vllm-cpu-amxbf16 0.11.2.post2__cp310-cp310-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1536) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +983 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +2863 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +18 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +391 -0
  16. vllm/attention/backends/registry.py +195 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +1052 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +121 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/ops/__init__.py +0 -0
  24. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  25. vllm/attention/ops/common.py +414 -0
  26. vllm/attention/ops/flashmla.py +251 -0
  27. vllm/attention/ops/merge_attn_states.py +47 -0
  28. vllm/attention/ops/paged_attn.py +262 -0
  29. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  30. vllm/attention/ops/prefix_prefill.py +814 -0
  31. vllm/attention/ops/rocm_aiter_paged_attn.py +123 -0
  32. vllm/attention/ops/triton_decode_attention.py +712 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +105 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  35. vllm/attention/ops/triton_unified_attention.py +941 -0
  36. vllm/attention/ops/vit_attn_wrappers.py +178 -0
  37. vllm/attention/selector.py +231 -0
  38. vllm/attention/utils/__init__.py +0 -0
  39. vllm/attention/utils/fa_utils.py +109 -0
  40. vllm/attention/utils/kv_sharing_utils.py +33 -0
  41. vllm/attention/utils/kv_transfer_utils.py +60 -0
  42. vllm/beam_search.py +88 -0
  43. vllm/benchmarks/__init__.py +0 -0
  44. vllm/benchmarks/datasets.py +3222 -0
  45. vllm/benchmarks/latency.py +172 -0
  46. vllm/benchmarks/lib/__init__.py +3 -0
  47. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  48. vllm/benchmarks/lib/ready_checker.py +72 -0
  49. vllm/benchmarks/lib/utils.py +79 -0
  50. vllm/benchmarks/serve.py +1531 -0
  51. vllm/benchmarks/sweep/__init__.py +0 -0
  52. vllm/benchmarks/sweep/cli.py +38 -0
  53. vllm/benchmarks/sweep/param_sweep.py +91 -0
  54. vllm/benchmarks/sweep/plot.py +580 -0
  55. vllm/benchmarks/sweep/serve.py +416 -0
  56. vllm/benchmarks/sweep/serve_sla.py +492 -0
  57. vllm/benchmarks/sweep/server.py +114 -0
  58. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  59. vllm/benchmarks/sweep/utils.py +4 -0
  60. vllm/benchmarks/throughput.py +799 -0
  61. vllm/collect_env.py +857 -0
  62. vllm/compilation/__init__.py +0 -0
  63. vllm/compilation/activation_quant_fusion.py +209 -0
  64. vllm/compilation/backends.py +759 -0
  65. vllm/compilation/base_static_graph.py +57 -0
  66. vllm/compilation/caching.py +178 -0
  67. vllm/compilation/collective_fusion.py +1234 -0
  68. vllm/compilation/compiler_interface.py +639 -0
  69. vllm/compilation/counter.py +48 -0
  70. vllm/compilation/cuda_graph.py +208 -0
  71. vllm/compilation/decorators.py +571 -0
  72. vllm/compilation/fix_functionalization.py +253 -0
  73. vllm/compilation/fusion.py +374 -0
  74. vllm/compilation/fusion_attn.py +359 -0
  75. vllm/compilation/fx_utils.py +91 -0
  76. vllm/compilation/inductor_pass.py +133 -0
  77. vllm/compilation/matcher_utils.py +317 -0
  78. vllm/compilation/monitor.py +62 -0
  79. vllm/compilation/noop_elimination.py +134 -0
  80. vllm/compilation/partition_rules.py +72 -0
  81. vllm/compilation/pass_manager.py +135 -0
  82. vllm/compilation/piecewise_backend.py +121 -0
  83. vllm/compilation/post_cleanup.py +21 -0
  84. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  85. vllm/compilation/sequence_parallelism.py +363 -0
  86. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  87. vllm/compilation/vllm_inductor_pass.py +173 -0
  88. vllm/compilation/wrapper.py +238 -0
  89. vllm/config/__init__.py +102 -0
  90. vllm/config/cache.py +207 -0
  91. vllm/config/compilation.py +975 -0
  92. vllm/config/device.py +75 -0
  93. vllm/config/ec_transfer.py +110 -0
  94. vllm/config/kv_events.py +56 -0
  95. vllm/config/kv_transfer.py +114 -0
  96. vllm/config/load.py +124 -0
  97. vllm/config/lora.py +112 -0
  98. vllm/config/model.py +2162 -0
  99. vllm/config/multimodal.py +248 -0
  100. vllm/config/observability.py +123 -0
  101. vllm/config/parallel.py +655 -0
  102. vllm/config/pooler.py +122 -0
  103. vllm/config/scheduler.py +298 -0
  104. vllm/config/speculative.py +654 -0
  105. vllm/config/speech_to_text.py +38 -0
  106. vllm/config/structured_outputs.py +92 -0
  107. vllm/config/utils.py +178 -0
  108. vllm/config/vllm.py +1166 -0
  109. vllm/connections.py +189 -0
  110. vllm/device_allocator/__init__.py +0 -0
  111. vllm/device_allocator/cumem.py +327 -0
  112. vllm/distributed/__init__.py +6 -0
  113. vllm/distributed/communication_op.py +43 -0
  114. vllm/distributed/device_communicators/__init__.py +0 -0
  115. vllm/distributed/device_communicators/all2all.py +490 -0
  116. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  117. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  118. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  119. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  120. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  121. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  122. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  123. vllm/distributed/device_communicators/pynccl.py +386 -0
  124. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  125. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  126. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  127. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  128. vllm/distributed/device_communicators/shm_broadcast.py +733 -0
  129. vllm/distributed/device_communicators/shm_object_storage.py +660 -0
  130. vllm/distributed/device_communicators/symm_mem.py +156 -0
  131. vllm/distributed/device_communicators/tpu_communicator.py +107 -0
  132. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  133. vllm/distributed/ec_transfer/__init__.py +14 -0
  134. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  135. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  136. vllm/distributed/ec_transfer/ec_connector/factory.py +88 -0
  137. vllm/distributed/ec_transfer/ec_connector/shared_storage_connector.py +201 -0
  138. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  139. vllm/distributed/eplb/__init__.py +8 -0
  140. vllm/distributed/eplb/eplb_state.py +837 -0
  141. vllm/distributed/eplb/rebalance_algo.py +260 -0
  142. vllm/distributed/eplb/rebalance_execute.py +431 -0
  143. vllm/distributed/kv_events.py +371 -0
  144. vllm/distributed/kv_transfer/README.md +29 -0
  145. vllm/distributed/kv_transfer/__init__.py +20 -0
  146. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  147. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  148. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  149. vllm/distributed/kv_transfer/kv_connector/factory.py +192 -0
  150. vllm/distributed/kv_transfer/kv_connector/utils.py +268 -0
  151. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  152. vllm/distributed/kv_transfer/kv_connector/v1/base.py +546 -0
  153. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  154. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +216 -0
  155. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  156. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +379 -0
  157. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  158. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1411 -0
  159. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +867 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +189 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +454 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2440 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +504 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +450 -0
  169. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  170. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +179 -0
  171. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +164 -0
  172. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +242 -0
  173. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  174. vllm/distributed/kv_transfer/kv_pipe/base.py +66 -0
  175. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +295 -0
  176. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +285 -0
  177. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  178. vllm/distributed/parallel_state.py +1759 -0
  179. vllm/distributed/tpu_distributed_utils.py +188 -0
  180. vllm/distributed/utils.py +543 -0
  181. vllm/engine/__init__.py +0 -0
  182. vllm/engine/arg_utils.py +2144 -0
  183. vllm/engine/async_llm_engine.py +6 -0
  184. vllm/engine/llm_engine.py +6 -0
  185. vllm/engine/protocol.py +170 -0
  186. vllm/entrypoints/__init__.py +0 -0
  187. vllm/entrypoints/anthropic/__init__.py +0 -0
  188. vllm/entrypoints/anthropic/protocol.py +162 -0
  189. vllm/entrypoints/anthropic/serving_messages.py +460 -0
  190. vllm/entrypoints/api_server.py +184 -0
  191. vllm/entrypoints/chat_utils.py +1690 -0
  192. vllm/entrypoints/cli/__init__.py +13 -0
  193. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  194. vllm/entrypoints/cli/benchmark/base.py +25 -0
  195. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  196. vllm/entrypoints/cli/benchmark/main.py +56 -0
  197. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  198. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  199. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  200. vllm/entrypoints/cli/collect_env.py +38 -0
  201. vllm/entrypoints/cli/main.py +79 -0
  202. vllm/entrypoints/cli/openai.py +256 -0
  203. vllm/entrypoints/cli/run_batch.py +68 -0
  204. vllm/entrypoints/cli/serve.py +249 -0
  205. vllm/entrypoints/cli/types.py +29 -0
  206. vllm/entrypoints/constants.py +10 -0
  207. vllm/entrypoints/context.py +572 -0
  208. vllm/entrypoints/dynamic_lora.py +57 -0
  209. vllm/entrypoints/harmony_utils.py +535 -0
  210. vllm/entrypoints/launcher.py +175 -0
  211. vllm/entrypoints/llm.py +1768 -0
  212. vllm/entrypoints/logger.py +84 -0
  213. vllm/entrypoints/openai/__init__.py +0 -0
  214. vllm/entrypoints/openai/api_server.py +2096 -0
  215. vllm/entrypoints/openai/cli_args.py +302 -0
  216. vllm/entrypoints/openai/orca_metrics.py +120 -0
  217. vllm/entrypoints/openai/protocol.py +3299 -0
  218. vllm/entrypoints/openai/run_batch.py +547 -0
  219. vllm/entrypoints/openai/serving_chat.py +1772 -0
  220. vllm/entrypoints/openai/serving_classification.py +235 -0
  221. vllm/entrypoints/openai/serving_completion.py +715 -0
  222. vllm/entrypoints/openai/serving_embedding.py +695 -0
  223. vllm/entrypoints/openai/serving_engine.py +1433 -0
  224. vllm/entrypoints/openai/serving_models.py +304 -0
  225. vllm/entrypoints/openai/serving_pooling.py +346 -0
  226. vllm/entrypoints/openai/serving_responses.py +2021 -0
  227. vllm/entrypoints/openai/serving_score.py +503 -0
  228. vllm/entrypoints/openai/serving_tokenization.py +203 -0
  229. vllm/entrypoints/openai/serving_tokens.py +269 -0
  230. vllm/entrypoints/openai/serving_transcription.py +148 -0
  231. vllm/entrypoints/openai/speech_to_text.py +405 -0
  232. vllm/entrypoints/openai/tool_parsers/__init__.py +142 -0
  233. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +273 -0
  234. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +390 -0
  235. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +390 -0
  236. vllm/entrypoints/openai/tool_parsers/ernie45_tool_parser.py +210 -0
  237. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +200 -0
  238. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  239. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +253 -0
  240. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +494 -0
  241. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  242. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +227 -0
  243. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +323 -0
  244. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +590 -0
  245. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  246. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +290 -0
  247. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +37 -0
  248. vllm/entrypoints/openai/tool_parsers/minimax_m2_tool_parser.py +643 -0
  249. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +849 -0
  250. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +390 -0
  251. vllm/entrypoints/openai/tool_parsers/olmo3_tool_parser.py +366 -0
  252. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +97 -0
  253. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +120 -0
  254. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +332 -0
  255. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +781 -0
  256. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  257. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +744 -0
  258. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +303 -0
  259. vllm/entrypoints/openai/tool_parsers/utils.py +229 -0
  260. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +556 -0
  261. vllm/entrypoints/renderer.py +409 -0
  262. vllm/entrypoints/responses_utils.py +77 -0
  263. vllm/entrypoints/sagemaker/__init__.py +4 -0
  264. vllm/entrypoints/sagemaker/routes.py +72 -0
  265. vllm/entrypoints/score_utils.py +242 -0
  266. vllm/entrypoints/ssl.py +78 -0
  267. vllm/entrypoints/tool.py +143 -0
  268. vllm/entrypoints/tool_server.py +209 -0
  269. vllm/entrypoints/utils.py +319 -0
  270. vllm/env_override.py +378 -0
  271. vllm/envs.py +1659 -0
  272. vllm/forward_context.py +356 -0
  273. vllm/inputs/__init__.py +44 -0
  274. vllm/inputs/data.py +359 -0
  275. vllm/inputs/parse.py +137 -0
  276. vllm/inputs/preprocess.py +727 -0
  277. vllm/logger.py +267 -0
  278. vllm/logging_utils/__init__.py +10 -0
  279. vllm/logging_utils/dump_input.py +83 -0
  280. vllm/logging_utils/formatter.py +77 -0
  281. vllm/logging_utils/log_time.py +34 -0
  282. vllm/logits_process.py +121 -0
  283. vllm/logprobs.py +208 -0
  284. vllm/lora/__init__.py +0 -0
  285. vllm/lora/layers/__init__.py +41 -0
  286. vllm/lora/layers/base.py +67 -0
  287. vllm/lora/layers/base_linear.py +164 -0
  288. vllm/lora/layers/column_parallel_linear.py +578 -0
  289. vllm/lora/layers/fused_moe.py +472 -0
  290. vllm/lora/layers/logits_processor.py +252 -0
  291. vllm/lora/layers/replicated_linear.py +70 -0
  292. vllm/lora/layers/row_parallel_linear.py +181 -0
  293. vllm/lora/layers/utils.py +65 -0
  294. vllm/lora/layers/vocal_parallel_embedding.py +166 -0
  295. vllm/lora/lora_weights.py +198 -0
  296. vllm/lora/models.py +890 -0
  297. vllm/lora/ops/__init__.py +0 -0
  298. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  299. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  300. vllm/lora/ops/torch_ops/__init__.py +20 -0
  301. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  302. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  303. vllm/lora/ops/triton_ops/__init__.py +21 -0
  304. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +641 -0
  305. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  306. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  307. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  308. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  309. vllm/lora/ops/triton_ops/utils.py +295 -0
  310. vllm/lora/ops/xla_ops/__init__.py +6 -0
  311. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  312. vllm/lora/peft_helper.py +128 -0
  313. vllm/lora/punica_wrapper/__init__.py +10 -0
  314. vllm/lora/punica_wrapper/punica_base.py +492 -0
  315. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  316. vllm/lora/punica_wrapper/punica_gpu.py +411 -0
  317. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  318. vllm/lora/punica_wrapper/punica_tpu.py +359 -0
  319. vllm/lora/punica_wrapper/punica_xpu.py +279 -0
  320. vllm/lora/punica_wrapper/utils.py +150 -0
  321. vllm/lora/request.py +100 -0
  322. vllm/lora/resolver.py +88 -0
  323. vllm/lora/utils.py +293 -0
  324. vllm/lora/worker_manager.py +279 -0
  325. vllm/model_executor/__init__.py +11 -0
  326. vllm/model_executor/custom_op.py +194 -0
  327. vllm/model_executor/layers/__init__.py +0 -0
  328. vllm/model_executor/layers/activation.py +569 -0
  329. vllm/model_executor/layers/attention_layer_base.py +35 -0
  330. vllm/model_executor/layers/batch_invariant.py +854 -0
  331. vllm/model_executor/layers/conv.py +236 -0
  332. vllm/model_executor/layers/fla/__init__.py +8 -0
  333. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  334. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  335. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  336. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  337. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  338. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  339. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  340. vllm/model_executor/layers/fla/ops/index.py +41 -0
  341. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  342. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  343. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  344. vllm/model_executor/layers/fla/ops/op.py +60 -0
  345. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  346. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  347. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  348. vllm/model_executor/layers/fused_moe/__init__.py +106 -0
  349. vllm/model_executor/layers/fused_moe/all2all_utils.py +160 -0
  350. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +406 -0
  351. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +180 -0
  352. vllm/model_executor/layers/fused_moe/config.py +916 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  624. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  625. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +354 -0
  626. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1052 -0
  627. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +387 -0
  628. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +416 -0
  629. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  630. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +367 -0
  631. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  632. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  633. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  634. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  635. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +792 -0
  636. vllm/model_executor/layers/fused_moe/fused_moe.py +2175 -0
  637. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +112 -0
  638. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +164 -0
  639. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +316 -0
  640. vllm/model_executor/layers/fused_moe/layer.py +1944 -0
  641. vllm/model_executor/layers/fused_moe/modular_kernel.py +1222 -0
  642. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +174 -0
  643. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  644. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  645. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  646. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  647. vllm/model_executor/layers/fused_moe/prepare_finalize.py +77 -0
  648. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  649. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  650. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +97 -0
  651. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  652. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  653. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  654. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +578 -0
