vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1721 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ # Copyright 2025 The Qwen team.
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
6
+ #
7
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
8
+ # and OPT implementations in this library. It has been modified from its
9
+ # original forms to accommodate minor architectural differences compared
10
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
11
+ #
12
+ # Licensed under the Apache License, Version 2.0 (the "License");
13
+ # you may not use this file except in compliance with the License.
14
+ # You may obtain a copy of the License at
15
+ #
16
+ # http://www.apache.org/licenses/LICENSE-2.0
17
+ #
18
+ # Unless required by applicable law or agreed to in writing, software
19
+ # distributed under the License is distributed on an "AS IS" BASIS,
20
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
+ # See the License for the specific language governing permissions and
22
+ # limitations under the License.
23
+ """Inference-only Qwen3-Omni-Moe model (thinker part)."""
24
+
25
+ from collections.abc import Callable, Iterable, Mapping, Sequence
26
+ from functools import partial
27
+ from typing import Any
28
+
29
+ import numpy as np
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from packaging.version import Version
34
+ from transformers import PretrainedConfig
35
+ from transformers import __version__ as TRANSFORMERS_VERSION
36
+ from transformers.feature_extraction_utils import BatchFeature
37
+ from transformers.models.qwen3_omni_moe.configuration_qwen3_omni_moe import (
38
+ Qwen3OmniMoeConfig,
39
+ Qwen3OmniMoeThinkerConfig,
40
+ )
41
+ from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import (
42
+ Qwen3OmniMoeAudioEncoder,
43
+ )
44
+ from transformers.models.qwen3_omni_moe.processing_qwen3_omni_moe import (
45
+ Qwen3OmniMoeProcessor,
46
+ )
47
+ from transformers.models.whisper import WhisperFeatureExtractor
48
+
49
+ from vllm.attention.backends.registry import AttentionBackendEnum
50
+ from vllm.attention.layer import check_upstream_fa_availability
51
+ from vllm.compilation.decorators import support_torch_compile
52
+ from vllm.config import VllmConfig
53
+ from vllm.distributed import get_pp_group
54
+ from vllm.logger import init_logger
55
+ from vllm.model_executor.layers.activation import _ACTIVATION_REGISTRY
56
+ from vllm.model_executor.layers.conv import Conv3dLayer
57
+ from vllm.model_executor.layers.linear import (
58
+ ColumnParallelLinear,
59
+ RowParallelLinear,
60
+ )
61
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
62
+ from vllm.model_executor.layers.quantization import QuantizationConfig
63
+ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
64
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
65
+ from vllm.model_executor.models.qwen2_audio import Qwen2AudioProcessingInfo
66
+ from vllm.multimodal import MULTIMODAL_REGISTRY
67
+ from vllm.multimodal.inputs import MultiModalFeatureSpec, MultiModalKwargsItems
68
+ from vllm.multimodal.parse import AudioProcessorItems, MultiModalDataItems
69
+ from vllm.multimodal.processing import (
70
+ BaseMultiModalProcessor,
71
+ MultiModalPromptUpdates,
72
+ PlaceholderFeaturesInfo,
73
+ PromptReplacement,
74
+ PromptUpdate,
75
+ )
76
+ from vllm.sequence import IntermediateTensors
77
+
78
+ from .interfaces import (
79
+ MultiModalEmbeddings,
80
+ SupportsMRoPE,
81
+ SupportsMultiModal,
82
+ SupportsPP,
83
+ )
84
+ from .qwen2_5_omni_thinker import (
85
+ Qwen2_5OmniAudioFeatureInputs,
86
+ Qwen2_5OmniConditionalGenerationMixin,
87
+ Qwen2_5OmniThinkerDummyInputsBuilder,
88
+ Qwen2_5OmniThinkerMultiModalProcessor,
89
+ Qwen2_5OmniThinkerProcessingInfo,
90
+ )
91
+ from .qwen2_5_vl import (
92
+ Qwen2_5_VisionAttention,
93
+ Qwen2_5_VisionRotaryEmbedding,
94
+ Qwen2_5_VLProcessingInfo,
95
+ )
96
+ from .qwen3_moe import Qwen3MoeForCausalLM, Qwen3MoeModel
97
+ from .utils import (
98
+ AutoWeightsLoader,
99
+ WeightsMapper,
100
+ _merge_multimodal_embeddings,
101
+ maybe_prefix,
102
+ )
103
+ from .vision import (
104
+ get_llm_pos_ids_for_vision,
105
+ get_vit_attn_backend,
106
+ )
107
+
108
+ try:
109
+ import flash_attn
110
+ except (ImportError, ModuleNotFoundError):
111
+ flash_attn = None
112
+
113
+ logger = init_logger(__name__)
114
+
115
+
116
+ def _get_feat_extract_output_lengths(input_lengths: torch.Tensor):
117
+ input_lengths_leave = input_lengths % 100
118
+ feat_lengths = (input_lengths_leave - 1) // 2 + 1
119
+ output_lengths = (
120
+ ((feat_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
121
+ )
122
+ return feat_lengths, output_lengths
123
+
124
+
125
+ class Qwen3_VisionPatchEmbed(nn.Module):
126
+ def __init__(
127
+ self,
128
+ patch_size: int = 14,
129
+ temporal_patch_size: int = 2,
130
+ in_channels: int = 3,
131
+ hidden_size: int = 1152,
132
+ ) -> None:
133
+ super().__init__()
134
+ self.patch_size = patch_size
135
+ self.temporal_patch_size = temporal_patch_size
136
+ self.hidden_size = hidden_size
137
+
138
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
139
+ self.proj = Conv3dLayer(
140
+ in_channels,
141
+ hidden_size,
142
+ kernel_size=kernel_size,
143
+ stride=kernel_size,
144
+ bias=True,
145
+ )
146
+
147
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
148
+ L, C = x.shape
149
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
150
+ x = self.proj(x).view(L, self.hidden_size)
151
+ return x
152
+
153
+
154
+ class Qwen3_VisionMLP(nn.Module):
155
+ def __init__(
156
+ self,
157
+ in_features: int,
158
+ hidden_features: int,
159
+ bias: bool = False,
160
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
161
+ quant_config: QuantizationConfig | None = None,
162
+ prefix: str = "",
163
+ ):
164
+ super().__init__()
165
+ self.linear_fc1 = ColumnParallelLinear(
166
+ in_features,
167
+ hidden_features,
168
+ bias=bias,
169
+ quant_config=quant_config,
170
+ return_bias=False,
171
+ prefix=f"{prefix}.linear_fc1",
172
+ )
173
+ self.linear_fc2 = RowParallelLinear(
174
+ hidden_features,
175
+ in_features,
176
+ bias=bias,
177
+ quant_config=quant_config,
178
+ return_bias=False,
179
+ prefix=f"{prefix}.linear_fc2",
180
+ )
181
+ self.act_fn = act_fn
182
+
183
+ def forward(self, x: torch.Tensor):
184
+ mlp_output = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
185
+ return mlp_output
186
+
187
+
188
+ class Qwen3_VisionBlock(nn.Module):
189
+ def __init__(
190
+ self,
191
+ dim: int,
192
+ num_heads: int,
193
+ mlp_hidden_dim: int,
194
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
195
+ norm_layer: Callable[[int], nn.Module] | None = None,
196
+ quant_config: QuantizationConfig | None = None,
197
+ prefix: str = "",
198
+ ) -> None:
199
+ super().__init__()
200
+ if norm_layer is None:
201
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
202
+ self.norm1 = norm_layer(dim)
203
+ self.norm2 = norm_layer(dim)
204
+ self.attn = Qwen2_5_VisionAttention(
205
+ embed_dim=dim,
206
+ num_heads=num_heads,
207
+ projection_size=dim,
208
+ quant_config=quant_config,
209
+ prefix=f"{prefix}.attn",
210
+ )
211
+ self.mlp = Qwen3_VisionMLP(
212
+ dim,
213
+ mlp_hidden_dim,
214
+ act_fn=act_fn,
215
+ bias=True,
216
+ quant_config=quant_config,
217
+ prefix=f"{prefix}.mlp",
218
+ )
219
+
220
+ def forward(
221
+ self,
222
+ x: torch.Tensor,
223
+ cu_seqlens: torch.Tensor,
224
+ rotary_pos_emb: torch.Tensor,
225
+ max_seqlen: torch.Tensor, # Only used for Flash Attention
226
+ seqlens: torch.Tensor, # Only used for xFormers
227
+ ) -> torch.Tensor:
228
+ x = x + self.attn(
229
+ self.norm1(x),
230
+ cu_seqlens=cu_seqlens,
231
+ rotary_pos_emb=rotary_pos_emb,
232
+ max_seqlen=max_seqlen,
233
+ seqlens=seqlens,
234
+ )
235
+
236
+ x = x + self.mlp(self.norm2(x))
237
+ return x
238
+
239
+
240
+ class Qwen3_VisionPatchMerger(nn.Module):
241
+ def __init__(
242
+ self,
243
+ d_model: int,
244
+ context_dim: int,
245
+ norm_layer: Callable[[int], nn.Module] | None = None,
246
+ spatial_merge_size: int = 2,
247
+ use_postshuffle_norm: bool = False,
248
+ quant_config: QuantizationConfig | None = None,
249
+ prefix: str = "",
250
+ ) -> None:
251
+ super().__init__()
252
+ self.hidden_size = context_dim * (spatial_merge_size**2)
253
+
254
+ self.use_postshuffle_norm = use_postshuffle_norm
