vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +225 -0
- vllm/_aiter_ops.py +983 -0
- vllm/_bc_linter.py +54 -0
- vllm/_custom_ops.py +2863 -0
- vllm/_ipex_ops.py +457 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +43 -0
- vllm/assets/base.py +40 -0
- vllm/assets/image.py +59 -0
- vllm/assets/video.py +149 -0
- vllm/attention/__init__.py +18 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +391 -0
- vllm/attention/backends/registry.py +195 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +1052 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +121 -0
- vllm/attention/layers/cross_attention.py +178 -0
- vllm/attention/layers/encoder_only_attention.py +103 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
- vllm/attention/ops/common.py +414 -0
- vllm/attention/ops/flashmla.py +251 -0
- vllm/attention/ops/merge_attn_states.py +47 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +130 -0
- vllm/attention/ops/prefix_prefill.py +814 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
- vllm/attention/ops/triton_decode_attention.py +712 -0
- vllm/attention/ops/triton_merge_attn_states.py +105 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
- vllm/attention/ops/triton_unified_attention.py +941 -0
- vllm/attention/ops/vit_attn_wrappers.py +178 -0
- vllm/attention/selector.py +231 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +109 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/attention/utils/kv_transfer_utils.py +60 -0
- vllm/beam_search.py +88 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +3222 -0
- vllm/benchmarks/latency.py +172 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +777 -0
- vllm/benchmarks/lib/ready_checker.py +72 -0
- vllm/benchmarks/lib/utils.py +79 -0
- vllm/benchmarks/serve.py +1531 -0
- vllm/benchmarks/sweep/__init__.py +0 -0
- vllm/benchmarks/sweep/cli.py +38 -0
- vllm/benchmarks/sweep/param_sweep.py +91 -0
- vllm/benchmarks/sweep/plot.py +580 -0
- vllm/benchmarks/sweep/serve.py +416 -0
- vllm/benchmarks/sweep/serve_sla.py +492 -0
- vllm/benchmarks/sweep/server.py +114 -0
- vllm/benchmarks/sweep/sla_sweep.py +132 -0
- vllm/benchmarks/sweep/utils.py +4 -0
- vllm/benchmarks/throughput.py +799 -0
- vllm/collect_env.py +857 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +209 -0
- vllm/compilation/backends.py +759 -0
- vllm/compilation/base_static_graph.py +57 -0
- vllm/compilation/caching.py +178 -0
- vllm/compilation/collective_fusion.py +1234 -0
- vllm/compilation/compiler_interface.py +639 -0
- vllm/compilation/counter.py +48 -0
- vllm/compilation/cuda_graph.py +208 -0
- vllm/compilation/decorators.py +571 -0
- vllm/compilation/fix_functionalization.py +253 -0
- vllm/compilation/fusion.py +374 -0
- vllm/compilation/fusion_attn.py +359 -0
- vllm/compilation/fx_utils.py +91 -0
- vllm/compilation/inductor_pass.py +133 -0
- vllm/compilation/matcher_utils.py +317 -0
- vllm/compilation/monitor.py +62 -0
- vllm/compilation/noop_elimination.py +134 -0
- vllm/compilation/partition_rules.py +72 -0
- vllm/compilation/pass_manager.py +135 -0
- vllm/compilation/piecewise_backend.py +121 -0
- vllm/compilation/post_cleanup.py +21 -0
- vllm/compilation/qk_norm_rope_fusion.py +238 -0
- vllm/compilation/sequence_parallelism.py +363 -0
- vllm/compilation/torch25_custom_graph_pass.py +44 -0
- vllm/compilation/vllm_inductor_pass.py +173 -0
- vllm/compilation/wrapper.py +238 -0
- vllm/config/__init__.py +102 -0
- vllm/config/cache.py +207 -0
- vllm/config/compilation.py +975 -0
- vllm/config/device.py +75 -0
- vllm/config/ec_transfer.py +110 -0
- vllm/config/kv_events.py +56 -0
- vllm/config/kv_transfer.py +114 -0
- vllm/config/load.py +124 -0
- vllm/config/lora.py +112 -0
- vllm/config/model.py +2162 -0
- vllm/config/multimodal.py +248 -0
- vllm/config/observability.py +123 -0
- vllm/config/parallel.py +655 -0
- vllm/config/pooler.py +122 -0
- vllm/config/scheduler.py +298 -0
- vllm/config/speculative.py +654 -0
- vllm/config/speech_to_text.py +38 -0
- vllm/config/structured_outputs.py +92 -0
- vllm/config/utils.py +178 -0
- vllm/config/vllm.py +1166 -0
- vllm/connections.py +189 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +327 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +43 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +490 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
- vllm/distributed/device_communicators/base_device_communicator.py +297 -0
- vllm/distributed/device_communicators/cpu_communicator.py +209 -0
- vllm/distributed/device_communicators/cuda_communicator.py +340 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
- vllm/distributed/device_communicators/pynccl.py +386 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
- vllm/distributed/device_communicators/ray_communicator.py +259 -0
- vllm/distributed/device_communicators/shm_broadcast.py +733 -0
- vllm/distributed/device_communicators/shm_object_storage.py +660 -0
- vllm/distributed/device_communicators/symm_mem.py +156 -0
- vllm/distributed/device_communicators/tpu_communicator.py +107 -0
- vllm/distributed/device_communicators/xpu_communicator.py +95 -0
- vllm/distributed/ec_transfer/__init__.py +14 -0
- vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
- vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
- vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
- vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
- vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +837 -0
- vllm/distributed/eplb/rebalance_algo.py +260 -0
- vllm/distributed/eplb/rebalance_execute.py +431 -0
- vllm/distributed/kv_events.py +371 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +20 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
- vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
- vllm/distributed/parallel_state.py +1759 -0
- vllm/distributed/tpu_distributed_utils.py +188 -0
- vllm/distributed/utils.py +543 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +2144 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/protocol.py +170 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/anthropic/__init__.py +0 -0
- vllm/entrypoints/anthropic/protocol.py +162 -0
- vllm/entrypoints/anthropic/serving_messages.py +460 -0
- vllm/entrypoints/api_server.py +184 -0
- vllm/entrypoints/chat_utils.py +1690 -0
- vllm/entrypoints/cli/__init__.py +13 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +56 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/sweep.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +38 -0
- vllm/entrypoints/cli/main.py +79 -0
- vllm/entrypoints/cli/openai.py +256 -0
- vllm/entrypoints/cli/run_batch.py +68 -0
- vllm/entrypoints/cli/serve.py +249 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +572 -0
- vllm/entrypoints/dynamic_lora.py +57 -0
- vllm/entrypoints/harmony_utils.py +535 -0
- vllm/entrypoints/launcher.py +175 -0
- vllm/entrypoints/llm.py +1768 -0
- vllm/entrypoints/logger.py +84 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +2096 -0
- vllm/entrypoints/openai/cli_args.py +302 -0
- vllm/entrypoints/openai/orca_metrics.py +120 -0
- vllm/entrypoints/openai/protocol.py +3299 -0
- vllm/entrypoints/openai/run_batch.py +547 -0
- vllm/entrypoints/openai/serving_chat.py +1772 -0
- vllm/entrypoints/openai/serving_classification.py +235 -0
- vllm/entrypoints/openai/serving_completion.py +715 -0
- vllm/entrypoints/openai/serving_embedding.py +695 -0
- vllm/entrypoints/openai/serving_engine.py +1433 -0
- vllm/entrypoints/openai/serving_models.py +304 -0
- vllm/entrypoints/openai/serving_pooling.py +346 -0
- vllm/entrypoints/openai/serving_responses.py +2021 -0
- vllm/entrypoints/openai/serving_score.py +503 -0
- vllm/entrypoints/openai/serving_tokenization.py +203 -0
- vllm/entrypoints/openai/serving_tokens.py +269 -0
- vllm/entrypoints/openai/serving_transcription.py +148 -0
- vllm/entrypoints/openai/speech_to_text.py +405 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
- vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
- vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
- vllm/entrypoints/renderer.py +409 -0
- vllm/entrypoints/responses_utils.py +77 -0
- vllm/entrypoints/sagemaker/__init__.py +4 -0
- vllm/entrypoints/sagemaker/routes.py +72 -0
- vllm/entrypoints/score_utils.py +242 -0
- vllm/entrypoints/ssl.py +78 -0
- vllm/entrypoints/tool.py +143 -0
- vllm/entrypoints/tool_server.py +209 -0
- vllm/entrypoints/utils.py +319 -0
- vllm/env_override.py +378 -0
- vllm/envs.py +1659 -0
- vllm/forward_context.py +356 -0
- vllm/inputs/__init__.py +44 -0
- vllm/inputs/data.py +359 -0
- vllm/inputs/parse.py +137 -0
- vllm/inputs/preprocess.py +727 -0
- vllm/logger.py +267 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +83 -0
- vllm/logging_utils/formatter.py +77 -0
- vllm/logging_utils/log_time.py +34 -0
- vllm/logits_process.py +121 -0
- vllm/logprobs.py +208 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +41 -0
- vllm/lora/layers/base.py +67 -0
- vllm/lora/layers/base_linear.py +164 -0
- vllm/lora/layers/column_parallel_linear.py +578 -0
- vllm/lora/layers/fused_moe.py +472 -0
- vllm/lora/layers/logits_processor.py +252 -0
- vllm/lora/layers/replicated_linear.py +70 -0
- vllm/lora/layers/row_parallel_linear.py +181 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +166 -0
- vllm/lora/lora_weights.py +198 -0
- vllm/lora/models.py +890 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +6 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
- vllm/lora/ops/torch_ops/__init__.py +20 -0
- vllm/lora/ops/torch_ops/lora_ops.py +128 -0
- vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
- vllm/lora/ops/triton_ops/__init__.py +21 -0
- vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
- vllm/lora/ops/triton_ops/utils.py +295 -0
- vllm/lora/ops/xla_ops/__init__.py +6 -0
- vllm/lora/ops/xla_ops/lora_ops.py +141 -0
- vllm/lora/peft_helper.py +128 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +492 -0
- vllm/lora/punica_wrapper/punica_cpu.py +351 -0
- vllm/lora/punica_wrapper/punica_gpu.py +411 -0
- vllm/lora/punica_wrapper/punica_selector.py +21 -0
- vllm/lora/punica_wrapper/punica_tpu.py +359 -0
- vllm/lora/punica_wrapper/punica_xpu.py +279 -0
- vllm/lora/punica_wrapper/utils.py +150 -0
- vllm/lora/request.py +100 -0
- vllm/lora/resolver.py +88 -0
- vllm/lora/utils.py +293 -0
- vllm/lora/worker_manager.py +279 -0
- vllm/model_executor/__init__.py +11 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +569 -0
- vllm/model_executor/layers/attention_layer_base.py +35 -0
- vllm/model_executor/layers/batch_invariant.py +854 -0
- vllm/model_executor/layers/conv.py +236 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +240 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
- vllm/model_executor/layers/fla/ops/index.py +41 -0
- vllm/model_executor/layers/fla/ops/kda.py +1351 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
- vllm/model_executor/layers/fla/ops/op.py +60 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
- vllm/model_executor/layers/fla/ops/utils.py +194 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
- vllm/model_executor/layers/fused_moe/__init__.py +106 -0
- vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
- vllm/model_executor/layers/fused_moe/config.py +916 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
- vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
- vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
- vllm/model_executor/layers/fused_moe/layer.py +1944 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
- vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
- vllm/model_executor/layers/fused_moe/utils.py +332 -0
- vllm/model_executor/layers/kda.py +448 -0
- vllm/model_executor/layers/layernorm.py +442 -0
- vllm/model_executor/layers/lightning_attn.py +729 -0
- vllm/model_executor/layers/linear.py +1424 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +71 -0
- vllm/model_executor/layers/mamba/linear_attn.py +402 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
- vllm/model_executor/layers/mamba/short_conv.py +264 -0
- vllm/model_executor/layers/mla.py +168 -0
- vllm/model_executor/layers/pooler.py +817 -0
- vllm/model_executor/layers/quantization/__init__.py +174 -0
- vllm/model_executor/layers/quantization/auto_round.py +454 -0
- vllm/model_executor/layers/quantization/awq.py +277 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
- vllm/model_executor/layers/quantization/awq_triton.py +337 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +502 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
- vllm/model_executor/layers/quantization/experts_int8.py +240 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
- vllm/model_executor/layers/quantization/fp8.py +1333 -0
- vllm/model_executor/layers/quantization/fp_quant.py +420 -0
- vllm/model_executor/layers/quantization/gguf.py +643 -0
- vllm/model_executor/layers/quantization/gptq.py +393 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
- vllm/model_executor/layers/quantization/inc.py +65 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
- vllm/model_executor/layers/quantization/kv_cache.py +146 -0
- vllm/model_executor/layers/quantization/modelopt.py +1788 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
- vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
- vllm/model_executor/layers/quantization/petit.py +320 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +528 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
- vllm/model_executor/layers/quantization/rtn.py +652 -0
- vllm/model_executor/layers/quantization/schema.py +90 -0
- vllm/model_executor/layers/quantization/torchao.py +380 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
- vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
- vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
- vllm/model_executor/layers/resampler.py +283 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
- vllm/model_executor/layers/rotary_embedding/base.py +235 -0
- vllm/model_executor/layers/rotary_embedding/common.py +188 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
- vllm/model_executor/layers/utils.py +251 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
- vllm/model_executor/model_loader/__init__.py +148 -0
- vllm/model_executor/model_loader/base_loader.py +57 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
- vllm/model_executor/model_loader/default_loader.py +327 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +176 -0
- vllm/model_executor/model_loader/online_quantization.py +224 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
- vllm/model_executor/model_loader/tensorizer.py +790 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
- vllm/model_executor/model_loader/tpu.py +118 -0
- vllm/model_executor/model_loader/utils.py +288 -0
- vllm/model_executor/model_loader/weight_utils.py +1084 -0
- vllm/model_executor/models/__init__.py +44 -0
- vllm/model_executor/models/adapters.py +543 -0
- vllm/model_executor/models/afmoe.py +711 -0
- vllm/model_executor/models/aimv2.py +247 -0
- vllm/model_executor/models/apertus.py +587 -0
- vllm/model_executor/models/arcee.py +439 -0
- vllm/model_executor/models/arctic.py +635 -0
- vllm/model_executor/models/aria.py +655 -0
- vllm/model_executor/models/aya_vision.py +450 -0
- vllm/model_executor/models/baichuan.py +496 -0
- vllm/model_executor/models/bailing_moe.py +646 -0
- vllm/model_executor/models/bamba.py +522 -0
- vllm/model_executor/models/bee.py +157 -0
- vllm/model_executor/models/bert.py +925 -0
- vllm/model_executor/models/bert_with_rope.py +732 -0
- vllm/model_executor/models/blip.py +349 -0
- vllm/model_executor/models/blip2.py +695 -0
- vllm/model_executor/models/bloom.py +390 -0
- vllm/model_executor/models/chameleon.py +1120 -0
- vllm/model_executor/models/chatglm.py +498 -0
- vllm/model_executor/models/clip.py +965 -0
- vllm/model_executor/models/cohere2_vision.py +472 -0
- vllm/model_executor/models/commandr.py +473 -0
- vllm/model_executor/models/config.py +503 -0
- vllm/model_executor/models/dbrx.py +482 -0
- vllm/model_executor/models/deepencoder.py +673 -0
- vllm/model_executor/models/deepseek_eagle.py +260 -0
- vllm/model_executor/models/deepseek_mtp.py +360 -0
- vllm/model_executor/models/deepseek_ocr.py +593 -0