  655. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  656. vllm/model_executor/layers/kda.py +448 -0
  657. vllm/model_executor/layers/layernorm.py +442 -0
  658. vllm/model_executor/layers/lightning_attn.py +729 -0
  659. vllm/model_executor/layers/linear.py +1424 -0
  660. vllm/model_executor/layers/logits_processor.py +106 -0
  661. vllm/model_executor/layers/mamba/__init__.py +0 -0
  662. vllm/model_executor/layers/mamba/abstract.py +71 -0
  663. vllm/model_executor/layers/mamba/linear_attn.py +402 -0
  664. vllm/model_executor/layers/mamba/mamba_mixer.py +535 -0
  665. vllm/model_executor/layers/mamba/mamba_mixer2.py +928 -0
  666. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  667. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  668. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  669. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  670. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +478 -0
  671. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  672. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  673. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  674. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  675. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  676. vllm/model_executor/layers/mamba/short_conv.py +264 -0
  677. vllm/model_executor/layers/mla.py +168 -0
  678. vllm/model_executor/layers/pooler.py +817 -0
  679. vllm/model_executor/layers/quantization/__init__.py +174 -0
  680. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  681. vllm/model_executor/layers/quantization/awq.py +277 -0
  682. vllm/model_executor/layers/quantization/awq_marlin.py +659 -0
  683. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  684. vllm/model_executor/layers/quantization/base_config.py +170 -0
  685. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  686. vllm/model_executor/layers/quantization/bitsandbytes.py +658 -0
  687. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  688. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +914 -0
  689. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2284 -0
  690. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  691. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  692. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  693. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  694. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  695. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  696. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +183 -0
  697. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  698. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  699. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  700. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  701. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +219 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  710. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  711. vllm/model_executor/layers/quantization/experts_int8.py +240 -0
  712. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  713. vllm/model_executor/layers/quantization/fp8.py +1333 -0
  714. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  715. vllm/model_executor/layers/quantization/gguf.py +643 -0
  716. vllm/model_executor/layers/quantization/gptq.py +393 -0
  717. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  718. vllm/model_executor/layers/quantization/gptq_marlin.py +789 -0
  719. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  720. vllm/model_executor/layers/quantization/hqq_marlin.py +371 -0
  721. vllm/model_executor/layers/quantization/inc.py +65 -0
  722. vllm/model_executor/layers/quantization/input_quant_fp8.py +171 -0
  723. vllm/model_executor/layers/quantization/ipex_quant.py +467 -0
  724. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  725. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  726. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +105 -0
  727. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  728. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  729. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  730. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +119 -0
  731. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  732. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  733. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  734. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +166 -0
  735. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +73 -0
  736. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +97 -0
  737. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +120 -0
  738. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +219 -0
  739. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +140 -0
  740. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +42 -0
  741. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +105 -0
  742. vllm/model_executor/layers/quantization/kv_cache.py +146 -0
  743. vllm/model_executor/layers/quantization/modelopt.py +1788 -0
  744. vllm/model_executor/layers/quantization/moe_wna16.py +541 -0
  745. vllm/model_executor/layers/quantization/mxfp4.py +1162 -0
  746. vllm/model_executor/layers/quantization/petit.py +320 -0
  747. vllm/model_executor/layers/quantization/ptpc_fp8.py +137 -0
  748. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  749. vllm/model_executor/layers/quantization/quark/quark.py +528 -0
  750. vllm/model_executor/layers/quantization/quark/quark_moe.py +683 -0
  751. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  752. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +306 -0
  753. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  754. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  755. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  756. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  757. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  758. vllm/model_executor/layers/quantization/rtn.py +652 -0
  759. vllm/model_executor/layers/quantization/schema.py +90 -0
  760. vllm/model_executor/layers/quantization/torchao.py +380 -0
  761. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  762. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  763. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  764. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  975. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  976. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +89 -0
  977. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +298 -0
  978. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1203 -0
  979. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  980. vllm/model_executor/layers/quantization/utils/int8_utils.py +489 -0
  981. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  982. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  983. vllm/model_executor/layers/quantization/utils/marlin_utils.py +575 -0
  984. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +397 -0
  985. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +351 -0
  986. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +161 -0
  987. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  988. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +181 -0
  989. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  990. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  991. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  992. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +63 -0
  993. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  994. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  995. vllm/model_executor/layers/quantization/utils/quant_utils.py +687 -0
  996. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +516 -0
  997. vllm/model_executor/layers/resampler.py +283 -0
  998. vllm/model_executor/layers/rotary_embedding/__init__.py +278 -0
  999. vllm/model_executor/layers/rotary_embedding/base.py +235 -0
  1000. vllm/model_executor/layers/rotary_embedding/common.py +188 -0
  1001. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1002. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1003. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1004. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1005. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +75 -0
  1006. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1007. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1008. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1009. vllm/model_executor/layers/rotary_embedding/mrope.py +397 -0
  1010. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1011. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1012. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +81 -0
  1013. vllm/model_executor/layers/utils.py +251 -0
  1014. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1015. vllm/model_executor/model_loader/__init__.py +148 -0
  1016. vllm/model_executor/model_loader/base_loader.py +57 -0
  1017. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1018. vllm/model_executor/model_loader/default_loader.py +327 -0
  1019. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1020. vllm/model_executor/model_loader/gguf_loader.py +176 -0
  1021. vllm/model_executor/model_loader/online_quantization.py +224 -0
  1022. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1023. vllm/model_executor/model_loader/sharded_state_loader.py +206 -0
  1024. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1025. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1026. vllm/model_executor/model_loader/tpu.py +118 -0
  1027. vllm/model_executor/model_loader/utils.py +288 -0
  1028. vllm/model_executor/model_loader/weight_utils.py +1084 -0
  1029. vllm/model_executor/models/__init__.py +44 -0
  1030. vllm/model_executor/models/adapters.py +543 -0
  1031. vllm/model_executor/models/afmoe.py +711 -0
  1032. vllm/model_executor/models/aimv2.py +247 -0
  1033. vllm/model_executor/models/apertus.py +587 -0
  1034. vllm/model_executor/models/arcee.py +439 -0
  1035. vllm/model_executor/models/arctic.py +635 -0
  1036. vllm/model_executor/models/aria.py +655 -0
  1037. vllm/model_executor/models/aya_vision.py +450 -0
  1038. vllm/model_executor/models/baichuan.py +496 -0
  1039. vllm/model_executor/models/bailing_moe.py +646 -0
  1040. vllm/model_executor/models/bamba.py +522 -0
  1041. vllm/model_executor/models/bee.py +157 -0
  1042. vllm/model_executor/models/bert.py +925 -0
  1043. vllm/model_executor/models/bert_with_rope.py +732 -0
  1044. vllm/model_executor/models/blip.py +349 -0
  1045. vllm/model_executor/models/blip2.py +695 -0
  1046. vllm/model_executor/models/bloom.py +390 -0
  1047. vllm/model_executor/models/chameleon.py +1120 -0
  1048. vllm/model_executor/models/chatglm.py +498 -0
  1049. vllm/model_executor/models/clip.py +965 -0
  1050. vllm/model_executor/models/cohere2_vision.py +472 -0
  1051. vllm/model_executor/models/commandr.py +473 -0
  1052. vllm/model_executor/models/config.py +503 -0
  1053. vllm/model_executor/models/dbrx.py +482 -0
  1054. vllm/model_executor/models/deepencoder.py +673 -0
  1055. vllm/model_executor/models/deepseek_eagle.py +260 -0
  1056. vllm/model_executor/models/deepseek_mtp.py +360 -0
  1057. vllm/model_executor/models/deepseek_ocr.py +593 -0
  1058. vllm/model_executor/models/deepseek_v2.py +1649 -0
  1059. vllm/model_executor/models/deepseek_vl2.py +655 -0
  1060. vllm/model_executor/models/dots1.py +574 -0
  1061. vllm/model_executor/models/dots_ocr.py +900 -0
  1062. vllm/model_executor/models/ernie45.py +53 -0
  1063. vllm/model_executor/models/ernie45_moe.py +759 -0
  1064. vllm/model_executor/models/ernie45_vl.py +1742 -0
  1065. vllm/model_executor/models/ernie45_vl_moe.py +803 -0
  1066. vllm/model_executor/models/ernie_mtp.py +279 -0
  1067. vllm/model_executor/models/exaone.py +545 -0
  1068. vllm/model_executor/models/exaone4.py +531 -0
  1069. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1070. vllm/model_executor/models/falcon.py +545 -0
  1071. vllm/model_executor/models/falcon_h1.py +685 -0
  1072. vllm/model_executor/models/flex_olmo.py +155 -0
  1073. vllm/model_executor/models/fuyu.py +373 -0
  1074. vllm/model_executor/models/gemma.py +426 -0
  1075. vllm/model_executor/models/gemma2.py +439 -0
  1076. vllm/model_executor/models/gemma3.py +571 -0
  1077. vllm/model_executor/models/gemma3_mm.py +741 -0
  1078. vllm/model_executor/models/gemma3n.py +1165 -0
  1079. vllm/model_executor/models/gemma3n_mm.py +811 -0
  1080. vllm/model_executor/models/glm.py +23 -0
  1081. vllm/model_executor/models/glm4.py +305 -0
  1082. vllm/model_executor/models/glm4_1v.py +1821 -0
  1083. vllm/model_executor/models/glm4_moe.py +747 -0
  1084. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1085. vllm/model_executor/models/glm4v.py +784 -0
  1086. vllm/model_executor/models/gpt2.py +397 -0
  1087. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1088. vllm/model_executor/models/gpt_j.py +346 -0
  1089. vllm/model_executor/models/gpt_neox.py +344 -0
  1090. vllm/model_executor/models/gpt_oss.py +738 -0
  1091. vllm/model_executor/models/granite.py +516 -0
  1092. vllm/model_executor/models/granite_speech.py +913 -0
  1093. vllm/model_executor/models/granitemoe.py +569 -0
  1094. vllm/model_executor/models/granitemoehybrid.py +709 -0
  1095. vllm/model_executor/models/granitemoeshared.py +333 -0
  1096. vllm/model_executor/models/gritlm.py +245 -0
  1097. vllm/model_executor/models/grok1.py +558 -0
  1098. vllm/model_executor/models/h2ovl.py +554 -0
  1099. vllm/model_executor/models/hunyuan_v1.py +1053 -0
  1100. vllm/model_executor/models/hyperclovax_vision.py +1166 -0
  1101. vllm/model_executor/models/idefics2_vision_model.py +426 -0
  1102. vllm/model_executor/models/idefics3.py +717 -0
  1103. vllm/model_executor/models/interfaces.py +1092 -0
  1104. vllm/model_executor/models/interfaces_base.py +214 -0
  1105. vllm/model_executor/models/intern_vit.py +453 -0
  1106. vllm/model_executor/models/internlm2.py +460 -0
  1107. vllm/model_executor/models/internlm2_ve.py +142 -0
  1108. vllm/model_executor/models/interns1.py +830 -0
  1109. vllm/model_executor/models/interns1_vit.py +432 -0
  1110. vllm/model_executor/models/internvl.py +1452 -0
  1111. vllm/model_executor/models/jais.py +397 -0
  1112. vllm/model_executor/models/jamba.py +610 -0
  1113. vllm/model_executor/models/jina_vl.py +147 -0
  1114. vllm/model_executor/models/keye.py +1761 -0
  1115. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1116. vllm/model_executor/models/kimi_linear.py +663 -0
  1117. vllm/model_executor/models/kimi_vl.py +578 -0
  1118. vllm/model_executor/models/lfm2.py +532 -0
  1119. vllm/model_executor/models/lfm2_moe.py +762 -0
  1120. vllm/model_executor/models/lightonocr.py +195 -0
  1121. vllm/model_executor/models/llama.py +732 -0
  1122. vllm/model_executor/models/llama4.py +859 -0
  1123. vllm/model_executor/models/llama4_eagle.py +223 -0
  1124. vllm/model_executor/models/llama_eagle.py +218 -0
  1125. vllm/model_executor/models/llama_eagle3.py +367 -0
  1126. vllm/model_executor/models/llava.py +842 -0
  1127. vllm/model_executor/models/llava_next.py +583 -0
  1128. vllm/model_executor/models/llava_next_video.py +467 -0
  1129. vllm/model_executor/models/llava_onevision.py +923 -0
  1130. vllm/model_executor/models/longcat_flash.py +749 -0
  1131. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1132. vllm/model_executor/models/mamba.py +276 -0
  1133. vllm/model_executor/models/mamba2.py +289 -0
  1134. vllm/model_executor/models/medusa.py +179 -0
  1135. vllm/model_executor/models/midashenglm.py +827 -0
  1136. vllm/model_executor/models/mimo.py +188 -0
  1137. vllm/model_executor/models/mimo_mtp.py +294 -0
  1138. vllm/model_executor/models/minicpm.py +664 -0
  1139. vllm/model_executor/models/minicpm3.py +242 -0
  1140. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1141. vllm/model_executor/models/minicpmo.py +768 -0
  1142. vllm/model_executor/models/minicpmv.py +1745 -0
  1143. vllm/model_executor/models/minimax_m2.py +552 -0
  1144. vllm/model_executor/models/minimax_text_01.py +1012 -0
  1145. vllm/model_executor/models/minimax_vl_01.py +396 -0
  1146. vllm/model_executor/models/mistral3.py +637 -0
  1147. vllm/model_executor/models/mixtral.py +621 -0
  1148. vllm/model_executor/models/mllama4.py +1147 -0
  1149. vllm/model_executor/models/mlp_speculator.py +235 -0
  1150. vllm/model_executor/models/modernbert.py +450 -0
  1151. vllm/model_executor/models/module_mapping.py +74 -0
  1152. vllm/model_executor/models/molmo.py +1555 -0
  1153. vllm/model_executor/models/moonvit.py +677 -0
  1154. vllm/model_executor/models/mpt.py +335 -0
  1155. vllm/model_executor/models/nano_nemotron_vl.py +1740 -0
  1156. vllm/model_executor/models/nemotron.py +518 -0
  1157. vllm/model_executor/models/nemotron_h.py +852 -0
  1158. vllm/model_executor/models/nemotron_nas.py +491 -0
  1159. vllm/model_executor/models/nemotron_vl.py +653 -0
  1160. vllm/model_executor/models/nvlm_d.py +216 -0
  1161. vllm/model_executor/models/olmo.py +414 -0
  1162. vllm/model_executor/models/olmo2.py +454 -0
  1163. vllm/model_executor/models/olmoe.py +498 -0
  1164. vllm/model_executor/models/openpangu.py +1062 -0
  1165. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1166. vllm/model_executor/models/opt.py +426 -0
  1167. vllm/model_executor/models/orion.py +372 -0
  1168. vllm/model_executor/models/ouro.py +516 -0
  1169. vllm/model_executor/models/ovis.py +559 -0
  1170. vllm/model_executor/models/ovis2_5.py +673 -0
  1171. vllm/model_executor/models/paddleocr_vl.py +1407 -0
  1172. vllm/model_executor/models/paligemma.py +412 -0
  1173. vllm/model_executor/models/persimmon.py +377 -0
  1174. vllm/model_executor/models/phi.py +374 -0
  1175. vllm/model_executor/models/phi3.py +18 -0
  1176. vllm/model_executor/models/phi3v.py +737 -0
  1177. vllm/model_executor/models/phi4_multimodal.py +1447 -0
  1178. vllm/model_executor/models/phi4mm.py +1253 -0
  1179. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1180. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1181. vllm/model_executor/models/phimoe.py +675 -0
  1182. vllm/model_executor/models/pixtral.py +1352 -0
  1183. vllm/model_executor/models/plamo2.py +981 -0
  1184. vllm/model_executor/models/qwen.py +368 -0
  1185. vllm/model_executor/models/qwen2.py +541 -0
  1186. vllm/model_executor/models/qwen2_5_omni_thinker.py +1246 -0
  1187. vllm/model_executor/models/qwen2_5_vl.py +1613 -0
  1188. vllm/model_executor/models/qwen2_audio.py +473 -0
  1189. vllm/model_executor/models/qwen2_moe.py +596 -0
  1190. vllm/model_executor/models/qwen2_rm.py +123 -0
  1191. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1192. vllm/model_executor/models/qwen3.py +336 -0
  1193. vllm/model_executor/models/qwen3_moe.py +744 -0
  1194. vllm/model_executor/models/qwen3_next.py +1395 -0
  1195. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1196. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1721 -0
  1197. vllm/model_executor/models/qwen3_vl.py +1673 -0
  1198. vllm/model_executor/models/qwen3_vl_moe.py +415 -0
  1199. vllm/model_executor/models/qwen_vl.py +802 -0
  1200. vllm/model_executor/models/radio.py +555 -0
  1201. vllm/model_executor/models/registry.py +1155 -0
  1202. vllm/model_executor/models/roberta.py +259 -0
  1203. vllm/model_executor/models/rvl.py +107 -0