255
+ if self.use_postshuffle_norm:
256
+ context_dim = self.hidden_size
257
+
258
+ if norm_layer is None:
259
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
260
+ self.use_postshuffle_norm = use_postshuffle_norm
261
+ self.ln_q = norm_layer(
262
+ self.hidden_size if use_postshuffle_norm else context_dim
263
+ )
264
+ self.mlp = nn.ModuleList(
265
+ [
266
+ ColumnParallelLinear(
267
+ self.hidden_size,
268
+ self.hidden_size,
269
+ bias=True,
270
+ quant_config=quant_config,
271
+ prefix=f"{prefix}.mlp.0",
272
+ ),
273
+ nn.GELU(),
274
+ RowParallelLinear(
275
+ self.hidden_size,
276
+ d_model,
277
+ bias=True,
278
+ quant_config=quant_config,
279
+ prefix=f"{prefix}.mlp.2",
280
+ ),
281
+ ]
282
+ )
283
+
284
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
285
+ if self.use_postshuffle_norm:
286
+ x = self.ln_q(x.view(-1, self.hidden_size))
287
+ else:
288
+ x = self.ln_q(x).view(-1, self.hidden_size)
289
+
290
+ mlp_fc1, mlp_act, mlp_fc2 = self.mlp
291
+ x_parallel, _ = mlp_fc1(x)
292
+ x_parallel = mlp_act(x_parallel)
293
+ out, _ = mlp_fc2(x_parallel)
294
+ return out
295
+
296
+
297
+ class Qwen3Omni_VisionTransformer(nn.Module):
298
+ def __init__(
299
+ self,
300
+ vision_config,
301
+ norm_eps: float = 1e-6,
302
+ quant_config: QuantizationConfig | None = None,
303
+ prefix: str = "",
304
+ attn_backend_override: AttentionBackendEnum | None = None,
305
+ ) -> None:
306
+ super().__init__()
307
+ self.hidden_size = vision_config.hidden_size
308
+ self.num_heads = vision_config.num_heads
309
+ self.image_size = vision_config.image_size
310
+ self.patch_size = vision_config.patch_size
311
+ self.spatial_merge_size = vision_config.spatial_merge_size
312
+ self.spatial_merge_unit = self.spatial_merge_size**2
313
+ self.temporal_patch_size = vision_config.temporal_patch_size
314
+ self.num_grid_per_side = self.image_size // self.patch_size
315
+ self.apply_vit_abs_pos_embed = vision_config.apply_vit_abs_pos_embed
316
+ self.deepstack_visual_indexes = vision_config.deepstack_visual_indexes
317
+
318
+ self.patch_embed = Qwen3_VisionPatchEmbed(
319
+ patch_size=self.patch_size,
320
+ temporal_patch_size=self.temporal_patch_size,
321
+ in_channels=vision_config.in_channels,
322
+ hidden_size=self.hidden_size,
323
+ )
324
+
325
+ # vit pos embeding, TODO: spatial_patch_size vs patch_size
326
+ if self.apply_vit_abs_pos_embed:
327
+ self.pos_embed = nn.Embedding(self.num_grid_per_side**2, self.hidden_size)
328
+ else:
329
+ self.pos_embed = nn.Parameter(
330
+ torch.empty([1, self.num_grid_per_side**2, self.hidden_size])
331
+ )
332
+
333
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
334
+ head_dim = self.hidden_size // self.num_heads
335
+ self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
336
+
337
+ self.blocks = nn.ModuleList(
338
+ [
339
+ Qwen3_VisionBlock(
340
+ dim=self.hidden_size,
341
+ num_heads=self.num_heads,
342
+ mlp_hidden_dim=vision_config.intermediate_size,
343
+ act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act],
344
+ norm_layer=norm_layer,
345
+ quant_config=quant_config,
346
+ prefix=f"{prefix}.blocks.{layer_idx}",
347
+ )
348
+ for layer_idx in range(vision_config.depth)
349
+ ]
350
+ )
351
+ self.merger = Qwen3_VisionPatchMerger(
352
+ d_model=vision_config.out_hidden_size,
353
+ context_dim=self.hidden_size,
354
+ norm_layer=norm_layer,
355
+ spatial_merge_size=self.spatial_merge_size,
356
+ quant_config=quant_config,
357
+ prefix=f"{prefix}.merger",
358
+ )
359
+ if self.deepstack_visual_indexes is not None:
360
+ self.merger_list = nn.ModuleList(
361
+ [
362
+ Qwen3_VisionPatchMerger(
363
+ d_model=vision_config.out_hidden_size,
364
+ context_dim=self.hidden_size,
365
+ spatial_merge_size=self.spatial_merge_size,
366
+ use_postshuffle_norm=True,
367
+ norm_layer=norm_layer,
368
+ quant_config=quant_config,
369
+ prefix=f"{prefix}.merger_list.{layer_idx}",
370
+ )
371
+ for layer_idx in range(len(self.deepstack_visual_indexes))
372
+ ]
373
+ )
374
+
375
+ self.attn_backend = get_vit_attn_backend(
376
+ head_size=head_dim,
377
+ dtype=torch.get_default_dtype(),
378
+ attn_backend_override=attn_backend_override,
379
+ )
380
+ if (
381
+ self.attn_backend != AttentionBackendEnum.FLASH_ATTN
382
+ and check_upstream_fa_availability(torch.get_default_dtype())
383
+ ):
384
+ self.attn_backend = AttentionBackendEnum.FLASH_ATTN
385
+
386
+ @property
387
+ def dtype(self) -> torch.dtype:
388
+ return self.patch_embed.proj.weight.dtype
389
+
390
+ @property
391
+ def device(self) -> torch.device:
392
+ return self.patch_embed.proj.weight.device
393
+
394
+ def rot_pos_emb(self, grid_thw):
395
+ pos_ids = []
396
+ for t, h, w in grid_thw:
397
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
398
+ hpos_ids = hpos_ids.reshape(
399
+ h // self.spatial_merge_size,
400
+ self.spatial_merge_size,
401
+ w // self.spatial_merge_size,
402
+ self.spatial_merge_size,
403
+ )
404
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
405
+ hpos_ids = hpos_ids.flatten()
406
+
407
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
408
+ wpos_ids = wpos_ids.reshape(
409
+ h // self.spatial_merge_size,
410
+ self.spatial_merge_size,
411
+ w // self.spatial_merge_size,
412
+ self.spatial_merge_size,
413
+ )
414
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
415
+ wpos_ids = wpos_ids.flatten()
416
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
417
+ pos_ids = torch.cat(pos_ids, dim=0)
418
+ max_grid_size = grid_thw[:, 1:].max()
419
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
420
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
421
+ return rotary_pos_emb
422
+
423
+ def fast_pos_embed_interpolate(self, grid_thw: list[list[int]]) -> torch.Tensor:
424
+ num_grid_per_side = self.num_grid_per_side
425
+ m_size = self.spatial_merge_size
426
+ hidden_dim = self.pos_embed.embedding_dim
427
+
428
+ outputs = []
429
+ for t, h, w in grid_thw:
430
+ h_idxs = torch.linspace(
431
+ 0, num_grid_per_side - 1, h, dtype=torch.float32, device=self.device
432
+ )
433
+ w_idxs = torch.linspace(
434
+ 0, num_grid_per_side - 1, w, dtype=torch.float32, device=self.device
435
+ )
436
+
437
+ h_floor = h_idxs.to(torch.long)
438
+ w_floor = w_idxs.to(torch.long)
439
+ h_ceil = torch.clamp(h_floor + 1, max=num_grid_per_side - 1)
440
+ w_ceil = torch.clamp(w_floor + 1, max=num_grid_per_side - 1)
441
+
442
+ dh = h_idxs - h_floor
443
+ dw = w_idxs - w_floor
444
+
445
+ # Create meshgrid view for all h, w vars
446
+ dh_grid, dw_grid = torch.meshgrid(dh, dw, indexing="ij")
447
+ h_floor_grid, w_floor_grid = torch.meshgrid(h_floor, w_floor, indexing="ij")
448
+ h_ceil_grid, w_ceil_grid = torch.meshgrid(h_ceil, w_ceil, indexing="ij")
449
+ h_floor_grid_idx = h_floor_grid * num_grid_per_side
450
+ h_ceil_grid_idx = h_ceil_grid * num_grid_per_side
451
+
452
+ # original computation of weights
453
+ # w00 = (1 - dh_grid) * (1 - dw_grid)
454
+ # w01 = (1 - dh_grid) * dw_grid
455
+ # w10 = dh_grid * (1 - dw_grid)
456
+ # w11 = dh_grid * dw_grid
457
+ # we reuse w11 here to avoid duplicate
458
+ # dh_grid * dw_grid computation
459
+ w11 = dh_grid * dw_grid
460
+ w10 = dh_grid - w11
461
+ w01 = dw_grid - w11
462
+ w00 = 1 - dh_grid - dw_grid + w11
463
+
464
+ idx00 = h_floor_grid_idx + w_floor_grid
465
+ idx01 = h_floor_grid_idx + w_ceil_grid
466
+ idx10 = h_ceil_grid_idx + w_floor_grid
467
+ idx11 = h_ceil_grid_idx + w_ceil_grid
468
+
469
+ indices = torch.stack([idx00, idx01, idx10, idx11], dim=0).reshape(4, -1)
470
+ weights = torch.stack([w00, w01, w10, w11], dim=0).reshape(4, -1, 1)
471
+ weights = weights.to(dtype=self.dtype, device=self.device)
472
+
473
+ embeds = self.pos_embed(indices)
474
+ weighted_embeds = embeds * weights
475
+ p0, p1, p2, p3 = weighted_embeds.unbind(dim=0)
476
+ combined = p0 + p1 + p2 + p3
477
+
478
+ combined = combined.view(h * w, hidden_dim)
479
+ repeated = combined.unsqueeze(0).expand(t, -1, -1).contiguous()
480
+ repeated = repeated.view(
481
+ t, h // m_size, m_size, w // m_size, m_size, hidden_dim
482
+ )
483
+ repeated = repeated.permute(0, 1, 3, 2, 4, 5).reshape(-1, hidden_dim)
484
+ outputs.append(repeated)
485
+
486
+ return torch.cat(outputs, dim=0)
487
+
488
+ def compute_attn_mask_seqlen(
489
+ self,
490
+ cu_seqlens: torch.Tensor,
491