- vllm/model_executor/models/deepseek_v2.py +1649 -0
- vllm/model_executor/models/deepseek_vl2.py +655 -0
- vllm/model_executor/models/dots1.py +574 -0
- vllm/model_executor/models/dots_ocr.py +900 -0
- vllm/model_executor/models/ernie45.py +53 -0
- vllm/model_executor/models/ernie45_moe.py +759 -0
- vllm/model_executor/models/ernie45_vl.py +1742 -0
- vllm/model_executor/models/ernie45_vl_moe.py +803 -0
- vllm/model_executor/models/ernie_mtp.py +279 -0
- vllm/model_executor/models/exaone.py +545 -0
- vllm/model_executor/models/exaone4.py +531 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +545 -0
- vllm/model_executor/models/falcon_h1.py +685 -0
- vllm/model_executor/models/flex_olmo.py +155 -0
- vllm/model_executor/models/fuyu.py +373 -0
- vllm/model_executor/models/gemma.py +426 -0
- vllm/model_executor/models/gemma2.py +439 -0
- vllm/model_executor/models/gemma3.py +571 -0
- vllm/model_executor/models/gemma3_mm.py +741 -0
- vllm/model_executor/models/gemma3n.py +1165 -0
- vllm/model_executor/models/gemma3n_mm.py +811 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +305 -0
- vllm/model_executor/models/glm4_1v.py +1821 -0
- vllm/model_executor/models/glm4_moe.py +747 -0
- vllm/model_executor/models/glm4_moe_mtp.py +359 -0
- vllm/model_executor/models/glm4v.py +784 -0
- vllm/model_executor/models/gpt2.py +397 -0
- vllm/model_executor/models/gpt_bigcode.py +339 -0
- vllm/model_executor/models/gpt_j.py +346 -0
- vllm/model_executor/models/gpt_neox.py +344 -0
- vllm/model_executor/models/gpt_oss.py +738 -0
- vllm/model_executor/models/granite.py +516 -0
- vllm/model_executor/models/granite_speech.py +913 -0
- vllm/model_executor/models/granitemoe.py +569 -0
- vllm/model_executor/models/granitemoehybrid.py +709 -0
- vllm/model_executor/models/granitemoeshared.py +333 -0
- vllm/model_executor/models/gritlm.py +245 -0
- vllm/model_executor/models/grok1.py +558 -0
- vllm/model_executor/models/h2ovl.py +554 -0
- vllm/model_executor/models/hunyuan_v1.py +1053 -0
- vllm/model_executor/models/hyperclovax_vision.py +1166 -0
- vllm/model_executor/models/idefics2_vision_model.py +426 -0
- vllm/model_executor/models/idefics3.py +717 -0
- vllm/model_executor/models/interfaces.py +1092 -0
- vllm/model_executor/models/interfaces_base.py +214 -0
- vllm/model_executor/models/intern_vit.py +453 -0
- vllm/model_executor/models/internlm2.py +460 -0
- vllm/model_executor/models/internlm2_ve.py +142 -0
- vllm/model_executor/models/interns1.py +830 -0
- vllm/model_executor/models/interns1_vit.py +432 -0
- vllm/model_executor/models/internvl.py +1452 -0
- vllm/model_executor/models/jais.py +397 -0
- vllm/model_executor/models/jamba.py +610 -0
- vllm/model_executor/models/jina_vl.py +147 -0
- vllm/model_executor/models/keye.py +1761 -0
- vllm/model_executor/models/keye_vl1_5.py +726 -0
- vllm/model_executor/models/kimi_linear.py +663 -0
- vllm/model_executor/models/kimi_vl.py +578 -0
- vllm/model_executor/models/lfm2.py +532 -0
- vllm/model_executor/models/lfm2_moe.py +762 -0
- vllm/model_executor/models/lightonocr.py +195 -0
- vllm/model_executor/models/llama.py +732 -0
- vllm/model_executor/models/llama4.py +859 -0
- vllm/model_executor/models/llama4_eagle.py +223 -0
- vllm/model_executor/models/llama_eagle.py +218 -0
- vllm/model_executor/models/llama_eagle3.py +367 -0
- vllm/model_executor/models/llava.py +842 -0
- vllm/model_executor/models/llava_next.py +583 -0
- vllm/model_executor/models/llava_next_video.py +467 -0
- vllm/model_executor/models/llava_onevision.py +923 -0
- vllm/model_executor/models/longcat_flash.py +749 -0
- vllm/model_executor/models/longcat_flash_mtp.py +349 -0
- vllm/model_executor/models/mamba.py +276 -0
- vllm/model_executor/models/mamba2.py +289 -0
- vllm/model_executor/models/medusa.py +179 -0
- vllm/model_executor/models/midashenglm.py +827 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +294 -0
- vllm/model_executor/models/minicpm.py +664 -0
- vllm/model_executor/models/minicpm3.py +242 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +768 -0
- vllm/model_executor/models/minicpmv.py +1745 -0
- vllm/model_executor/models/minimax_m2.py +552 -0
- vllm/model_executor/models/minimax_text_01.py +1012 -0
- vllm/model_executor/models/minimax_vl_01.py +396 -0
- vllm/model_executor/models/mistral3.py +637 -0
- vllm/model_executor/models/mixtral.py +621 -0
- vllm/model_executor/models/mllama4.py +1147 -0
- vllm/model_executor/models/mlp_speculator.py +235 -0
- vllm/model_executor/models/modernbert.py +450 -0
- vllm/model_executor/models/module_mapping.py +74 -0
- vllm/model_executor/models/molmo.py +1555 -0
- vllm/model_executor/models/moonvit.py +677 -0
- vllm/model_executor/models/mpt.py +335 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
- vllm/model_executor/models/nemotron.py +518 -0
- vllm/model_executor/models/nemotron_h.py +852 -0
- vllm/model_executor/models/nemotron_nas.py +491 -0
- vllm/model_executor/models/nemotron_vl.py +653 -0
- vllm/model_executor/models/nvlm_d.py +216 -0
- vllm/model_executor/models/olmo.py +414 -0
- vllm/model_executor/models/olmo2.py +454 -0
- vllm/model_executor/models/olmoe.py +498 -0
- vllm/model_executor/models/openpangu.py +1062 -0
- vllm/model_executor/models/openpangu_mtp.py +265 -0
- vllm/model_executor/models/opt.py +426 -0
- vllm/model_executor/models/orion.py +372 -0
- vllm/model_executor/models/ouro.py +516 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +673 -0
- vllm/model_executor/models/paddleocr_vl.py +1407 -0
- vllm/model_executor/models/paligemma.py +412 -0
- vllm/model_executor/models/persimmon.py +377 -0
- vllm/model_executor/models/phi.py +374 -0
- vllm/model_executor/models/phi3.py +18 -0
- vllm/model_executor/models/phi3v.py +737 -0
- vllm/model_executor/models/phi4_multimodal.py +1447 -0
- vllm/model_executor/models/phi4mm.py +1253 -0
- vllm/model_executor/models/phi4mm_audio.py +1296 -0
- vllm/model_executor/models/phi4mm_utils.py +1907 -0
- vllm/model_executor/models/phimoe.py +675 -0
- vllm/model_executor/models/pixtral.py +1352 -0
- vllm/model_executor/models/plamo2.py +981 -0
- vllm/model_executor/models/qwen.py +368 -0
- vllm/model_executor/models/qwen2.py +541 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
- vllm/model_executor/models/qwen2_5_vl.py +1613 -0
- vllm/model_executor/models/qwen2_audio.py +473 -0
- vllm/model_executor/models/qwen2_moe.py +596 -0
- vllm/model_executor/models/qwen2_rm.py +123 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +336 -0
- vllm/model_executor/models/qwen3_moe.py +744 -0
- vllm/model_executor/models/qwen3_next.py +1395 -0
- vllm/model_executor/models/qwen3_next_mtp.py +296 -0
- vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
- vllm/model_executor/models/qwen3_vl.py +1673 -0
- vllm/model_executor/models/qwen3_vl_moe.py +415 -0
- vllm/model_executor/models/qwen_vl.py +802 -0
- vllm/model_executor/models/radio.py +555 -0
- vllm/model_executor/models/registry.py +1155 -0
- vllm/model_executor/models/roberta.py +259 -0
- vllm/model_executor/models/rvl.py +107 -0
- vllm/model_executor/models/seed_oss.py +497 -0
- vllm/model_executor/models/siglip.py +1174 -0
- vllm/model_executor/models/siglip2navit.py +724 -0
- vllm/model_executor/models/skyworkr1v.py +953 -0
- vllm/model_executor/models/smolvlm.py +38 -0
- vllm/model_executor/models/solar.py +502 -0
- vllm/model_executor/models/stablelm.py +359 -0
- vllm/model_executor/models/starcoder2.py +367 -0
- vllm/model_executor/models/step3_text.py +559 -0
- vllm/model_executor/models/step3_vl.py +1148 -0
- vllm/model_executor/models/swin.py +514 -0
- vllm/model_executor/models/tarsier.py +619 -0
- vllm/model_executor/models/telechat2.py +153 -0
- vllm/model_executor/models/teleflm.py +78 -0
- vllm/model_executor/models/terratorch.py +319 -0
- vllm/model_executor/models/transformers/__init__.py +127 -0
- vllm/model_executor/models/transformers/base.py +464 -0
- vllm/model_executor/models/transformers/causal.py +65 -0
- vllm/model_executor/models/transformers/legacy.py +90 -0
- vllm/model_executor/models/transformers/moe.py +318 -0
- vllm/model_executor/models/transformers/multimodal.py +411 -0
- vllm/model_executor/models/transformers/pooling.py +119 -0
- vllm/model_executor/models/transformers/utils.py +207 -0
- vllm/model_executor/models/ultravox.py +681 -0
- vllm/model_executor/models/utils.py +877 -0
- vllm/model_executor/models/vision.py +552 -0
- vllm/model_executor/models/voxtral.py +845 -0
- vllm/model_executor/models/whisper.py +959 -0
- vllm/model_executor/models/zamba2.py +986 -0
- vllm/model_executor/parameter.py +642 -0
- vllm/model_executor/utils.py +94 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
- vllm/model_executor/warmup/kernel_warmup.py +98 -0
- vllm/multimodal/__init__.py +40 -0
- vllm/multimodal/audio.py +118 -0
- vllm/multimodal/base.py +26 -0
- vllm/multimodal/cache.py +755 -0
- vllm/multimodal/evs.py +294 -0
- vllm/multimodal/hasher.py +106 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +1036 -0
- vllm/multimodal/parse.py +544 -0
- vllm/multimodal/processing.py +2186 -0
- vllm/multimodal/profiling.py +369 -0
- vllm/multimodal/registry.py +360 -0
- vllm/multimodal/utils.py +512 -0
- vllm/multimodal/video.py +306 -0
- vllm/outputs.py +345 -0
- vllm/platforms/__init__.py +277 -0
- vllm/platforms/cpu.py +414 -0
- vllm/platforms/cuda.py +657 -0
- vllm/platforms/interface.py +639 -0
- vllm/platforms/rocm.py +466 -0
- vllm/platforms/tpu.py +276 -0
- vllm/platforms/xpu.py +274 -0
- vllm/plugins/__init__.py +78 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +77 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
- vllm/pooling_params.py +228 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/gpu_profiler.py +37 -0
- vllm/profiler/layerwise_profile.py +392 -0
- vllm/profiler/utils.py +151 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +26 -0
- vllm/ray/ray_env.py +79 -0
- vllm/reasoning/__init__.py +92 -0
- vllm/reasoning/abs_reasoning_parsers.py +290 -0
- vllm/reasoning/basic_parsers.py +162 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
- vllm/reasoning/ernie45_reasoning_parser.py +165 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
- vllm/reasoning/gptoss_reasoning_parser.py +173 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
- vllm/reasoning/identity_reasoning_parser.py +58 -0
- vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
- vllm/reasoning/mistral_reasoning_parser.py +55 -0
- vllm/reasoning/olmo3_reasoning_parser.py +302 -0
- vllm/reasoning/qwen3_reasoning_parser.py +67 -0
- vllm/reasoning/seedoss_reasoning_parser.py +27 -0
- vllm/reasoning/step3_reasoning_parser.py +107 -0
- vllm/sampling_params.py +669 -0
- vllm/scalar_type.py +355 -0
- vllm/scripts.py +17 -0
- vllm/sequence.py +98 -0
- vllm/tasks.py +13 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +135 -0
- vllm/transformers_utils/__init__.py +26 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +73 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1203 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +70 -0
- vllm/transformers_utils/configs/afmoe.py +84 -0
- vllm/transformers_utils/configs/arctic.py +206 -0
- vllm/transformers_utils/configs/chatglm.py +75 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
- vllm/transformers_utils/configs/dotsocr.py +71 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +89 -0
- vllm/transformers_utils/configs/flex_olmo.py +77 -0
- vllm/transformers_utils/configs/jais.py +243 -0
- vllm/transformers_utils/configs/kimi_linear.py +144 -0
- vllm/transformers_utils/configs/kimi_vl.py +38 -0
- vllm/transformers_utils/configs/lfm2_moe.py +159 -0
- vllm/transformers_utils/configs/medusa.py +65 -0
- vllm/transformers_utils/configs/midashenglm.py +103 -0
- vllm/transformers_utils/configs/mistral.py +174 -0
- vllm/transformers_utils/configs/mlp_speculator.py +69 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +212 -0
- vllm/transformers_utils/configs/nemotron_h.py +282 -0
- vllm/transformers_utils/configs/olmo3.py +79 -0
- vllm/transformers_utils/configs/ovis.py +182 -0
- vllm/transformers_utils/configs/qwen3_next.py +274 -0
- vllm/transformers_utils/configs/radio.py +89 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +38 -0
- vllm/transformers_utils/configs/speculators/base.py +114 -0
- vllm/transformers_utils/configs/step3_vl.py +174 -0
- vllm/transformers_utils/configs/ultravox.py +118 -0
- vllm/transformers_utils/detokenizer_utils.py +198 -0
- vllm/transformers_utils/dynamic_module.py +59 -0
- vllm/transformers_utils/processor.py +402 -0
- vllm/transformers_utils/processors/__init__.py +15 -0
- vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
- vllm/transformers_utils/processors/ovis.py +453 -0
- vllm/transformers_utils/processors/ovis2_5.py +468 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +95 -0
- vllm/transformers_utils/tokenizer.py +293 -0
- vllm/transformers_utils/tokenizer_base.py +155 -0
- vllm/transformers_utils/tokenizers/__init__.py +16 -0
- vllm/transformers_utils/tokenizers/mistral.py +502 -0
- vllm/transformers_utils/utils.py +130 -0
- vllm/triton_utils/__init__.py +19 -0
- vllm/triton_utils/importing.py +103 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +294 -0
- vllm/utils/__init__.py +82 -0
- vllm/utils/argparse_utils.py +487 -0
- vllm/utils/async_utils.py +303 -0
- vllm/utils/cache.py +214 -0
- vllm/utils/collection_utils.py +139 -0
- vllm/utils/counter.py +45 -0
- vllm/utils/deep_gemm.py +391 -0
- vllm/utils/flashinfer.py +490 -0
- vllm/utils/func_utils.py +236 -0
- vllm/utils/gc_utils.py +147 -0
- vllm/utils/hashing.py +63 -0
- vllm/utils/import_utils.py +411 -0
- vllm/utils/jsontree.py +165 -0
- vllm/utils/math_utils.py +32 -0
- vllm/utils/mem_constants.py +13 -0
- vllm/utils/mem_utils.py +232 -0
- vllm/utils/nccl.py +64 -0
- vllm/utils/network_utils.py +331 -0
- vllm/utils/platform_utils.py +59 -0
- vllm/utils/profiling.py +56 -0
- vllm/utils/registry.py +49 -0
- vllm/utils/serial_utils.py +169 -0
- vllm/utils/system_utils.py +229 -0
- vllm/utils/tensor_schema.py +255 -0
- vllm/utils/torch_utils.py +657 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +496 -0
- vllm/v1/attention/backends/flash_attn.py +1028 -0
- vllm/v1/attention/backends/flashinfer.py +1572 -0
- vllm/v1/attention/backends/flex_attention.py +926 -0
- vllm/v1/attention/backends/gdn_attn.py +387 -0
- vllm/v1/attention/backends/linear_attn.py +74 -0
- vllm/v1/attention/backends/mamba1_attn.py +165 -0
- vllm/v1/attention/backends/mamba2_attn.py +354 -0
- vllm/v1/attention/backends/mamba_attn.py +115 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +2031 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
- vllm/v1/attention/backends/mla/flashmla.py +314 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
- vllm/v1/attention/backends/mla/indexer.py +362 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
- vllm/v1/attention/backends/mla/triton_mla.py +171 -0
- vllm/v1/attention/backends/pallas.py +436 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
- vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
- vllm/v1/attention/backends/rocm_attn.py +362 -0
- vllm/v1/attention/backends/short_conv_attn.py +105 -0
- vllm/v1/attention/backends/tree_attn.py +425 -0
- vllm/v1/attention/backends/triton_attn.py +373 -0
- vllm/v1/attention/backends/utils.py +1116 -0
- vllm/v1/attention/backends/xformers.py +417 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +428 -0
- vllm/v1/core/encoder_cache_manager.py +343 -0
- vllm/v1/core/kv_cache_coordinator.py +480 -0
- vllm/v1/core/kv_cache_manager.py +420 -0
- vllm/v1/core/kv_cache_utils.py +1340 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +62 -0
- vllm/v1/core/sched/interface.py +181 -0
- vllm/v1/core/sched/output.py +202 -0
- vllm/v1/core/sched/request_queue.py +221 -0
- vllm/v1/core/sched/scheduler.py +1617 -0
- vllm/v1/core/sched/utils.py +72 -0
- vllm/v1/core/single_type_kv_cache_manager.py +736 -0
- vllm/v1/cudagraph_dispatcher.py +148 -0
- vllm/v1/engine/__init__.py +206 -0
- vllm/v1/engine/async_llm.py +797 -0
- vllm/v1/engine/coordinator.py +377 -0
- vllm/v1/engine/core.py +1420 -0
- vllm/v1/engine/core_client.py +1400 -0
- vllm/v1/engine/detokenizer.py +351 -0
- vllm/v1/engine/exceptions.py +18 -0