  1204. vllm/model_executor/models/seed_oss.py +497 -0
  1205. vllm/model_executor/models/siglip.py +1174 -0
  1206. vllm/model_executor/models/siglip2navit.py +724 -0
  1207. vllm/model_executor/models/skyworkr1v.py +953 -0
  1208. vllm/model_executor/models/smolvlm.py +38 -0
  1209. vllm/model_executor/models/solar.py +502 -0
  1210. vllm/model_executor/models/stablelm.py +359 -0
  1211. vllm/model_executor/models/starcoder2.py +367 -0
  1212. vllm/model_executor/models/step3_text.py +559 -0
  1213. vllm/model_executor/models/step3_vl.py +1148 -0
  1214. vllm/model_executor/models/swin.py +514 -0
  1215. vllm/model_executor/models/tarsier.py +619 -0
  1216. vllm/model_executor/models/telechat2.py +153 -0
  1217. vllm/model_executor/models/teleflm.py +78 -0
  1218. vllm/model_executor/models/terratorch.py +319 -0
  1219. vllm/model_executor/models/transformers/__init__.py +127 -0
  1220. vllm/model_executor/models/transformers/base.py +464 -0
  1221. vllm/model_executor/models/transformers/causal.py +65 -0
  1222. vllm/model_executor/models/transformers/legacy.py +90 -0
  1223. vllm/model_executor/models/transformers/moe.py +318 -0
  1224. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1225. vllm/model_executor/models/transformers/pooling.py +119 -0
  1226. vllm/model_executor/models/transformers/utils.py +207 -0
  1227. vllm/model_executor/models/ultravox.py +681 -0
  1228. vllm/model_executor/models/utils.py +877 -0
  1229. vllm/model_executor/models/vision.py +552 -0
  1230. vllm/model_executor/models/voxtral.py +845 -0
  1231. vllm/model_executor/models/whisper.py +959 -0
  1232. vllm/model_executor/models/zamba2.py +986 -0
  1233. vllm/model_executor/parameter.py +642 -0
  1234. vllm/model_executor/utils.py +94 -0
  1235. vllm/model_executor/warmup/__init__.py +0 -0
  1236. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1237. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1238. vllm/multimodal/__init__.py +40 -0
  1239. vllm/multimodal/audio.py +118 -0
  1240. vllm/multimodal/base.py +26 -0
  1241. vllm/multimodal/cache.py +755 -0
  1242. vllm/multimodal/evs.py +294 -0
  1243. vllm/multimodal/hasher.py +106 -0
  1244. vllm/multimodal/image.py +130 -0
  1245. vllm/multimodal/inputs.py +1036 -0
  1246. vllm/multimodal/parse.py +544 -0
  1247. vllm/multimodal/processing.py +2186 -0
  1248. vllm/multimodal/profiling.py +369 -0
  1249. vllm/multimodal/registry.py +360 -0
  1250. vllm/multimodal/utils.py +512 -0
  1251. vllm/multimodal/video.py +306 -0
  1252. vllm/outputs.py +345 -0
  1253. vllm/platforms/__init__.py +277 -0
  1254. vllm/platforms/cpu.py +414 -0
  1255. vllm/platforms/cuda.py +657 -0
  1256. vllm/platforms/interface.py +639 -0
  1257. vllm/platforms/rocm.py +466 -0
  1258. vllm/platforms/tpu.py +276 -0
  1259. vllm/platforms/xpu.py +274 -0
  1260. vllm/plugins/__init__.py +78 -0
  1261. vllm/plugins/io_processors/__init__.py +68 -0
  1262. vllm/plugins/io_processors/interface.py +77 -0
  1263. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1264. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1265. vllm/pooling_params.py +228 -0
  1266. vllm/profiler/__init__.py +0 -0
  1267. vllm/profiler/gpu_profiler.py +37 -0
  1268. vllm/profiler/layerwise_profile.py +392 -0
  1269. vllm/profiler/utils.py +151 -0
  1270. vllm/py.typed +2 -0
  1271. vllm/ray/__init__.py +0 -0
  1272. vllm/ray/lazy_utils.py +26 -0
  1273. vllm/ray/ray_env.py +79 -0
  1274. vllm/reasoning/__init__.py +92 -0
  1275. vllm/reasoning/abs_reasoning_parsers.py +290 -0
  1276. vllm/reasoning/basic_parsers.py +162 -0
  1277. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1278. vllm/reasoning/deepseek_v3_reasoning_parser.py +62 -0
  1279. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1280. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1281. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1282. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1283. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1284. vllm/reasoning/identity_reasoning_parser.py +58 -0
  1285. vllm/reasoning/minimax_m2_reasoning_parser.py +67 -0
  1286. vllm/reasoning/mistral_reasoning_parser.py +55 -0
  1287. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1288. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1289. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1290. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1291. vllm/sampling_params.py +669 -0
  1292. vllm/scalar_type.py +355 -0
  1293. vllm/scripts.py +17 -0
  1294. vllm/sequence.py +98 -0
  1295. vllm/tasks.py +13 -0
  1296. vllm/third_party/__init__.py +0 -0
  1297. vllm/third_party/pynvml.py +6140 -0
  1298. vllm/tracing.py +135 -0
  1299. vllm/transformers_utils/__init__.py +26 -0
  1300. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1301. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1302. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1303. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1304. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1305. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1306. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1307. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1308. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1309. vllm/transformers_utils/config.py +1203 -0
  1310. vllm/transformers_utils/config_parser_base.py +20 -0
  1311. vllm/transformers_utils/configs/__init__.py +70 -0
  1312. vllm/transformers_utils/configs/afmoe.py +84 -0
  1313. vllm/transformers_utils/configs/arctic.py +206 -0
  1314. vllm/transformers_utils/configs/chatglm.py +75 -0
  1315. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1316. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1317. vllm/transformers_utils/configs/eagle.py +84 -0
  1318. vllm/transformers_utils/configs/falcon.py +89 -0
  1319. vllm/transformers_utils/configs/flex_olmo.py +77 -0
  1320. vllm/transformers_utils/configs/jais.py +243 -0
  1321. vllm/transformers_utils/configs/kimi_linear.py +144 -0
  1322. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1323. vllm/transformers_utils/configs/lfm2_moe.py +159 -0
  1324. vllm/transformers_utils/configs/medusa.py +65 -0
  1325. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1326. vllm/transformers_utils/configs/mistral.py +174 -0
  1327. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1328. vllm/transformers_utils/configs/moonvit.py +33 -0
  1329. vllm/transformers_utils/configs/nemotron.py +212 -0
  1330. vllm/transformers_utils/configs/nemotron_h.py +282 -0
  1331. vllm/transformers_utils/configs/olmo3.py +79 -0
  1332. vllm/transformers_utils/configs/ovis.py +182 -0
  1333. vllm/transformers_utils/configs/qwen3_next.py +274 -0
  1334. vllm/transformers_utils/configs/radio.py +89 -0
  1335. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1336. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1337. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1338. vllm/transformers_utils/configs/step3_vl.py +174 -0
  1339. vllm/transformers_utils/configs/ultravox.py +118 -0
  1340. vllm/transformers_utils/detokenizer_utils.py +198 -0
  1341. vllm/transformers_utils/dynamic_module.py +59 -0
  1342. vllm/transformers_utils/processor.py +402 -0
  1343. vllm/transformers_utils/processors/__init__.py +15 -0
  1344. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1345. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1346. vllm/transformers_utils/processors/ovis.py +453 -0
  1347. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1348. vllm/transformers_utils/runai_utils.py +104 -0
  1349. vllm/transformers_utils/s3_utils.py +95 -0
  1350. vllm/transformers_utils/tokenizer.py +293 -0
  1351. vllm/transformers_utils/tokenizer_base.py +155 -0
  1352. vllm/transformers_utils/tokenizers/__init__.py +16 -0
  1353. vllm/transformers_utils/tokenizers/mistral.py +502 -0
  1354. vllm/transformers_utils/utils.py +130 -0
  1355. vllm/triton_utils/__init__.py +19 -0
  1356. vllm/triton_utils/importing.py +103 -0
  1357. vllm/usage/__init__.py +0 -0
  1358. vllm/usage/usage_lib.py +294 -0
  1359. vllm/utils/__init__.py +82 -0
  1360. vllm/utils/argparse_utils.py +487 -0
  1361. vllm/utils/async_utils.py +303 -0
  1362. vllm/utils/cache.py +214 -0
  1363. vllm/utils/collection_utils.py +139 -0
  1364. vllm/utils/counter.py +45 -0
  1365. vllm/utils/deep_gemm.py +391 -0
  1366. vllm/utils/flashinfer.py +490 -0
  1367. vllm/utils/func_utils.py +236 -0
  1368. vllm/utils/gc_utils.py +147 -0
  1369. vllm/utils/hashing.py +63 -0
  1370. vllm/utils/import_utils.py +411 -0
  1371. vllm/utils/jsontree.py +165 -0
  1372. vllm/utils/math_utils.py +32 -0
  1373. vllm/utils/mem_constants.py +13 -0
  1374. vllm/utils/mem_utils.py +232 -0
  1375. vllm/utils/nccl.py +64 -0
  1376. vllm/utils/network_utils.py +331 -0
  1377. vllm/utils/platform_utils.py +59 -0
  1378. vllm/utils/profiling.py +56 -0
  1379. vllm/utils/registry.py +49 -0
  1380. vllm/utils/serial_utils.py +169 -0
  1381. vllm/utils/system_utils.py +229 -0
  1382. vllm/utils/tensor_schema.py +255 -0
  1383. vllm/utils/torch_utils.py +657 -0
  1384. vllm/v1/__init__.py +0 -0
  1385. vllm/v1/attention/__init__.py +0 -0
  1386. vllm/v1/attention/backends/__init__.py +0 -0
  1387. vllm/v1/attention/backends/cpu_attn.py +496 -0
  1388. vllm/v1/attention/backends/flash_attn.py +1028 -0
  1389. vllm/v1/attention/backends/flashinfer.py +1572 -0
  1390. vllm/v1/attention/backends/flex_attention.py +926 -0
  1391. vllm/v1/attention/backends/gdn_attn.py +387 -0
  1392. vllm/v1/attention/backends/linear_attn.py +74 -0
  1393. vllm/v1/attention/backends/mamba1_attn.py +165 -0
  1394. vllm/v1/attention/backends/mamba2_attn.py +354 -0
  1395. vllm/v1/attention/backends/mamba_attn.py +115 -0
  1396. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1397. vllm/v1/attention/backends/mla/common.py +2031 -0
  1398. vllm/v1/attention/backends/mla/cutlass_mla.py +275 -0
  1399. vllm/v1/attention/backends/mla/flashattn_mla.py +337 -0
  1400. vllm/v1/attention/backends/mla/flashinfer_mla.py +171 -0
  1401. vllm/v1/attention/backends/mla/flashmla.py +314 -0
  1402. vllm/v1/attention/backends/mla/flashmla_sparse.py +548 -0
  1403. vllm/v1/attention/backends/mla/indexer.py +362 -0
  1404. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +294 -0
  1405. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1406. vllm/v1/attention/backends/pallas.py +436 -0
  1407. vllm/v1/attention/backends/rocm_aiter_fa.py +816 -0
  1408. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +196 -0
  1409. vllm/v1/attention/backends/rocm_attn.py +362 -0
  1410. vllm/v1/attention/backends/short_conv_attn.py +105 -0
  1411. vllm/v1/attention/backends/tree_attn.py +425 -0
  1412. vllm/v1/attention/backends/triton_attn.py +373 -0
  1413. vllm/v1/attention/backends/utils.py +1116 -0
  1414. vllm/v1/attention/backends/xformers.py +417 -0
  1415. vllm/v1/core/__init__.py +0 -0
  1416. vllm/v1/core/block_pool.py +428 -0
  1417. vllm/v1/core/encoder_cache_manager.py +343 -0
  1418. vllm/v1/core/kv_cache_coordinator.py +480 -0
  1419. vllm/v1/core/kv_cache_manager.py +420 -0
  1420. vllm/v1/core/kv_cache_utils.py +1340 -0
  1421. vllm/v1/core/sched/__init__.py +0 -0
  1422. vllm/v1/core/sched/async_scheduler.py +62 -0
  1423. vllm/v1/core/sched/interface.py +181 -0
  1424. vllm/v1/core/sched/output.py +202 -0
  1425. vllm/v1/core/sched/request_queue.py +221 -0
  1426. vllm/v1/core/sched/scheduler.py +1617 -0
  1427. vllm/v1/core/sched/utils.py +72 -0
  1428. vllm/v1/core/single_type_kv_cache_manager.py +736 -0
  1429. vllm/v1/cudagraph_dispatcher.py +148 -0
  1430. vllm/v1/engine/__init__.py +206 -0
  1431. vllm/v1/engine/async_llm.py +797 -0
  1432. vllm/v1/engine/coordinator.py +377 -0
  1433. vllm/v1/engine/core.py +1420 -0
  1434. vllm/v1/engine/core_client.py +1400 -0
  1435. vllm/v1/engine/detokenizer.py +351 -0
  1436. vllm/v1/engine/exceptions.py +18 -0
  1437. vllm/v1/engine/llm_engine.py +408 -0
  1438. vllm/v1/engine/logprobs.py +182 -0
  1439. vllm/v1/engine/output_processor.py +642 -0
  1440. vllm/v1/engine/parallel_sampling.py +145 -0
  1441. vllm/v1/engine/processor.py +621 -0
  1442. vllm/v1/engine/utils.py +1072 -0
  1443. vllm/v1/executor/__init__.py +6 -0
  1444. vllm/v1/executor/abstract.py +352 -0
  1445. vllm/v1/executor/multiproc_executor.py +877 -0
  1446. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1447. vllm/v1/executor/ray_executor.py +626 -0
  1448. vllm/v1/executor/ray_utils.py +465 -0
  1449. vllm/v1/executor/uniproc_executor.py +183 -0
  1450. vllm/v1/kv_cache_interface.py +403 -0
  1451. vllm/v1/kv_offload/__init__.py +0 -0
  1452. vllm/v1/kv_offload/abstract.py +161 -0
  1453. vllm/v1/kv_offload/arc_manager.py +237 -0
  1454. vllm/v1/kv_offload/backend.py +97 -0
  1455. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1456. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1457. vllm/v1/kv_offload/cpu.py +93 -0
  1458. vllm/v1/kv_offload/factory.py +56 -0
  1459. vllm/v1/kv_offload/lru_manager.py +139 -0
  1460. vllm/v1/kv_offload/mediums.py +39 -0
  1461. vllm/v1/kv_offload/spec.py +62 -0
  1462. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1463. vllm/v1/kv_offload/worker/cpu_gpu.py +185 -0
  1464. vllm/v1/kv_offload/worker/worker.py +144 -0
  1465. vllm/v1/metrics/__init__.py +0 -0
  1466. vllm/v1/metrics/loggers.py +1238 -0
  1467. vllm/v1/metrics/prometheus.py +82 -0
  1468. vllm/v1/metrics/ray_wrappers.py +169 -0
  1469. vllm/v1/metrics/reader.py +257 -0
  1470. vllm/v1/metrics/stats.py +420 -0
  1471. vllm/v1/outputs.py +249 -0
  1472. vllm/v1/pool/__init__.py +0 -0
  1473. vllm/v1/pool/metadata.py +82 -0
  1474. vllm/v1/request.py +259 -0
  1475. vllm/v1/sample/__init__.py +0 -0
  1476. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1477. vllm/v1/sample/logits_processor/builtin.py +274 -0
  1478. vllm/v1/sample/logits_processor/interface.py +106 -0
  1479. vllm/v1/sample/logits_processor/state.py +165 -0
  1480. vllm/v1/sample/metadata.py +44 -0
  1481. vllm/v1/sample/ops/__init__.py +0 -0
  1482. vllm/v1/sample/ops/bad_words.py +52 -0
  1483. vllm/v1/sample/ops/logprobs.py +25 -0
  1484. vllm/v1/sample/ops/penalties.py +57 -0
  1485. vllm/v1/sample/ops/topk_topp_sampler.py +290 -0
  1486. vllm/v1/sample/rejection_sampler.py +793 -0
  1487. vllm/v1/sample/sampler.py +316 -0
  1488. vllm/v1/sample/tpu/__init__.py +0 -0
  1489. vllm/v1/sample/tpu/metadata.py +120 -0
  1490. vllm/v1/sample/tpu/sampler.py +215 -0
  1491. vllm/v1/serial_utils.py +532 -0
  1492. vllm/v1/spec_decode/__init__.py +0 -0
  1493. vllm/v1/spec_decode/eagle.py +1225 -0
  1494. vllm/v1/spec_decode/medusa.py +73 -0
  1495. vllm/v1/spec_decode/metadata.py +66 -0
  1496. vllm/v1/spec_decode/metrics.py +224 -0
  1497. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1498. vllm/v1/spec_decode/suffix_decoding.py +103 -0
  1499. vllm/v1/spec_decode/utils.py +16 -0
  1500. vllm/v1/structured_output/__init__.py +338 -0
  1501. vllm/v1/structured_output/backend_guidance.py +265 -0
  1502. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1503. vllm/v1/structured_output/backend_outlines.py +324 -0
  1504. vllm/v1/structured_output/backend_types.py +136 -0
  1505. vllm/v1/structured_output/backend_xgrammar.py +362 -0
  1506. vllm/v1/structured_output/request.py +94 -0
  1507. vllm/v1/structured_output/utils.py +469 -0
  1508. vllm/v1/utils.py +414 -0
  1509. vllm/v1/worker/__init__.py +0 -0
  1510. vllm/v1/worker/block_table.py +327 -0
  1511. vllm/v1/worker/cpu_model_runner.py +122 -0
  1512. vllm/v1/worker/cpu_worker.py +206 -0
  1513. vllm/v1/worker/dp_utils.py +230 -0
  1514. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1515. vllm/v1/worker/gpu_input_batch.py +975 -0
  1516. vllm/v1/worker/gpu_model_runner.py +5102 -0
  1517. vllm/v1/worker/gpu_ubatch_wrapper.py +466 -0
  1518. vllm/v1/worker/gpu_worker.py +894 -0
  1519. vllm/v1/worker/kv_connector_model_runner_mixin.py +144 -0
  1520. vllm/v1/worker/lora_model_runner_mixin.py +213 -0
  1521. vllm/v1/worker/tpu_input_batch.py +593 -0
  1522. vllm/v1/worker/tpu_model_runner.py +2173 -0
  1523. vllm/v1/worker/tpu_worker.py +355 -0
  1524. vllm/v1/worker/ubatch_utils.py +73 -0
  1525. vllm/v1/worker/ubatching.py +231 -0
  1526. vllm/v1/worker/utils.py +366 -0
  1527. vllm/v1/worker/worker_base.py +375 -0
  1528. vllm/v1/worker/xpu_model_runner.py +55 -0
  1529. vllm/v1/worker/xpu_worker.py +189 -0
  1530. vllm/version.py +39 -0
  1531. vllm/vllm_flash_attn/.gitkeep +0 -0
  1532. vllm_cpu_amxbf16-0.11.2.post2.dist-info/METADATA +345 -0
  1533. vllm_cpu_amxbf16-0.11.2.post2.dist-info/RECORD +1536 -0
  1534. vllm_cpu_amxbf16-0.11.2.post2.dist-info/WHEEL +5 -0
  1535. vllm_cpu_amxbf16-0.11.2.post2.dist-info/entry_points.txt +5 -0
  1536. vllm_cpu_amxbf16-0.11.2.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2440 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import contextlib
4
+ import copy
5
+ import logging
6
+ import math
7
+ import os
8
+ import queue
9
+ import threading
10
+ import time
11
+ import uuid
12
+ from collections import defaultdict
13
+ from collections.abc import Iterator
14
+ from concurrent.futures import Future, ThreadPoolExecutor
15
+ from dataclasses import dataclass
16
+ from typing import TYPE_CHECKING, Any, Optional
17
+
18
+ import msgspec
19
+ import numpy as np
20
+ import torch
21
+ import zmq
22
+
23
+ from vllm import envs
24
+ from vllm.attention import AttentionBackend
25
+ from vllm.attention.backends.registry import AttentionBackendEnum
26
+ from vllm.attention.selector import get_attn_backend
27
+ from vllm.config import VllmConfig
28
+ from vllm.distributed.kv_transfer.kv_connector.v1.base import (
29
+ CopyBlocksOp,
30
+ KVConnectorBase_V1,
31
+ KVConnectorHandshakeMetadata,
32
+ KVConnectorMetadata,
33
+ KVConnectorRole,
34
+ )
35
+ from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
36
+ KVConnectorPromMetrics,
37
+ KVConnectorStats,
38
+ PromMetric,
39
+ PromMetricT,
40
+ )
41
+ from vllm.distributed.parallel_state import (
42
+ get_tensor_model_parallel_rank,
43
+ get_tensor_model_parallel_world_size,
44
+ get_tp_group,
45
+ )
46
+ from vllm.forward_context import ForwardContext
47
+ from vllm.logger import init_logger
48
+ from vllm.platforms import current_platform
49
+ from vllm.utils.network_utils import make_zmq_path, make_zmq_socket
50
+ from vllm.v1.attention.backends.utils import get_kv_cache_layout
51
+ from vllm.v1.core.sched.output import SchedulerOutput
52
+ from vllm.v1.worker.block_table import BlockTable
53
+
54
+ if TYPE_CHECKING:
55
+ from vllm.attention.backends.abstract import AttentionMetadata
56
+ from vllm.v1.core.kv_cache_manager import KVCacheBlocks
57
+ from vllm.v1.kv_cache_interface import KVCacheConfig
58
+ from vllm.v1.request import Request
59
+
60
+ Transfer = tuple[int, float] # (xfer_handle, start_time)
61
+ EngineId = str
62
+ ReqId = str
63
+
64
+ GET_META_MSG = b"get_meta_msg"
65
+
66
+ logger = init_logger(__name__)
67
+
68
+ # Lazy import nixl_wrapper to avoid loading nixl_bindings if nixl is not used
69
+ try:
70
+ from nixl._api import nixl_agent as NixlWrapper
71
+ from nixl._bindings import nixlXferTelemetry
72
+
73
+ logger.info("NIXL is available")
74
+ except ImportError:
75
+ logger.warning("NIXL is not available")
76
+ NixlWrapper = None
77
+ nixlXferTelemetry = None
78
+
79
+
80
+ try:
81
+ from nixl._api import nixl_agent_config
82
+ except ImportError:
83
+ nixl_agent_config = None
84
+ logger.warning("NIXL agent config is not available")
85
+
86
+ # Supported platforms and types of kv transfer buffer.