+ ) -> tuple[torch.Tensor, torch.Tensor]:
492
+ max_seqlen = torch.zeros([], device=cu_seqlens.device)
493
+ seqlens = torch.zeros(1, device=cu_seqlens.device)
494
+ if self.attn_backend == AttentionBackendEnum.FLASH_ATTN:
495
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
496
+ elif self.attn_backend == AttentionBackendEnum.XFORMERS:
497
+ seqlens = cu_seqlens[1:] - cu_seqlens[:-1]
498
+ return max_seqlen, seqlens
499
+
500
+ def forward(
501
+ self,
502
+ x: torch.Tensor,
503
+ grid_thw: list[list[int]],
504
+ ) -> torch.Tensor:
505
+ hidden_states = x.to(device=self.device, dtype=self.dtype)
506
+ hidden_states = self.patch_embed(hidden_states)
507
+
508
+ if self.apply_vit_abs_pos_embed:
509
+ pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
510
+ hidden_states = hidden_states + pos_embeds
511
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
512
+
513
+ cu_seqlens = torch.repeat_interleave(
514
+ grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
515
+ ).cumsum(
516
+ dim=0,
517
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
518
+ )
519
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
520
+
521
+ hidden_states = hidden_states.unsqueeze(1)
522
+ rotary_pos_emb = rotary_pos_emb.to(hidden_states.device)
523
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
524
+
525
+ hidden_states_list = []
526
+ deepstack_visual_indexes = self.deepstack_visual_indexes
527
+
528
+ for layer_num, blk in enumerate(self.blocks):
529
+ hidden_states = blk(
530
+ hidden_states,
531
+ cu_seqlens=cu_seqlens,
532
+ rotary_pos_emb=rotary_pos_emb,
533
+ max_seqlen=max_seqlen,
534
+ seqlens=seqlens,
535
+ )
536
+ if (
537
+ deepstack_visual_indexes is not None
538
+ and layer_num in deepstack_visual_indexes
539
+ ):
540
+ hidden_states_list.append(hidden_states)
541
+
542
+ hidden_states = self.merger(hidden_states)
543
+
544
+ # processing deepstack
545
+ if deepstack_visual_indexes is not None:
546
+ processed_hidden_states_list = [hidden_states]
547
+ for idx, x in enumerate(hidden_states_list):
548
+ x = self.merger_list[idx](x)
549
+ processed_hidden_states_list.append(x)
550
+ # we cat the original visual features and deepstack features
551
+ # along the feature dim
552
+ hidden_states = torch.cat(
553
+ processed_hidden_states_list, dim=1
554
+ ) # [seq_len, hidden_size * (1 + depth_of_deepstack)]
555
+
556
+ return hidden_states
557
+
558
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
559
+ stacked_params_mapping = [
560
+ # (param_name, shard_name, shard_id)
561
+ ("attn.qkv.", "attn.q.", "q"),
562
+ ("attn.qkv.", "attn.k.", "k"),
563
+ ("attn.qkv.", "attn.v.", "v"),
564
+ ]
565
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
566
+ loaded_params: set[str] = set()
567
+
568
+ for name, loaded_weight in weights:
569
+ for param_name, weight_name, shard_id in stacked_params_mapping:
570
+ if weight_name not in name:
571
+ continue
572
+ name = name.replace(weight_name, param_name)
573
+
574
+ param = params_dict[name]
575
+ weight_loader = param.weight_loader
576
+ weight_loader(param, loaded_weight, shard_id)
577
+ break
578
+ else:
579
+ param = params_dict[name]
580
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
581
+ weight_loader(param, loaded_weight)
582
+ loaded_params.add(name)
583
+ return loaded_params
584
+
585
+
586
+ @support_torch_compile(
587
+ dynamic_arg_dims={
588
+ "input_ids": 0,
589
+ "positions": -1,
590
+ "intermediate_tensors": 0,
591
+ "inputs_embeds": 0,
592
+ "deepstack_input_embeds": 0,
593
+ }
594
+ )
595
+ class Qwen3MoeLLMModel(Qwen3MoeModel):
596
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
597
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
598
+
599
+ self.deepstack_multiscale_layer_start = 1
600
+
601
+ def forward(
602
+ self,
603
+ input_ids: torch.Tensor,
604
+ positions: torch.Tensor,
605
+ intermediate_tensors: IntermediateTensors | None = None,
606
+ inputs_embeds: torch.Tensor | None = None,
607
+ deepstack_input_embeds: IntermediateTensors | None = None,
608
+ ) -> torch.Tensor | IntermediateTensors:
609
+ if get_pp_group().is_first_rank:
610
+ if inputs_embeds is not None:
611
+ hidden_states = inputs_embeds
612
+ else:
613
+ hidden_states = self.embed_input_ids(input_ids)
614
+ residual = None
615
+ else:
616
+ assert intermediate_tensors is not None
617
+ hidden_states = intermediate_tensors["hidden_states"]
618
+ residual = intermediate_tensors["residual"]
619
+ for layer_idx, layer in enumerate(
620
+ self.layers[self.start_layer : self.end_layer]
621
+ ):
622
+ layer_idx = layer_idx + self.start_layer
623
+
624
+ hidden_states, residual = layer(
625
+ positions,
626
+ hidden_states,
627
+ residual,
628
+ )
629
+
630
+ if deepstack_input_embeds is not None and layer_idx in range(
631
+ 0, len(deepstack_input_embeds)
632
+ ):
633
+ hidden_states = (
634
+ hidden_states
635
+ + deepstack_input_embeds[f"deepstack_input_embeds_{layer_idx}"]
636
+ )
637
+
638
+ if not get_pp_group().is_last_rank:
639
+ return IntermediateTensors(
640
+ {"hidden_states": hidden_states, "residual": residual}
641
+ )
642
+ hidden_states, _ = self.norm(hidden_states, residual)
643
+ return hidden_states
644
+
645
+
646
+ class Qwen3MoeLLMForCausalLM(Qwen3MoeForCausalLM):
647
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
648
+ super(Qwen3MoeForCausalLM, self).__init__()
649
+ config = vllm_config.model_config.hf_config
650
+ quant_config = vllm_config.quant_config
651
+ self.config = config
652
+ self.quant_config = quant_config
653
+ self.model = Qwen3MoeLLMModel(
654
+ vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
655
+ )
656
+ self.lm_head = ParallelLMHead(
657
+ config.vocab_size, config.hidden_size, quant_config=quant_config
658
+ )
659
+ if self.config.tie_word_embeddings:
660
+ self.lm_head.weight = self.model.embed_tokens.weight
661
+ self.logits_processor = LogitsProcessor(config.vocab_size)
662
+ self.make_empty_intermediate_tensors = (
663
+ self.model.make_empty_intermediate_tensors
664
+ )
665
+
666
+
667
+ class Qwen3OmniMoeThinkerProcessingInfo(
668
+ Qwen2AudioProcessingInfo, Qwen2_5_VLProcessingInfo
669
+ ):
670
+ def get_hf_config(self):
671
+ return self.ctx.get_hf_config(Qwen3OmniMoeConfig).thinker_config
672
+
673
+ def get_hf_processor(self, **kwargs: object) -> Qwen3OmniMoeProcessor:
674
+ processor = self.ctx.get_hf_processor(
675
+ Qwen3OmniMoeProcessor,
676
+ use_fast=kwargs.pop("use_fast", True),
677
+ **kwargs,
678
+ )
679
+ if not hasattr(processor, "audio_token"):
680
+ processor.audio_token = "<|audio_pad|>"
681
+ if not hasattr(processor, "image_token"):
682
+ processor.image_token = "<|image_pad|>"
683
+ if not hasattr(processor, "video_token"):
684
+ processor.video_token = "<|video_pad|>"
685
+ return processor
686
+
687
+ def get_feature_extractor(self, **kwargs: object):
688
+ hf_processor = self.get_hf_processor(**kwargs)
689
+ feature_extractor = hf_processor.feature_extractor # type: ignore
690
+ assert isinstance(feature_extractor, WhisperFeatureExtractor)
691
+ return feature_extractor
692
+
693
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
694
+ return {"audio": None, "image": None, "video": None}
695
+
696
+
697
+ Qwen3OmniMoeThinkerDummyInputsBuilder = Qwen2_5OmniThinkerDummyInputsBuilder
698
+
699
+
700
+ class Qwen3OmniMoeThinkerMultiModalProcessor(
701
+ Qwen2_5OmniThinkerMultiModalProcessor,
702
+ ):
703
+ def _call_hf_processor(
704
+ self,
705
+ prompt: str,
706
+ mm_data: Mapping[str, object],
707
+ mm_kwargs: Mapping[str, object],
708
+ tok_kwargs: Mapping[str, object],
709
+ ) -> BatchFeature:
710
+ mm_data = dict(mm_data)
711
+ audios = mm_data.pop("audios", [])
712
+
713
+ def pad_to_hop_length(x: np.ndarray, hop_length: int) -> np.ndarray:
714
+ length = x.shape[-1]
715
+ if length % hop_length != 0:
716
+ pad_length = hop_length - (length % hop_length)
717
+ x = np.pad(x, (0, pad_length), mode="constant", constant_values=0)
718
+ return x
719
+
720
+ # NOTE: WhisperFeatureExtractor cannot handle empty list of audios
721
+ feature_extractor = self.info.get_feature_extractor()
722
+ hop_length = feature_extractor.hop_length
723
+ if audios:
724
+ # NOTE: Qwen3-Omni processor accept "audio"
725
+ # To make sure the cache works with padding=True, we pre-padded
726
+ # the audio to multiple of hop_length.