- vllm/v1/engine/llm_engine.py +408 -0
- vllm/v1/engine/logprobs.py +182 -0
- vllm/v1/engine/output_processor.py +642 -0
- vllm/v1/engine/parallel_sampling.py +145 -0
- vllm/v1/engine/processor.py +621 -0
- vllm/v1/engine/utils.py +1072 -0
- vllm/v1/executor/__init__.py +6 -0
- vllm/v1/executor/abstract.py +352 -0
- vllm/v1/executor/multiproc_executor.py +877 -0
- vllm/v1/executor/ray_distributed_executor.py +8 -0
- vllm/v1/executor/ray_executor.py +626 -0
- vllm/v1/executor/ray_utils.py +465 -0
- vllm/v1/executor/uniproc_executor.py +183 -0
- vllm/v1/kv_cache_interface.py +403 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +161 -0
- vllm/v1/kv_offload/arc_manager.py +237 -0
- vllm/v1/kv_offload/backend.py +97 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +62 -0
- vllm/v1/kv_offload/cpu.py +93 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +139 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +62 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
- vllm/v1/kv_offload/worker/worker.py +144 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +1238 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +169 -0
- vllm/v1/metrics/reader.py +257 -0
- vllm/v1/metrics/stats.py +420 -0
- vllm/v1/outputs.py +249 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +82 -0
- vllm/v1/request.py +259 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +352 -0
- vllm/v1/sample/logits_processor/builtin.py +274 -0
- vllm/v1/sample/logits_processor/interface.py +106 -0
- vllm/v1/sample/logits_processor/state.py +165 -0
- vllm/v1/sample/metadata.py +44 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +52 -0
- vllm/v1/sample/ops/logprobs.py +25 -0
- vllm/v1/sample/ops/penalties.py +57 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
- vllm/v1/sample/rejection_sampler.py +793 -0
- vllm/v1/sample/sampler.py +316 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +120 -0
- vllm/v1/sample/tpu/sampler.py +215 -0
- vllm/v1/serial_utils.py +532 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1225 -0
- vllm/v1/spec_decode/medusa.py +73 -0
- vllm/v1/spec_decode/metadata.py +66 -0
- vllm/v1/spec_decode/metrics.py +224 -0
- vllm/v1/spec_decode/ngram_proposer.py +291 -0
- vllm/v1/spec_decode/suffix_decoding.py +103 -0
- vllm/v1/spec_decode/utils.py +16 -0
- vllm/v1/structured_output/__init__.py +338 -0
- vllm/v1/structured_output/backend_guidance.py +265 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
- vllm/v1/structured_output/backend_outlines.py +324 -0
- vllm/v1/structured_output/backend_types.py +136 -0
- vllm/v1/structured_output/backend_xgrammar.py +362 -0
- vllm/v1/structured_output/request.py +94 -0
- vllm/v1/structured_output/utils.py +469 -0
- vllm/v1/utils.py +414 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +327 -0
- vllm/v1/worker/cpu_model_runner.py +122 -0
- vllm/v1/worker/cpu_worker.py +206 -0
- vllm/v1/worker/dp_utils.py +230 -0
- vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
- vllm/v1/worker/gpu_input_batch.py +975 -0
- vllm/v1/worker/gpu_model_runner.py +5102 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
- vllm/v1/worker/gpu_worker.py +894 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
- vllm/v1/worker/lora_model_runner_mixin.py +213 -0
- vllm/v1/worker/tpu_input_batch.py +593 -0
- vllm/v1/worker/tpu_model_runner.py +2173 -0
- vllm/v1/worker/tpu_worker.py +355 -0
- vllm/v1/worker/ubatch_utils.py +73 -0
- vllm/v1/worker/ubatching.py +231 -0
- vllm/v1/worker/utils.py +366 -0
- vllm/v1/worker/worker_base.py +375 -0
- vllm/v1/worker/xpu_model_runner.py +55 -0
- vllm/v1/worker/xpu_worker.py +189 -0
- vllm/version.py +39 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1944 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
|
|
4
|
+
from collections.abc import Callable, Iterable
|
|
5
|
+
from contextlib import nullcontext
|
|
6
|
+
from enum import Enum
|
|
7
|
+
from functools import partial
|
|
8
|
+
from typing import Literal, get_args, overload
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from torch.nn.parameter import UninitializedParameter
|
|
13
|
+
|
|
14
|
+
import vllm.envs as envs
|
|
15
|
+
from vllm._aiter_ops import rocm_aiter_ops
|
|
16
|
+
from vllm.config import VllmConfig, get_current_vllm_config
|
|
17
|
+
from vllm.config.parallel import ExpertPlacementStrategy
|
|
18
|
+
from vllm.distributed import (
|
|
19
|
+
get_dp_group,
|
|
20
|
+
get_ep_group,
|
|
21
|
+
get_tensor_model_parallel_world_size,
|
|
22
|
+
tensor_model_parallel_all_reduce,
|
|
23
|
+
)
|
|
24
|
+
from vllm.distributed.eplb.eplb_state import EplbState
|
|
25
|
+
from vllm.forward_context import ForwardContext, get_forward_context
|
|
26
|
+
from vllm.logger import init_logger
|
|
27
|
+
from vllm.model_executor.custom_op import CustomOp
|
|
28
|
+
from vllm.model_executor.layers.fused_moe.config import (
|
|
29
|
+
FusedMoEConfig,
|
|
30
|
+
FusedMoEParallelConfig,
|
|
31
|
+
FusedMoEQuantConfig,
|
|
32
|
+
RoutingMethodType,
|
|
33
|
+
)
|
|
34
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import zero_experts_compute_triton
|
|
35
|
+
from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
|
36
|
+
FusedMoEPermuteExpertsUnpermute,
|
|
37
|
+
FusedMoEPrepareAndFinalize,
|
|
38
|
+
)
|
|
39
|
+
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
|
|
40
|
+
init_aiter_topK_meta_data,
|
|
41
|
+
)
|
|
42
|
+
from vllm.model_executor.layers.fused_moe.routing_simulator import RoutingSimulator
|
|
43
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
|
44
|
+
QuantizationConfig,
|
|
45
|
+
)
|
|
46
|
+
from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
|
|
47
|
+
is_flashinfer_supporting_global_sf,
|
|
48
|
+
)
|
|
49
|
+
from vllm.platforms import current_platform
|
|
50
|
+
from vllm.utils.math_utils import cdiv, round_up
|
|
51
|
+
from vllm.utils.torch_utils import (
|
|
52
|
+
aux_stream,
|
|
53
|
+
current_stream,
|
|
54
|
+
direct_register_custom_op,
|
|
55
|
+
)
|
|
56
|
+
from vllm.v1.worker.ubatching import dbo_current_ubatch_id
|
|
57
|
+
|
|
58
|
+
if current_platform.is_cuda_alike():
|
|
59
|
+
from .fused_moe import eplb_map_to_physical_and_record, fused_experts
|
|
60
|
+
else:
|
|
61
|
+
fused_experts = None # type: ignore
|
|
62
|
+
FusedMoEPermuteExpertsUnpermute = object # type: ignore
|
|
63
|
+
FusedMoEPrepareAndFinalize = object # type: ignore
|
|
64
|
+
|
|
65
|
+
def _eplb_map_to_physical_and_record(
|
|
66
|
+
topk_ids: torch.Tensor,
|
|
67
|
+
expert_load_view: torch.Tensor,
|
|
68
|
+
logical_to_physical_map: torch.Tensor,
|
|
69
|
+
logical_replica_count: torch.Tensor,
|
|
70
|
+
indices_type: torch.dtype | None,
|
|
71
|
+
) -> torch.Tensor:
|
|
72
|
+
# CPU fallback: no EPLB so just return as is
|
|
73
|
+
return topk_ids
|
|
74
|
+
|
|
75
|
+
eplb_map_to_physical_and_record = _eplb_map_to_physical_and_record
|
|
76
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
|
|
77
|
+
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
|
|
78
|
+
rocm_aiter_grouped_topk,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
if current_platform.is_tpu():
|
|
82
|
+
from .moe_pallas import fused_moe as fused_moe_pallas
|
|
83
|
+
else:
|
|
84
|
+
fused_moe_pallas = None # type: ignore
|
|
85
|
+
|
|
86
|
+
from vllm.model_executor.layers.fused_moe.fused_moe_method_base import (
|
|
87
|
+
FusedMoEMethodBase,
|
|
88
|
+
)
|
|
89
|
+
from vllm.model_executor.layers.fused_moe.fused_moe_modular_method import (
|
|
90
|
+
FusedMoEModularMethod,
|
|
91
|
+
)
|
|
92
|
+
from vllm.model_executor.layers.fused_moe.unquantized_fused_moe_method import (
|
|
93
|
+
UnquantizedFusedMoEMethod,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
logger = init_logger(__name__)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
class FusedMoeWeightScaleSupported(Enum):
|
|
100
|
+
TENSOR = "tensor"
|
|
101
|
+
CHANNEL = "channel"
|
|
102
|
+
GROUP = "group"
|
|
103
|
+
BLOCK = "block"
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def determine_expert_map(
|
|
107
|
+
ep_size: int,
|
|
108
|
+
ep_rank: int,
|
|
109
|
+
global_num_experts: int,
|
|
110
|
+
expert_placement_strategy: ExpertPlacementStrategy = "linear",
|
|
111
|
+
num_fused_shared_experts: int = 0,
|
|
112
|
+
return_expert_mask: bool = False,
|
|
113
|
+
) -> tuple[int, torch.Tensor | None, torch.Tensor | None]:
|
|
114
|
+
"""
|
|
115
|
+
Calculates how many experts should be assigned to each rank for EP and
|
|
116
|
+
creates a mapping from global to local expert index. Experts are
|
|
117
|
+
distributed evenly across ranks. Any remaining are assigned to the
|
|
118
|
+
last rank.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
ep_size: The size of the expert parallel group
|
|
122
|
+
ep_rank: The rank of the current process in the expert parallel
|
|
123
|
+
group
|
|
124
|
+
global_num_experts: The total number of experts in the model.
|
|
125
|
+
expert_placement_strategy: The expert placement strategy.
|
|
126
|
+
|
|
127
|
+
Returns:
|
|
128
|
+
tuple[int, Optional[torch.Tensor]]: A tuple containing:
|
|
129
|
+
- local_num_experts (int): The number of experts assigned
|
|
130
|
+
to the current rank.
|
|
131
|
+
- expert_map (Optional[torch.Tensor]): A tensor of shape
|
|
132
|
+
(global_num_experts,) mapping from global to local index.
|
|
133
|
+
Contains -1 for experts not assigned to the current rank.
|
|
134
|
+
Returns None if ep_size is 1.
|
|
135
|
+
- expert_mask (Optional[torch.Tensor]): A tensor of shape
|
|
136
|
+
(global_num_experts + num_fused_shared_experts + 1,)
|
|
137
|
+
containing 1 for experts assigned to the current rank
|
|
138
|
+
and 0 for sentinel.
|
|
139
|
+
Returns None if ep_size is 1.
|
|
140
|
+
Used only when AITER MOE is enabled.
|
|
141
|
+
"""
|
|
142
|
+
assert ep_size > 0
|
|
143
|
+
if ep_size == 1:
|
|
144
|
+
return (global_num_experts, None, None)
|
|
145
|
+
|
|
146
|
+
# Distribute experts as evenly as possible to each rank.
|
|
147
|
+
base_experts = global_num_experts // ep_size
|
|
148
|
+
remainder = global_num_experts % ep_size
|
|
149
|
+
local_num_experts = base_experts + 1 if ep_rank < remainder else base_experts
|
|
150
|
+
|
|
151
|
+
# Create a tensor of size num_experts filled with -1
|
|
152
|
+
expert_map = torch.full((global_num_experts,), -1, dtype=torch.int32)
|
|
153
|
+
# Create an expert map for the local experts
|
|
154
|
+
if expert_placement_strategy == "linear":
|
|
155
|
+
start_idx = ep_rank * base_experts + min(ep_rank, remainder)
|
|
156
|
+
expert_map[start_idx : start_idx + local_num_experts] = torch.arange(
|
|
157
|
+
0, local_num_experts, dtype=torch.int32
|
|
158
|
+
)
|
|
159
|
+
elif expert_placement_strategy == "round_robin":
|
|
160
|
+
local_log_experts = torch.arange(
|
|
161
|
+
ep_rank, global_num_experts, ep_size, dtype=torch.int32
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
expert_map[local_log_experts] = torch.arange(
|
|
165
|
+
0, local_num_experts, dtype=torch.int32
|
|
166
|
+
)
|
|
167
|
+
else:
|
|
168
|
+
raise ValueError(
|
|
169
|
+
"Unsupported expert placement strategy "
|
|
170
|
+
f"'{expert_placement_strategy}', expected one of "
|
|
171
|
+
f"{get_args(ExpertPlacementStrategy)}"
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
expert_mask = None
|
|
175
|
+
if return_expert_mask:
|
|
176
|
+
expert_mask = torch.ones(
|
|
177
|
+
(global_num_experts + num_fused_shared_experts + 1,), dtype=torch.int32
|
|
178
|
+
)
|
|
179
|
+
expert_mask[-1] = 0
|
|
180
|
+
expert_mask[:global_num_experts] = expert_map > -1
|
|
181
|
+
expert_map = torch.cat(
|
|
182
|
+
(
|
|
183
|
+
expert_map,
|
|
184
|
+
torch.tensor(
|
|
185
|
+
[local_num_experts + i for i in range(num_fused_shared_experts)],
|
|
186
|
+
dtype=torch.int32,
|
|
187
|
+
),
|
|
188
|
+
),
|
|
189
|
+
dim=0,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
return (local_num_experts, expert_map, expert_mask)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def get_compressed_expert_map(expert_map: torch.Tensor) -> str:
|
|
196
|
+
"""
|
|
197
|
+
Compresses the expert map by removing any -1 entries.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
expert_map (torch.Tensor): A tensor of shape (global_num_experts,)
|
|
201
|
+
mapping from global to local index. Contains -1 for experts not
|
|
202
|
+
assigned to the current rank.
|
|
203
|
+
|
|
204
|
+
Returns:
|
|
205
|
+
str: A string mapping from local to global index.
|
|
206
|
+
Using str to support hashing for logging once only.
|
|
207
|
+
"""
|
|
208
|
+
global_indices = torch.where(expert_map != -1)[0]
|
|
209
|
+
local_indices = expert_map[global_indices]
|
|
210
|
+
return ", ".join(
|
|
211
|
+
f"{local_index.item()}->{global_index.item()}"
|
|
212
|
+
for local_index, global_index in zip(local_indices, global_indices)
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def maybe_roundup_hidden_size(
|
|
217
|
+
hidden_size: int,
|
|
218
|
+
act_dtype: torch.dtype,
|
|
219
|
+
quant_config: QuantizationConfig | None,
|
|
220
|
+
moe_parallel_config: FusedMoEParallelConfig,
|
|
221
|
+
is_lora_enabled: bool,
|
|
222
|
+
) -> int:
|
|
223
|
+
"""
|
|
224
|
+
Given layer hidden size and MoE configurations, round up hidden_size
|
|
225
|
+
if necessary.
|
|
226
|
+
|
|
227
|
+
Args:
|
|
228
|
+
hidden_size: Layer hidden-size
|
|
229
|
+
act_dtype: Data type of the layer activations.
|
|
230
|
+
quant_config: Fused MoE quantization configuration.
|
|
231
|
+
moe_parallel_config: Fused MoE parallelization strategy configuration.
|
|
232
|
+
is_lora_enabled: True if the engine is enabled with LoRA. This
|
|
233
|
+
is used in the case of mxfp4 quantization in selecting the
|
|
234
|
+
MxFP4Backend.
|
|
235
|
+
|
|
236
|
+
Return:
|
|
237
|
+
Rounded up hidden_size if rounding up is required based on the configs.
|
|
238
|
+
Original hidden size otherwise.
|
|
239
|
+
"""
|
|
240
|
+
from vllm.model_executor.layers.fused_moe.all2all_utils import (
|
|
241
|
+
maybe_roundup_layer_hidden_size,
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
hidden_size = maybe_roundup_layer_hidden_size(
|
|
245
|
+
hidden_size, act_dtype, moe_parallel_config
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
# we are padding globally so EP buffer allocation works
|
|
249
|
+
if quant_config and quant_config.get_name() == "mxfp4":
|
|
250
|
+
from vllm.model_executor.layers.quantization.mxfp4 import (
|
|
251
|
+
Mxfp4Backend,
|
|
252
|
+
get_mxfp4_backend,
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
current_mxfp4_backend = get_mxfp4_backend(is_lora_enabled)
|
|
256
|
+
if (
|
|
257
|
+
current_mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
|
|
258
|
+
or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
|
|
259
|
+
):
|
|
260
|
+
hidden_size = round_up(hidden_size, 128)
|
|
261
|
+
elif (
|
|
262
|
+
current_platform.is_rocm()
|
|
263
|
+
or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
|
|
264
|
+
or current_mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
|
|
265
|
+
):
|
|
266
|
+
hidden_size = round_up(hidden_size, 256)
|
|
267
|
+
|
|
268
|
+
return hidden_size
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
@CustomOp.register("fused_moe")
|
|
272
|
+
class FusedMoE(CustomOp):
|
|
273
|
+
"""FusedMoE layer for MoE models.
|
|
274
|
+
|
|
275
|
+
This layer contains both MergedColumnParallel weights (gate_up_proj /
|
|
276
|
+
w13) and RowParallelLinear weights (down_proj/ w2).
|
|
277
|
+
|
|
278
|
+
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
|
|
279
|
+
copy that naming convention here and handle any remapping in the
|
|
280
|
+
load_weights function in each model implementation.
|
|
281
|
+
|
|
282
|
+
Args:
|
|
283
|
+
num_experts: Number of experts in the model
|
|
284
|
+
top_k: Number of experts selected for each token
|
|
285
|
+
hidden_size: Input hidden state size of the transformer
|
|
286
|
+
intermediate_size: Intermediate size of the experts
|
|
287
|
+
params_dtype: Data type for the parameters.
|
|
288
|
+
reduce_results: Whether to all_reduce on the output of the layer
|
|
289
|
+
renormalize: Whether to renormalize the logits in the fused_moe kernel
|
|
290
|
+
quant_config: Quantization configure.
|
|
291
|
+
enable_eplb: Whether to enable expert parallelism load balancer.