87
+ # {device: tuple of supported kv buffer types}
88
+ _NIXL_SUPPORTED_DEVICE = {
89
+ "cuda": (
90
+ "cuda",
91
+ "cpu",
92
+ ),
93
+ "tpu": ("cpu",),
94
+ "xpu": ("cpu",),
95
+ "cpu": ("cpu",),
96
+ }
97
+ # support for oot platform by providing mapping in current_platform
98
+ _NIXL_SUPPORTED_DEVICE.update(current_platform.get_nixl_supported_devices())
99
+
100
+
101
+ @dataclass
102
+ class NixlAgentMetadata(KVConnectorHandshakeMetadata):
103
+ engine_id: str
104
+ agent_metadata: bytes
105
+ kv_caches_base_addr: list[int]
106
+ device_id: int
107
+ num_blocks: int
108
+ block_lens: list[int]
109
+ attn_backend_name: str
110
+ kv_cache_layout: str
111
+ block_size: int
112
+
113
+
114
+ @dataclass
115
+ class ReqMeta:
116
+ local_block_ids: list[int]
117
+ # To be used when logical block size does not match the kernel block size
118
+ local_physical_block_ids: list[int]
119
+ remote_block_ids: list[int]
120
+ remote_host: str
121
+ remote_port: int
122
+ remote_engine_id: str
123
+ tp_size: int
124
+
125
+
126
+ class NixlConnectorMetadata(KVConnectorMetadata):
127
+ def __init__(self):
128
+ self.reqs_to_recv: dict[ReqId, ReqMeta] = {}
129
+ self.reqs_to_save: dict[ReqId, ReqMeta] = {}
130
+ self.reqs_to_send: dict[ReqId, float] = {}
131
+ self.reqs_in_batch: set[ReqId] = set()
132
+ self.reqs_not_processed: set[ReqId] = set()
133
+
134
+ def add_new_req(
135
+ self,
136
+ request_id: ReqId,
137
+ local_block_ids: list[int],
138
+ kv_transfer_params: dict[str, Any],
139
+ load_remote_cache: bool = True,
140
+ save_to_host: bool = False,
141
+ ):
142
+ # save and load are mutually exclusive
143
+ assert load_remote_cache ^ save_to_host
144
+ _req = ReqMeta(
145
+ local_block_ids=local_block_ids,
146
+ local_physical_block_ids=local_block_ids,
147
+ remote_block_ids=kv_transfer_params["remote_block_ids"],
148
+ remote_engine_id=kv_transfer_params["remote_engine_id"],
149
+ remote_host=kv_transfer_params["remote_host"],
150
+ remote_port=kv_transfer_params["remote_port"],
151
+ # P workers don't need to receive tp_size from proxy here.
152
+ tp_size=kv_transfer_params.get("tp_size", 1),
153
+ )
154
+ if save_to_host:
155
+ self.reqs_to_save[request_id] = _req
156
+ if load_remote_cache:
157
+ self.reqs_to_recv[request_id] = _req
158
+
159
+
160
+ class NixlConnector(KVConnectorBase_V1):
161
+ def __init__(
162
+ self,
163
+ vllm_config: VllmConfig,
164
+ role: KVConnectorRole,
165
+ kv_cache_config: Optional["KVCacheConfig"] = None,
166
+ ):
167
+ super().__init__(vllm_config, role, kv_cache_config)
168
+
169
+ assert vllm_config.kv_transfer_config is not None
170
+ assert vllm_config.kv_transfer_config.engine_id is not None
171
+ self.engine_id: EngineId = vllm_config.kv_transfer_config.engine_id
172
+
173
+ if role == KVConnectorRole.SCHEDULER:
174
+ self.connector_scheduler: NixlConnectorScheduler | None = (
175
+ NixlConnectorScheduler(vllm_config, self.engine_id)
176
+ )
177
+ self.connector_worker: NixlConnectorWorker | None = None
178
+ elif role == KVConnectorRole.WORKER:
179
+ self.connector_scheduler = None
180
+ self.connector_worker = NixlConnectorWorker(vllm_config, self.engine_id)
181
+
182
+ ############################################################
183
+ # Class Methods
184
+ ############################################################
185
+ @classmethod
186
+ def get_required_kvcache_layout(cls, vllm_config: VllmConfig):
187
+ if vllm_config.model_config is None:
188
+ logger.warning_once(
189
+ "Unable to detect current VLLM config. "
190
+ "Fallback to default kv cache layout."
191
+ )
192
+ return None
193
+ use_mla = vllm_config.model_config.use_mla
194
+ if use_mla:
195
+ # return None when we have mla
196
+ # as the layout should not matter in that case,
197
+ # which fallback to the default behavior.
198
+ return None
199
+ logger.info_once(
200
+ "NixlConnector setting KV cache layout to HND for better xfer performance."
201
+ )
202
+ return "HND"
203
+
204
+ ############################################################
205
+ # Scheduler Side Methods
206
+ ############################################################
207
+
208
+ def get_num_new_matched_tokens(
209
+ self, request: "Request", num_computed_tokens: int
210
+ ) -> tuple[int | None, bool]:
211
+ assert self.connector_scheduler is not None
212
+ return self.connector_scheduler.get_num_new_matched_tokens(
213
+ request, num_computed_tokens
214
+ )
215
+
216
+ def update_state_after_alloc(
217
+ self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
218
+ ):
219
+ assert self.connector_scheduler is not None
220
+ return self.connector_scheduler.update_state_after_alloc(
221
+ request, blocks, num_external_tokens
222
+ )
223
+
224
+ def build_connector_meta(
225
+ self,
226
+ scheduler_output: SchedulerOutput,
227
+ ) -> KVConnectorMetadata:
228
+ assert self.connector_scheduler is not None
229
+ return self.connector_scheduler.build_connector_meta(scheduler_output)
230
+
231
+ def request_finished(
232
+ self,
233
+ request: "Request",
234
+ block_ids: list[int],
235
+ ) -> tuple[bool, dict[str, Any] | None]:
236
+ assert self.connector_scheduler is not None
237
+ return self.connector_scheduler.request_finished(request, block_ids)
238
+
239
+ def set_xfer_handshake_metadata(
240
+ self, metadata: dict[int, KVConnectorHandshakeMetadata]
241
+ ) -> None:
242
+ """
243
+ Set the KV connector handshake metadata for this connector.
244
+
245
+ Args:
246
+ metadata (dict): the handshake metadata to set.
247
+ """
248
+ assert self.connector_scheduler is not None
249
+ self.connector_scheduler.set_xfer_handshake_metadata(metadata)
250
+
251
+ ############################################################
252
+ # Worker Side Methods
253
+ ############################################################
254
+ def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
255
+ assert self.connector_worker is not None
256
+ self.connector_worker.register_kv_caches(kv_caches)
257
+
258
+ def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
259
+ assert self.connector_worker is not None
260
+ self.connector_worker.set_host_xfer_buffer_ops(copy_operation)
261
+
262
+ def get_finished(self, finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
263
+ """Get the finished recving and sending requests."""
264
+ assert self.connector_worker is not None
265
+ return self.connector_worker.get_finished()
266
+
267
+ def get_block_ids_with_load_errors(self) -> set[int]:
268
+ """Get block IDs that failed to load via NIXL."""
269
+ assert self.connector_worker is not None
270
+ return self.connector_worker.get_block_ids_with_load_errors()
271
+
272
+ def get_kv_connector_stats(self) -> KVConnectorStats | None:
273
+ if self.connector_worker is None:
274
+ return None
275
+ return self.connector_worker.get_kv_connector_stats()
276
+
277
+ @classmethod
278
+ def build_kv_connector_stats(
279
+ cls, data: dict[str, Any] | None = None
280
+ ) -> KVConnectorStats | None:
281
+ return (
282
+ NixlKVConnectorStats(data=data)
283
+ if data is not None
284
+ else NixlKVConnectorStats()
285
+ )
286
+
287
+ @classmethod
288
+ def build_prom_metrics(
289
+ cls,
290
+ vllm_config: VllmConfig,
291
+ metric_types: dict[type[PromMetric], type[PromMetricT]],
292
+ labelnames: list[str],
293
+ per_engine_labelvalues: dict[int, list[str]],
294
+ ) -> KVConnectorPromMetrics:
295
+ return NixlPromMetrics(
296
+ vllm_config, metric_types, labelnames, per_engine_labelvalues
297
+ )
298
+
299
+ def start_load_kv(self, forward_context: "ForwardContext", **kwargs) -> None:
300
+ assert self.connector_worker is not None
301
+ assert isinstance(self._connector_metadata, NixlConnectorMetadata)
302
+ self.connector_worker.start_load_kv(self._connector_metadata)
303
+
304
+ def wait_for_layer_load(self, layer_name: str) -> None:
305
+ """NixlConnector does not do layerwise saving."""
306
+ pass
307
+
308
+ def save_kv_layer(
309
+ self,
310
+ layer_name: str,
311
+ kv_layer: torch.Tensor,
312
+ attn_metadata: "AttentionMetadata",
313
+ **kwargs,
314
+ ) -> None:
315
+ """NixlConnector does not save explicitly."""
316
+ pass
317
+
318
+ def wait_for_save(self):
319
+ assert self.connector_worker is not None
320
+ assert isinstance(self._connector_metadata, NixlConnectorMetadata)
321
+ if self.connector_worker.use_host_buffer and self.connector_worker.copy_blocks:
322
+ self.connector_worker.save_kv_to_host(self._connector_metadata)
323
+
324
+ def shutdown(self):
325
+ if self.connector_worker is not None:
326
+ self.connector_worker.shutdown()
327
+ if self.connector_scheduler is not None:
328
+ self.connector_scheduler.shutdown()
329
+
330
+ def get_handshake_metadata(self) -> KVConnectorHandshakeMetadata | None:
331
+ """
332
+ Get the KVConnector handshake metadata for this connector.
333
+ This metadata is used for out-of-band connector handshake
334
+ between P/D workers.
335
+
336
+ Returns:
337
+ KVConnectorHandshakeMetadata: the handshake metadata.
338
+ None if no handshake metadata is available.
339
+ """
340
+ assert self.connector_worker is not None
341
+ return self.connector_worker.xfer_handshake_metadata
342
+
343
+
344
+ class NixlConnectorScheduler:
345
+ """Implementation of Scheduler side methods"""
346
+
347
+ def __init__(self, vllm_config: VllmConfig, engine_id: str):
348
+ self.vllm_config = vllm_config
349
+ self.block_size = vllm_config.cache_config.block_size
350
+ self.engine_id: EngineId = engine_id
351
+ self.side_channel_host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
352
+ self.side_channel_port = (
353
+ envs.VLLM_NIXL_SIDE_CHANNEL_PORT
354
+ + vllm_config.parallel_config.data_parallel_rank
355
+ )
356
+ assert vllm_config.kv_transfer_config is not None
357
+ if current_platform.device_type == "cpu":
358
+ self.use_host_buffer = False
359
+ else:
360
+ self.use_host_buffer = (
361
+ vllm_config.kv_transfer_config.kv_buffer_device == "cpu"
362
+ )
363
+
364
+ logger.info("Initializing NIXL Scheduler %s", engine_id)
365
+
366
+ # Background thread for handling new handshake requests.
367
+ self._nixl_handshake_listener_t: threading.Thread | None = None
368
+ self._encoded_xfer_handshake_metadata: dict[int, Any] = {}
369
+ self._stop_event = threading.Event()
370
+
371
+ # Requests that need to start recv/send.
372
+ # New requests are added by update_state_after_alloc in
373
+ # the scheduler. Used to make metadata passed to Worker.
374
+ self._reqs_need_recv: dict[ReqId, tuple[Request, list[int]]] = {}
375
+ self._reqs_need_save: dict[ReqId, tuple[Request, list[int]]] = {}
376
+ # Reqs to send and their expiration time
377
+ self._reqs_need_send: dict[ReqId, float] = {}
378
+ self._reqs_in_batch: set[ReqId] = set()
379
+ # Reqs to remove from processed set because they're not to send after
380
+ # remote prefill or aborted.
381
+ self._reqs_not_processed: set[ReqId] = set()
382
+
383
+ def shutdown(self):
384
+ self._stop_event.set()
385
+ if self._nixl_handshake_listener_t is not None:
386
+ self._nixl_handshake_listener_t.join()
387
+ self._nixl_handshake_listener_t = None
388
+
389
+ def set_xfer_handshake_metadata(
390
+ self, metadata: dict[int, KVConnectorHandshakeMetadata]
391
+ ) -> None:
392
+ """
393
+ Set the KV connector handshake metadata for this connector.