727
+ mm_data["audio"] = [
728
+ pad_to_hop_length(audio, hop_length)
729
+ if isinstance(audio, np.ndarray)
730
+ else (pad_to_hop_length(audio[0], hop_length), audio[1])
731
+ for audio in audios
732
+ ]
733
+
734
+ # TODO(Isotr0py): Remove this patch after upstream fix PR
735
+ # released and Transformers version update:
736
+ # https://github.com/huggingface/transformers/pull/41473
737
+ mm_kwargs = dict(mm_kwargs)
738
+ tok_kwargs = dict(tok_kwargs)
739
+ if Version(TRANSFORMERS_VERSION) < Version("4.58.0"):
740
+ # move truncation to audio_kwargs level to avoid conflict
741
+ # with tok_kwargs
742
+ mm_kwargs["audio_kwargs"] = {
743
+ "truncation": mm_kwargs.pop("truncation", False)
744
+ }
745
+ mm_kwargs["text_kwargs"] = {
746
+ "truncation": tok_kwargs.pop("truncation", False)
747
+ }
748
+
749
+ hf_inputs = super()._call_hf_processor(
750
+ prompt=prompt,
751
+ mm_data=mm_data,
752
+ mm_kwargs=mm_kwargs,
753
+ tok_kwargs=tok_kwargs,
754
+ )
755
+
756
+ if (
757
+ "audio_feature_lengths" in hf_inputs
758
+ and "feature_attention_mask" in hf_inputs
759
+ and (audios := mm_data.get("audio", []))
760
+ ):
761
+ audio_num_frames = []
762
+ for _, audio in enumerate(audios):
763
+ audio_length = len(audio[0]) if isinstance(audio, tuple) else len(audio)
764
+ num_frame = (
765
+ (audio_length // hop_length)
766
+ if audio_length % hop_length == 0
767
+ else (audio_length // hop_length - 1)
768
+ )
769
+ if mm_kwargs.get("truncation", False):
770
+ num_frame = min(
771
+ num_frame, feature_extractor.n_samples // hop_length
772
+ )
773
+ audio_num_frames.append(num_frame)
774
+ hf_inputs["feature_attention_mask"] = [
775
+ torch.ones(num_frame) for num_frame in audio_num_frames
776
+ ]
777
+ hf_inputs["audio_feature_lengths"] = torch.tensor(audio_num_frames)
778
+ return hf_inputs
779
+
780
+ def _maybe_apply_prompt_updates(
781
+ self,
782
+ mm_items: MultiModalDataItems,
783
+ prompt_ids: list[int],
784
+ mm_kwargs: MultiModalKwargsItems,
785
+ mm_prompt_updates: MultiModalPromptUpdates,
786
+ is_update_applied: bool,
787
+ ) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
788
+ """
789
+ Qwen3-Omni reimplements this function to handle `use_audio_in_video`.
790
+ """
791
+ mm_item_counts = mm_items.get_all_counts()
792
+ self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
793
+
794
+ use_audio_in_video = False
795
+ if "video" in mm_kwargs:
796
+ for item in mm_kwargs["video"]:
797
+ if item and item["use_audio_in_video"].data:
798
+ use_audio_in_video = True
799
+ else:
800
+ use_audio_in_video = False
801
+
802
+ if use_audio_in_video and "video" in mm_item_counts:
803
+ assert "audio" in mm_item_counts
804
+ mm_item_counts["audio"] -= mm_item_counts["video"]
805
+
806
+ # Special case with `use_audio_in_video=True`
807
+ if use_audio_in_video:
808
+ if is_update_applied:
809
+ prompt_ids = self._get_raw_input_ids(prompt_ids, use_audio_in_video)
810
+ (
811
+ prompt_ids,
812
+ mm_placeholders,
813
+ ) = self._apply_prompt_updates(
814
+ prompt_ids,
815
+ mm_prompt_updates,
816
+ )
817
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
818
+ # normal case with `use_audio_in_video=False`
819
+ elif is_update_applied:
820
+ mm_placeholders = self._find_mm_placeholders(
821
+ prompt_ids,
822
+ mm_prompt_updates,
823
+ )
824
+ self._validate_mm_placeholders(
825
+ mm_placeholders,
826
+ mm_item_counts,
827
+ )
828
+ else:
829
+ prompt_ids, mm_placeholders = self._apply_prompt_updates(
830
+ prompt_ids,
831
+ mm_prompt_updates,
832
+ )
833
+ self._validate_mm_placeholders(
834
+ mm_placeholders,
835
+ mm_item_counts,
836
+ )
837
+
838
+ return prompt_ids, mm_placeholders
839
+
840
+ def get_updates_use_audio_in_video(
841
+ self,
842
+ thinker_config: PretrainedConfig,
843
+ audio_len: int,
844
+ video_grid_thw: list[int] | torch.Tensor,
845
+ video_second_per_grid_t: float,
846
+ ) -> list[int]:
847
+ shift = 0
848
+ audio_token_id = thinker_config.audio_token_id
849
+ video_token_id = thinker_config.video_token_id
850
+ audio_start_token_id = thinker_config.audio_start_token_id
851
+ audio_end_token_id = thinker_config.audio_end_token_id
852
+ spatial_merge_size = thinker_config.vision_config.spatial_merge_size
853
+ position_id_per_seconds = thinker_config.position_id_per_seconds
854
+ audio_token_indices = np.arange(next(iter([audio_len])))
855
+ curr_video_grid_thw = next(iter([video_grid_thw]))
856
+ height = curr_video_grid_thw[1] // spatial_merge_size
857
+ width = curr_video_grid_thw[2] // spatial_merge_size
858
+ video_token_indices = np.arange(curr_video_grid_thw[0]).reshape(-1, 1, 1)
859
+ video_token_indices = np.broadcast_to(
860
+ video_token_indices, (video_token_indices.shape[0], height, width)
861
+ ).reshape(-1)
862
+ video_token_indices = (
863
+ (video_token_indices + shift)
864
+ * next(iter([video_second_per_grid_t]))
865
+ * position_id_per_seconds
866
+ )
867
+ video_data_index, audio_data_index = 0, 0
868
+ updates = [audio_start_token_id]
869
+ while video_data_index < len(video_token_indices) and audio_data_index < len(
870
+ audio_token_indices
871
+ ):
872
+ if (
873
+ video_token_indices[video_data_index]
874
+ <= audio_token_indices[audio_data_index]
875
+ ):
876
+ updates += [video_token_id]
877
+ video_data_index += 1
878
+ else:
879
+ updates += [audio_token_id]
880
+ audio_data_index += 1
881
+ if video_data_index < len(video_token_indices):
882
+ updates += [video_token_id] * (len(video_token_indices) - video_data_index)
883
+ if audio_data_index < len(audio_token_indices):
884
+ updates += [audio_token_id] * (len(audio_token_indices) - audio_data_index)
885
+ updates += [audio_end_token_id]
886
+ return updates
887
+
888
+ def _get_prompt_updates(
889
+ self,
890
+ mm_items: MultiModalDataItems,
891
+ hf_processor_mm_kwargs: Mapping[str, Any],
892
+ out_mm_kwargs: MultiModalKwargsItems,
893
+ ) -> Sequence[PromptUpdate]:
894
+ processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
895
+ tokenizer = self.info.get_tokenizer()
896
+ image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
897
+ vocab = tokenizer.get_vocab()
898
+
899
+ audio_token = processor.audio_token
900
+ image_token = processor.image_token
901
+ video_token = processor.video_token
902
+ audio_token_id = vocab[audio_token]
903
+ image_token_id = vocab[image_token]
904
+ video_token_id = vocab[video_token]
905
+
906
+ out_mm_data = out_mm_kwargs.get_data()
907
+ audio_feature_lengths = out_mm_data.get("audio_feature_lengths")
908
+ feature_attention_mask = out_mm_data.get("feature_attention_mask")
909
+ if audio_feature_lengths is None and feature_attention_mask is None:
910
+ audio_output_lengths = []
911
+ elif audio_feature_lengths is not None:
912
+ _, audio_output_lens = _get_feat_extract_output_lengths(
913
+ audio_feature_lengths
914
+ )
915
+ audio_output_lengths = audio_output_lens.tolist()
916
+ elif feature_attention_mask is not None:
917
+ assert isinstance(feature_attention_mask, torch.Tensor)
918
+ _, audio_output_lens = _get_feat_extract_output_lengths(
919
+ feature_attention_mask.sum(-1)
920
+ )
921
+ audio_output_lengths = audio_output_lens.tolist()
922
+
923
+ # number of audios read from video.