|
|
292
|
+
"""
|
|
293
|
+
|
|
294
|
+
def __init__(
|
|
295
|
+
self,
|
|
296
|
+
num_experts: int, # Global number of experts
|
|
297
|
+
top_k: int,
|
|
298
|
+
hidden_size: int,
|
|
299
|
+
intermediate_size: int,
|
|
300
|
+
params_dtype: torch.dtype | None = None,
|
|
301
|
+
reduce_results: bool = False,
|
|
302
|
+
renormalize: bool = True,
|
|
303
|
+
use_grouped_topk: bool = False,
|
|
304
|
+
num_expert_group: int | None = None,
|
|
305
|
+
topk_group: int | None = None,
|
|
306
|
+
quant_config: QuantizationConfig | None = None,
|
|
307
|
+
tp_size: int | None = None,
|
|
308
|
+
ep_size: int | None = None,
|
|
309
|
+
dp_size: int | None = None,
|
|
310
|
+
prefix: str = "",
|
|
311
|
+
custom_routing_function: Callable | None = None,
|
|
312
|
+
scoring_func: str = "softmax",
|
|
313
|
+
routed_scaling_factor: float = 1.0,
|
|
314
|
+
e_score_correction_bias: torch.Tensor | None = None,
|
|
315
|
+
apply_router_weight_on_input: bool = False,
|
|
316
|
+
activation: str = "silu",
|
|
317
|
+
is_act_and_mul: bool = True,
|
|
318
|
+
enable_eplb: bool = False,
|
|
319
|
+
num_redundant_experts: int = 0,
|
|
320
|
+
has_bias: bool = False,
|
|
321
|
+
is_sequence_parallel=False,
|
|
322
|
+
zero_expert_num: int | None = 0,
|
|
323
|
+
zero_expert_type: str | None = None,
|
|
324
|
+
expert_mapping: list[tuple[str, str, int, str]] | None = None,
|
|
325
|
+
n_shared_experts: int | None = None,
|
|
326
|
+
routing_method_type: int | None = None,
|
|
327
|
+
):
|
|
328
|
+
super().__init__()
|
|
329
|
+
|
|
330
|
+
# Allow disabling of the separate shared experts stream for
|
|
331
|
+
# debug purposes.
|
|
332
|
+
# TODO: Remove this after more extensive testings with TP/DP
|
|
333
|
+
# and other execution modes
|
|
334
|
+
if envs.VLLM_DISABLE_SHARED_EXPERTS_STREAM:
|
|
335
|
+
logger.info_once("Disabling MoE shared_experts cuda stream")
|
|
336
|
+
self.shared_experts_stream = None
|
|
337
|
+
else:
|
|
338
|
+
# TODO(rob): enable shared expert overlap with non-cuda.
|
|
339
|
+
# aux_stream() returns None on non-cuda platforms.
|
|
340
|
+
self.shared_experts_stream = aux_stream()
|
|
341
|
+
if self.shared_experts_stream is not None:
|
|
342
|
+
logger.info_once("Enabled separate cuda stream for MoE shared_experts")
|
|
343
|
+
|
|
344
|
+
if params_dtype is None:
|
|
345
|
+
params_dtype = torch.get_default_dtype()
|
|
346
|
+
self.params_dtype = params_dtype
|
|
347
|
+
|
|
348
|
+
vllm_config = get_current_vllm_config()
|
|
349
|
+
self.vllm_config = vllm_config
|
|
350
|
+
|
|
351
|
+
# FIXME (varun): We should have a better way of inferring the activation
|
|
352
|
+
# datatype. This works for now as the tensor datatype entering the MoE
|
|
353
|
+
# operation is typically unquantized (i.e. float16/bfloat16).
|
|
354
|
+
if vllm_config.model_config is not None:
|
|
355
|
+
moe_in_dtype = vllm_config.model_config.dtype
|
|
356
|
+
else:
|
|
357
|
+
# TODO (bnell): This is a hack to get test_mixtral_moe to work
|
|
358
|
+
# since model_config is not set in the pytest test.
|
|
359
|
+
moe_in_dtype = params_dtype
|
|
360
|
+
|
|
361
|
+
tp_size_ = (
|
|
362
|
+
tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
|
|
363
|
+
)
|
|
364
|
+
dp_size_ = dp_size if dp_size is not None else get_dp_group().world_size
|
|
365
|
+
|
|
366
|
+
self.is_sequence_parallel = is_sequence_parallel
|
|
367
|
+
self.sp_size = tp_size_ if is_sequence_parallel else 1
|
|
368
|
+
|
|
369
|
+
self.moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
|
|
370
|
+
tp_size_=tp_size_,
|
|
371
|
+
dp_size_=dp_size_,
|
|
372
|
+
vllm_parallel_config=vllm_config.parallel_config,
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
self.global_num_experts = num_experts + num_redundant_experts
|
|
376
|
+
self.logical_num_experts = num_experts
|
|
377
|
+
self.zero_expert_num = zero_expert_num
|
|
378
|
+
self.zero_expert_type = zero_expert_type
|
|
379
|
+
|
|
380
|
+
# Expert mapping used in self.load_weights
|
|
381
|
+
self.expert_mapping = expert_mapping
|
|
382
|
+
|
|
383
|
+
# Round up hidden size if needed.
|
|
384
|
+
hidden_size = maybe_roundup_hidden_size(
|
|
385
|
+
hidden_size,
|
|
386
|
+
moe_in_dtype,
|
|
387
|
+
quant_config,
|
|
388
|
+
self.moe_parallel_config,
|
|
389
|
+
is_lora_enabled=self.vllm_config.lora_config is not None,
|
|
390
|
+
)
|
|
391
|
+
|
|
392
|
+
# For smuggling this layer into the fused moe custom op
|
|
393
|
+
compilation_config = vllm_config.compilation_config
|
|
394
|
+
if prefix in compilation_config.static_forward_context:
|
|
395
|
+
raise ValueError("Duplicate layer name: {}".format(prefix))
|
|
396
|
+
compilation_config.static_forward_context[prefix] = self
|
|
397
|
+
self.layer_name = prefix
|
|
398
|
+
|
|
399
|
+
self.enable_eplb = enable_eplb
|
|
400
|
+
self.expert_load_view: torch.Tensor | None = None
|
|
401
|
+
self.logical_to_physical_map: torch.Tensor | None = None
|
|
402
|
+
self.logical_replica_count: torch.Tensor | None = None
|
|
403
|
+
|
|
404
|
+
# ROCm aiter shared experts fusion
|
|
405
|
+
self.rocm_aiter_fmoe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
|
|
406
|
+
self.aiter_fmoe_shared_expert_enabled = (
|
|
407
|
+
rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
self.num_fused_shared_experts = (
|
|
411
|
+
n_shared_experts
|
|
412
|
+
if n_shared_experts is not None and self.aiter_fmoe_shared_expert_enabled
|
|
413
|
+
else 0
|
|
414
|
+
)
|
|
415
|
+
if (
|
|
416
|
+
not self.aiter_fmoe_shared_expert_enabled
|
|
417
|
+
and self.num_fused_shared_experts != 0
|
|
418
|
+
):
|
|
419
|
+
raise ValueError(
|
|
420
|
+
"n_shared_experts is only supported on ROCm aiter when "
|
|
421
|
+
"VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS is enabled"
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
# Determine expert maps
|
|
425
|
+
if self.use_ep:
|
|
426
|
+
if self.enable_eplb:
|
|
427
|
+
assert self.global_num_experts % self.ep_size == 0, (
|
|
428
|
+
"EPLB currently only supports even distribution of "
|
|
429
|
+
"experts across ranks."
|
|
430
|
+
)
|
|
431
|
+
else:
|
|
432
|
+
assert num_redundant_experts == 0, (
|
|
433
|
+
"Redundant experts are only supported with EPLB."
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
expert_placement_strategy = (
|
|
437
|
+
vllm_config.parallel_config.expert_placement_strategy
|
|
438
|
+
)
|
|
439
|
+
if expert_placement_strategy == "round_robin":
|
|
440
|
+
# TODO(Bruce): will support round robin expert placement with
|
|
441
|
+
# EPLB enabled in the future.
|
|
442
|
+
round_robin_supported = (
|
|
443
|
+
(num_expert_group is not None and num_expert_group > 1)
|
|
444
|
+
and num_redundant_experts == 0
|
|
445
|
+
and not self.enable_eplb
|
|
446
|
+
)
|
|
447
|
+
|
|
448
|
+
if not round_robin_supported:
|
|
449
|
+
logger.warning(
|
|
450
|
+
"Round-robin expert placement is only supported for "
|
|
451
|
+
"models with multiple expert groups and no redundant "
|
|
452
|
+
"experts. Falling back to linear expert placement."
|
|
453
|
+
)
|
|
454
|
+
expert_placement_strategy = "linear"
|
|
455
|
+
|
|
456
|
+
self.expert_map: torch.Tensor | None
|
|
457
|
+
local_num_experts, expert_map, expert_mask = determine_expert_map(
|
|
458
|
+
ep_size=self.ep_size,
|
|
459
|
+
ep_rank=self.ep_rank,
|
|
460
|
+
global_num_experts=self.global_num_experts,
|
|
461
|
+
expert_placement_strategy=expert_placement_strategy,
|
|
462
|
+
num_fused_shared_experts=self.num_fused_shared_experts,
|
|
463
|
+
return_expert_mask=self.rocm_aiter_fmoe_enabled,
|
|
464
|
+
)
|
|
465
|
+
self.local_num_experts = local_num_experts
|
|
466
|
+
self.register_buffer("expert_map", expert_map)
|
|
467
|
+
self.register_buffer("expert_mask", expert_mask)
|
|
468
|
+
logger.info_once(
|
|
469
|
+
"[EP Rank %s/%s] Expert parallelism is enabled. Expert "
|
|
470
|
+
"placement strategy: %s. Local/global"
|
|
471
|
+
" number of experts: %s/%s. Experts local to global index map:"
|
|
472
|
+
" %s.",
|
|
473
|
+
self.ep_rank,
|
|
474
|
+
self.ep_size,
|
|
475
|
+
expert_placement_strategy,
|
|
476
|
+
self.local_num_experts,
|
|
477
|
+
self.global_num_experts,
|
|
478
|
+
get_compressed_expert_map(self.expert_map),
|
|
479
|
+
)
|
|
480
|
+
else:
|
|
481
|
+
self.local_num_experts, self.expert_map, self.expert_mask = (
|
|
482
|
+
self.global_num_experts,
|
|
483
|
+
None,
|
|
484
|
+
None,
|
|
485
|
+
)
|
|
486
|
+
|
|
487
|
+
self.top_k = top_k
|
|
488
|
+
|
|
489
|
+
self._init_aiter_shared_experts_topK_buffer(
|
|
490
|
+
vllm_config=vllm_config, dp_size=dp_size_
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
assert intermediate_size % self.tp_size == 0
|
|
494
|
+
self.hidden_size = hidden_size
|
|
495
|
+
self.intermediate_size_per_partition = intermediate_size // self.tp_size
|
|
496
|
+
self.reduce_results = reduce_results
|
|
497
|
+
self.renormalize = renormalize
|
|
498
|
+
self.use_grouped_topk = use_grouped_topk
|
|
499
|
+
if self.use_grouped_topk:
|
|
500
|
+
assert num_expert_group is not None and topk_group is not None
|
|
501
|
+
self.num_expert_group = num_expert_group
|
|
502
|
+
self.topk_group = topk_group
|
|
503
|
+
self.custom_routing_function = custom_routing_function
|
|
504
|
+
self.scoring_func = scoring_func
|
|
505
|
+
self.routed_scaling_factor = routed_scaling_factor
|
|
506
|
+
self.e_score_correction_bias = e_score_correction_bias
|
|
507
|
+
self.apply_router_weight_on_input = apply_router_weight_on_input
|
|
508
|
+
self.activation = activation
|
|
509
|
+
|
|
510
|
+
if self.scoring_func != "softmax" and not self.use_grouped_topk:
|
|
511
|
+
raise ValueError(
|
|
512
|
+
"Only softmax scoring function is supported for non-grouped topk."
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
# ToDo: Better logic to determine the routing method type
|
|
516
|
+
if routing_method_type is not None:
|
|
517
|
+
self.routing_method_type = routing_method_type
|
|
518
|
+
else:
|
|
519
|
+
if scoring_func == "sigmoid":
|
|
520
|
+
if self.use_grouped_topk:
|
|
521
|
+
self.routing_method_type = RoutingMethodType.DeepSeekV3
|
|
522
|
+
elif self.top_k == 1:
|
|
523
|
+
self.routing_method_type = RoutingMethodType.Llama4
|
|
524
|
+
elif self.scoring_func == "softmax":
|
|
525
|
+
self.routing_method_type = (
|
|
526
|
+
RoutingMethodType.Renormalize
|
|
527
|
+
if not self.renormalize
|
|
528
|
+
else RoutingMethodType.RenormalizeNaive
|
|
529
|
+
)
|
|
530
|
+
else:
|
|
531
|
+
self.routing_method_type = RoutingMethodType.TopK
|
|
532
|
+
|
|
533
|
+
self.moe_config: FusedMoEConfig = FusedMoEConfig(
|
|
534
|
+
num_experts=self.global_num_experts,
|
|
535
|
+
experts_per_token=top_k,
|
|
536
|
+
hidden_dim=hidden_size,
|
|
537
|
+
num_local_experts=self.local_num_experts,
|
|
538
|
+
moe_parallel_config=self.moe_parallel_config,
|
|
539
|
+
in_dtype=moe_in_dtype,
|
|
540
|
+
max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
|
|
541
|
+
has_bias=has_bias,
|
|
542
|
+
is_act_and_mul=is_act_and_mul,
|
|
543
|
+
is_lora_enabled=vllm_config.lora_config is not None,
|
|
544
|
+
)
|
|
545
|
+
|
|
546
|
+
self.quant_config = quant_config
|
|
547
|
+
|
|
548
|
+
def _get_quant_method() -> FusedMoEMethodBase:
|
|
549
|
+
"""
|
|
550
|
+
Helper method to ensure self.quant_method is never None and
|
|
551
|
+
of the proper type.
|
|
552
|
+
"""
|
|
553
|
+
quant_method = None
|
|
554
|
+
if self.quant_config is not None:
|
|
555
|
+
quant_method = self.quant_config.get_quant_method(self, prefix)
|
|
556
|
+
if quant_method is None:
|
|
557
|
+
quant_method = UnquantizedFusedMoEMethod(self.moe_config)
|
|
558
|
+
assert isinstance(quant_method, FusedMoEMethodBase)
|
|
559
|
+
return quant_method
|
|
560
|
+
|
|
561
|
+
# Note: get_quant_method will look at the layer's local_num_experts
|
|
562
|
+
# for heuristic purposes, so it must be initialized first.
|
|
563
|
+
self.quant_method: FusedMoEMethodBase = _get_quant_method()
|
|
564
|
+
|
|
565
|
+
if not self.moe_config.is_act_and_mul:
|
|
566
|
+
# Avoid circular import
|
|
567
|
+
from vllm.model_executor.layers.quantization.modelopt import (
|
|
568
|
+
ModelOptFp8MoEMethod,
|
|
569
|
+
)
|
|
570
|
+
|
|
571
|
+
if not isinstance(
|
|
572
|
+
self.quant_method, (UnquantizedFusedMoEMethod, ModelOptFp8MoEMethod)
|
|
573
|
+
):
|
|
574
|
+
raise NotImplementedError(
|
|
575
|
+
"is_act_and_mul=False is supported only for unquantized "
|
|
576
|
+
"and ModelOpt FP8 moe for now"
|
|
577
|
+
)
|
|
578
|
+
if not current_platform.is_cuda():
|
|
579
|
+
raise NotImplementedError(
|
|
580
|
+
"is_act_and_mul=False is supported only for CUDA for now"
|
|
581
|
+
)
|
|
582
|
+
|
|
583
|
+
if self.enable_eplb and not self.quant_method.supports_eplb:
|
|
584
|
+
# TODO: Add support for additional quantization methods.
|
|
585
|
+
# The implementation for other quantization methods does not
|
|
586
|
+
# contain essential differences, but the current quant API
|
|
587
|
+
# design causes duplicated work when extending to new
|
|
588
|
+
# quantization methods, so I'm leaving it for now.
|
|
589
|
+
# If you plan to add support for more quantization methods,
|
|
590
|
+
# please refer to the implementation in `Fp8MoEMethod`.
|
|
591
|
+
raise NotImplementedError(
|
|
592
|
+
f"EPLB is not supported {self.quant_method.__class__.__name__}. "
|
|
593
|
+
"EPLB is only supported for FP8 quantization for now."
|
|
594
|
+
)
|
|
595
|
+
|
|
596
|
+
moe_quant_params = {
|
|
597
|
+
"num_experts": self.local_num_experts,
|
|
598
|
+
"hidden_size": hidden_size,
|
|
599
|
+
"intermediate_size_per_partition": self.intermediate_size_per_partition,
|
|
600
|
+
"params_dtype": params_dtype,
|
|
601
|
+
"weight_loader": self.weight_loader,
|
|
602
|
+
"global_num_experts": self.global_num_experts,
|
|
603
|
+
}
|
|
604
|
+
# need full intermediate size pre-sharding for WNA16 act order
|
|
605
|
+
if self.quant_method.__class__.__name__ in (
|
|
606
|
+
"GPTQMarlinMoEMethod",
|
|
607
|
+
"CompressedTensorsWNA16MarlinMoEMethod",
|
|
608
|
+
"CompressedTensorsWNA16MoEMethod",
|
|
609
|
+
):
|
|
610
|
+
moe_quant_params["intermediate_size_full"] = intermediate_size
|
|
611
|
+
|
|
612
|
+
self.quant_method.create_weights(layer=self, **moe_quant_params)