394
+
395
+ Args:
396
+ metadata (dict): the handshake metadata to set.
397
+ """
398
+ encoded_data: dict[int, bytes] = {}
399
+ encoder = msgspec.msgpack.Encoder()
400
+ for tp_rank, rank_metadata in metadata.items():
401
+ if not isinstance(rank_metadata, NixlAgentMetadata):
402
+ raise ValueError(
403
+ "NixlConnectorScheduler expects NixlAgentMetadata for "
404
+ "handshake metadata."
405
+ )
406
+ encoded_data[tp_rank] = encoder.encode(rank_metadata)
407
+ logger.debug(
408
+ "Tp rank %d: encoded NixlAgentMetadata size: %s bytes",
409
+ tp_rank,
410
+ str(len(encoded_data[tp_rank])),
411
+ )
412
+ self._encoded_xfer_handshake_metadata = encoded_data
413
+
414
+ # Only start the listener when we have metadata to serve.
415
+ if self._nixl_handshake_listener_t is None:
416
+ ready_event = threading.Event()
417
+ self._nixl_handshake_listener_t = threading.Thread(
418
+ target=self._nixl_handshake_listener,
419
+ args=(
420
+ encoded_data,
421
+ ready_event,
422
+ self._stop_event,
423
+ self.side_channel_port,
424
+ ),
425
+ daemon=True,
426
+ name="nixl_handshake_listener",
427
+ )
428
+ self._nixl_handshake_listener_t.start()
429
+ ready_event.wait() # Wait for listener ZMQ socket to be ready.
430
+
431
+ @staticmethod
432
+ def _nixl_handshake_listener(
433
+ encoded_data: dict[int, Any],
434
+ ready_event: threading.Event,
435
+ stop_event: threading.Event,
436
+ port: int,
437
+ ):
438
+ """Background thread for getting new NIXL handshakes."""
439
+ # NOTE(rob): this is a simple implementation. We will move
440
+ # to a better approach via HTTP endpoint soon.
441
+
442
+ # Listen for new requests for metadata.
443
+ host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
444
+ path = make_zmq_path("tcp", host, port)
445
+ logger.debug("Starting listening on path: %s", path)
446
+ with zmq_ctx(zmq.ROUTER, path) as sock:
447
+ sock.setsockopt(zmq.RCVTIMEO, 1000)
448
+ ready_event.set()
449
+ while True:
450
+ try:
451
+ identity, _, msg = sock.recv_multipart()
452
+ except zmq.Again:
453
+ if stop_event.is_set():
454
+ break
455
+ continue
456
+ # Decode the message which contains (GET_META_MSG, rank)
457
+ msg, target_tp_rank = msgspec.msgpack.decode(msg)
458
+ logger.debug(
459
+ "Received message for tp rank %s",
460
+ target_tp_rank,
461
+ )
462
+ if msg != GET_META_MSG:
463
+ logger.warning("Connection listener got unexpected message %s", msg)
464
+ sock.send_multipart((identity, b"", encoded_data[target_tp_rank]))
465
+
466
+ def get_num_new_matched_tokens(
467
+ self, request: "Request", num_computed_tokens: int
468
+ ) -> tuple[int, bool]:
469
+ """
470
+ For remote prefill, pull all prompt blocks from remote
471
+ asynchronously relative to engine execution.
472
+
473
+ Args:
474
+ request (Request): the request object.
475
+ num_computed_tokens (int): the number of locally
476
+ computed tokens for this request
477
+ Returns:
478
+ * the number of tokens that can be loaded from the
479
+ external KV cache beyond what is already computed.
480
+ * true if the external KV cache tokens will be loaded
481
+ asynchronously (between scheduler steps).
482
+ """
483
+
484
+ params = request.kv_transfer_params
485
+ logger.debug(
486
+ "NIXLConnector get_num_new_matched_tokens: "
487
+ "num_computed_tokens=%s, kv_transfer_params=%s",
488
+ num_computed_tokens,
489
+ params,
490
+ )
491
+
492
+ if params is not None and params.get("do_remote_prefill"):
493
+ # Remote prefill: get all prompt blocks from remote.
494
+ token_ids = request.prompt_token_ids or []
495
+ count = len(token_ids) - num_computed_tokens
496
+ if count > 0:
497
+ return count, True
498
+
499
+ # No remote prefill for this request.
500
+ return 0, False
501
+
502
+ def update_state_after_alloc(
503
+ self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
504
+ ):
505
+ params = request.kv_transfer_params
506
+ logger.debug(
507
+ "NIXLConnector update_state_after_alloc: "
508
+ "num_external_tokens=%s, kv_transfer_params=%s",
509
+ num_external_tokens,
510
+ params,
511
+ )
512
+
513
+ if not params:
514
+ return
515
+
516
+ if params.get("do_remote_decode"):
517
+ self._reqs_in_batch.add(request.request_id)
518
+ if self.use_host_buffer and params.get("do_remote_decode"):
519
+ # NOTE: when accelerator is not directly supported by Nixl,
520
+ # prefilled blocks need to be saved to host memory before transfer.
521
+
522
+ # save all blocks
523
+ block_ids = blocks.get_block_ids()[0]
524
+ # TODO: skip the blocks that are already in the host xfer buffer.
525
+ # Currently, the host xfer buffer block is 1-to-1 mapped to device
526
+ # kv blocks, so host blocks won't be flushed as long as its device
527
+ # block is not overwritten; and it will be safe to skip saving them
528
+ # to host xfer buffer.
529
+ if block_ids:
530
+ self._reqs_need_save[request.request_id] = (request, block_ids)
531
+ elif params.get("do_remote_prefill"):
532
+ if params.get("remote_block_ids"):
533
+ if all(
534
+ p in params
535
+ for p in ("remote_engine_id", "remote_host", "remote_port")
536
+ ):
537
+ # If remote_blocks and num_external_tokens = 0, we have
538
+ # a full prefix cache hit on the D worker. We need to call
539
+ # send_notif in _read_blocks to free the memory on the P.
540
+ local_block_ids = (
541
+ blocks.get_unhashed_block_ids()
542
+ if num_external_tokens > 0
543
+ else []
544
+ )
545
+ # Get unhashed blocks to pull from remote.
546
+ self._reqs_need_recv[request.request_id] = (
547
+ request,
548
+ local_block_ids,
549
+ )
550
+
551
+ else:
552
+ logger.warning(
553
+ "Got invalid KVTransferParams: %s. This "
554
+ "request will not utilize KVTransfer",
555
+ params,
556
+ )
557
+ else:
558
+ assert num_external_tokens == 0
559
+ # Only trigger 1 KV transfer per request.
560
+ params["do_remote_prefill"] = False
561
+
562
+ def build_connector_meta(
563
+ self,
564
+ scheduler_output: SchedulerOutput,
565
+ ) -> KVConnectorMetadata:
566
+ meta = NixlConnectorMetadata()
567
+
568
+ # Loop through scheduled reqs and convert to ReqMeta.
569
+ for req_id, (req, block_ids) in self._reqs_need_recv.items():
570
+ assert req.kv_transfer_params is not None
571
+ meta.add_new_req(
572
+ request_id=req_id,
573
+ local_block_ids=block_ids,
574
+ kv_transfer_params=req.kv_transfer_params,
575
+ load_remote_cache=True,
576
+ save_to_host=False,
577
+ )
578
+
579
+ for req_id, (req, block_ids) in self._reqs_need_save.items():
580
+ assert req.kv_transfer_params is not None
581
+ meta.add_new_req(
582
+ request_id=req_id,
583
+ local_block_ids=block_ids,
584
+ kv_transfer_params=req.kv_transfer_params,
585
+ load_remote_cache=False,
586
+ save_to_host=True,
587
+ )
588
+
589
+ meta.reqs_to_send = self._reqs_need_send
590
+ meta.reqs_in_batch = self._reqs_in_batch
591
+ meta.reqs_not_processed = self._reqs_not_processed
592
+
593
+ # Clear the list once workers start the transfers
594
+ self._reqs_need_recv.clear()
595
+ self._reqs_need_save.clear()
596
+ self._reqs_in_batch = set()
597
+ self._reqs_not_processed = set()
598
+ self._reqs_need_send = {}
599
+
600
+ return meta
601
+
602
+ def request_finished(
603
+ self,
604
+ request: "Request",
605
+ block_ids: list[int],
606
+ ) -> tuple[bool, dict[str, Any] | None]:
607
+ """
608
+ Once a request is finished, determine whether request blocks
609
+ should be freed now or will be sent asynchronously and freed later.
610
+ """
611
+ from vllm.v1.request import RequestStatus
612
+
613
+ params = request.kv_transfer_params
614
+ logger.debug(
615
+ "NIXLConnector request_finished(%s), request_status=%s, "
616
+ "kv_transfer_params=%s",
617
+ request.request_id,
618
+ request.status,
619
+ params,
620
+ )
621
+ if not params:
622
+ return False, None
623
+
624
+ if params.get("do_remote_prefill"):
625
+ # If do_remote_prefill is still True when the request is finished,
626
+ # update_state_after_alloc must not have been called (the request
627
+ # must have been aborted before it was scheduled).
628
+ # To avoid stranding the prefill blocks in the prefill instance,
629
+ # we must add empty block_ids to _reqs_need_recv so that our
630
+ # worker side will notify and free blocks in the prefill instance.
631
+ self._reqs_need_recv[request.request_id] = (request, [])
632
+ params["do_remote_prefill"] = False
633
+ return False, None
634
+
635
+ if not params.get("do_remote_decode"):
636
+ return False, None
637
+ if request.status != RequestStatus.FINISHED_LENGTH_CAPPED:
638
+ # Also include the case of a P/D Prefill request with immediate
639
+ # block free (eg abort). Stop tracking this request.
640
+ self._reqs_not_processed.add(request.request_id)
641
+ return False, None
642
+
643
+ # TODO: check whether block_ids actually ever be 0. If not we could
644
+ # remove the conditional below
645
+ delay_free_blocks = len(block_ids) > 0
646
+
647
+ if delay_free_blocks:
648
+ # Prefill request on remote. It will be read from D upon completion
649
+ logger.debug(
650
+ "NIXLConnector request_finished(%s) waiting for %d seconds "
651
+ "for remote decode to fetch blocks",
652
+ request.request_id,
653
+ envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
654
+ )
655
+ self._reqs_need_send[request.request_id] = (
656
+ time.perf_counter() + envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT
657
+ )
658
+
659
+ return delay_free_blocks, dict(
660
+ do_remote_prefill=True,
661
+ do_remote_decode=False,
662
+ remote_block_ids=block_ids,
663
+ remote_engine_id=self.engine_id,
664
+ remote_host=self.side_channel_host,
665
+ remote_port=self.side_channel_port,
666
+ tp_size=self.vllm_config.parallel_config.tensor_parallel_size,
667
+ )
668
+
669
+
670
+ class NixlConnectorWorker:
671
+ """Implementation of Worker side methods"""
672
+
673
+ @dataclass
674
+ class TpKVTopology:
675
+ """
676
+ Helper class for tensor parallel and KV topology information for
677
+ mapping between local and remote TP workers.
678
+ """
679
+
680
+ tp_size: int
681
+ tp_rank: int
682
+ remote_tp_size: dict[EngineId, int]
683
+ is_mla: bool
684
+ total_num_kv_heads: int
685
+ attn_backend: type[AttentionBackend]
686
+
687
+ def __post_init__(self):
688
+ # Figure out whether the first dimension of the cache is K/V
689
+ # or num_blocks. This is used to register the memory regions correctly.
690
+ kv_cache_shape = self.attn_backend.get_kv_cache_shape(
691
+ num_blocks=1, block_size=16, num_kv_heads=1, head_size=1
692
+ )
693
+ # Non-MLA backends caches have 5 dims [2, num_blocks, H,N,D],
694
+ # we just mock num_blocks to 1 for the dimension check below.
695
+ self._is_kv_layout_blocks_first = (
696
+ len(kv_cache_shape) == 5 and kv_cache_shape[0] == 1
697
+ )
698
+
699
+ attn_backend = AttentionBackendEnum[self.attn_backend.get_name()]
700
+ self._use_pallas = attn_backend == AttentionBackendEnum.PALLAS
701
+
702
+ @property
703
+ def is_kv_layout_blocks_first(self) -> bool:
704
+ return self._is_kv_layout_blocks_first
705
+
706
+ @property
707
+ def split_k_and_v(self) -> bool:
708
+ # Whether to register regions for K and V separately (when present).
709
+ return not (
710
+ self.is_mla or self._use_pallas or self.is_kv_layout_blocks_first
711
+ )
712
+
713
+ block_size: int
714
+ remote_block_size: dict[EngineId, int]
715
+
716
+ def tp_ratio(
717
+ self,
718
+ remote_tp_size: int,
719
+ ) -> int:
720
+ """
721
+ Calculate the tensor parallel ratio between local and remote TP.
722
+ We can think of it as the number of local TP workers-per-remote TP
723
+ workers. Local workers will read from the same remote TP worker in
724
+ groups of size `tp_ratio`.
725
+ """
726
+ assert self.tp_size % remote_tp_size == 0, (
727
+ f"Local tensor parallel size {self.tp_size} is not divisible "
728
+ f"by remote tensor parallel size {remote_tp_size}."
729
+ )
730
+ return self.tp_size // remote_tp_size
731
+
732
+ def block_size_ratio(
733
+ self,
734
+ remote_block_size: int,
735
+ ) -> float:
736
+ """
737
+ Calculate the block size ratio between local and remote TP.
738
+ """
739
+ assert self.block_size % remote_block_size == 0, (
740
+ f"Local block size {self.block_size} is not divisible "
741
+ f"by remote block size {remote_block_size} or vice versa."
742
+ )
743
+ return self.block_size // remote_block_size
744
+
745
+ def tp_ratio_from_engine_id(
746
+ self,
747
+ remote_engine_id: EngineId,
748
+ ) -> int:
749
+ remote_tp_size = self.remote_tp_size[remote_engine_id]
750
+ return self.tp_ratio(remote_tp_size)
751
+
752
+ def block_size_ratio_from_engine_id(
753
+ self,
754
+ remote_engine_id: EngineId,
755
+ ) -> float:
756
+ remote_block_size = self.remote_block_size[remote_engine_id]
757
+ return self.block_size_ratio(remote_block_size)
758
+
759
+ def is_kv_replicated(self, engine_id: EngineId) -> bool:
760
+ """
761
+ Whether the KV cache is replicated across TP workers due to the
762
+ number of TP workers being greater than the number of KV heads.
763
+ """
764
+ tp_size = self.remote_tp_size[engine_id]
765
+ return tp_size // self.total_num_kv_heads >= 1
766
+
767
+ def replicates_kv_cache(self, remote_engine_id: EngineId) -> bool:
768
+ # MLA is always replicated as the hidden dim can't be split.
769
+ return self.is_mla or self.is_kv_replicated(remote_engine_id)
770
+
771
+ def get_target_remote_rank(
772
+ self,
773
+ remote_tp_size: int,
774
+ ) -> int:
775
+ """
776
+ Get the remote TP rank (on P) that the current local TP rank
777
+ (on D) will read from.
778
+ """
779
+ tp_ratio = self.tp_ratio(remote_tp_size)
780
+ return self.tp_rank // tp_ratio
781
+
782
+ def get_target_remote_rank_from_engine_id(
783
+ self,
784
+ remote_engine_id: EngineId,
785
+ ) -> int:
786
+ remote_tp_size = self.remote_tp_size[remote_engine_id]
787
+ return self.get_target_remote_rank(remote_tp_size)
788
+
789
+ def __init__(self, vllm_config: VllmConfig, engine_id: str):
790
+ if NixlWrapper is None:
791
+ logger.error("NIXL is not available")
792
+ raise RuntimeError("NIXL is not available")
793
+ logger.info("Initializing NIXL wrapper")
794
+ logger.info("Initializing NIXL worker %s", engine_id)
795
+
796
+ # Config.
797
+ self.vllm_config = vllm_config
798
+ self.block_size = vllm_config.cache_config.block_size
799
+
800
+ if vllm_config.kv_transfer_config is None:
801
+ raise ValueError("kv_transfer_config must be set for NixlConnector")
802
+ self.kv_transfer_config = vllm_config.kv_transfer_config
803
+
804
+ self.nixl_backends = vllm_config.kv_transfer_config.get_from_extra_config(
805
+ "backends", ["UCX"]
806
+ )
807
+ # TODO temporary, once nixl allows for telemetry flag in config
808
+ # (next release), we can remove this env var.
809
+ os.environ["NIXL_TELEMETRY_ENABLE"] = "1"
810
+
811
+ # Agent.
812
+ non_ucx_backends = [b for b in self.nixl_backends if b != "UCX"]
813
+ # Configure NIXL num_threads to avoid UAR exhaustion on Mellanox NICs.
814
+ # Each UCX thread allocates UARs (doorbell pages) via DevX, and
815
+ # excessive NIXL UAR usage can exhaust NIC UAR space. This can cause
816
+ # components like NVSHMEM (used by DeepEP kernels) to fail during RDMA
817
+ # initialization with "mlx5dv_devx_alloc_uar" errors.