924
+ audio_in_video_item_idx = 0
925
+ audio_item_idx = 0
926
+
927
+ def get_replacement_qwen2_audio(item_idx: int):
928
+ nonlocal audio_item_idx
929
+ item_idx += audio_in_video_item_idx
930
+
931
+ audio_item_idx += 1
932
+
933
+ num_features = audio_output_lengths[item_idx]
934
+ if num_features == 0:
935
+ audios = mm_items.get_items("audio", AudioProcessorItems)
936
+ audio = audios.get(item_idx)
937
+ raise ValueError(
938
+ f"The audio {audio} (len={len(audio)}) is too short "
939
+ "to be represented inside the model"
940
+ )
941
+
942
+ return [audio_token_id] * num_features
943
+
944
+ def get_replacement_qwen2_vision(item_idx: int, modality: str):
945
+ grid_thw = out_mm_data[f"{modality}_grid_thw"][item_idx]
946
+ assert isinstance(grid_thw, torch.Tensor)
947
+ merge_length = image_processor.merge_size**2
948
+
949
+ token_id = image_token_id if modality == "image" else video_token_id
950
+ return [token_id] * (int(grid_thw.prod()) // merge_length)
951
+
952
+ use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
953
+ thinker_config = self.info.get_hf_config()
954
+
955
+ def get_replacement_qwen2_use_audio_in_video(item_idx: int):
956
+ nonlocal audio_in_video_item_idx
957
+ audio_num_features = audio_output_lengths[audio_item_idx + item_idx]
958
+ video_grid_thw = out_mm_data["video_grid_thw"][item_idx]
959
+
960
+ audio_in_video_item_idx += 1
961
+
962
+ second_per_grid_ts = hf_processor_mm_kwargs.get("second_per_grid_ts", None)
963
+ if second_per_grid_ts:
964
+ video_second_per_grid_t = second_per_grid_ts[item_idx]
965
+ else:
966
+ video_second_per_grid_t = 1.0
967
+
968
+ return self.get_updates_use_audio_in_video(
969
+ thinker_config=thinker_config,
970
+ audio_len=audio_num_features,
971
+ video_grid_thw=video_grid_thw,
972
+ video_second_per_grid_t=video_second_per_grid_t,
973
+ )
974
+
975
+ video_replacement_fn = (
976
+ get_replacement_qwen2_use_audio_in_video
977
+ if use_audio_in_video
978
+ else partial(get_replacement_qwen2_vision, modality="video")
979
+ )
980
+
981
+ return [
982
+ PromptReplacement(
983
+ modality="audio",
984
+ target=audio_token,
985
+ replacement=get_replacement_qwen2_audio,
986
+ ),
987
+ PromptReplacement(
988
+ modality="image",
989
+ target=image_token,
990
+ replacement=partial(get_replacement_qwen2_vision, modality="image"),
991
+ ),
992
+ PromptReplacement(
993
+ modality="video",
994
+ target=video_token,
995
+ replacement=video_replacement_fn,
996
+ ),
997
+ ]
998
+
999
+ def _validate_mm_placeholders(
1000
+ self,
1001
+ mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
1002
+ mm_item_counts: Mapping[str, int],
1003
+ ) -> None:
1004
+ BaseMultiModalProcessor[
1005
+ Qwen2_5OmniThinkerProcessingInfo
1006
+ ]._validate_mm_placeholders(self, mm_placeholders, mm_item_counts)
1007
+
1008
+ def _get_raw_input_ids(
1009
+ self,
1010
+ token_ids: list[int],
1011
+ use_audio_in_video: bool = False,
1012
+ ) -> list[int]:
1013
+ tokenizer = self.info.get_tokenizer()
1014
+ vision_bos_token = tokenizer.encode(tokenizer.vision_bos_token)[0]
1015
+ vision_eos_token = tokenizer.encode(tokenizer.vision_eos_token)[0]
1016
+ audio_bos_token = tokenizer.encode(tokenizer.audio_bos_token)[0]
1017
+ audio_eos_token = tokenizer.encode(tokenizer.audio_eos_token)[0]
1018
+ audio_token = tokenizer.encode("<|audio_pad|>")[0]
1019
+ image_token = tokenizer.encode("<|image_pad|>")[0]
1020
+ video_token = tokenizer.encode("<|video_pad|>")[0]
1021
+
1022
+ result = token_ids[:]
1023
+ if use_audio_in_video:
1024
+ while True:
1025
+ start = None
1026
+ for i in range(len(result) - 1):
1027
+ if result[i : i + 2] == [vision_bos_token, audio_bos_token]:
1028
+ start = i
1029
+ break
1030
+ if start is not None:
1031
+ end = None
1032
+ for i in range(start + 2, len(result) - 1):
1033
+ if result[i : i + 2] == [audio_eos_token, vision_eos_token]:
1034
+ end = i
1035
+ break
1036
+ if end is not None:
1037
+ result = (
1038
+ result[:start]
1039
+ + [vision_bos_token, video_token, vision_eos_token]
1040
+ + result[end + 2 :]
1041
+ )
1042
+ else:
1043
+ break
1044
+
1045
+ for mm_token in [audio_token, image_token, video_token]:
1046
+ compressed = []
1047
+ for x in result:
1048
+ if x != mm_token or (not compressed or compressed[-1] != mm_token):
1049
+ compressed.append(x)
1050
+ result = compressed
1051
+
1052
+ return result
1053
+
1054
+
1055
+ class Qwen3OmniMoeConditionalGenerationMixin(Qwen2_5OmniConditionalGenerationMixin):
1056
+ def _process_audio_input(
1057
+ self,
1058
+ audio_input: Qwen2_5OmniAudioFeatureInputs,
1059
+ audio_hashes: list[str] | None = None,
1060
+ cached_audio_features: torch.Tensor | None = None,
1061
+ ) -> torch.Tensor:
1062
+ input_features = audio_input["input_features"]
1063
+ audio_feature_lengths = audio_input["audio_feature_lengths"]
1064
+
1065
+ audio_feat_lengths, audio_output_lengths = _get_feat_extract_output_lengths(
1066
+ audio_feature_lengths
1067
+ )
1068
+
1069
+ audio_outputs = self.audio_tower(
1070
+ input_features.to(self.audio_tower.dtype),
1071
+ feature_lens=audio_feature_lengths,
1072
+ aftercnn_lens=audio_feat_lengths,
1073
+ )
1074
+ audio_features = audio_outputs.last_hidden_state
1075
+ return audio_features.split(audio_output_lengths.tolist())
1076
+
1077
+
1078
+ @MULTIMODAL_REGISTRY.register_processor(
1079
+ Qwen3OmniMoeThinkerMultiModalProcessor,
1080
+ info=Qwen3OmniMoeThinkerProcessingInfo,
1081
+ dummy_inputs=Qwen3OmniMoeThinkerDummyInputsBuilder,
1082
+ )
1083
+ class Qwen3OmniMoeThinkerForConditionalGeneration(
1084
+ nn.Module,
1085
+ SupportsMultiModal,
1086
+ SupportsPP,
1087
+ SupportsMRoPE,
1088
+ Qwen3OmniMoeConditionalGenerationMixin,
1089
+ ):
1090
+ merge_by_field_config = True
1091
+
1092
+ hf_to_vllm_mapper = WeightsMapper(
1093
+ orig_to_new_prefix={
1094
+ "thinker.lm_head.": "language_model.lm_head.",
1095
+ "thinker.model.": "language_model.model.",
1096
+ "thinker.": "",
1097
+ }
1098
+ )
1099
+
1100
+ @classmethod
1101
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
1102
+ if modality.startswith("image"):
1103
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1104
+ if modality.startswith("video"):
1105
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1106
+ if modality.startswith("audio"):
1107
+ return "<|audio_start|><|audio_pad|><|audio_end|>"
1108
+
1109
+ raise ValueError("Only image, video or audio modality is supported")
1110
+
1111
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1112
+ super().__init__()
1113
+ self.vllm_config = vllm_config # needed for torch compile forward context
1114
+ thinker_config: Qwen3OmniMoeThinkerConfig = (
1115
+ vllm_config.model_config.hf_config.thinker_config
1116
+ )
1117
+ quant_config = vllm_config.quant_config
1118
+ multimodal_config = vllm_config.model_config.multimodal_config
1119
+ self.config = thinker_config
1120
+ self.multimodal_config = multimodal_config
1121
+
1122
+ # force "use_flash_attention_2=True" to audio tower to align
1123
+ # the results.