|
|
613
|
+
|
|
614
|
+
# Chunked all2all staging tensor
|
|
615
|
+
self.batched_hidden_states: torch.Tensor | None = None
|
|
616
|
+
self.batched_router_logits: torch.Tensor | None = None
|
|
617
|
+
|
|
618
|
+
# Note: maybe_init_modular_kernel should only be called by
|
|
619
|
+
# prepare_communication_buffer_for_model.
|
|
620
|
+
# This is called after all weight loading and post-processing, so it
|
|
621
|
+
# should be safe to swap out the quant_method.
|
|
622
|
+
def maybe_init_modular_kernel(self) -> None:
|
|
623
|
+
self.ensure_moe_quant_config_init()
|
|
624
|
+
prepare_finalize = self.quant_method.maybe_make_prepare_finalize()
|
|
625
|
+
if prepare_finalize is not None:
|
|
626
|
+
logger.debug(
|
|
627
|
+
"%s for %s(%s)", prepare_finalize.__class__.__name__, self, id(self)
|
|
628
|
+
)
|
|
629
|
+
self.quant_method = FusedMoEModularMethod.make(
|
|
630
|
+
self, self.quant_method, prepare_finalize, self.shared_experts
|
|
631
|
+
)
|
|
632
|
+
|
|
633
|
+
@property
|
|
634
|
+
def shared_experts(self) -> torch.nn.Module | None:
|
|
635
|
+
return None
|
|
636
|
+
|
|
637
|
+
@property
|
|
638
|
+
def gate(self) -> torch.nn.Module | None:
|
|
639
|
+
return None
|
|
640
|
+
|
|
641
|
+
@property
|
|
642
|
+
def tp_size(self):
|
|
643
|
+
return self.moe_parallel_config.tp_size
|
|
644
|
+
|
|
645
|
+
@property
|
|
646
|
+
def dp_size(self):
|
|
647
|
+
return self.moe_parallel_config.dp_size
|
|
648
|
+
|
|
649
|
+
@property
|
|
650
|
+
def ep_size(self):
|
|
651
|
+
return self.moe_parallel_config.ep_size
|
|
652
|
+
|
|
653
|
+
@property
|
|
654
|
+
def tp_rank(self):
|
|
655
|
+
return self.moe_parallel_config.tp_rank
|
|
656
|
+
|
|
657
|
+
@property
|
|
658
|
+
def dp_rank(self):
|
|
659
|
+
return self.moe_parallel_config.dp_rank
|
|
660
|
+
|
|
661
|
+
@property
|
|
662
|
+
def ep_rank(self):
|
|
663
|
+
return self.moe_parallel_config.ep_rank
|
|
664
|
+
|
|
665
|
+
@property
|
|
666
|
+
def use_ep(self):
|
|
667
|
+
return self.moe_parallel_config.use_ep
|
|
668
|
+
|
|
669
|
+
@property
|
|
670
|
+
def use_pplx_kernels(self):
|
|
671
|
+
return self.moe_parallel_config.use_pplx_kernels
|
|
672
|
+
|
|
673
|
+
@property
|
|
674
|
+
def use_deepep_ht_kernels(self):
|
|
675
|
+
return self.moe_parallel_config.use_deepep_ht_kernels
|
|
676
|
+
|
|
677
|
+
@property
|
|
678
|
+
def use_deepep_ll_kernels(self):
|
|
679
|
+
return self.moe_parallel_config.use_deepep_ll_kernels
|
|
680
|
+
|
|
681
|
+
@property
|
|
682
|
+
def use_flashinfer_cutlass_kernels(self):
|
|
683
|
+
return (
|
|
684
|
+
self.moe_quant_config is not None
|
|
685
|
+
and self.moe_quant_config.quant_dtype == "nvfp4"
|
|
686
|
+
and self.moe_config.use_flashinfer_cutlass_kernels
|
|
687
|
+
)
|
|
688
|
+
|
|
689
|
+
@property
|
|
690
|
+
def use_marlin_kernels(self):
|
|
691
|
+
return getattr(self.quant_method, "use_marlin", False)
|
|
692
|
+
|
|
693
|
+
@property
|
|
694
|
+
def use_dp_chunking(self) -> bool:
|
|
695
|
+
return (
|
|
696
|
+
self.moe_parallel_config.use_pplx_kernels
|
|
697
|
+
or self.moe_parallel_config.use_deepep_ll_kernels
|
|
698
|
+
or (self.dp_size > 1 and self.use_flashinfer_cutlass_kernels)
|
|
699
|
+
)
|
|
700
|
+
|
|
701
|
+
@property
|
|
702
|
+
def is_internal_router(self) -> bool:
|
|
703
|
+
# By default, router/gate is called before FusedMoE forward pass
|
|
704
|
+
return False
|
|
705
|
+
|
|
706
|
+
def update_expert_map(self):
|
|
707
|
+
# ep_size and ep_rank should already be updated
|
|
708
|
+
assert self.expert_map is not None
|
|
709
|
+
with self.expert_map.device:
|
|
710
|
+
local_num_experts, expert_map, expert_mask = determine_expert_map(
|
|
711
|
+
ep_size=self.ep_size,
|
|
712
|
+
ep_rank=self.ep_rank,
|
|
713
|
+
global_num_experts=self.global_num_experts,
|
|
714
|
+
num_fused_shared_experts=self.num_fused_shared_experts,
|
|
715
|
+
return_expert_mask=self.rocm_aiter_fmoe_enabled,
|
|
716
|
+
)
|
|
717
|
+
self.local_num_experts = local_num_experts
|
|
718
|
+
self.register_buffer("expert_map", expert_map)
|
|
719
|
+
self.register_buffer("expert_mask", expert_mask)
|
|
720
|
+
if self.aiter_fmoe_shared_expert_enabled:
|
|
721
|
+
self._init_aiter_shared_experts_topK_buffer(
|
|
722
|
+
vllm_config=get_current_vllm_config(),
|
|
723
|
+
dp_size=get_dp_group().world_size,
|
|
724
|
+
)
|
|
725
|
+
|
|
726
|
+
def _load_per_tensor_weight_scale(
|
|
727
|
+
self,
|
|
728
|
+
shard_id: str,
|
|
729
|
+
param: torch.nn.Parameter,
|
|
730
|
+
loaded_weight: torch.Tensor,
|
|
731
|
+
expert_id: int,
|
|
732
|
+
):
|
|
733
|
+
param_data = param.data
|
|
734
|
+
# for per tensor weight quantization
|
|
735
|
+
if shard_id in ("w1", "w3"):
|
|
736
|
+
# We have to keep the weight scales of w1 and w3 because
|
|
737
|
+
# we need to re-quantize w1/w3 weights after weight loading.
|
|
738
|
+
idx = 0 if shard_id == "w1" else 1
|
|
739
|
+
param_data[expert_id][idx] = loaded_weight
|
|
740
|
+
# If we are in the row parallel case (down_proj)
|
|
741
|
+
elif shard_id == "w2":
|
|
742
|
+
param_data[expert_id] = loaded_weight
|
|
743
|
+
|
|
744
|
+
def _load_combined_w13_weight_scale(
|
|
745
|
+
self,
|
|
746
|
+
shard_dim: int,
|
|
747
|
+
loaded_weight: torch.Tensor,
|
|
748
|
+
param: torch.Tensor,
|
|
749
|
+
tp_rank: int,
|
|
750
|
+
):
|
|
751
|
+
"""
|
|
752
|
+
Load w13 weight scales assuming that w1 weight scales and w3 weight
|
|
753
|
+
scales are stored in the same loaded_weight tensor.
|
|
754
|
+
"""
|
|
755
|
+
shard_size = param.shape[shard_dim]
|
|
756
|
+
loaded_weight = loaded_weight.narrow(
|
|
757
|
+
shard_dim, shard_size * tp_rank, shard_size
|
|
758
|
+
)
|
|
759
|
+
param.copy_(loaded_weight)
|
|
760
|
+
|
|
761
|
+
def _load_model_weight_or_group_weight_scale(
|
|
762
|
+
self,
|
|
763
|
+
shard_dim: int,
|
|
764
|
+
expert_data: torch.Tensor,
|
|
765
|
+
shard_id: str,
|
|
766
|
+
loaded_weight: torch.Tensor,
|
|
767
|
+
tp_rank: int,
|
|
768
|
+
load_full_w2: bool = False,
|
|
769
|
+
):
|
|
770
|
+
"""
|
|
771
|
+
Load grouped weight scales for group quantization or model weights
|
|
772
|
+
:param shard_dim: dimension to shard
|
|
773
|
+
:param expert_data: parameter for a particular expert
|
|
774
|
+
:param shard_id: either w1, w2, or w3
|
|
775
|
+
:param loaded_weight: checkpoint weight to load into the param
|
|
776
|
+
:param tp_rank: tensor parallel rank
|
|
777
|
+
:param load_full_w2: whether or not the w2 loaded should be sharded.
|
|
778
|
+
"""
|
|
779
|
+
if shard_id == "w2":
|
|
780
|
+
# In the case where we have actorder/g_idx, we do not partition the
|
|
781
|
+
# w2 scales, as indicated by `load_full` argument, for all tp cases
|
|
782
|
+
self._load_w2(
|
|
783
|
+
shard_dim=shard_dim,
|
|
784
|
+
loaded_weight=loaded_weight,
|
|
785
|
+
expert_data=expert_data,
|
|
786
|
+
tp_rank=tp_rank,
|
|
787
|
+
load_full=load_full_w2,
|
|
788
|
+
)
|
|
789
|
+
elif shard_id in ("w1", "w3"):
|
|
790
|
+
self._load_w13(
|
|
791
|
+
shard_id=shard_id,
|
|
792
|
+
shard_dim=shard_dim,
|
|
793
|
+
loaded_weight=loaded_weight,
|
|
794
|
+
expert_data=expert_data,
|
|
795
|
+
tp_rank=tp_rank,
|
|
796
|
+
)
|
|
797
|
+
|
|
798
|
+
def _load_per_channel_weight_scale(
|
|
799
|
+
self,
|
|
800
|
+
expert_data: torch.Tensor,
|
|
801
|
+
shard_dim: int,
|
|
802
|
+
shard_id: str,
|
|
803
|
+
loaded_weight: torch.Tensor,
|
|
804
|
+
tp_rank: int,
|
|
805
|
+
):
|
|
806
|
+
# for per channel weight quantization
|
|
807
|
+
if shard_id == "w2":
|
|
808
|
+
expert_data.copy_(loaded_weight)
|
|
809
|
+
elif shard_id in ("w1", "w3"):
|
|
810
|
+
self._load_w13(
|
|
811
|
+
shard_id=shard_id,
|
|
812
|
+
shard_dim=shard_dim,
|
|
813
|
+
loaded_weight=loaded_weight,
|
|
814
|
+
expert_data=expert_data,
|
|
815
|
+
tp_rank=tp_rank,
|
|
816
|
+
)
|
|
817
|
+
|
|
818
|
+
def _load_w13(
|
|
819
|
+
self,
|
|
820
|
+
expert_data: torch.Tensor,
|
|
821
|
+
shard_dim: int,
|
|
822
|
+
shard_id: str,
|
|
823
|
+
loaded_weight: torch.Tensor,
|
|
824
|
+
tp_rank: int,
|
|
825
|
+
load_full: bool = False,
|
|
826
|
+
):
|
|
827
|
+
# Index the loaded weight for tp sharding.
|
|
828
|
+
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
|
|
829
|
+
if self.moe_config.is_act_and_mul:
|
|
830
|
+
shard_size = expert_data.shape[shard_dim] // 2
|
|
831
|
+
else:
|
|
832
|
+
shard_size = expert_data.shape[shard_dim]
|
|
833
|
+
if not load_full:
|
|
834
|
+
loaded_weight = loaded_weight.narrow(
|
|
835
|
+
shard_dim, shard_size * tp_rank, shard_size
|
|
836
|
+
)
|
|
837
|
+
# Narrow parameter and load.
|
|
838
|
+
# w1, gate_proj: Load into first logical weight of w13.
|
|
839
|
+
if shard_id == "w1":
|
|
840
|
+
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
|
|
841
|
+
# w3, up_proj: Load into second logical weight of w13.
|
|
842
|
+
else:
|
|
843
|
+
assert shard_id == "w3"
|
|
844
|
+
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
|
|
845
|
+
expert_data.copy_(loaded_weight)
|
|
846
|
+
|
|
847
|
+
def _load_w2(
|
|
848
|
+
self,
|
|
849
|
+
expert_data: torch.Tensor,
|
|
850
|
+
shard_dim: int,
|
|
851
|
+
loaded_weight: torch.Tensor,
|
|
852
|
+
tp_rank: int,
|
|
853
|
+
load_full: bool = False,
|
|
854
|
+
):
|
|
855
|
+
# Index the loaded weight for tp sharding.
|
|
856
|
+
# down_proj: "RowParallel" so tp sharding on input_dim
|
|
857
|
+
# Narrow parameter and load.
|
|
858
|
+
shard_size = expert_data.shape[shard_dim]
|
|
859
|
+
if not load_full:
|
|
860
|
+
loaded_weight = loaded_weight.narrow(
|
|
861
|
+
shard_dim, shard_size * tp_rank, shard_size
|
|
862
|
+
)
|
|
863
|
+
# w2, down_proj: Load into only logical weight of w2.
|
|
864
|
+
expert_data.copy_(loaded_weight)
|
|
865
|
+
|
|
866
|
+
def _load_single_value(
|
|
867
|
+
self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, expert_id: int
|
|
868
|
+
):
|
|
869
|
+
param_data = param.data
|
|
870
|
+
|
|
871
|
+
# Input scales can be loaded directly and should be equal.
|
|
872
|
+
param_data[expert_id] = loaded_weight
|
|
873
|
+
|
|
874
|
+
def _load_g_idx(
|
|
875
|
+
self,
|
|
876
|
+
shard_id: str,
|
|
877
|
+
expert_data: torch.Tensor,
|
|
878
|
+
shard_dim: int,
|
|
879
|
+
loaded_weight: torch.Tensor,
|
|
880
|
+
tp_rank: int,
|
|
881
|
+
):
|
|
882
|
+
if shard_id == "w2":
|
|
883
|
+
self._load_w2(
|
|
884
|
+
shard_dim=shard_dim,
|
|
885
|
+
loaded_weight=loaded_weight,
|
|
886
|
+
expert_data=expert_data,
|
|
887
|
+
tp_rank=tp_rank,
|
|
888
|
+
)
|
|
889
|
+
else:
|
|
890
|
+
assert shard_id in ("w1", "w3")
|
|
891
|
+
expert_data.copy_(loaded_weight)
|
|
892
|
+
|
|
893
|
+
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
|
|
894
|
+
if self.expert_map is None:
|
|
895
|
+
return expert_id
|
|
896
|
+
return self.expert_map[expert_id].item()
|
|
897
|
+
|
|
898
|
+
def _init_aiter_shared_experts_topK_buffer(
|
|
899
|
+
self, vllm_config: VllmConfig, dp_size: int
|
|
900
|
+
):
|
|
901
|
+
if self.num_fused_shared_experts > 0:
|
|
902
|
+
init_aiter_topK_meta_data(
|
|
903
|
+
n_routed_experts=self.global_num_experts,
|
|
904
|
+
n_shared_experts=self.num_fused_shared_experts,
|
|
905
|
+
top_k=self.top_k,
|
|
906
|
+
tp_rank=self.ep_rank if self.use_ep else self.tp_rank,
|
|
907
|
+
tp_size=self.ep_size if self.use_ep else self.tp_size,
|
|
908
|
+
shared_experts_score=1.0,
|
|
909
|
+
max_num_tokens=vllm_config.scheduler_config.max_num_batched_tokens
|
|
910
|
+
* dp_size,
|
|
911
|
+
is_EP=self.use_ep,
|
|
912
|
+
)
|
|
913
|
+
self.local_num_experts += self.num_fused_shared_experts
|
|
914
|
+
|
|
915
|
+
@overload
|
|
916
|
+
def weight_loader(
|
|
917
|
+
self,
|
|
918
|
+
param: torch.nn.Parameter,
|
|
919
|
+
loaded_weight: torch.Tensor,
|
|
920
|
+
weight_name: str,
|
|
921
|
+
shard_id: str,
|
|
922
|
+
expert_id: int,
|
|
923
|
+
return_success: Literal[False],
|
|
924
|
+
) -> None: ...
|
|
925
|
+
|
|
926
|
+
@overload
|
|
927
|
+
def weight_loader(
|
|
928
|
+
self,
|
|
929
|
+
param: torch.nn.Parameter,
|
|
930
|
+
loaded_weight: torch.Tensor,
|
|
931
|
+
weight_name: str,
|
|
932
|
+
shard_id: str,
|
|
933
|
+
expert_id: int,
|
|
934
|
+
return_success: Literal[True],
|
|
935
|
+
) -> bool: ...
|
|
936
|
+
|
|
937
|
+
def weight_loader(
|
|
938
|
+
self,
|
|
939
|
+
param: torch.nn.Parameter,
|
|
940
|
+
loaded_weight: torch.Tensor,
|
|
941
|
+
weight_name: str,
|
|
942
|
+
shard_id: str,
|
|
943
|
+
expert_id: int,
|
|
944
|
+
return_success: bool = False,
|
|
945
|
+
) -> bool | None:
|
|
946
|
+
if self.quant_config and self.quant_config.get_name() == "mxfp4":
|
|
947
|
+
# (FIXME) for gpt-oss all experts are combined
|
|
948
|
+
if "bias" in weight_name:
|
|
949
|
+
dim1 = loaded_weight.shape[1]
|
|
950
|
+
param.data[:, :dim1].copy_(loaded_weight)
|
|
951
|
+
else:
|
|
952
|
+
dim1 = loaded_weight.shape[1]
|
|
953
|
+
dim2 = loaded_weight.shape[2]
|
|
954
|
+
param.data[:, :dim1, :dim2].copy_(loaded_weight)
|
|
955
|
+
return True if return_success else None
|
|
956
|
+
|
|
957
|
+
quant_method_name = self.quant_method.__class__.__name__
|
|
958
|
+
global_expert_id = expert_id
|
|
959
|
+
expert_id = self._map_global_expert_id_to_local_expert_id(global_expert_id)
|
|
960
|
+
|
|
961
|
+
allow_flashinfer = getattr(self.quant_method, "allow_flashinfer", False)
|
|
962
|
+
moe_backend = getattr(self.quant_method, "flashinfer_moe_backend", None)
|
|
963
|
+
|
|
964
|
+
use_global_sf = (
|
|
965
|
+
allow_flashinfer
|
|
966
|
+
and is_flashinfer_supporting_global_sf(moe_backend)
|
|
967
|
+
and "input_scale" in weight_name
|
|
968
|
+
and quant_method_name == "ModelOptNvFp4FusedMoE"
|
|
969
|
+
)
|
|
970
|
+
|
|
971
|
+
if expert_id == -1 and not use_global_sf:
|
|
972
|
+
# Failed to load this param since it's not local to this rank
|
|
973
|
+
return False if return_success else None
|
|
974
|
+
# Hereafter, `expert_id` is local physical id
|
|
975
|
+
|
|
976
|
+
# compressed-tensors checkpoints with packed weights are stored flipped
|
|
977
|
+
# TODO (mgoin): check self.quant_method.quant_config.quant_format
|
|
978
|
+
# against known CompressionFormat enum values that have this quality
|
|
979
|
+
if self.quant_method.__class__.__name__ in (
|
|
980
|
+
"CompressedTensorsWNA16MarlinMoEMethod",
|
|
981
|
+
"CompressedTensorsWNA16MoEMethod",
|
|
982
|
+
):
|
|
983
|
+
loaded_weight = loaded_weight.t().contiguous()
|
|
984
|
+
|
|
985
|
+
if shard_id not in ("w1", "w2", "w3"):
|
|
986
|
+
raise ValueError(f"shard_id must be ['w1','w2','w3'] but got {shard_id}.")