818
+ # Ref: https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf#page=63
819
+ num_threads = vllm_config.kv_transfer_config.get_from_extra_config(
820
+ "num_threads", 4
821
+ )
822
+ if nixl_agent_config is None:
823
+ config = None
824
+ else:
825
+ config = (
826
+ nixl_agent_config(backends=self.nixl_backends)
827
+ if len(non_ucx_backends) > 0
828
+ else nixl_agent_config(num_threads=num_threads)
829
+ )
830
+
831
+ self.nixl_wrapper = NixlWrapper(str(uuid.uuid4()), config)
832
+ # Map of engine_id -> {rank0: agent_name0, rank1: agent_name1..}.
833
+ self._remote_agents: dict[EngineId, dict[int, str]] = defaultdict(dict)
834
+
835
+ # Metadata.
836
+ self.engine_id: EngineId = engine_id
837
+ self.tp_rank = get_tensor_model_parallel_rank()
838
+ self.world_size = get_tensor_model_parallel_world_size()
839
+ self.tp_group = get_tp_group()
840
+ self.num_blocks = 0
841
+ self.enable_permute_local_kv = False
842
+
843
+ # KV Caches and nixl tracking data.
844
+ self.device_type = current_platform.device_type
845
+ self.kv_buffer_device: str = vllm_config.kv_transfer_config.kv_buffer_device
846
+ if self.device_type not in _NIXL_SUPPORTED_DEVICE:
847
+ raise RuntimeError(f"{self.device_type} is not supported.")
848
+ elif self.kv_buffer_device not in _NIXL_SUPPORTED_DEVICE[self.device_type]:
849
+ raise RuntimeError(
850
+ f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
851
+ "is not supported."
852
+ )
853
+ self.device_kv_caches: dict[str, torch.Tensor] = {}
854
+
855
+ # cpu kv buffer for xfer
856
+ # used when device memory can not be registered under nixl
857
+ self.host_xfer_buffers: dict[str, torch.Tensor] = {}
858
+ if self.device_type == "cpu":
859
+ self.use_host_buffer = False
860
+ else:
861
+ self.use_host_buffer = self.kv_buffer_device == "cpu"
862
+
863
+ # support for oot platform which can't register nixl memory
864
+ # type based on kv_buffer_device
865
+ nixl_memory_type = current_platform.get_nixl_memory_type()
866
+ if nixl_memory_type is None:
867
+ if self.kv_buffer_device == "cuda":
868
+ nixl_memory_type = "VRAM"
869
+ elif self.kv_buffer_device == "cpu":
870
+ nixl_memory_type = "DRAM"
871
+ if nixl_memory_type is None:
872
+ raise RuntimeError(
873
+ f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
874
+ "is not supported."
875
+ )
876
+ self.nixl_memory_type = nixl_memory_type
877
+
878
+ # Note: host xfer buffer ops when use_host_buffer is True
879
+ self.copy_blocks: CopyBlocksOp | None = None
880
+
881
+ # Map of engine_id -> kv_caches_base_addr. For TP case, each local
882
+ # rank will still only pull from a single remote TP worker.
883
+ self.kv_caches_base_addr: dict[EngineId, list[int]] = {}
884
+ self.device_id: int = 0
885
+
886
+ # Number of NIXL regions. Currently one region per cache
887
+ # (so 1 per layer for MLA, otherwise 2 per layer)
888
+ self.num_regions = 0
889
+ self.num_layers = 0
890
+
891
+ # nixl_prepped_dlist_handle.
892
+ self.src_xfer_side_handle: int = 0
893
+ self.src_xfer_side_handles: dict[int, int] = {}
894
+ # Map of engine_id -> nixl_prepped_dlist_handle (int)].
895
+ self.dst_xfer_side_handles: dict[EngineId, int] = {}
896
+
897
+ # Map of engine_id -> num_blocks. All ranks in the same deployment will
898
+ # have the same number of blocks.
899
+ self.dst_num_blocks: dict[EngineId, int] = {}
900
+ self._registered_descs: list[Any] = []
901
+
902
+ # In progress transfers.
903
+ # [req_id -> list[handle]]
904
+ self._recving_metadata: dict[ReqId, ReqMeta] = {}
905
+ self._recving_transfers = defaultdict[ReqId, list[Transfer]](list)
906
+ # Track the expiration time of requests that are waiting to be sent.
907
+ self._reqs_to_send: dict[ReqId, float] = {}
908
+ # Set of requests that have been part of a batch, regardless of status.
909
+ self._reqs_to_process: set[ReqId] = set()
910
+
911
+ # invalid blocks from failed NIXL operations
912
+ self._invalid_block_ids: set[int] = set()
913
+ # requests that skipped transfer (handshake or transfer failures)
914
+ self._failed_recv_reqs: set[ReqId] = set()
915
+
916
+ # Handshake metadata of this worker for NIXL transfers.
917
+ self.xfer_handshake_metadata: NixlAgentMetadata | None = None
918
+ # Background thread for initializing new NIXL handshakes.
919
+ self._handshake_initiation_executor = ThreadPoolExecutor(
920
+ # NIXL is not guaranteed to be thread-safe, limit 1 worker.
921
+ max_workers=1,
922
+ thread_name_prefix="vllm-nixl-handshake-initiator",
923
+ )
924
+ self._ready_requests = queue.Queue[tuple[ReqId, ReqMeta]]()
925
+ self._handshake_futures: dict[EngineId, Future[dict[int, str]]] = {}
926
+ # Protects _handshake_futures and _remote_agents.
927
+ self._handshake_lock = threading.RLock()
928
+
929
+ self.block_size = vllm_config.cache_config.block_size
930
+ self.model_config = vllm_config.model_config
931
+ self.cache_config = vllm_config.cache_config
932
+
933
+ # TODO(mgoin): remove this once we have hybrid memory allocator
934
+ # Optimization for models with local attention (Llama 4)
935
+ # List of block window sizes for each layer for local attention
936
+ self.block_window_per_layer: list[int | None] = []
937
+ self.use_mla = self.model_config.use_mla
938
+
939
+ backend = get_attn_backend(
940
+ self.model_config.get_head_size(),
941
+ self.model_config.dtype,
942
+ self.cache_config.cache_dtype,
943
+ self.block_size,
944
+ use_mla=self.use_mla,
945
+ )
946
+ self.backend_name = backend.get_name()
947
+ self.kv_cache_layout = get_kv_cache_layout()
948
+ self.host_buffer_kv_cache_layout = self.kv_cache_layout
949
+ logger.debug("Detected attention backend %s", self.backend_name)
950
+ logger.debug("Detected kv cache layout %s", self.kv_cache_layout)
951
+
952
+ self._tp_size: dict[EngineId, int] = {self.engine_id: self.world_size}
953
+ self._block_size: dict[EngineId, int] = {self.engine_id: self.block_size}
954
+ # With heterogeneous TP, P must wait for all assigned D TP workers to
955
+ # finish reading before safely freeing the blocks.
956
+ self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
957
+ self.xfer_stats = NixlKVConnectorStats()
958
+
959
+ self.kv_topo = self.TpKVTopology(
960
+ tp_size=self.world_size,
961
+ tp_rank=self.tp_rank,
962
+ remote_tp_size=self._tp_size, # shared state
963
+ is_mla=self.use_mla,
964
+ total_num_kv_heads=self.model_config.get_total_num_kv_heads(),
965
+ block_size=self.block_size,
966
+ remote_block_size=self._block_size,
967
+ attn_backend=backend,
968
+ )
969
+ self._use_pallas = self.kv_topo._use_pallas
970
+ self._physical_blocks_per_logical_kv_block = 1
971
+
972
+ def _nixl_handshake(
973
+ self,
974
+ host: str,
975
+ port: int,
976
+ remote_tp_size: int,
977
+ expected_engine_id: str,
978
+ ) -> dict[int, str]:
979
+ """Do a NIXL handshake with a remote instance."""
980
+
981
+ start_time = time.perf_counter()
982
+
983
+ # NOTE(rob): we need each rank to have a unique port. This is
984
+ # a hack to keep us moving. We will switch when moving to etcd
985
+ # or where we have a single ZMQ socket in the scheduler.
986
+
987
+ # Handshake only with the remote TP rank that current local rank will
988
+ # pull from. With homogeneous TP it happens to be the same rank_i.
989
+ p_remote_rank = self.kv_topo.get_target_remote_rank(remote_tp_size)
990
+ path = make_zmq_path("tcp", host, port)
991
+ logger.debug(
992
+ "Querying metadata on path: %s at remote tp rank %s", path, p_remote_rank
993
+ )
994
+
995
+ # Send query for the request.
996
+ with zmq_ctx(zmq.REQ, path) as sock:
997
+ msg = msgspec.msgpack.encode((GET_META_MSG, p_remote_rank))
998
+ # Set receive timeout to 5 seconds to avoid hanging on dead server
999
+ sock.setsockopt(zmq.RCVTIMEO, 5000) # milliseconds
1000
+ sock.send(msg)
1001
+ metadata_bytes = sock.recv()
1002
+ decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
1003
+ metadata = decoder.decode(metadata_bytes)
1004
+ got_metadata_time = time.perf_counter()
1005
+ logger.debug(
1006
+ "NIXL handshake: get metadata took: %s", got_metadata_time - start_time
1007
+ )
1008
+
1009
+ # Ensure engine id matches.
1010
+ if metadata.engine_id != expected_engine_id:
1011
+ raise RuntimeError(
1012
+ f"Remote NIXL agent engine ID mismatch. "
1013
+ f"Expected {expected_engine_id},"
1014
+ f"received {metadata.engine_id}."
1015
+ )
1016
+
1017
+ # Register Remote agent.
1018
+ assert metadata.block_size <= self.block_size, (
1019
+ "nP > nD is not supported yet."
1020
+ )
1021
+ remote_agent_name = self.add_remote_agent(
1022
+ metadata, p_remote_rank, remote_tp_size
1023
+ )
1024
+
1025
+ setup_agent_time = time.perf_counter()
1026
+ logger.debug(
1027
+ "NIXL handshake: add agent took: %s",
1028
+ setup_agent_time - got_metadata_time,
1029
+ )
1030
+
1031
+ # Remote rank -> agent name.
1032
+ return {p_remote_rank: remote_agent_name}
1033
+
1034
+ def initialize_host_xfer_buffer(self, kv_caches: dict[str, torch.Tensor]) -> None:
1035
+ """
1036
+ Initialize transfer buffer in CPU mem for accelerators
1037
+ NOT directly supported by NIXL (e.g., tpu)
1038
+ """
1039
+ xfer_buffers: dict[str, torch.Tensor] = {}
1040
+ try:
1041
+ for layer_name, kv_cache in kv_caches.items():
1042
+ kv_shape = kv_cache.shape
1043
+ kv_dtype = kv_cache.dtype
1044
+ if (
1045
+ self.kv_cache_layout == "NHD"
1046
+ and self.vllm_config.kv_transfer_config is not None
1047
+ and self.vllm_config.kv_transfer_config.enable_permute_local_kv
1048
+ ):
1049
+ logger.info_once(
1050
+ "'enable_permute_local_kv' flag is enabled while "
1051
+ "device KV Layout is NHD. Init host buffer with"
1052
+ " HND to better support Decode/Prefill TP_ratio > 1."
1053
+ )
1054
+ # Since NHD will not support Decode/Prefill TP_ratio > 1,
1055
+ # we can leverage host_buffer for permute
1056
+ self.host_buffer_kv_cache_layout = "HND"
1057
+ kv_shape = tuple(kv_shape[i] for i in [0, 1, 3, 2, 4])
1058
+ xfer_buffers[layer_name] = torch.empty(
1059
+ kv_shape, dtype=kv_dtype, device="cpu"
1060
+ )
1061
+ except MemoryError as e:
1062
+ logger.error("NIXLConnectorWorker gets %s.", e)
1063
+ raise
1064
+
1065
+ self.host_xfer_buffers = xfer_buffers
1066
+
1067
+ def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
1068
+ """Assign copy (d2h, h2d) operations when host buffer is used."""
1069
+ # Set a no-op if the host buffer is not cpu.
1070
+ if self.kv_buffer_device != "cpu":
1071
+ return
1072
+ # Set a no-op if self.device_type is 'cpu'.
1073
+ if self.device_type == "cpu":
1074
+ return
1075
+ assert self.use_host_buffer
1076
+ self.copy_blocks = copy_operation
1077
+
1078
+ def _background_nixl_handshake(
1079
+ self, req_id: str, remote_engine_id: EngineId, meta: ReqMeta
1080
+ ):
1081
+ # Do NIXL handshake in background and add to _ready_requests when done.
1082
+ fut = self._handshake_futures.get(remote_engine_id)
1083
+ if fut is None:
1084
+ fut = self._handshake_initiation_executor.submit(
1085
+ self._nixl_handshake,
1086
+ meta.remote_host,
1087
+ meta.remote_port,
1088
+ meta.tp_size,
1089
+ remote_engine_id,
1090
+ )
1091
+ self._handshake_futures[remote_engine_id] = fut
1092
+
1093
+ def done_callback(f: Future[dict[int, str]], eid=remote_engine_id):
1094
+ with self._handshake_lock:
1095
+ del self._handshake_futures[eid]
1096
+ try:
1097
+ self._remote_agents[eid] = f.result()
1098
+ except Exception:
1099
+ logger.exception("Handshake with %s failed", eid)
1100
+
1101
+ fut.add_done_callback(done_callback)
1102
+
1103
+ # check handshake success before proceeding with request
1104
+ def request_ready(f: Future[Any], entry=(req_id, meta)):
1105
+ try:
1106
+ # check if handshake succeeded
1107
+ f.result()
1108
+ self._ready_requests.put(entry)
1109
+ except Exception:
1110
+ # handshake failed - mark blocks as invalid
1111
+ logger.exception(
1112
+ "Handshake failed for request %s, marking blocks as invalid", req_id
1113
+ )
1114
+ if req_meta := self._recving_metadata.get(req_id):
1115
+ self._invalid_block_ids.update(req_meta.local_block_ids)
1116
+ self._failed_recv_reqs.add(req_id)
1117
+
1118
+ fut.add_done_callback(request_ready)
1119
+
1120
+ def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
1121
+ """Register the KV Cache data in nixl."""
1122
+
1123
+ if self.use_host_buffer:
1124
+ self.initialize_host_xfer_buffer(kv_caches=kv_caches)
1125
+ assert len(self.host_xfer_buffers) == len(kv_caches), (
1126
+ f"host_buffer: {len(self.host_xfer_buffers)}, "
1127
+ f"kv_caches: {len(kv_caches)}"
1128
+ )
1129
+ xfer_buffers = self.host_xfer_buffers
1130
+ else:
1131
+ xfer_buffers = kv_caches
1132
+ assert not self.host_xfer_buffers, (
1133
+ "host_xfer_buffer should not be initialized when "
1134
+ f"kv_buffer_device is {self.kv_buffer_device}"
1135
+ )
1136
+
1137
+ logger.info(
1138
+ "Registering KV_Caches. use_mla: %s, kv_buffer_device: %s, "
1139
+ "use_host_buffer: %s",
1140
+ self.use_mla,
1141
+ self.kv_buffer_device,
1142
+ self.use_host_buffer,
1143
+ )
1144
+
1145
+ caches_data = []
1146
+ # With hybrid allocator, layers can share a kv cache tensor
1147
+ seen_base_addresses = []
1148
+
1149
+ # Note(tms): I modified this from the original region setup code.
1150
+ # K and V are now in different regions. Advantage is that we can
1151
+ # elegantly support MLA and any cases where the K and V tensors
1152
+ # are non-contiguous (it's not locally guaranteed that they will be)
1153
+ # Disadvantage is that the encoded NixlAgentMetadata is now larger
1154
+ # (roughly 8KB vs 5KB).
1155
+ # Conversely for FlashInfer, K and V are registered in the same region
1156
+ # to better exploit the memory layout (ie num_blocks is the first dim).
1157
+ split_k_and_v = self.kv_topo.split_k_and_v
1158
+ tensor_size_bytes = None
1159
+ # Enable different block lengths for different layers when MLA is used.