1124
+ if flash_attn is not None:
1125
+ audio_config = thinker_config.audio_config
1126
+ audio_config._attn_implementation_autoset = True
1127
+ audio_config._attn_implementation = "flash_attention_2"
1128
+ else:
1129
+ logger.warning(
1130
+ "flash_attn is not available, the model may not yield the "
1131
+ "exactly same result as the transformers implementation "
1132
+ "in the audio tower part."
1133
+ )
1134
+
1135
+ self.audio_tower = Qwen3OmniMoeAudioEncoder(thinker_config.audio_config)
1136
+
1137
+ attn_backend_override = (
1138
+ multimodal_config.mm_encoder_attn_backend
1139
+ if multimodal_config is not None
1140
+ else None
1141
+ )
1142
+ self.visual = Qwen3Omni_VisionTransformer(
1143
+ vision_config=thinker_config.vision_config,
1144
+ norm_eps=getattr(thinker_config.text_config, "rms_norm_eps", 1e-6),
1145
+ quant_config=quant_config,
1146
+ prefix=maybe_prefix(prefix, "visual"),
1147
+ attn_backend_override=attn_backend_override,
1148
+ )
1149
+ self.quant_config = quant_config
1150
+
1151
+ self.language_model = Qwen3MoeLLMForCausalLM(
1152
+ vllm_config=vllm_config.with_hf_config(
1153
+ thinker_config.text_config, architectures=["Qwen3MoeForCausalLM"]
1154
+ ),
1155
+ prefix=maybe_prefix(prefix, "language_model"),
1156
+ )
1157
+
1158
+ self.make_empty_intermediate_tensors = (
1159
+ self.language_model.make_empty_intermediate_tensors
1160
+ )
1161
+
1162
+ self.use_deepstack = hasattr(
1163
+ thinker_config.vision_config, "deepstack_visual_indexes"
1164
+ )
1165
+ self.deepstack_num_level = (
1166
+ len(thinker_config.vision_config.deepstack_visual_indexes)
1167
+ if self.use_deepstack
1168
+ else 0
1169
+ )
1170
+ # register buffer for deepstack
1171
+ self.deepstack_input_embeds = (
1172
+ [
1173
+ torch.zeros(
1174
+ vllm_config.scheduler_config.max_num_batched_tokens,
1175
+ thinker_config.text_config.hidden_size,
1176
+ )
1177
+ for _ in range(self.deepstack_num_level)
1178
+ ]
1179
+ if self.use_deepstack
1180
+ else None
1181
+ )
1182
+ self.visual_dim = thinker_config.vision_config.out_hidden_size
1183
+ self.multiscale_dim = self.visual_dim * self.deepstack_num_level
1184
+
1185
+ def _get_deepstack_input_embeds(self, num_tokens: int) -> IntermediateTensors:
1186
+ # get deepstack_input_embeds from buffer, and clear the buffer
1187
+ return IntermediateTensors(
1188
+ {
1189
+ f"deepstack_input_embeds_{idx}": self.deepstack_input_embeds[idx][
1190
+ :num_tokens
1191
+ ]
1192
+ for idx in range(self.deepstack_num_level)
1193
+ }
1194
+ )
1195
+
1196
+ def _set_deepstack_input_embeds(self, deepstack_input_embeds: torch.Tensor) -> None:
1197
+ # set deepstack_input_embeds to buffer
1198
+ num_tokens = deepstack_input_embeds.size(1)
1199
+ if num_tokens > self.deepstack_input_embeds[0].size(0):
1200
+ self.deepstack_input_embeds = [
1201
+ torch.zeros(
1202
+ num_tokens,
1203
+ self.config.text_config.hidden_size,
1204
+ device=self.deepstack_input_embeds[0].device,
1205
+ dtype=self.deepstack_input_embeds[0].dtype,
1206
+ )
1207
+ for _ in range(self.deepstack_num_level)
1208
+ ]
1209
+ for idx in range(self.deepstack_num_level):
1210
+ self.deepstack_input_embeds[idx][:num_tokens].copy_(
1211
+ deepstack_input_embeds[idx]
1212
+ )
1213
+
1214
+ def _clear_deepstack_input_embeds(self, num_tokens: int) -> None:
1215
+ # clear deepstack_input_embeds in buffer
1216
+ if num_tokens > 0:
1217
+ for idx in range(self.deepstack_num_level):
1218
+ self.deepstack_input_embeds[idx][:num_tokens].zero_()
1219
+
1220
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1221
+ mm_input_by_modality = {}
1222
+
1223
+ # Preserve the order of modalities if there are multiple of them
1224
+ # from the order of kwargs.
1225
+ for input_key in kwargs:
1226
+ if (
1227
+ input_key in ("pixel_values", "image_embeds")
1228
+ and "image" not in mm_input_by_modality
1229
+ ):
1230
+ mm_input_by_modality["image"] = self._parse_and_validate_image_input(
1231
+ **kwargs
1232
+ )
1233
+ if (
1234
+ input_key in ("pixel_values_videos", "video_embeds")
1235
+ and "video" not in mm_input_by_modality
1236
+ ):
1237
+ mm_input_by_modality["video"] = self._parse_and_validate_video_input(
1238
+ **kwargs
1239
+ )
1240
+ if (
1241
+ input_key in ("input_audio_features")
1242
+ and "audio" not in mm_input_by_modality
1243
+ ):
1244
+ mm_input_by_modality["audio"] = self._parse_and_validate_audio_input(
1245
+ **kwargs
1246
+ )
1247
+ return mm_input_by_modality
1248
+
1249
+ def get_language_model(self) -> torch.nn.Module:
1250
+ return self.language_model
1251
+
1252
+ def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings | None:
1253
+ mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
1254
+ if not mm_input_by_modality:
1255
+ return []
1256
+
1257
+ # The result multimodal_embeddings is tuple of tensors, with each
1258
+ # tensor correspoending to a multimodal data item (image or video).
1259
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1260
+
1261
+ # NOTE: It is important to iterate over the keys in this dictionary
1262
+ # to preserve the order of the modalities.
1263
+ for modality in mm_input_by_modality:
1264
+ multimodal_input = mm_input_by_modality[modality]
1265
+ if modality == "image":
1266
+ image_embeddings = self._process_image_input(multimodal_input)
1267
+ multimodal_embeddings += tuple(image_embeddings)
1268
+ if modality == "video":
1269
+ video_embeddings = self._process_video_input(multimodal_input)
1270
+ multimodal_embeddings += tuple(video_embeddings)
1271
+ if modality == "audio":
1272
+ audio_embeddings = self._process_audio_input(multimodal_input)
1273
+ multimodal_embeddings += tuple(audio_embeddings)
1274
+ return multimodal_embeddings
1275
+
1276
+ def embed_input_ids(
1277
+ self,
1278
+ input_ids: torch.Tensor,
1279
+ multimodal_embeddings: MultiModalEmbeddings | None = None,
1280
+ *,
1281
+ is_multimodal: torch.Tensor | None = None,
1282
+ handle_oov_mm_token: bool = False,
1283
+ ) -> torch.Tensor:
1284
+ inputs_embeds = self._embed_text_input_ids(
1285
+ input_ids,
1286
+ self.language_model.embed_input_ids,
1287
+ is_multimodal=is_multimodal,
1288
+ handle_oov_mm_token=handle_oov_mm_token,
1289
+ )
1290
+
1291
+ if multimodal_embeddings is None or len(multimodal_embeddings) == 0:
1292
+ return inputs_embeds
1293
+
1294
+ deepstack_input_embeds = None
1295
+ # TODO (ywang96): support overlapping modalitiy embeddings so that
1296
+ # `use_audio_in_video` will work on V1.