|
|
987
|
+
|
|
988
|
+
# Fetch the dim to shard the parameter/loaded weight
|
|
989
|
+
# based on the shard id. This will be whatever
|
|
990
|
+
# dimension intermediate_size_per_partition is used.
|
|
991
|
+
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
|
|
992
|
+
|
|
993
|
+
is_gguf_weight = getattr(param, "is_gguf_weight", False)
|
|
994
|
+
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
|
|
995
|
+
if is_gguf_weight_type:
|
|
996
|
+
param.weight_type = loaded_weight.item()
|
|
997
|
+
param.data.copy_(loaded_weight)
|
|
998
|
+
return True if return_success else None
|
|
999
|
+
|
|
1000
|
+
# Case for BitsAndBytes
|
|
1001
|
+
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
|
|
1002
|
+
if use_bitsandbytes_4bit:
|
|
1003
|
+
shard_dim = 0
|
|
1004
|
+
|
|
1005
|
+
expert_data = param.data[expert_id]
|
|
1006
|
+
if shard_id == "w2":
|
|
1007
|
+
expert_data.copy_(loaded_weight)
|
|
1008
|
+
elif shard_id in ("w1", "w3"):
|
|
1009
|
+
# BNB inflight quantization has already sharded the weights
|
|
1010
|
+
full_load = True
|
|
1011
|
+
self._load_w13(
|
|
1012
|
+
shard_id=shard_id,
|
|
1013
|
+
shard_dim=shard_dim,
|
|
1014
|
+
loaded_weight=loaded_weight,
|
|
1015
|
+
expert_data=expert_data,
|
|
1016
|
+
tp_rank=self.tp_rank,
|
|
1017
|
+
load_full=full_load,
|
|
1018
|
+
)
|
|
1019
|
+
return True if return_success else None
|
|
1020
|
+
|
|
1021
|
+
# is_transposed: if the dim to shard the weight
|
|
1022
|
+
# should be flipped. Required by GPTQ, compressed-tensors
|
|
1023
|
+
# should be whatever dimension intermediate_size_per_partition is
|
|
1024
|
+
is_transposed = getattr(param, "is_transposed", False)
|
|
1025
|
+
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
|
|
1026
|
+
if is_transposed:
|
|
1027
|
+
shard_dim = int(not shard_dim)
|
|
1028
|
+
|
|
1029
|
+
full_load = len(loaded_weight.shape) == 3
|
|
1030
|
+
if full_load:
|
|
1031
|
+
shard_dim += 1
|
|
1032
|
+
|
|
1033
|
+
# Materialize GGUF UninitializedParameter
|
|
1034
|
+
if is_gguf_weight and isinstance(param, UninitializedParameter):
|
|
1035
|
+
final_shape = list(loaded_weight.shape)
|
|
1036
|
+
if shard_id in ["w1", "w3"]:
|
|
1037
|
+
final_shape[1] *= 2
|
|
1038
|
+
final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
|
|
1039
|
+
param.materialize(final_shape, dtype=loaded_weight.dtype)
|
|
1040
|
+
|
|
1041
|
+
expert_data = param.data if full_load else param.data[expert_id]
|
|
1042
|
+
|
|
1043
|
+
# Case input scale: input_scale loading is only supported for fp8
|
|
1044
|
+
if "input_scale" in weight_name:
|
|
1045
|
+
# this is needed for compressed-tensors only
|
|
1046
|
+
loaded_weight = loaded_weight.to(param.data.device)
|
|
1047
|
+
|
|
1048
|
+
if (
|
|
1049
|
+
"compressed" in quant_method_name.lower()
|
|
1050
|
+
and param.data[expert_id] != 1
|
|
1051
|
+
and (param.data[expert_id] - loaded_weight).abs() > 1e-5
|
|
1052
|
+
):
|
|
1053
|
+
raise ValueError(
|
|
1054
|
+
"input_scales of w1 and w3 of a layer "
|
|
1055
|
+
f"must be equal. But got {param.data[expert_id]} "
|
|
1056
|
+
f"vs. {loaded_weight}"
|
|
1057
|
+
)
|
|
1058
|
+
|
|
1059
|
+
self._load_single_value(
|
|
1060
|
+
param=param,
|
|
1061
|
+
loaded_weight=loaded_weight,
|
|
1062
|
+
expert_id=global_expert_id if use_global_sf else expert_id,
|
|
1063
|
+
)
|
|
1064
|
+
return True if return_success else None
|
|
1065
|
+
|
|
1066
|
+
# Case g_idx
|
|
1067
|
+
if "g_idx" in weight_name:
|
|
1068
|
+
self._load_g_idx(
|
|
1069
|
+
shard_dim=0,
|
|
1070
|
+
shard_id=shard_id,
|
|
1071
|
+
loaded_weight=loaded_weight,
|
|
1072
|
+
expert_data=expert_data,
|
|
1073
|
+
tp_rank=self.tp_rank,
|
|
1074
|
+
)
|
|
1075
|
+
return True if return_success else None
|
|
1076
|
+
|
|
1077
|
+
# TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
|
|
1078
|
+
if "ModelOpt" in quant_method_name:
|
|
1079
|
+
# Determine per-tensor weight scale patterns based on variant
|
|
1080
|
+
# Use the dedicated method instead of brittle string matching
|
|
1081
|
+
uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern()
|
|
1082
|
+
|
|
1083
|
+
# Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
|
|
1084
|
+
# weights scales.
|
|
1085
|
+
# Input scales are always per-tensor.
|
|
1086
|
+
# Weight scales: FP4 uses "weight_scale_2" and FP8 uses
|
|
1087
|
+
# "weight_scale" for per-tensor scales.
|
|
1088
|
+
is_per_tensor = (
|
|
1089
|
+
"weight_scale_2" in weight_name
|
|
1090
|
+
if uses_weight_scale_2
|
|
1091
|
+
else "weight_scale" in weight_name
|
|
1092
|
+
) or "input_scale" in weight_name
|
|
1093
|
+
if is_per_tensor:
|
|
1094
|
+
self._load_per_tensor_weight_scale(
|
|
1095
|
+
shard_id=shard_id,
|
|
1096
|
+
param=param,
|
|
1097
|
+
loaded_weight=loaded_weight,
|
|
1098
|
+
expert_id=expert_id,
|
|
1099
|
+
)
|
|
1100
|
+
return True if return_success else None
|
|
1101
|
+
|
|
1102
|
+
# If the weight is w13_weight_scale and w13_weight_scales are
|
|
1103
|
+
# combined into single loaded_weight, call
|
|
1104
|
+
# _load_combined_w13_weight_scale() to load it.
|
|
1105
|
+
# This is checked by comparing the hidden_out dims of the
|
|
1106
|
+
# loaded_weight and the param.
|
|
1107
|
+
if "w13_weight_scale" in weight_name:
|
|
1108
|
+
loaded_weight_hidden_out = loaded_weight.shape[-2]
|
|
1109
|
+
param_hidden_out = param.data.shape[-2] * self.tp_size
|
|
1110
|
+
if loaded_weight_hidden_out == param_hidden_out:
|
|
1111
|
+
self._load_combined_w13_weight_scale(
|
|
1112
|
+
shard_dim=shard_dim,
|
|
1113
|
+
loaded_weight=loaded_weight,
|
|
1114
|
+
param=param,
|
|
1115
|
+
tp_rank=self.tp_rank,
|
|
1116
|
+
)
|
|
1117
|
+
return True if return_success else None
|
|
1118
|
+
|
|
1119
|
+
# For other weights, call _load_model_weight_or_group_weight_scale()
|
|
1120
|
+
# to load it.
|
|
1121
|
+
if "weight" in weight_name:
|
|
1122
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1123
|
+
shard_id=shard_id,
|
|
1124
|
+
shard_dim=shard_dim,
|
|
1125
|
+
loaded_weight=loaded_weight,
|
|
1126
|
+
expert_data=expert_data,
|
|
1127
|
+
tp_rank=self.tp_rank,
|
|
1128
|
+
)
|
|
1129
|
+
return True if return_success else None
|
|
1130
|
+
|
|
1131
|
+
# Case weight scales, zero_points and offset, weight/input global scales
|
|
1132
|
+
if "scale" in weight_name or "zero" in weight_name or "offset" in weight_name:
|
|
1133
|
+
# load the weight scales and zp based on the quantization scheme
|
|
1134
|
+
# supported weight scales/zp can be found in
|
|
1135
|
+
# FusedMoeWeightScaleSupported
|
|
1136
|
+
# TODO @dsikka: once hardened, refactor to use vLLM Parameters
|
|
1137
|
+
# specific to each case
|
|
1138
|
+
quant_method = getattr(param, "quant_method", None)
|
|
1139
|
+
if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
|
|
1140
|
+
self._load_per_channel_weight_scale(
|
|
1141
|
+
shard_id=shard_id,
|
|
1142
|
+
shard_dim=shard_dim,
|
|
1143
|
+
loaded_weight=loaded_weight,
|
|
1144
|
+
expert_data=expert_data,
|
|
1145
|
+
tp_rank=self.tp_rank,
|
|
1146
|
+
)
|
|
1147
|
+
elif quant_method in [
|
|
1148
|
+
FusedMoeWeightScaleSupported.GROUP.value,
|
|
1149
|
+
FusedMoeWeightScaleSupported.BLOCK.value,
|
|
1150
|
+
]:
|
|
1151
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1152
|
+
shard_id=shard_id,
|
|
1153
|
+
shard_dim=shard_dim,
|
|
1154
|
+
loaded_weight=loaded_weight,
|
|
1155
|
+
expert_data=expert_data,
|
|
1156
|
+
tp_rank=self.tp_rank,
|
|
1157
|
+
load_full_w2=getattr(param, "load_full_w2", False),
|
|
1158
|
+
)
|
|
1159
|
+
elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
|
|
1160
|
+
self._load_per_tensor_weight_scale(
|
|
1161
|
+
shard_id=shard_id,
|
|
1162
|
+
param=param,
|
|
1163
|
+
loaded_weight=loaded_weight,
|
|
1164
|
+
expert_id=expert_id,
|
|
1165
|
+
)
|
|
1166
|
+
else:
|
|
1167
|
+
WEIGHT_SCALE_SUPPORTED = [e.value for e in FusedMoeWeightScaleSupported]
|
|
1168
|
+
raise ValueError(
|
|
1169
|
+
f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}"
|
|
1170
|
+
)
|
|
1171
|
+
return True if return_success else None
|
|
1172
|
+
|
|
1173
|
+
# Case weight_shape
|
|
1174
|
+
if "weight_shape" in weight_name:
|
|
1175
|
+
# only required by compressed-tensors
|
|
1176
|
+
self._load_single_value(
|
|
1177
|
+
param=param, loaded_weight=loaded_weight, expert_id=expert_id
|
|
1178
|
+
)
|
|
1179
|
+
return True if return_success else None
|
|
1180
|
+
|
|
1181
|
+
# Case model weights
|
|
1182
|
+
if "weight" in weight_name:
|
|
1183
|
+
self._load_model_weight_or_group_weight_scale(
|
|
1184
|
+
shard_id=shard_id,
|
|
1185
|
+
shard_dim=shard_dim,
|
|
1186
|
+
loaded_weight=loaded_weight,
|
|
1187
|
+
expert_data=expert_data,
|
|
1188
|
+
tp_rank=self.tp_rank,
|
|
1189
|
+
)
|
|
1190
|
+
return True if return_success else None
|
|
1191
|
+
|
|
1192
|
+
return False if return_success else None
|
|
1193
|
+
|
|
1194
|
+
def load_weights(
|
|
1195
|
+
self, weights: Iterable[tuple[str, torch.Tensor]]
|
|
1196
|
+
) -> Iterable[str]:
|
|
1197
|
+
if (expert_mapping := self.expert_mapping) is None:
|
|
1198
|
+
raise ValueError(
|
|
1199
|
+
"`self.expert_mapping` must be provided to "
|
|
1200
|
+
"load weights using `self.load_weights`."
|
|
1201
|
+
)
|
|
1202
|
+
for expert_name, loaded_weight in weights:
|
|
1203
|
+
qual_name = f"{self.layer_name}.{expert_name}"
|
|
1204
|
+
for param_name, weight_name, expert_id, shard_id in expert_mapping:
|
|
1205
|
+
if weight_name not in qual_name:
|
|
1206
|
+
continue
|
|
1207
|
+
weight_name = qual_name.replace(weight_name, param_name)
|
|
1208
|
+
param_name = weight_name.removeprefix(f"{self.layer_name}.")
|
|
1209
|
+
param = getattr(self, param_name)
|
|
1210
|
+
success = self.weight_loader(
|
|
1211
|
+
param=param,
|
|
1212
|
+
loaded_weight=loaded_weight,
|
|
1213
|
+
weight_name=weight_name,
|
|
1214
|
+
shard_id=shard_id,
|
|
1215
|
+
expert_id=expert_id,
|
|
1216
|
+
return_success=True,
|
|
1217
|
+
)
|
|
1218
|
+
if success:
|
|
1219
|
+
logger.debug(
|
|
1220
|
+
"Loaded %s for expert %d into %s",
|
|
1221
|
+
param_name,
|
|
1222
|
+
expert_id,
|
|
1223
|
+
self.layer_name,
|
|
1224
|
+
)
|
|
1225
|
+
yield param_name
|
|
1226
|
+
|
|
1227
|
+
def get_expert_weights(self) -> Iterable[torch.Tensor]:
|
|
1228
|
+
weights = list(self.named_parameters())
|
|
1229
|
+
assert all(
|
|
1230
|
+
weight.is_contiguous()
|
|
1231
|
+
for name, weight in weights
|
|
1232
|
+
if not name.startswith("_shared_experts.")
|
|
1233
|
+
)
|
|
1234
|
+
|
|
1235
|
+
# Filter out the non-expert weights.
|
|
1236
|
+
# `e_score_correction_bias` is a bias for each logical expert,
|
|
1237
|
+
# with shape (num_logical_experts,), not an expert weight.
|
|
1238
|
+
NON_EXPERT_WEIGHTS = {
|
|
1239
|
+
"e_score_correction_bias",
|
|
1240
|
+
}
|
|
1241
|
+
|
|
1242
|
+
return [
|
|
1243
|
+
weight.view(self.local_num_experts, -1)
|
|
1244
|
+
for name, weight in weights
|
|
1245
|
+
if name not in NON_EXPERT_WEIGHTS
|
|
1246
|
+
and weight.shape != torch.Size([])
|
|
1247
|
+
and not name.startswith("_shared_experts.")
|
|
1248
|
+
# exclude parameters from non-expert submodules (e.g. gate/shared)
|
|
1249
|
+
and not name.startswith("_gate.")
|
|
1250
|
+
]
|
|
1251
|
+
|
|
1252
|
+
def set_eplb_state(
|
|
1253
|
+
self,
|
|
1254
|
+
moe_layer_idx: int,
|
|
1255
|
+
expert_load_view: torch.Tensor,
|
|
1256
|
+
logical_to_physical_map: torch.Tensor,
|
|
1257
|
+
logical_replica_count: torch.Tensor,
|
|
1258
|
+
) -> None:
|
|
1259
|
+
"""
|
|
1260
|
+
Register the EPLB state in this layer.
|
|
1261
|
+
|
|
1262
|
+
This is used later in forward pass, where we get the expert mapping
|
|
1263
|
+
and record the load metrics in `expert_load_view`.
|
|
1264
|
+
"""
|
|
1265
|
+
self.expert_load_view = expert_load_view[moe_layer_idx]
|
|
1266
|
+
self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
|
|
1267
|
+
self.logical_replica_count = logical_replica_count[moe_layer_idx]
|
|
1268
|
+
|
|
1269
|
+
def ensure_moe_quant_config_init(self):
|
|
1270
|
+
if self.quant_method.moe_quant_config is None:
|
|
1271
|
+
# Note: the moe_quant_config can't be constructed until after
|
|
1272
|
+
# weight loading post processing.
|
|
1273
|
+
self.quant_method.moe_quant_config = (
|
|
1274
|
+
self.quant_method.get_fused_moe_quant_config(self)
|
|
1275
|
+
)
|
|
1276
|
+
|
|
1277
|
+
@property
|
|
1278
|
+
def moe_quant_config(self) -> FusedMoEQuantConfig | None:
|
|
1279
|
+
self.ensure_moe_quant_config_init()
|
|
1280
|
+
return self.quant_method.moe_quant_config
|
|
1281
|
+
|
|
1282
|
+
def ensure_dp_chunking_init(self):
|
|
1283
|
+
if not self.use_dp_chunking or self.batched_hidden_states is not None:
|
|
1284
|
+
return
|
|
1285
|
+
|
|
1286
|
+
states_shape: tuple[int, ...]
|
|
1287
|
+
logits_shape: tuple[int, ...]
|
|
1288
|
+
|
|
1289
|
+
moe = self.moe_config
|
|
1290
|
+
|
|
1291
|
+
if self.vllm_config.parallel_config.enable_dbo:
|
|
1292
|
+
states_shape = (2, moe.max_num_tokens, self.hidden_size)
|
|
1293
|
+
logits_shape = (2, moe.max_num_tokens, self.logical_num_experts)
|
|
1294
|
+
else:
|
|
1295
|
+
states_shape = (moe.max_num_tokens, self.hidden_size)
|
|
1296
|
+
logits_shape = (moe.max_num_tokens, self.logical_num_experts)
|
|
1297
|
+
|
|
1298
|
+
self.batched_hidden_states = torch.zeros(
|
|
1299
|
+
states_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
|
|
1300
|
+
)
|
|
1301
|
+
|
|
1302
|
+
self.batched_router_logits = torch.zeros(
|
|
1303
|
+
logits_shape, dtype=moe.in_dtype, device=torch.cuda.current_device()
|
|
1304
|
+
)
|
|
1305
|
+
|
|
1306
|
+
@staticmethod
|
|
1307
|
+
def select_experts(
|
|
1308
|
+
hidden_states: torch.Tensor,
|
|
1309
|
+
router_logits: torch.Tensor,
|
|
1310
|
+
top_k: int,
|
|
1311
|
+
use_grouped_topk: bool,
|
|
1312
|
+
renormalize: bool,
|
|
1313
|
+
topk_group: int | None = None,
|
|
1314
|
+
num_expert_group: int | None = None,
|
|
1315
|
+
custom_routing_function: Callable | None = None,
|
|
1316
|
+
scoring_func: str = "softmax",
|
|
1317
|
+
routed_scaling_factor: float = 1.0,
|
|
1318
|
+
e_score_correction_bias: torch.Tensor | None = None,
|
|
1319
|
+
indices_type: torch.dtype | None = None,
|
|
1320
|
+
enable_eplb: bool = False,
|
|
1321
|
+
expert_map: torch.Tensor | None = None,
|
|
1322
|
+
expert_load_view: torch.Tensor | None = None,
|
|
1323
|
+
logical_to_physical_map: torch.Tensor | None = None,
|
|
1324
|
+
logical_replica_count: torch.Tensor | None = None,
|
|
1325
|
+
global_num_experts: int | None = None,
|
|
1326
|
+
zero_expert_num: int | None = None,
|
|
1327
|
+
zero_expert_type: str | None = None,
|
|
1328
|
+
num_fused_shared_experts: int = 0,
|
|
1329
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
1330
|
+
"""
|
|
1331
|
+
Route the input hidden states to the top-k experts based on the
|
|
1332
|
+
router logits.