1160
+ self.block_len_per_layer = list[int]()
1161
+ self.slot_size_per_layer = list[int]() # HD bytes in kv terms
1162
+ self.device_id = self.tp_rank
1163
+ for layer_name, cache_or_caches in xfer_buffers.items():
1164
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1165
+
1166
+ for cache in cache_list:
1167
+ base_addr = cache.data_ptr()
1168
+ if not self.use_host_buffer and current_platform.is_cuda_alike():
1169
+ self.device_id = cache.device.index
1170
+ if base_addr in seen_base_addresses:
1171
+ continue
1172
+
1173
+ # TODO (NickLucche): Get kernel_block_size in a cleaner way
1174
+ # NHD default "view" for non-MLA cache
1175
+ kernel_block_size = cache.shape[-2] if self.use_mla else cache.shape[-3]
1176
+
1177
+ if self.block_size != kernel_block_size:
1178
+ logger.info_once(
1179
+ "User-specified logical block size (%s) does not match"
1180
+ " physical kernel block size (%s). Using the latter. ",
1181
+ self.block_size,
1182
+ kernel_block_size,
1183
+ )
1184
+ self._physical_blocks_per_logical_kv_block = (
1185
+ self.block_size // kernel_block_size
1186
+ )
1187
+ self.block_size = kernel_block_size
1188
+
1189
+ seen_base_addresses.append(base_addr)
1190
+ curr_tensor_size_bytes = cache.numel() * cache.element_size()
1191
+
1192
+ if tensor_size_bytes is None:
1193
+ tensor_size_bytes = curr_tensor_size_bytes
1194
+ self.num_blocks = cache.shape[0]
1195
+
1196
+ assert cache.shape[0] == self.num_blocks, (
1197
+ "All kv cache tensors must have the same number of blocks"
1198
+ )
1199
+
1200
+ self.block_len_per_layer.append(
1201
+ curr_tensor_size_bytes // self.num_blocks
1202
+ )
1203
+ self.slot_size_per_layer.append(
1204
+ self.block_len_per_layer[-1] // self.block_size
1205
+ )
1206
+
1207
+ if not self.use_mla:
1208
+ # Different kv cache shape is not supported by HeteroTP
1209
+ assert tensor_size_bytes == curr_tensor_size_bytes, (
1210
+ "All kv cache tensors must have the same size"
1211
+ )
1212
+ # Need to make sure the device ID is non-negative for NIXL,
1213
+ # Torch uses -1 to indicate CPU tensors while NIXL uses explicit
1214
+ # memory type.
1215
+ self.device_id = max(cache.get_device(), 0)
1216
+ caches_data.append(
1217
+ (base_addr, curr_tensor_size_bytes, self.device_id, "")
1218
+ )
1219
+
1220
+ logger.debug(
1221
+ "Different block lengths collected: %s", set(self.block_len_per_layer)
1222
+ )
1223
+ assert len(self.block_len_per_layer) == len(seen_base_addresses)
1224
+ assert self.num_blocks != 0
1225
+
1226
+ self.kv_caches_base_addr[self.engine_id] = seen_base_addresses
1227
+ self.num_regions = len(caches_data)
1228
+ self.num_layers = len(xfer_buffers.keys())
1229
+
1230
+ descs = self.nixl_wrapper.get_reg_descs(caches_data, self.nixl_memory_type)
1231
+ logger.debug("Registering descs: %s", caches_data)
1232
+ self.nixl_wrapper.register_memory(descs, backends=self.nixl_backends)
1233
+ logger.debug("Done registering descs")
1234
+ self._registered_descs.append(descs)
1235
+
1236
+ self.device_kv_caches = kv_caches
1237
+ self.dst_num_blocks[self.engine_id] = self.num_blocks
1238
+ if self.kv_topo.is_kv_layout_blocks_first:
1239
+ for i in range(len(self.slot_size_per_layer)):
1240
+ assert self.slot_size_per_layer[i] % 2 == 0
1241
+ self.slot_size_per_layer[i] //= 2
1242
+
1243
+ # NOTE (NickLucche) When FlashInfer is used, memory is registered
1244
+ # with joint KV for each block. This minimizes the overhead in
1245
+ # registerMem allowing faster descs queries. In order to be able to
1246
+ # split on kv_heads dim as required by heterogeneous TP, one must
1247
+ # be able to index K/V separately. Hence we double the number
1248
+ # of 'virtual' regions here and halve `block_len` below.
1249
+ self.num_regions *= 2
1250
+
1251
+ # Register local/src descr for NIXL xfer.
1252
+ self.seen_base_addresses = seen_base_addresses
1253
+ self.src_xfer_side_handle = self.register_local_xfer_handler(self.block_size)
1254
+
1255
+ self.src_xfer_side_handles[self.block_size] = self.src_xfer_side_handle
1256
+
1257
+ # TODO(mgoin): Hybrid memory allocator is currently disabled for
1258
+ # models with local attention (Llama 4). Can remove this once enabled.
1259
+ if self.model_config.hf_config.model_type == "llama4":
1260
+ from transformers import Llama4TextConfig
1261
+
1262
+ assert isinstance(self.model_config.hf_text_config, Llama4TextConfig)
1263
+ llama4_config = self.model_config.hf_text_config
1264
+ no_rope_layers = llama4_config.no_rope_layers
1265
+ chunk_size = llama4_config.attention_chunk_size
1266
+ chunk_block_size = math.ceil(chunk_size / self.block_size)
1267
+ for layer_idx in range(self.num_layers):
1268
+ # no_rope_layers[layer_idx] == 0 means NoPE (global)
1269
+ # Any other value means RoPE (local chunked)
1270
+ is_local_attention = no_rope_layers[layer_idx] != 0
1271
+ block_window = chunk_block_size if is_local_attention else None
1272
+ self.block_window_per_layer.append(block_window)
1273
+ logger.debug(
1274
+ "Llama 4 block window per layer mapping: %s",
1275
+ self.block_window_per_layer,
1276
+ )
1277
+ assert len(self.block_window_per_layer) == self.num_layers
1278
+
1279
+ # After KV Caches registered, listen for new connections.
1280
+ self.xfer_handshake_metadata = NixlAgentMetadata(
1281
+ engine_id=self.engine_id,
1282
+ agent_metadata=self.nixl_wrapper.get_agent_metadata(),
1283
+ kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
1284
+ device_id=self.device_id,
1285
+ num_blocks=self.num_blocks,
1286
+ block_lens=self.block_len_per_layer,
1287
+ attn_backend_name=self.backend_name,
1288
+ kv_cache_layout=self.kv_cache_layout
1289
+ if not self.use_host_buffer
1290
+ else self.host_buffer_kv_cache_layout,
1291
+ block_size=self.block_size,
1292
+ )
1293
+
1294
+ def register_local_xfer_handler(
1295
+ self,
1296
+ block_size: int,
1297
+ ) -> int:
1298
+ """
1299
+ Function used for register local xfer handler with local block_size or
1300
+ Remote block_size.
1301
+
1302
+ When local block_size is same as remote block_size, we use local block_size
1303
+ to register local_xfer_handler during init.
1304
+
1305
+ When remote block size is less than local block size, we need to use
1306
+ register another local_xfer_handler using remote block len to ensure
1307
+ data copy correctness.
1308
+ """
1309
+ block_size_ratio = self.block_size // block_size
1310
+ blocks_data = []
1311
+ for i, base_addr in enumerate(self.seen_base_addresses):
1312
+ # The new block_len is using prefill block_len;
1313
+ # and num_blocks is multiple with N
1314
+ kv_block_len = (
1315
+ self.get_backend_aware_kv_block_len(layer_idx=i) // block_size_ratio
1316
+ )
1317
+ block_len_per_layer = self.block_len_per_layer[i] // block_size_ratio
1318
+ num_blocks = self.num_blocks * block_size_ratio
1319
+ for block_id in range(num_blocks):
1320
+ block_offset = block_id * block_len_per_layer
1321
+ addr = base_addr + block_offset
1322
+ # (addr, len, device id)
1323
+ blocks_data.append((addr, kv_block_len, self.device_id))
1324
+
1325
+ if self.kv_topo.is_kv_layout_blocks_first:
1326
+ # Separate and interleave K/V regions to maintain the same
1327
+ # descs ordering. This is needed for selecting contiguous heads
1328
+ # when split across TP ranks.
1329
+ for block_id in range(num_blocks):
1330
+ block_offset = block_id * block_len_per_layer
1331
+ addr = base_addr + block_offset
1332
+ # Register addresses for V cache (K registered first).
1333
+ v_addr = addr + kv_block_len
1334
+ blocks_data.append((v_addr, kv_block_len, self.device_id))
1335
+ logger.debug(
1336
+ "Created %s blocks for src engine %s and rank %s on device id %s",
1337
+ len(blocks_data),
1338
+ self.engine_id,
1339
+ self.tp_rank,
1340
+ self.device_id,
1341
+ )
1342
+
1343
+ descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
1344
+ # NIXL_INIT_AGENT to be used for preparations of local descs.
1345
+ return self.nixl_wrapper.prep_xfer_dlist("NIXL_INIT_AGENT", descs)
1346
+
1347
+ def add_remote_agent(
1348
+ self,
1349
+ nixl_agent_meta: NixlAgentMetadata,
1350
+ remote_tp_rank: int = 0,
1351
+ remote_tp_size: int = 1,
1352
+ ) -> str:
1353
+ """
1354
+ Add the remote NIXL agent and prepare the descriptors for reading cache
1355
+ blocks from remote.
1356
+
1357
+ In particular, handle both homogeneous and heterogeneous TP. The former
1358
+ requires local rank_i to read from remote rank_i.
1359
+ The latter, assuming D.world_size > P.world_size, requires that two or
1360
+ more local TP worker share the xfer from a single TP worker.
1361
+
1362
+ Here's an example (non-MLA case):
1363
+
1364
+ rank_offset p_remote_tp_rank
1365
+ (kv split no)
1366
+ --------------------------------
1367
+ 0 0 Worker0 ---- 1st half of KV ----> Worker0 [ KV Cache ]
1368
+ /
1369
+ 1 0 Worker1 ---- 2nd half of KV -----/
1370
+
1371
+ 0 1 Worker2 ---- 1st half of KV ----> Worker1 [ KV Cache ]
1372
+ /
1373
+ 1 1 Worker3 ---- 2nd half of KV -----/
1374
+
1375
+
1376
+ Decoder TP workers Prefix TP workers
1377
+ (world_size=4) (world_size=2)
1378
+ tp_ratio = 4 // 2 = 2
1379
+
1380
+ Considering the KV Caches, if P-Worker_i has cache size [2, num_blocksP, kv_heads, block_size, head_dim]
1381
+ then D-Worker_j has [2, num_blocksD, kv_heads//tp_ratio, block_size, head_dim]. Mind the "HND" layout format.
1382
+ Assuming num_blocksD >= num_blocksP, D-Worker0 reads from P-Worker0 by preparing the kv_heads//tp_ratio
1383
+ first heads from all the slots of all the blocks. D-Worker1 will do the same, but reading the second split
1384
+ along the kv_heads dimension, and so forth until "tp_ratio" D TP workers have pulled from P-Worker0.
1385
+
1386
+ Note that the above will also hold true for the homogeneous TP case, where tp_ratio evaluates to 1.
1387
+
1388
+ Regarding MLA case, the cache is replicated across TP workers so the rank_offset will just always be 0
1389
+ so that the whole cache is shared by "tp_ratio" D TP workers.
1390
+ """ # noqa: E501
1391
+ engine_id = nixl_agent_meta.engine_id
1392
+ # TODO re-evaluate refreshing for scaling/recovery
1393
+ if remote_tp_rank in self._remote_agents.get(engine_id, {}):
1394
+ logger.debug(
1395
+ "Remote agent with engine_id %s and rank"
1396
+ "%s already exchanged metadata, skip handshake.",
1397
+ engine_id,
1398
+ remote_tp_rank,
1399
+ )
1400
+ return self._remote_agents[engine_id][remote_tp_rank]
1401
+
1402
+ ### Register remote agent metadata
1403
+ if engine_id not in self._tp_size:
1404
+ self._tp_size[engine_id] = remote_tp_size
1405
+ if engine_id not in self._block_size:
1406
+ self._block_size[engine_id] = nixl_agent_meta.block_size
1407
+
1408
+ remote_agent_name = self.nixl_wrapper.add_remote_agent(
1409
+ nixl_agent_meta.agent_metadata
1410
+ )
1411
+
1412
+ # Handle tp_size>num_kv_heads: replicate KV cache.
1413
+ replicates_kv_cache = self.kv_topo.replicates_kv_cache(engine_id)
1414
+
1415
+ # Create dst descs and xfer side handles. TP workers have same #blocks
1416
+ # so we only register once per engine_id.
1417
+ # Example:
1418
+ # block_size_ratio > 1:
1419
+ # remote: | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|
1420
+ # local origin:| 0| 1| 8| 12|
1421
+ # local mapped:| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|
1422
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(engine_id)
1423
+
1424
+ if engine_id not in self.dst_num_blocks:
1425
+ self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
1426
+
1427
+ # Keep track of remote agent kv caches base addresses.
1428
+ self.kv_caches_base_addr[engine_id] = nixl_agent_meta.kv_caches_base_addr
1429
+
1430
+ self._validate_remote_agent_handshake(nixl_agent_meta, remote_tp_size)
1431
+
1432
+ # Number of D TP workers reading from a single P TP worker. This is
1433
+ # 1 when P and D `--tensor-parallel-size` match.
1434
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(engine_id)
1435
+
1436
+ ### Register remote agent memory regions
1437
+ blocks_data = []
1438
+ # With homogeneous TP, D pulls the whole kv cache from corresponding
1439
+ # rank. With heterogeneous TP, prepare the descriptors by splitting the
1440
+ # P KV cache along kv_head dim, of D worker's kv_head size (D>P).
1441
+ # Eg. PTP1 DTP2 => P0 KV:[block0-KV_0 | block0-KV_1..].
1442
+
1443
+ # Register all remote blocks, but only the corresponding kv heads.
1444
+ for i, base_addr in enumerate(nixl_agent_meta.kv_caches_base_addr):
1445
+ kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
1446
+ remote_kv_block_len = kv_block_len // block_size_ratio
1447
+ if block_size_ratio > 1:
1448
+ # using remote kv_block_len as transfer unit
1449
+ kv_block_len = remote_kv_block_len
1450
+ rank_offset = (
1451
+ self.tp_rank % tp_ratio * remote_kv_block_len
1452
+ if not replicates_kv_cache
1453
+ else 0
1454
+ )
1455
+ for block_id in range(nixl_agent_meta.num_blocks):
1456
+ block_offset = block_id * nixl_agent_meta.block_lens[i]
1457
+ # For each block, grab the heads chunk belonging to rank_i
1458
+ # of size remote_nheads // tp_ratio, which correspond to
1459
+ # self.block_len == remote_block_len//tp_ratio bytes.
1460
+ addr = base_addr + block_offset + rank_offset
1461
+ # (addr, len, device id)
1462
+ blocks_data.append((addr, kv_block_len, nixl_agent_meta.device_id))
1463
+
1464
+ if self.kv_topo.is_kv_layout_blocks_first:
1465
+ # With FlashInfer index V separately to allow head splitting.
1466
+ for block_id in range(nixl_agent_meta.num_blocks):
1467
+ block_offset = block_id * nixl_agent_meta.block_lens[i]
1468
+ addr = base_addr + block_offset + rank_offset
1469
+ v_addr = addr + nixl_agent_meta.block_lens[i] // 2
1470
+ blocks_data.append(
1471
+ (v_addr, kv_block_len, nixl_agent_meta.device_id)
1472
+ )
1473
+
1474
+ logger.debug(
1475
+ "Created %s blocks for dst engine %s with remote rank %s and local rank %s",
1476
+ len(blocks_data),
1477
+ engine_id,
1478
+ remote_tp_rank,
1479
+ self.tp_rank,
1480
+ )
1481
+
1482
+ # Register with NIXL.
1483
+ descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
1484
+ self.dst_xfer_side_handles[engine_id] = self.nixl_wrapper.prep_xfer_dlist(
1485
+ remote_agent_name, descs
1486
+ )
1487
+
1488
+ if block_size_ratio > 1:
1489
+ # when prefill with smaller block_size, we need to init a
1490
+ # new handler with same block_len to match
1491
+ self.src_xfer_side_handles[nixl_agent_meta.block_size] = (
1492
+ self.register_local_xfer_handler(nixl_agent_meta.block_size)
1493
+ )
1494
+
1495
+ return remote_agent_name
1496
+
1497
+ def _validate_remote_agent_handshake(
1498
+ self, nixl_agent_meta: NixlAgentMetadata, remote_tp_size: int
1499
+ ):
1500
+ """
1501
+ Validate the remote agent handshake metadata ensuring the
1502
+ invariants hold true.
1503
+ """
1504
+ remote_engine_id = nixl_agent_meta.engine_id
1505
+
1506
+ assert self._tp_size[remote_engine_id] == remote_tp_size
1507
+ # TODO We may eventually want to skip enforcing the same attn backend.
1508
+ assert nixl_agent_meta.attn_backend_name == self.backend_name
1509
+
1510
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(remote_engine_id)
1511
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
1512
+ remote_engine_id
1513
+ )
1514
+ assert tp_ratio > 0, "Decode TP cannot be smaller than prefill TP"
1515
+ assert not self._use_pallas or tp_ratio == 1, (
1516
+ "TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
1517
+ )
1518
+ kv_cache_layout = (
1519
+ self.kv_cache_layout
1520
+ if not self.use_host_buffer
1521
+ else self.host_buffer_kv_cache_layout
1522
+ )
1523
+ if not self.use_mla and nixl_agent_meta.kv_cache_layout != kv_cache_layout:
1524
+ if (
1525
+ self.kv_transfer_config.enable_permute_local_kv
1526
+ and nixl_agent_meta.kv_cache_layout == "HND"
1527
+ ):
1528
+ logger.info(
1529
+ "Remote is HND and local is NHD, enabled additional permute "
1530
+ "on local device KV."