1297
+ # split the feat dim to obtain multi-scale visual feature
1298
+ has_vision_embeddings = [
1299
+ embeddings.shape[-1] != self.config.text_config.hidden_size
1300
+ for embeddings in multimodal_embeddings
1301
+ ]
1302
+ if self.visual.deepstack_visual_indexes is not None and any(
1303
+ has_vision_embeddings
1304
+ ):
1305
+ multiscale_len = len(self.visual.deepstack_visual_indexes)
1306
+ multimodal_embeddings_multiscale = []
1307
+ is_vision = torch.zeros_like(is_multimodal)
1308
+ mm_positions = torch.nonzero(is_multimodal, as_tuple=True)[0]
1309
+ mm_position_idx = 0
1310
+ for index, embeddings in enumerate(multimodal_embeddings):
1311
+ num_tokens = embeddings.shape[0]
1312
+ current_positions = mm_positions[
1313
+ mm_position_idx : mm_position_idx + num_tokens
1314
+ ]
1315
+
1316
+ # Vision embeddings
1317
+ if embeddings.shape[-1] != self.config.text_config.hidden_size:
1318
+ visual_dim = embeddings.shape[-1] // (multiscale_len + 1)
1319
+ multi_dim = visual_dim * multiscale_len
1320
+ embeddings_main, embeddings_multiscale = torch.split(
1321
+ embeddings, [visual_dim, multi_dim], dim=-1
1322
+ )
1323
+ multimodal_embeddings[index] = embeddings_main
1324
+ multimodal_embeddings_multiscale.append(embeddings_multiscale)
1325
+ is_vision[current_positions] = True
1326
+
1327
+ # Audio embeddings
1328
+ else:
1329
+ is_vision[current_positions] = False
1330
+
1331
+ mm_position_idx += num_tokens
1332
+
1333
+ deepstack_input_embeds = inputs_embeds.new_zeros(
1334
+ inputs_embeds.size(0), multiscale_len * inputs_embeds.size(1)
1335
+ )
1336
+ deepstack_input_embeds = _merge_multimodal_embeddings(
1337
+ inputs_embeds=deepstack_input_embeds,
1338
+ multimodal_embeddings=multimodal_embeddings_multiscale,
1339
+ is_multimodal=is_vision,
1340
+ )
1341
+ deepstack_input_embeds = (
1342
+ deepstack_input_embeds.view(
1343
+ inputs_embeds.shape[0], multiscale_len, visual_dim
1344
+ )
1345
+ .permute(1, 0, 2)
1346
+ .contiguous()
1347
+ )
1348
+ self._set_deepstack_input_embeds(deepstack_input_embeds)
1349
+
1350
+ inputs_embeds = _merge_multimodal_embeddings(
1351
+ inputs_embeds=inputs_embeds,
1352
+ multimodal_embeddings=multimodal_embeddings,
1353
+ is_multimodal=is_multimodal,
1354
+ )
1355
+
1356
+ return inputs_embeds
1357
+
1358
+ def forward(
1359
+ self,
1360
+ input_ids: torch.Tensor,
1361
+ positions: torch.Tensor,
1362
+ intermediate_tensors: IntermediateTensors | None = None,
1363
+ inputs_embeds: torch.Tensor | None = None,
1364
+ **kwargs: object,
1365
+ ) -> torch.Tensor | IntermediateTensors:
1366
+ if intermediate_tensors is not None:
1367
+ inputs_embeds = None
1368
+
1369
+ if (
1370
+ self.use_deepstack
1371
+ and inputs_embeds is not None
1372
+ and get_pp_group().is_first_rank
1373
+ ):
1374
+ deepstack_input_embeds = self._get_deepstack_input_embeds(
1375
+ inputs_embeds.size(0)
1376
+ )
1377
+ else:
1378
+ deepstack_input_embeds = None
1379
+
1380
+ hidden_states = self.language_model.model(
1381
+ input_ids,
1382
+ positions,
1383
+ intermediate_tensors,
1384
+ inputs_embeds=inputs_embeds,
1385
+ # args for deepstack
1386
+ deepstack_input_embeds=deepstack_input_embeds,
1387
+ )
1388
+
1389
+ if inputs_embeds is not None and get_pp_group().is_first_rank:
1390
+ self._clear_deepstack_input_embeds(inputs_embeds.size(0))
1391
+
1392
+ return hidden_states
1393
+
1394
+ def compute_logits(
1395
+ self,
1396
+ hidden_states: torch.Tensor,
1397
+ ) -> torch.Tensor | None:
1398
+ return self.language_model.compute_logits(hidden_states)
1399
+
1400
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
1401
+ loader = AutoWeightsLoader(
1402
+ self,
1403
+ skip_prefixes=["talker.", "code2wav."],
1404
+ )
1405
+ loaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1406
+
1407
+ return loaded_weights
1408
+
1409
+ def get_mrope_input_positions(
1410
+ self,
1411
+ input_tokens: list[int],
1412
+ mm_features: list[MultiModalFeatureSpec],
1413
+ ) -> tuple[torch.Tensor, int]:
1414
+ kwargs = MultiModalFeatureSpec.gather_kwargs(
1415
+ mm_features,
1416
+ {
1417
+ "image_grid_thw",
1418
+ "video_grid_thw",
1419
+ "second_per_grid_ts",
1420
+ "audio_feature_lengths",
1421
+ "use_audio_in_video",
1422
+ },
1423
+ )
1424
+ image_grid_thw = kwargs.get("image_grid_thw", [])
1425
+ video_grid_thw = kwargs.get("video_grid_thw", [])
1426
+ second_per_grid_ts = kwargs.get("second_per_grid_ts", [])
1427
+ audio_feature_lengths = kwargs.get("audio_feature_lengths", [])
1428
+ use_audio_in_video = any(kwargs.get("use_audio_in_video", []))
1429
+
1430
+ image_grid_thw = (torch.stack if image_grid_thw else torch.tensor)(
1431
+ image_grid_thw
1432
+ )
1433
+ video_grid_thw = (torch.stack if video_grid_thw else torch.tensor)(
1434
+ video_grid_thw
1435
+ )
1436
+
1437
+ input_ids = torch.tensor(input_tokens)
1438
+ if input_ids is None or input_ids.ndim != 1:
1439
+ raise ValueError("_omni3_get_input_positions_tensor expects 1D input_ids")
1440
+
1441
+ seq_len = input_ids.shape[0]
1442
+
1443
+ if isinstance(audio_feature_lengths, list):
1444
+ audio_feature_lengths = torch.tensor(
1445
+ audio_feature_lengths, dtype=torch.long
1446
+ )
1447
+
1448
+ if not len(second_per_grid_ts) and len(video_grid_thw):
1449
+ second_per_grids = torch.ones(len(video_grid_thw), dtype=torch.float32)
1450
+ else:
1451
+ second_per_grids = torch.tensor(second_per_grid_ts, dtype=torch.float32)
1452
+
1453
+ config = self.config
1454
+ spatial_merge_size = config.vision_config.spatial_merge_size
1455
+ image_token_id = config.image_token_id
1456
+ video_token_id = config.video_token_id
1457
+ audio_token_id = config.audio_token_id
1458
+ vision_start_token_id = config.vision_start_token_id
1459
+ audio_start_token_id = config.audio_start_token_id
1460
+ position_id_per_seconds = config.position_id_per_seconds
1461
+
1462
+ vision_start_indices = torch.argwhere(
1463
+ input_ids == vision_start_token_id
1464
+ ).squeeze(1)
1465
+ if vision_start_indices.numel() > 0:
1466
+ vision_tokens = input_ids[vision_start_indices + 1]
1467
+ else:
1468
+ vision_tokens = input_ids.new_empty((0,), dtype=input_ids.dtype)
1469
+ audio_nums = torch.sum(input_ids == audio_start_token_id)
1470
+ image_nums = (vision_tokens == image_token_id).sum()
1471
+ video_nums = (
1472
+ (vision_tokens == audio_start_token_id).sum()
1473
+ if use_audio_in_video
1474
+ else (vision_tokens == video_token_id).sum()
1475
+ )
1476
+
1477
+ llm_pos_ids_list: list[torch.Tensor] = []
1478
+ st = 0
1479
+ image_idx = 0
1480
+ video_idx = 0
1481
+ audio_idx = 0
1482
+ remain_images, remain_videos, remain_audios = image_nums, video_nums, audio_nums # noqa: E501
1483
+ multimodal_nums = (
1484
+ image_nums + audio_nums
1485
+ if use_audio_in_video
1486
+ else image_nums + video_nums + audio_nums
1487
+ ) # noqa: E501
1488
+
1489
+ for _ in range(multimodal_nums):
1490
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1491
+ if (image_token_id in input_tokens or video_token_id in input_tokens) and (
1492
+ remain_videos > 0 or remain_images > 0
1493
+ ):
1494
+ ed_vision_start = input_tokens.index(vision_start_token_id, st)
1495
+ else:
1496
+ ed_vision_start = len(input_tokens) + 1
1497
+ if audio_token_id in input_tokens and remain_audios > 0:
1498
+ ed_audio_start = input_tokens.index(audio_start_token_id, st)
1499
+ else:
1500
+ ed_audio_start = len(input_tokens) + 1
1501
+ min_ed = min(ed_vision_start, ed_audio_start)
1502
+
1503
+ if min_ed == ed_audio_start:
1504
+ text_len = min_ed - st
1505