|
|
1333
|
+
|
|
1334
|
+
Returns:
|
|
1335
|
+
(topk_weights, topk_ids, zero_expert_result)
|
|
1336
|
+
(tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
|
|
1337
|
+
The weights, expert ids, and zero expert computation result.
|
|
1338
|
+
|
|
1339
|
+
**Compatibility**: When EPLB is not enabled, the returned ids are
|
|
1340
|
+
equivalent to global logical ids, so should be compatible with
|
|
1341
|
+
plain MoE implementations without redundant experts.
|
|
1342
|
+
"""
|
|
1343
|
+
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
|
1344
|
+
fused_topk,
|
|
1345
|
+
fused_topk_bias,
|
|
1346
|
+
)
|
|
1347
|
+
|
|
1348
|
+
# Check if we should use a routing simulation strategy
|
|
1349
|
+
routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
|
|
1350
|
+
if routing_strategy != "":
|
|
1351
|
+
topk_weights, topk_ids = RoutingSimulator.simulate_routing(
|
|
1352
|
+
hidden_states=hidden_states,
|
|
1353
|
+
router_logits=router_logits,
|
|
1354
|
+
strategy_name=routing_strategy,
|
|
1355
|
+
top_k=top_k,
|
|
1356
|
+
indices_type=indices_type,
|
|
1357
|
+
)
|
|
1358
|
+
|
|
1359
|
+
# DeepSeekv2 uses grouped_top_k
|
|
1360
|
+
elif use_grouped_topk:
|
|
1361
|
+
assert topk_group is not None
|
|
1362
|
+
assert num_expert_group is not None
|
|
1363
|
+
if rocm_aiter_ops.is_fused_moe_enabled():
|
|
1364
|
+
if not rocm_aiter_ops.is_fusion_moe_shared_experts_enabled():
|
|
1365
|
+
assert num_fused_shared_experts == 0
|
|
1366
|
+
grouped_topk_impl = partial(
|
|
1367
|
+
rocm_aiter_grouped_topk,
|
|
1368
|
+
num_fused_shared_experts=num_fused_shared_experts,
|
|
1369
|
+
)
|
|
1370
|
+
else:
|
|
1371
|
+
grouped_topk_impl = grouped_topk
|
|
1372
|
+
|
|
1373
|
+
topk_weights, topk_ids = grouped_topk_impl(
|
|
1374
|
+
hidden_states=hidden_states,
|
|
1375
|
+
gating_output=router_logits,
|
|
1376
|
+
topk=top_k,
|
|
1377
|
+
renormalize=renormalize,
|
|
1378
|
+
num_expert_group=num_expert_group,
|
|
1379
|
+
topk_group=topk_group,
|
|
1380
|
+
scoring_func=scoring_func,
|
|
1381
|
+
routed_scaling_factor=routed_scaling_factor,
|
|
1382
|
+
e_score_correction_bias=e_score_correction_bias,
|
|
1383
|
+
)
|
|
1384
|
+
if indices_type is not None:
|
|
1385
|
+
topk_ids = topk_ids.to(dtype=indices_type)
|
|
1386
|
+
elif e_score_correction_bias is not None:
|
|
1387
|
+
topk_weights, topk_ids = fused_topk_bias(
|
|
1388
|
+
hidden_states=hidden_states,
|
|
1389
|
+
gating_output=router_logits,
|
|
1390
|
+
e_score_correction_bias=e_score_correction_bias.data,
|
|
1391
|
+
topk=top_k,
|
|
1392
|
+
renormalize=renormalize,
|
|
1393
|
+
)
|
|
1394
|
+
if routed_scaling_factor is not None:
|
|
1395
|
+
topk_weights *= routed_scaling_factor
|
|
1396
|
+
elif custom_routing_function is None:
|
|
1397
|
+
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
|
1398
|
+
hidden_states=hidden_states,
|
|
1399
|
+
gating_output=router_logits,
|
|
1400
|
+
topk=top_k,
|
|
1401
|
+
renormalize=renormalize,
|
|
1402
|
+
indices_type=indices_type,
|
|
1403
|
+
)
|
|
1404
|
+
else:
|
|
1405
|
+
topk_weights, topk_ids = custom_routing_function(
|
|
1406
|
+
hidden_states=hidden_states,
|
|
1407
|
+
gating_output=router_logits,
|
|
1408
|
+
topk=top_k,
|
|
1409
|
+
renormalize=renormalize,
|
|
1410
|
+
)
|
|
1411
|
+
if indices_type is not None:
|
|
1412
|
+
topk_ids = topk_ids.to(dtype=indices_type)
|
|
1413
|
+
|
|
1414
|
+
if enable_eplb:
|
|
1415
|
+
assert expert_load_view is not None
|
|
1416
|
+
assert logical_to_physical_map is not None
|
|
1417
|
+
assert logical_replica_count is not None
|
|
1418
|
+
|
|
1419
|
+
topk_ids = eplb_map_to_physical_and_record(
|
|
1420
|
+
topk_ids=topk_ids,
|
|
1421
|
+
expert_load_view=expert_load_view,
|
|
1422
|
+
logical_to_physical_map=logical_to_physical_map,
|
|
1423
|
+
logical_replica_count=logical_replica_count,
|
|
1424
|
+
indices_type=indices_type,
|
|
1425
|
+
)
|
|
1426
|
+
|
|
1427
|
+
assert topk_ids.dtype == indices_type or indices_type is None
|
|
1428
|
+
|
|
1429
|
+
# Compute zero expert result if needed
|
|
1430
|
+
if (
|
|
1431
|
+
zero_expert_num is not None
|
|
1432
|
+
and zero_expert_num > 0
|
|
1433
|
+
and zero_expert_type is not None
|
|
1434
|
+
and global_num_experts is not None
|
|
1435
|
+
):
|
|
1436
|
+
zero_expert_result = zero_experts_compute_triton(
|
|
1437
|
+
expert_indices=topk_ids,
|
|
1438
|
+
expert_scales=topk_weights,
|
|
1439
|
+
num_experts=global_num_experts,
|
|
1440
|
+
zero_expert_type=zero_expert_type,
|
|
1441
|
+
hidden_states=hidden_states,
|
|
1442
|
+
)
|
|
1443
|
+
else:
|
|
1444
|
+
zero_expert_result = None
|
|
1445
|
+
return topk_weights, topk_ids, zero_expert_result
|
|
1446
|
+
|
|
1447
|
+
def must_reduce_shared_expert_outputs(self) -> bool:
|
|
1448
|
+
"""
|
|
1449
|
+
The shared_experts are typically computed using the RowParallelLinear
|
|
1450
|
+
layer. The result of this function is typically used as
|
|
1451
|
+
the reduce_results argument to the module.
|
|
1452
|
+
When just tensor-parallel is used, it is not required to reduce
|
|
1453
|
+
the shared_experts results immediately. Instead we reduce at the
|
|
1454
|
+
once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
|
|
1455
|
+
With EP and all2all kernels - this is no longer viable as all
|
|
1456
|
+
GPU ranks in DP, produce the complete set of hidden_states.
|
|
1457
|
+
Therefore it is required that we reduce the shared_experts output
|
|
1458
|
+
early.
|
|
1459
|
+
"""
|
|
1460
|
+
assert self.quant_method is not None
|
|
1461
|
+
return (
|
|
1462
|
+
isinstance(self.quant_method, FusedMoEModularMethod)
|
|
1463
|
+
and self.quant_method.fused_experts.output_is_reduced()
|
|
1464
|
+
)
|
|
1465
|
+
|
|
1466
|
+
def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
|
|
1467
|
+
"""
|
|
1468
|
+
Some combine kernels reduce across GPU ranks by default.
|
|
1469
|
+
"""
|
|
1470
|
+
if self.must_reduce_shared_expert_outputs():
|
|
1471
|
+
return final_hidden_states
|
|
1472
|
+
else:
|
|
1473
|
+
return tensor_model_parallel_all_reduce(final_hidden_states)
|
|
1474
|
+
|
|
1475
|
+
def forward_native(
|
|
1476
|
+
self,
|
|
1477
|
+
hidden_states: torch.Tensor,
|
|
1478
|
+
router_logits: torch.Tensor,
|
|
1479
|
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
1480
|
+
og_hidden_states = hidden_states.shape[-1]
|
|
1481
|
+
if self.hidden_size != og_hidden_states:
|
|
1482
|
+
hidden_states = F.pad(
|
|
1483
|
+
hidden_states,
|
|
1484
|
+
(0, self.hidden_size - og_hidden_states),
|
|
1485
|
+
mode="constant",
|
|
1486
|
+
value=0.0,
|
|
1487
|
+
)
|
|
1488
|
+
|
|
1489
|
+
def reduce_output(states: torch.Tensor) -> torch.Tensor:
|
|
1490
|
+
if (
|
|
1491
|
+
not self.is_sequence_parallel
|
|
1492
|
+
and not self.use_dp_chunking
|
|
1493
|
+
and self.reduce_results
|
|
1494
|
+
and (self.tp_size > 1 or self.ep_size > 1)
|
|
1495
|
+
):
|
|
1496
|
+
states = self.maybe_all_reduce_tensor_model_parallel(states)
|
|
1497
|
+
return states
|
|
1498
|
+
|
|
1499
|
+
if self.shared_experts is None:
|
|
1500
|
+
if current_platform.is_tpu():
|
|
1501
|
+
# TODO: Once the OOM issue for the TPU backend is resolved, we
|
|
1502
|
+
# will switch to using the moe_forward custom op.
|
|
1503
|
+
fused_output = self.forward_impl(hidden_states, router_logits)
|
|
1504
|
+
assert not isinstance(fused_output, tuple)
|
|
1505
|
+
else:
|
|
1506
|
+
fused_output = torch.ops.vllm.moe_forward(
|
|
1507
|
+
hidden_states, router_logits, self.layer_name
|
|
1508
|
+
)
|
|
1509
|
+
if self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
1510
|
+
assert isinstance(fused_output, tuple)
|
|
1511
|
+
fused_output, zero_expert_result = fused_output
|
|
1512
|
+
return (reduce_output(fused_output) + zero_expert_result)[
|
|
1513
|
+
..., :og_hidden_states
|
|
1514
|
+
]
|
|
1515
|
+
else:
|
|
1516
|
+
return reduce_output(fused_output)[..., :og_hidden_states]
|
|
1517
|
+
else:
|
|
1518
|
+
if current_platform.is_tpu():
|
|
1519
|
+
# TODO: Once the OOM issue for the TPU backend is resolved, we
|
|
1520
|
+
# will switch to using the moe_forward custom op.
|
|
1521
|
+
shared_output, fused_output = self.forward_impl(
|
|
1522
|
+
hidden_states, router_logits
|
|
1523
|
+
)
|
|
1524
|
+
else:
|
|
1525
|
+
shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
|
|
1526
|
+
hidden_states, router_logits, self.layer_name
|
|
1527
|
+
)
|
|
1528
|
+
return (
|
|
1529
|
+
reduce_output(shared_output)[..., :og_hidden_states],
|
|
1530
|
+
reduce_output(fused_output)[..., :og_hidden_states],
|
|
1531
|
+
)
|
|
1532
|
+
|
|
1533
|
+
def forward_cuda(
|
|
1534
|
+
self,
|
|
1535
|
+
hidden_states: torch.Tensor,
|
|
1536
|
+
router_logits: torch.Tensor,
|
|
1537
|
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
1538
|
+
return self.forward_native(hidden_states, router_logits)
|
|
1539
|
+
|
|
1540
|
+
def forward_impl_chunked(
|
|
1541
|
+
self,
|
|
1542
|
+
full_hidden_states: torch.Tensor,
|
|
1543
|
+
full_router_logits: torch.Tensor,
|
|
1544
|
+
has_separate_shared_experts: bool,
|
|
1545
|
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
1546
|
+
assert self.batched_hidden_states is not None
|
|
1547
|
+
assert self.batched_router_logits is not None
|
|
1548
|
+
assert self.batched_hidden_states.dtype == full_hidden_states.dtype
|
|
1549
|
+
assert self.batched_router_logits.dtype == full_router_logits.dtype
|
|
1550
|
+
# Check size compatibility.
|
|
1551
|
+
assert self.batched_hidden_states.size(-1) == full_hidden_states.size(-1)
|
|
1552
|
+
assert self.batched_router_logits.size(-1) == full_router_logits.size(-1)
|
|
1553
|
+
|
|
1554
|
+
full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
|
|
1555
|
+
if self.shared_experts is not None:
|
|
1556
|
+
full_shared_final_hidden_states = torch.empty_like(full_hidden_states)
|
|
1557
|
+
|
|
1558
|
+
def process_chunk(chunk_start, chunk_end, skip_result_store=False):
|
|
1559
|
+
chunk_size = chunk_end - chunk_start
|
|
1560
|
+
hidden_states = full_hidden_states[chunk_start:chunk_end, :]
|
|
1561
|
+
router_logits = full_router_logits[chunk_start:chunk_end, :]
|
|
1562
|
+
|
|
1563
|
+
assert self.batched_hidden_states is not None
|
|
1564
|
+
assert self.batched_router_logits is not None
|
|
1565
|
+
# This is only true when DBO has been enabled in the config.
|
|
1566
|
+
# Both tensors will have an outer dimension for the ubatch id
|
|
1567
|
+
if self.batched_hidden_states.dim() == 3:
|
|
1568
|
+
assert self.batched_router_logits.dim() == 3
|
|
1569
|
+
batch_buffer_idx = dbo_current_ubatch_id()
|
|
1570
|
+
batched_hidden_states = self.batched_hidden_states[batch_buffer_idx, :]
|
|
1571
|
+
batched_router_logits = self.batched_router_logits[batch_buffer_idx, :]
|
|
1572
|
+
else:
|
|
1573
|
+
batched_hidden_states = self.batched_hidden_states
|
|
1574
|
+
batched_router_logits = self.batched_router_logits
|
|
1575
|
+
|
|
1576
|
+
assert (
|
|
1577
|
+
batched_hidden_states.size(0) # type: ignore
|
|
1578
|
+
>= chunk_size
|
|
1579
|
+
)
|
|
1580
|
+
assert (
|
|
1581
|
+
batched_router_logits.size(0) # type: ignore
|
|
1582
|
+
>= chunk_size
|
|
1583
|
+
)
|
|
1584
|
+
staged_hidden_states = batched_hidden_states[:chunk_size, :] # type: ignore
|
|
1585
|
+
staged_router_logits = batched_router_logits[:chunk_size, :] # type: ignore
|
|
1586
|
+
staged_hidden_states.copy_(hidden_states, non_blocking=True)
|
|
1587
|
+
staged_router_logits.copy_(router_logits, non_blocking=True)
|
|
1588
|
+
|
|
1589
|
+
# Matrix multiply.
|
|
1590
|
+
final_hidden_states = self.quant_method.apply(
|
|
1591
|
+
layer=self,
|
|
1592
|
+
x=staged_hidden_states,
|
|
1593
|
+
router_logits=staged_router_logits,
|
|
1594
|
+
top_k=self.top_k,
|
|
1595
|
+
renormalize=self.renormalize,
|
|
1596
|
+
use_grouped_topk=self.use_grouped_topk,
|
|
1597
|
+
global_num_experts=self.global_num_experts,
|
|
1598
|
+
expert_map=self.expert_map
|
|
1599
|
+
if not self.rocm_aiter_fmoe_enabled
|
|
1600
|
+
else self.expert_mask,
|
|
1601
|
+
topk_group=self.topk_group,
|
|
1602
|
+
num_expert_group=self.num_expert_group,
|
|
1603
|
+
custom_routing_function=self.custom_routing_function,
|
|
1604
|
+
scoring_func=self.scoring_func,
|
|
1605
|
+
routed_scaling_factor=self.routed_scaling_factor,
|
|
1606
|
+
e_score_correction_bias=self.e_score_correction_bias,
|
|
1607
|
+
activation=self.activation,
|
|
1608
|
+
enable_eplb=self.enable_eplb,
|
|
1609
|
+
expert_load_view=self.expert_load_view,
|
|
1610
|
+
logical_to_physical_map=self.logical_to_physical_map,
|
|
1611
|
+
logical_replica_count=self.logical_replica_count,
|
|
1612
|
+
)
|
|
1613
|
+
|
|
1614
|
+
if has_separate_shared_experts:
|
|
1615
|
+
assert not isinstance(final_hidden_states, tuple)
|
|
1616
|
+
assert self.shared_experts is not None
|
|
1617
|
+
|
|
1618
|
+
shared_output = self.shared_experts(staged_hidden_states)
|
|
1619
|
+
|
|
1620
|
+
final_hidden_states = (
|
|
1621
|
+
shared_output,
|
|
1622
|
+
final_hidden_states,
|
|
1623
|
+
)
|
|
1624
|
+
|
|
1625
|
+
if self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
1626
|
+
assert isinstance(final_hidden_states, tuple)
|
|
1627
|
+
assert self.shared_experts is None
|
|
1628
|
+
final_hidden_states, zero_expert_result = final_hidden_states
|
|
1629
|
+
if zero_expert_result is not None:
|
|
1630
|
+
final_hidden_states += zero_expert_result
|
|
1631
|
+
|
|
1632
|
+
if not skip_result_store:
|
|
1633
|
+
if self.shared_experts is None:
|
|
1634
|
+
full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
|
|
1635
|
+
final_hidden_states, non_blocking=True
|
|
1636
|
+
)
|
|
1637
|
+
else:
|
|
1638
|
+
full_shared_final_hidden_states[chunk_start:chunk_end, :].copy_(
|
|
1639
|
+
final_hidden_states[0], non_blocking=True
|
|
1640
|
+
)
|
|
1641
|
+
full_fused_final_hidden_states[chunk_start:chunk_end, :].copy_(
|
|
1642
|
+
final_hidden_states[1], non_blocking=True
|
|
1643
|
+
)
|
|
1644
|
+
|
|
1645
|
+
ctx = get_forward_context()
