
2086
+ raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
2087
+
2088
+ # Note that the output tensor might be in workspace1
2089
+ intermediate_cache1 = _resize_cache(workspace2, (num_tokens, top_k_num, N))
2090
+ intermediate_cache2 = _resize_cache(
2091
+ workspace13, (num_tokens * top_k_num, N // 2)
2092
+ )
2093
+ intermediate_cache3 = _resize_cache(workspace2, (num_tokens, top_k_num, K))
2094
+
2095
+ sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
2096
+ topk_ids, config["BLOCK_SIZE_M"], global_num_experts, expert_map
2097
+ )
2098
+
2099
+ invoke_fused_moe_kernel(
2100
+ hidden_states,
2101
+ w1,
2102
+ intermediate_cache1,
2103
+ a1q_scale,
2104
+ self.w1_scale,
2105
+ self.w1_zp,
2106
+ None, # topk_weights
2107
+ sorted_token_ids,
2108
+ expert_ids,
2109
+ num_tokens_post_padded,
2110
+ False, # mul_routed_weights
2111
+ top_k_num,
2112
+ config,
2113
+ compute_type=compute_type,
2114
+ use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
2115
+ use_int8_w8a8=self.quant_config.use_int8_w8a8,
2116
+ use_int8_w8a16=self.quant_config.use_int8_w8a16,
2117
+ use_int4_w4a16=self.quant_config.use_int4_w4a16,
2118
+ per_channel_quant=self.per_act_token_quant,
2119
+ block_shape=self.block_shape,
2120
+ B_bias=self.w1_bias,
2121
+ )
2122
+
2123
+ self.activation(
2124
+ activation, intermediate_cache2, intermediate_cache1.view(-1, N)
2125
+ )
2126
+
2127
+ a2q_scale: torch.Tensor | None = None
2128
+
2129
+ qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
2130
+ intermediate_cache2,
2131
+ a2_scale,
2132
+ self.quant_dtype,
2133
+ self.per_act_token_quant,
2134
+ self.block_shape,
2135
+ )
2136
+
2137
+ invoke_fused_moe_kernel(
2138
+ qintermediate_cache2,
2139
+ w2,
2140
+ intermediate_cache3,
2141
+ a2q_scale,
2142
+ self.w2_scale,
2143
+ self.w2_zp,
2144
+ topk_weights,
2145
+ sorted_token_ids,
2146
+ expert_ids,
2147
+ num_tokens_post_padded,
2148
+ not apply_router_weight_on_input,
2149
+ 1,
2150
+ config,
2151
+ compute_type=compute_type,
2152
+ use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
2153
+ use_int8_w8a8=self.quant_config.use_int8_w8a8,
2154
+ use_int8_w8a16=self.quant_config.use_int8_w8a16,
2155
+ use_int4_w4a16=self.quant_config.use_int4_w4a16,
2156
+ per_channel_quant=self.per_act_token_quant,
2157
+ block_shape=self.block_shape,
2158
+ B_bias=self.w2_bias,
2159
+ )
2160
+
2161
+ # separate function is required for MoE + LoRA
2162
+ self.moe_sum(intermediate_cache3, output)
2163
+
2164
+ def moe_sum(self, input: torch.Tensor, output: torch.Tensor) -> None:
2165
+ ops.moe_sum(input, output)
2166
+
2167
+
2168
+ def modular_triton_fused_moe(
2169
+ quant_config: FusedMoEQuantConfig, shared_experts: torch.nn.Module | None = None
2170
+ ) -> mk.FusedMoEModularKernel:
2171
+ return mk.FusedMoEModularKernel(
2172
+ MoEPrepareAndFinalizeNoEP(),
2173
+ TritonExperts(quant_config),
2174
+ shared_experts,
2175
+ )