+ if text_len != 0:
1506
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1507
+ llm_pos_ids_list.append(
1508
+ torch.arange(text_len, dtype=torch.long)
1509
+ .view(1, -1)
1510
+ .expand(3, -1)
1511
+ + st_idx
1512
+ )
1513
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1514
+ bos_len = 1
1515
+ llm_pos_ids_list.append(
1516
+ torch.arange(bos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1517
+ + st_idx
1518
+ )
1519
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1520
+ _, audio_len = _get_feat_extract_output_lengths(
1521
+ audio_feature_lengths[audio_idx]
1522
+ )
1523
+ llm_pos_ids = (
1524
+ torch.arange(audio_len, dtype=torch.long).view(1, -1).expand(3, -1)
1525
+ + st_idx
1526
+ )
1527
+ llm_pos_ids_list.append(llm_pos_ids)
1528
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1529
+ eos_len = 1
1530
+ llm_pos_ids_list.append(
1531
+ torch.arange(eos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1532
+ + st_idx
1533
+ )
1534
+ st += text_len + bos_len + audio_len + eos_len
1535
+ audio_idx += 1
1536
+ remain_audios -= 1
1537
+ elif (
1538
+ min_ed == ed_vision_start
1539
+ and input_ids[ed_vision_start + 1] == image_token_id
1540
+ ):
1541
+ text_len = min_ed - st
1542
+ if text_len != 0:
1543
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1544
+ llm_pos_ids_list.append(
1545
+ torch.arange(text_len, dtype=torch.long)
1546
+ .view(1, -1)
1547
+ .expand(3, -1)
1548
+ + st_idx
1549
+ )
1550
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1551
+ bos_len = 1
1552
+ llm_pos_ids_list.append(
1553
+ torch.arange(bos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1554
+ + st_idx
1555
+ )
1556
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1557
+ grid_t = image_grid_thw[image_idx][0]
1558
+ grid_hs = image_grid_thw[:, 1]
1559
+ grid_ws = image_grid_thw[:, 2]
1560
+ t_index = torch.arange(grid_t) * position_id_per_seconds
1561
+ llm_pos_ids = get_llm_pos_ids_for_vision(
1562
+ st_idx, image_idx, spatial_merge_size, t_index, grid_hs, grid_ws
1563
+ )
1564
+ image_len = image_grid_thw[image_idx].prod() // (spatial_merge_size**2)
1565
+ llm_pos_ids_list.append(llm_pos_ids)
1566
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1567
+ eos_len = 1
1568
+ llm_pos_ids_list.append(
1569
+ torch.arange(eos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1570
+ + st_idx
1571
+ )
1572
+ st += text_len + bos_len + image_len + eos_len
1573
+ image_idx += 1
1574
+ remain_images -= 1
1575
+ elif (
1576
+ min_ed == ed_vision_start
1577
+ and input_ids[ed_vision_start + 1] == video_token_id
1578
+ and not use_audio_in_video
1579
+ ):
1580
+ text_len = min_ed - st
1581
+ if text_len != 0:
1582
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1583
+ llm_pos_ids_list.append(
1584
+ torch.arange(text_len, dtype=torch.long)
1585
+ .view(1, -1)
1586
+ .expand(3, -1)
1587
+ + st_idx
1588
+ )
1589
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1590
+ bos_len = 1
1591
+ llm_pos_ids_list.append(
1592
+ torch.arange(bos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1593
+ + st_idx
1594
+ )
1595
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1596
+ grid_t = video_grid_thw[video_idx][0]
1597
+ grid_hs = video_grid_thw[:, 1]
1598
+ grid_ws = video_grid_thw[:, 2]
1599
+ t_index = (
1600
+ torch.arange(grid_t)
1601
+ * float(second_per_grids[video_idx].item())
1602
+ * position_id_per_seconds
1603
+ )
1604
+ llm_pos_ids = get_llm_pos_ids_for_vision(
1605
+ st_idx, video_idx, spatial_merge_size, t_index, grid_hs, grid_ws
1606
+ )
1607
+ video_len = video_grid_thw[video_idx].prod() // (spatial_merge_size**2)
1608
+ llm_pos_ids_list.append(llm_pos_ids)
1609
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1610
+ eos_len = 1
1611
+ llm_pos_ids_list.append(
1612
+ torch.arange(eos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1613
+ + st_idx
1614
+ )
1615
+ st += text_len + bos_len + video_len + eos_len
1616
+ video_idx += 1
1617
+ remain_videos -= 1
1618
+ elif (
1619
+ min_ed == ed_vision_start
1620
+ and ed_vision_start + 1 == ed_audio_start
1621
+ and use_audio_in_video
1622
+ ):
1623
+ text_len = min_ed - st
1624
+ if text_len != 0:
1625
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1626
+ llm_pos_ids_list.append(
1627
+ torch.arange(text_len, dtype=torch.long)
1628
+ .view(1, -1)
1629
+ .expand(3, -1)
1630
+ + st_idx
1631
+ )
1632
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1633
+ bos_len = 1
1634
+ bos_block = (
1635
+ torch.arange(bos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1636
+ + st_idx
1637
+ )
1638
+ llm_pos_ids_list.append(bos_block)
1639
+ llm_pos_ids_list.append(bos_block)
1640
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1641
+ _, audio_len = _get_feat_extract_output_lengths(
1642
+ audio_feature_lengths[audio_idx]
1643
+ )
1644
+ audio_llm_pos_ids = (
1645
+ torch.arange(audio_len, dtype=torch.long).view(1, -1).expand(3, -1)
1646
+ + st_idx
1647
+ )
1648
+ grid_t = video_grid_thw[video_idx][0]
1649
+ grid_hs = video_grid_thw[:, 1]
1650
+ grid_ws = video_grid_thw[:, 2]
1651
+ t_index = (
1652
+ torch.arange(grid_t)
1653
+ * float(second_per_grids[video_idx].item())
1654
+ * position_id_per_seconds
1655
+ )
1656
+ video_llm_pos_ids = get_llm_pos_ids_for_vision(
1657
+ st_idx, video_idx, spatial_merge_size, t_index, grid_hs, grid_ws
1658
+ )
1659
+ video_data_index, audio_data_index = 0, 0
1660
+ while (
1661
+ video_data_index < video_llm_pos_ids.shape[-1]
1662
+ and audio_data_index < audio_llm_pos_ids.shape[-1]
1663
+ ):
1664
+ if (
1665
+ video_llm_pos_ids[0][video_data_index]
1666
+ <= audio_llm_pos_ids[0][audio_data_index]
1667
+ ):
1668
+ llm_pos_ids_list.append(
1669
+ video_llm_pos_ids[
1670
+ :, video_data_index : video_data_index + 1
1671
+ ]
1672
+ )
1673
+ video_data_index += 1
1674
+ else:
1675
+ llm_pos_ids_list.append(
1676
+ audio_llm_pos_ids[
1677
+ :, audio_data_index : audio_data_index + 1
1678
+ ]
1679
+ )
1680
+ audio_data_index += 1
1681
+ if video_data_index < video_llm_pos_ids.shape[-1]:
1682
+ llm_pos_ids_list.append(
1683
+ video_llm_pos_ids[
1684
+ :, video_data_index : video_llm_pos_ids.shape[-1]
1685
+ ]
1686
+ )
1687
+ if audio_data_index < audio_llm_pos_ids.shape[-1]:
1688
+ llm_pos_ids_list.append(
1689
+ audio_llm_pos_ids[
1690
+ :, audio_data_index : audio_llm_pos_ids.shape[-1]
1691
+ ]
1692
+ )
1693
+ video_len = video_grid_thw[video_idx].prod() // (spatial_merge_size**2)
1694
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1695
+ eos_len = 1
1696
+ eos_block = (
1697
+ torch.arange(eos_len, dtype=torch.long).view(1, -1).expand(3, -1)
1698
+ + st_idx
1699
+ )
1700
+ llm_pos_ids_list.append(eos_block)
1701
+ llm_pos_ids_list.append(eos_block)
1702
+ st += text_len + bos_len * 2 + audio_len + video_len + eos_len * 2 # noqa: E501
1703
+ audio_idx += 1
1704
+ video_idx += 1
1705
+ remain_videos -= 1
1706
+ remain_audios -= 1
1707
+
1708
+ if st < len(input_tokens):
1709
+ st_idx = llm_pos_ids_list[-1].max() + 1 if llm_pos_ids_list else 0
1710
+ text_len = len(input_tokens) - st
1711
+ llm_pos_ids_list.append(
1712
+ torch.arange(text_len, dtype=torch.long).view(1, -1).expand(3, -1)
1713
+ + st_idx
1714
+ )
1715
+
1716
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1717
+ if llm_positions.shape[1] != seq_len:
1718
+ raise RuntimeError("Position ids length mismatch with input ids length")
1719
+
1720
+ mrope_position_delta = llm_positions.max() + 1 - seq_len
1721
+ return llm_positions, mrope_position_delta