|
|
1646
|
+
# flashinfer_cutlass_kernels can handle: optional DP + TP/EP
|
|
1647
|
+
max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
|
|
1648
|
+
moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
|
|
1649
|
+
|
|
1650
|
+
# If the input to the MoE is sequence parallel then divide by sp_size
|
|
1651
|
+
# to find the maximum number of tokens for any individual dispatcher.
|
|
1652
|
+
if self.is_sequence_parallel:
|
|
1653
|
+
max_tokens_across_dispatchers = cdiv(
|
|
1654
|
+
max_tokens_across_dispatchers, self.sp_size
|
|
1655
|
+
)
|
|
1656
|
+
|
|
1657
|
+
num_tokens = full_hidden_states.size(0)
|
|
1658
|
+
for chunk_idx, chunk_start_ in enumerate(
|
|
1659
|
+
range(0, max_tokens_across_dispatchers, moe_dp_chunk_size_per_rank)
|
|
1660
|
+
):
|
|
1661
|
+
chunk_start = chunk_start_
|
|
1662
|
+
chunk_end = min(
|
|
1663
|
+
chunk_start + moe_dp_chunk_size_per_rank, max_tokens_across_dispatchers
|
|
1664
|
+
)
|
|
1665
|
+
# clamp start and end
|
|
1666
|
+
chunk_start = min(chunk_start, num_tokens - 1)
|
|
1667
|
+
chunk_end = min(chunk_end, num_tokens)
|
|
1668
|
+
with ctx.dp_metadata.chunked_sizes(
|
|
1669
|
+
self.sp_size, moe_dp_chunk_size_per_rank, chunk_idx
|
|
1670
|
+
):
|
|
1671
|
+
process_chunk(
|
|
1672
|
+
chunk_start, chunk_end, skip_result_store=chunk_start_ >= num_tokens
|
|
1673
|
+
)
|
|
1674
|
+
|
|
1675
|
+
if self.shared_experts is None:
|
|
1676
|
+
return full_fused_final_hidden_states
|
|
1677
|
+
else:
|
|
1678
|
+
return (full_shared_final_hidden_states, full_fused_final_hidden_states)
|
|
1679
|
+
|
|
1680
|
+
def forward_impl(
|
|
1681
|
+
self,
|
|
1682
|
+
hidden_states: torch.Tensor,
|
|
1683
|
+
router_logits: torch.Tensor,
|
|
1684
|
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
1685
|
+
assert self.quant_method is not None
|
|
1686
|
+
|
|
1687
|
+
self.ensure_moe_quant_config_init()
|
|
1688
|
+
self.ensure_dp_chunking_init()
|
|
1689
|
+
|
|
1690
|
+
has_separate_shared_experts = (
|
|
1691
|
+
not isinstance(self.quant_method, FusedMoEModularMethod)
|
|
1692
|
+
and self.shared_experts is not None
|
|
1693
|
+
)
|
|
1694
|
+
|
|
1695
|
+
use_chunked_impl = self.use_dp_chunking
|
|
1696
|
+
|
|
1697
|
+
use_shared_experts_stream = (
|
|
1698
|
+
has_separate_shared_experts
|
|
1699
|
+
and not use_chunked_impl
|
|
1700
|
+
and self.shared_experts_stream is not None
|
|
1701
|
+
and (
|
|
1702
|
+
hidden_states.shape[0]
|
|
1703
|
+
<= envs.VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD
|
|
1704
|
+
)
|
|
1705
|
+
)
|
|
1706
|
+
|
|
1707
|
+
if use_shared_experts_stream:
|
|
1708
|
+
assert self.shared_experts_stream is not None
|
|
1709
|
+
|
|
1710
|
+
# Clone BEFORE switching streams to avoid race condition
|
|
1711
|
+
# where routed_expert kernel may mutate hidden_states.
|
|
1712
|
+
hidden_states_clone = hidden_states.clone()
|
|
1713
|
+
|
|
1714
|
+
# Record that the clone will be used by shared_experts_stream
|
|
1715
|
+
# to avoid gc issue from deallocation of hidden_states_clone
|
|
1716
|
+
# For more details: https://docs.pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html # noqa: E501
|
|
1717
|
+
# NOTE: We dont need shared_output.record_stream(current_stream())
|
|
1718
|
+
# because we synch the streams before using shared_output.
|
|
1719
|
+
hidden_states_clone.record_stream(self.shared_experts_stream)
|
|
1720
|
+
|
|
1721
|
+
# Mark sync start point for the separate shared experts
|
|
1722
|
+
# stream here since we want to run in parallel with the
|
|
1723
|
+
# router/gate (next op below)
|
|
1724
|
+
assert self.shared_experts_stream is not None
|
|
1725
|
+
self.shared_experts_stream.wait_stream(current_stream())
|
|
1726
|
+
|
|
1727
|
+
# If router/gate provided, then apply it here.
|
|
1728
|
+
# (Note: This code runs only when "overlapped mode" is on to allow
|
|
1729
|
+
# parallel execution of shared experts with the FusedMoE via
|
|
1730
|
+
# separate cuda stream)
|
|
1731
|
+
if self.gate is not None:
|
|
1732
|
+
router_logits, _ = self.gate(hidden_states)
|
|
1733
|
+
|
|
1734
|
+
if use_chunked_impl:
|
|
1735
|
+
return self.forward_impl_chunked(
|
|
1736
|
+
hidden_states, router_logits, has_separate_shared_experts
|
|
1737
|
+
)
|
|
1738
|
+
|
|
1739
|
+
do_naive_dispatch_combine: bool = self.dp_size > 1 and not isinstance(
|
|
1740
|
+
self.quant_method, FusedMoEModularMethod
|
|
1741
|
+
)
|
|
1742
|
+
|
|
1743
|
+
ctx = get_forward_context()
|
|
1744
|
+
sp_ctx = (
|
|
1745
|
+
ctx.dp_metadata.sp_local_sizes(self.sp_size)
|
|
1746
|
+
if ctx.dp_metadata
|
|
1747
|
+
else nullcontext()
|
|
1748
|
+
)
|
|
1749
|
+
|
|
1750
|
+
with sp_ctx:
|
|
1751
|
+
if do_naive_dispatch_combine:
|
|
1752
|
+
hidden_states_combined, router_logits = get_ep_group().dispatch(
|
|
1753
|
+
hidden_states, router_logits, self.is_sequence_parallel
|
|
1754
|
+
)
|
|
1755
|
+
|
|
1756
|
+
# Matrix multiply.
|
|
1757
|
+
final_hidden_states = self.quant_method.apply(
|
|
1758
|
+
layer=self,
|
|
1759
|
+
x=hidden_states_combined
|
|
1760
|
+
if do_naive_dispatch_combine
|
|
1761
|
+
else hidden_states,
|
|
1762
|
+
router_logits=router_logits,
|
|
1763
|
+
top_k=self.top_k,
|
|
1764
|
+
renormalize=self.renormalize,
|
|
1765
|
+
use_grouped_topk=self.use_grouped_topk,
|
|
1766
|
+
global_num_experts=self.global_num_experts,
|
|
1767
|
+
expert_map=self.expert_map
|
|
1768
|
+
if not self.rocm_aiter_fmoe_enabled
|
|
1769
|
+
else self.expert_mask,
|
|
1770
|
+
topk_group=self.topk_group,
|
|
1771
|
+
num_expert_group=self.num_expert_group,
|
|
1772
|
+
custom_routing_function=self.custom_routing_function,
|
|
1773
|
+
scoring_func=self.scoring_func,
|
|
1774
|
+
routed_scaling_factor=self.routed_scaling_factor,
|
|
1775
|
+
e_score_correction_bias=self.e_score_correction_bias,
|
|
1776
|
+
activation=self.activation,
|
|
1777
|
+
apply_router_weight_on_input=self.apply_router_weight_on_input,
|
|
1778
|
+
enable_eplb=self.enable_eplb,
|
|
1779
|
+
expert_load_view=self.expert_load_view,
|
|
1780
|
+
logical_to_physical_map=self.logical_to_physical_map,
|
|
1781
|
+
logical_replica_count=self.logical_replica_count,
|
|
1782
|
+
)
|
|
1783
|
+
|
|
1784
|
+
if has_separate_shared_experts:
|
|
1785
|
+
assert self.shared_experts is not None
|
|
1786
|
+
|
|
1787
|
+
if use_shared_experts_stream:
|
|
1788
|
+
# Run shared experts in parallel on a separate stream
|
|
1789
|
+
# NOTE: We start the separate stream here and mark the
|
|
1790
|
+
# sync end point immediately after it is done. This is
|
|
1791
|
+
# important to avoid excessive stream allocations by the cuda
|
|
1792
|
+
# graph replay later.
|
|
1793
|
+
with torch.cuda.stream(self.shared_experts_stream):
|
|
1794
|
+
# Note that hidden_states clone() is necessary here to avoid
|
|
1795
|
+
# conflict with the main stream
|
|
1796
|
+
shared_output = self.shared_experts(hidden_states_clone)
|
|
1797
|
+
current_stream().wait_stream(self.shared_experts_stream)
|
|
1798
|
+
else:
|
|
1799
|
+
shared_output = self.shared_experts(hidden_states)
|
|
1800
|
+
|
|
1801
|
+
final_hidden_states = (
|
|
1802
|
+
shared_output,
|
|
1803
|
+
final_hidden_states,
|
|
1804
|
+
)
|
|
1805
|
+
elif self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
1806
|
+
assert isinstance(final_hidden_states, tuple)
|
|
1807
|
+
final_hidden_states, zero_expert_result = final_hidden_states
|
|
1808
|
+
|
|
1809
|
+
def combine_output(states: torch.Tensor) -> torch.Tensor:
|
|
1810
|
+
if do_naive_dispatch_combine:
|
|
1811
|
+
states = get_ep_group().combine(states, self.is_sequence_parallel)
|
|
1812
|
+
return states
|
|
1813
|
+
|
|
1814
|
+
if self.shared_experts is not None:
|
|
1815
|
+
return (
|
|
1816
|
+
final_hidden_states[0],
|
|
1817
|
+
combine_output(final_hidden_states[1]),
|
|
1818
|
+
)
|
|
1819
|
+
elif self.zero_expert_num is not None and self.zero_expert_num > 0:
|
|
1820
|
+
assert isinstance(final_hidden_states, torch.Tensor)
|
|
1821
|
+
return (combine_output(final_hidden_states), zero_expert_result)
|
|
1822
|
+
else:
|
|
1823
|
+
return combine_output(final_hidden_states)
|
|
1824
|
+
|
|
1825
|
+
@classmethod
|
|
1826
|
+
def make_expert_params_mapping(
|
|
1827
|
+
cls,
|
|
1828
|
+
ckpt_gate_proj_name: str,
|
|
1829
|
+
ckpt_down_proj_name: str,
|
|
1830
|
+
ckpt_up_proj_name: str,
|
|
1831
|
+
num_experts: int,
|
|
1832
|
+
num_redundant_experts: int = 0,
|
|
1833
|
+
) -> list[tuple[str, str, int, str]]:
|
|
1834
|
+
num_physical_experts = num_experts + num_redundant_experts
|
|
1835
|
+
|
|
1836
|
+
# In the returned mapping:
|
|
1837
|
+
# - `expert_id` is the physical expert id
|
|
1838
|
+
# - `weight_name` contains the weight name of the logical expert
|
|
1839
|
+
# So that we should map the expert id to logical in `weight_name`
|
|
1840
|
+
physical_to_logical_map = (
|
|
1841
|
+
EplbState.build_initial_global_physical_to_logical_map(
|
|
1842
|
+
num_experts, num_redundant_experts
|
|
1843
|
+
)
|
|
1844
|
+
)
|
|
1845
|
+
|
|
1846
|
+
return [
|
|
1847
|
+
# (param_name, weight_name, expert_id, shard_id)
|
|
1848
|
+
(
|
|
1849
|
+
"experts.w13_"
|
|
1850
|
+
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
|
|
1851
|
+
else "experts.w2_",
|
|
1852
|
+
f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
|
|
1853
|
+
expert_id,
|
|
1854
|
+
shard_id,
|
|
1855
|
+
)
|
|
1856
|
+
for expert_id in range(num_physical_experts)
|
|
1857
|
+
for shard_id, weight_name in [
|
|
1858
|
+
("w1", ckpt_gate_proj_name),
|
|
1859
|
+
("w2", ckpt_down_proj_name),
|
|
1860
|
+
("w3", ckpt_up_proj_name),
|
|
1861
|
+
]
|
|
1862
|
+
]
|
|
1863
|
+
|
|
1864
|
+
def extra_repr(self) -> str:
|
|
1865
|
+
s = (
|
|
1866
|
+
f"global_num_experts={self.global_num_experts}, "
|
|
1867
|
+
f"local_num_experts={self.local_num_experts}, "
|
|
1868
|
+
f"top_k={self.top_k}, "
|
|
1869
|
+
f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
|
|
1870
|
+
f"tp_size={self.tp_size},\n"
|
|
1871
|
+
f"ep_size={self.ep_size}, "
|
|
1872
|
+
f"reduce_results={self.reduce_results}, "
|
|
1873
|
+
f"renormalize={self.renormalize}, "
|
|
1874
|
+
f"use_grouped_topk={self.use_grouped_topk}"
|
|
1875
|
+
)
|
|
1876
|
+
|
|
1877
|
+
if self.use_grouped_topk:
|
|
1878
|
+
s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
|
|
1879
|
+
|
|
1880
|
+
s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
|
|
1881
|
+
|
|
1882
|
+
return s
|
|
1883
|
+
|
|
1884
|
+
|
|
1885
|
+
def moe_forward(
|
|
1886
|
+
hidden_states: torch.Tensor,
|
|
1887
|
+
router_logits: torch.Tensor,
|
|
1888
|
+
layer_name: str,
|
|
1889
|
+
) -> torch.Tensor:
|
|
1890
|
+
forward_context: ForwardContext = get_forward_context()
|
|
1891
|
+
self = forward_context.no_compile_layers[layer_name]
|
|
1892
|
+
assert self.shared_experts is None
|
|
1893
|
+
return self.forward_impl(hidden_states, router_logits)
|
|
1894
|
+
|
|
1895
|
+
|
|
1896
|
+
def moe_forward_fake(
|
|
1897
|
+
hidden_states: torch.Tensor,
|
|
1898
|
+
router_logits: torch.Tensor,
|
|
1899
|
+
layer_name: str,
|
|
1900
|
+
) -> torch.Tensor:
|
|
1901
|
+
return torch.empty_like(hidden_states)
|
|
1902
|
+
|
|
1903
|
+
|
|
1904
|
+
direct_register_custom_op(
|
|
1905
|
+
op_name="moe_forward",
|
|
1906
|
+
op_func=moe_forward,
|
|
1907
|
+
mutates_args=["hidden_states"],
|
|
1908
|
+
fake_impl=moe_forward_fake,
|
|
1909
|
+
tags=(torch.Tag.needs_fixed_stride_order,),
|
|
1910
|
+
)
|
|
1911
|
+
|
|
1912
|
+
|
|
1913
|
+
def moe_forward_shared(
|
|
1914
|
+
hidden_states: torch.Tensor,
|
|
1915
|
+
router_logits: torch.Tensor,
|
|
1916
|
+
layer_name: str,
|
|
1917
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1918
|
+
forward_context: ForwardContext = get_forward_context()
|
|
1919
|
+
self = forward_context.no_compile_layers[layer_name]
|
|
1920
|
+
assert self.shared_experts is not None
|
|
1921
|
+
return self.forward_impl(hidden_states, router_logits)
|
|
1922
|
+
|
|
1923
|
+
|
|
1924
|
+
def moe_forward_shared_fake(
|
|
1925
|
+
hidden_states: torch.Tensor,
|
|
1926
|
+
router_logits: torch.Tensor,
|
|
1927
|
+
layer_name: str,
|
|
1928
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1929
|
+
shared_out = torch.empty_like(hidden_states)
|
|
1930
|
+
fused_out = torch.empty_like(hidden_states)
|
|
1931
|
+
return shared_out, fused_out
|
|
1932
|
+
|
|
1933
|
+
|
|
1934
|
+
direct_register_custom_op(
|
|
1935
|
+
op_name="moe_forward_shared",
|
|
1936
|
+
op_func=moe_forward_shared,
|
|
1937
|
+
mutates_args=["hidden_states"],
|
|
1938
|
+
fake_impl=moe_forward_shared_fake,
|
|
1939
|
+
tags=(torch.Tag.needs_fixed_stride_order,),
|
|
1940
|
+
)
|
|
1941
|
+
|
|
1942
|
+
# Mark the FusedMoE weight_loader as supporting MoE-specific parameters
|
|
1943
|
+
# to avoid expensive runtime reflection in model loading code
|
|
1944
|
+
FusedMoE.weight_loader.supports_moe_loading = True # type: ignore[attr-defined]
|