1531
+ )
1532
+ self.enable_permute_local_kv = True
1533
+ else:
1534
+ raise RuntimeError(
1535
+ "Heterogeneous TP expects same kv_cache_layout. "
1536
+ "Or enable experimental feature to use HND to NHD support by "
1537
+ "setting 'enable_permute_local_kv'=True in --kv-transfer-config."
1538
+ )
1539
+
1540
+ # Block len can only vary across layers when using MLA.
1541
+ remote_block_len = nixl_agent_meta.block_lens[0]
1542
+ if self.use_mla or self.kv_topo.is_kv_replicated(remote_engine_id):
1543
+ # With replicated KV cache, only the number of blocks can differ.
1544
+ for i in range(len(self.block_len_per_layer)):
1545
+ assert (
1546
+ self.block_len_per_layer[i] // block_size_ratio
1547
+ == nixl_agent_meta.block_lens[i]
1548
+ ), "KV cache sizes must match between P and D when replicated"
1549
+ else:
1550
+ # When MLA is not used, this is a list of the same block length
1551
+ for block_len in nixl_agent_meta.block_lens:
1552
+ assert block_len == remote_block_len, (
1553
+ "All remote layers must have the same block size"
1554
+ )
1555
+
1556
+ assert (
1557
+ remote_block_len
1558
+ == (self.block_len_per_layer[0] * tp_ratio) // block_size_ratio
1559
+ ), (
1560
+ "Remote P worker KV layer cache must be of shape [2, N, "
1561
+ "local_kv_heads*tp_ratio, block_size, head_dim] and same dtype."
1562
+ )
1563
+
1564
+ # TP workers have same #blocks.
1565
+ assert self.dst_num_blocks[remote_engine_id] == nixl_agent_meta.num_blocks
1566
+
1567
+ assert len(nixl_agent_meta.kv_caches_base_addr) == len(self.block_len_per_layer)
1568
+
1569
+ def sync_recved_kv_to_device(self, req_id: str, meta: ReqMeta):
1570
+ """copy recved kv from host buffer to device."""
1571
+ assert self.use_host_buffer
1572
+ assert self.copy_blocks is not None
1573
+
1574
+ local_block_ids = meta.local_physical_block_ids
1575
+ self.copy_blocks(
1576
+ self.host_xfer_buffers,
1577
+ self.device_kv_caches,
1578
+ local_block_ids,
1579
+ local_block_ids,
1580
+ "h2d",
1581
+ )
1582
+ if logger.isEnabledFor(logging.DEBUG):
1583
+ logger.debug(
1584
+ "synced recved kv of request[%s] to device kv buffer,"
1585
+ "local_block_ids: %s. ",
1586
+ req_id,
1587
+ ",".join(map(str, local_block_ids)),
1588
+ )
1589
+
1590
+ def save_kv_to_host(self, metadata: NixlConnectorMetadata):
1591
+ """copy kv from device to host buffer."""
1592
+ assert self.use_host_buffer
1593
+ assert self.copy_blocks is not None
1594
+
1595
+ for req_id, meta in metadata.reqs_to_save.items():
1596
+ meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
1597
+ meta.local_block_ids
1598
+ )
1599
+ if logger.isEnabledFor(logging.DEBUG):
1600
+ logger.debug(
1601
+ "save_load_kv for request[%s] to host xfer buffer."
1602
+ "local_block_ids: %s. ",
1603
+ req_id,
1604
+ ",".join(map(str, meta.local_physical_block_ids)),
1605
+ )
1606
+ # blocking
1607
+ self.copy_blocks(
1608
+ self.device_kv_caches,
1609
+ self.host_xfer_buffers,
1610
+ meta.local_physical_block_ids,
1611
+ meta.local_physical_block_ids,
1612
+ "d2h",
1613
+ )
1614
+
1615
+ def permute_device_kv(self, block_ids: list[int]):
1616
+ """Transforms the layout of received KV cache blocks to the local format.
1617
+
1618
+ This method corrects layout mismatches from direct memory copies by
1619
+ permuting the tensor dimensions.
1620
+
1621
+ - **Source Layout:** `[num_blocks, n_kv_head, block_size, head_dim]`
1622
+ - **Target Layout:** `[num_blocks, block_size, n_kv_head, head_dim]`
1623
+
1624
+ Args:
1625
+ block_ids: A list of block IDs to update and permute.
1626
+
1627
+ Implementation:
1628
+ - x = blocks_to_update.reshape(src_shape) # view local kv with sender layout
1629
+ - permuted_blocks = x.permute(*inv_order) # transpose n_kv_heads, block_size
1630
+ - cache.index_copy_(0, indices, permuted_blocks) # copy permuted kv back
1631
+
1632
+ """
1633
+ split_k_and_v = self.kv_topo.split_k_and_v
1634
+ inv_order = [0, 2, 1, 3]
1635
+ sample_cache = list(self.device_kv_caches.values())[0][0]
1636
+ target_shape = list(sample_cache.shape)
1637
+ target_shape[0] = -1
1638
+ src_shape = tuple(target_shape[i] for i in inv_order)
1639
+ indices = torch.tensor(block_ids, device=sample_cache.device)
1640
+
1641
+ for _, cache_or_caches in self.device_kv_caches.items():
1642
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1643
+ for cache in cache_list:
1644
+ blocks_to_update = cache.index_select(0, indices)
1645
+ permuted_blocks = blocks_to_update.reshape(src_shape).permute(
1646
+ *inv_order
1647
+ )
1648
+ cache.index_copy_(0, indices, permuted_blocks)
1649
+
1650
+ def blocksize_post_process(self, block_ids_per_ratio: dict[float, list[list[int]]]):
1651
+ def _process_local_gt_remote(blocks_to_update, block_size_ratio):
1652
+ n_kv_heads, block_size, head_size = blocks_to_update.shape[1:]
1653
+ remote_block_size = block_size // block_size_ratio
1654
+ n_blocks = block_size_ratio
1655
+ # actual permute is to convert
1656
+ # for local blocksize > remote blocksize
1657
+ # ex: local blocksize = 16 tokens, remote blocksize = 4 tokens
1658
+ # local block[0] = remote block[0, 1, 2, 3]
1659
+ # remote is |h0-b0|h1-b0|h2-b0|h3-b0|h0-b1|h1-b1|h2-b1|h3-b1|...
1660
+ # local is |h0-b0..................|h1-b0..................|...
1661
+ # permute is to:
1662
+ # 1. view => view remote as n_blocks * remote_shape(H,remoteN,D)
1663
+ # 2. permute => (H, nblocks, remoteN, D)
1664
+ # 3. flatten => (H, localN, D)
1665
+ permuted_blocks = (
1666
+ blocks_to_update.reshape(
1667
+ -1, n_blocks, n_kv_heads, remote_block_size, head_size
1668
+ )
1669
+ .permute(0, 2, 1, 3, 4)
1670
+ .flatten(2, 3)
1671
+ )
1672
+ return permuted_blocks
1673
+
1674
+ if len(self.device_kv_caches) == 0:
1675
+ return
1676
+ split_k_and_v = not (
1677
+ self.use_mla or self._use_pallas or self.kv_topo.is_kv_layout_blocks_first
1678
+ )
1679
+ sample_cache = list(self.device_kv_caches.values())[0][0]
1680
+ for block_size_ratio, block_ids_list in block_ids_per_ratio.items():
1681
+ assert block_size_ratio > 1, "Only nP < nD supported currently."
1682
+ block_ids_list = [[item for sublist in block_ids_list for item in sublist]]
1683
+
1684
+ for block_ids in block_ids_list:
1685
+ indices = torch.tensor(block_ids, device=sample_cache.device)
1686
+
1687
+ for _, cache_or_caches in self.device_kv_caches.items():
1688
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1689
+ for cache in cache_list:
1690
+ blocks_to_update = cache.index_select(0, indices)
1691
+ # because kv_cache is always using original layout NHD as
1692
+ # virtual shape while stride can be either HND / NHD at
1693
+ # initialization.
1694
+ # we need to firstly get physical view of the tensor
1695
+ permuted_blocks = _process_local_gt_remote(
1696
+ blocks_to_update.permute(0, 2, 1, 3), block_size_ratio
1697
+ ).permute(0, 2, 1, 3)
1698
+ cache.index_copy_(0, indices, permuted_blocks)
1699
+
1700
+ def get_finished(self) -> tuple[set[str], set[str]]:
1701
+ """
1702
+ Get requests that are done sending or recving on this specific worker.
1703
+ The scheduler process (via the MultiprocExecutor) will use this output
1704
+ to track which workers are done.
1705
+ """
1706
+ done_sending = self._get_new_notifs()
1707
+ done_recving = self._pop_done_transfers(self._recving_transfers)
1708
+
1709
+ # add requests that skipped transfer to done_recving
1710
+ done_recving.update(self._failed_recv_reqs)
1711
+ self._failed_recv_reqs.clear()
1712
+
1713
+ if len(done_sending) > 0 or len(done_recving) > 0:
1714
+ logger.debug(
1715
+ "Rank %s, get_finished: %s requests done sending "
1716
+ "and %s requests done recving",
1717
+ self.tp_rank,
1718
+ len(done_sending),
1719
+ len(done_recving),
1720
+ )
1721
+
1722
+ block_ids_to_permute = []
1723
+ block_ids_for_blocksize_post_process = defaultdict(list)
1724
+ for req_id in done_recving:
1725
+ # clean up metadata for completed requests
1726
+ meta = self._recving_metadata.pop(req_id, None)
1727
+ assert meta is not None, f"{req_id} not found in recving_metadata list"
1728
+ if self.use_host_buffer:
1729
+ self.sync_recved_kv_to_device(req_id, meta)
1730
+ if self.enable_permute_local_kv:
1731
+ block_ids_to_permute += meta.local_physical_block_ids
1732
+
1733
+ # post processing for heteroblocksize
1734
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
1735
+ meta.remote_engine_id
1736
+ )
1737
+ if (
1738
+ not self.use_mla
1739
+ and block_size_ratio > 1
1740
+ and self.kv_cache_layout == "HND"
1741
+ ):
1742
+ block_ids_for_blocksize_post_process[block_size_ratio].append(
1743
+ meta.local_block_ids
1744
+ )
1745
+ self.blocksize_post_process(block_ids_for_blocksize_post_process)
1746
+ if len(block_ids_to_permute) > 0:
1747
+ self.permute_device_kv(block_ids_to_permute)
1748
+
1749
+ # Handle timeout to avoid stranding blocks on remote.
1750
+ now = time.perf_counter()
1751
+ while self._reqs_to_send:
1752
+ req_id, expires = next(iter(self._reqs_to_send.items()))
1753
+ # Sorted dict, oldest requests are put first so we can exit early.
1754
+ if now < expires:
1755
+ break
1756
+ count = self.consumer_notification_counts_by_req.pop(req_id, 0)
1757
+ logger.warning(
1758
+ "Releasing expired KV blocks for request %s which were "
1759
+ "retrieved by %d decode worker(s) within %d seconds.",
1760
+ req_id,
1761
+ count,
1762
+ envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
1763
+ )
1764
+ self._reqs_to_process.remove(req_id)
1765
+ del self._reqs_to_send[req_id]
1766
+ done_sending.add(req_id)
1767
+
1768
+ return done_sending, done_recving
1769
+
1770
+ def _get_new_notifs(self) -> set[str]:
1771
+ """
1772
+ Get req_ids which got a remote xfer message. When multiple consumers
1773
+ are reading from the same producer (heterogeneous TP scenario), wait
1774
+ for all consumers to be done pulling.
1775
+ """
1776
+ notified_req_ids: set[str] = set()
1777
+ for notifs in self.nixl_wrapper.get_new_notifs().values():
1778
+ for notif in notifs:
1779
+ req_id, tp_ratio = notif.decode("utf-8").rsplit(":", 1)
1780
+ if (
1781
+ req_id not in self._reqs_to_send
1782
+ and req_id not in self._reqs_to_process
1783
+ ):
1784
+ logger.error(
1785
+ "Potentially invalid KV blocks for "
1786
+ "unrecognized request %s were retrieved by "
1787
+ "a decode worker. They may have expired.",
1788
+ req_id,
1789
+ )
1790
+ continue
1791
+
1792
+ self.consumer_notification_counts_by_req[req_id] += 1
1793
+ # Wait all consumers (D) to be done reading before freeing.
1794
+ if self.consumer_notification_counts_by_req[req_id] == int(tp_ratio):
1795
+ notified_req_ids.add(req_id)
1796
+ del self.consumer_notification_counts_by_req[req_id]
1797
+ self._reqs_to_process.remove(req_id)
1798
+ self._reqs_to_send.pop(req_id, None)
1799
+ return notified_req_ids
1800
+
1801
+ def _pop_done_transfers(
1802
+ self, transfers: dict[str, list[tuple[int, float]]]
1803
+ ) -> set[str]:
1804
+ """
1805
+ Pop completed xfers by checking for DONE state.
1806
+ Args:
1807
+ transfers: dict of req_id -> list[running_xfer]
1808
+ Returns:
1809
+ set of req_ids that have all done xfers
1810
+ """
1811
+ done_req_ids: set[str] = set()
1812
+ for req_id, handles in list(transfers.items()):
1813
+ in_progress = False
1814
+ for handle, _xfer_stime in handles:
1815
+ xfer_state = self.nixl_wrapper.check_xfer_state(handle)
1816
+ if xfer_state == "DONE":
1817
+ # Get telemetry from NIXL
1818
+ res = self.nixl_wrapper.get_xfer_telemetry(handle)
1819
+ self.xfer_stats.record_transfer(res)
1820
+ self.nixl_wrapper.release_xfer_handle(handle)
1821
+ elif xfer_state == "PROC":
1822
+ in_progress = True
1823
+ continue
1824
+ else:
1825
+ # transfer failed - mark blocks as invalid
1826
+ logger.error(
1827
+ "NIXL transfer failed for request %s with state %s. "
1828
+ "Marking blocks as invalid.",
1829
+ req_id,
1830
+ xfer_state,
1831
+ )
1832
+ # mark all (logical)blocks for this request as invalid
1833
+ if meta := self._recving_metadata.pop(req_id, None):
1834
+ self._invalid_block_ids.update(meta.local_block_ids)
1835
+ self._recving_metadata.pop(req_id, None)
1836
+ self.nixl_wrapper.release_xfer_handle(handle)
1837
+ self.xfer_stats.record_failed_transfer()
1838
+ if not in_progress:
1839
+ done_req_ids.add(req_id)
1840
+ del transfers[req_id]
1841
+ return done_req_ids
1842
+
1843
+ def start_load_kv(self, metadata: NixlConnectorMetadata):
1844
+ """
1845
+ Start loading by triggering non-blocking nixl_xfer.
1846
+ We check for these trnxs to complete in each step().
1847
+ """
1848
+ for req_id, meta in metadata.reqs_to_recv.items():
1849
+ meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
1850
+ meta.local_block_ids
1851
+ )
1852
+ meta.remote_block_ids = self._logical_to_kernel_block_ids(
1853
+ meta.remote_block_ids
1854
+ )
1855
+ remote_engine_id = meta.remote_engine_id
1856
+ logger.debug(
1857
+ "start_load_kv for request %s from remote engine %s. "
1858
+ "Num local_block_ids: %s. Num remote_block_ids: %s. ",
1859
+ req_id,
1860
+ remote_engine_id,
1861
+ len(meta.local_physical_block_ids),
1862
+ len(meta.remote_block_ids),
1863
+ )
1864
+ # always store metadata for failure recovery
1865
+ self._recving_metadata[req_id] = meta
1866
+ if remote_engine_id not in self._remote_agents:
1867
+ # Initiate handshake with remote engine to exchange metadata.
1868
+ with self._handshake_lock:
1869
+ if remote_engine_id not in self._remote_agents:
1870
+ self._background_nixl_handshake(req_id, remote_engine_id, meta)
1871
+ continue
1872
+
1873
+ # Handshake already completed, start async read xfer.
1874
+ self._read_blocks_for_req(req_id, meta)
1875
+
1876
+ # Start transfers for requests whose handshakes have now finished.
1877
+ while not self._ready_requests.empty():
1878
+ self._read_blocks_for_req(*self._ready_requests.get_nowait())
1879
+
1880
+ # Keep around the requests that have been part of a batch. This is
1881
+ # needed because async scheduling pushes the misalignment between the
1882
+ # moment in which requests expiration is set (P side) and the moment in
1883
+ # which blocks are read from D. As P can now more easily lag behind D
1884
+ # while processing the next batch, we make sure to only set an
1885
+ # expiration for requests that have not been read from D yet.
1886
+ for req_id in metadata.reqs_in_batch:
1887
+ self._reqs_to_process.add(req_id)
1888
+
1889
+ # Remove all requests that are not to be processed (eg aborted).
1890
+ for req_id in metadata.reqs_not_processed:
1891
+ self._reqs_to_process.discard(req_id)
1892
+ # We should never get an abort after setting an expiry timer
1893
+ assert req_id not in self._reqs_to_send
1894
+
1895
+ # Add to requests that are waiting to be read and track expiration.
1896
+ for req_id, expiration_time in metadata.reqs_to_send.items():
1897
+ if req_id in self._reqs_to_process:
1898
+ self._reqs_to_send[req_id] = expiration_time
1899
+
1900
+ def _read_blocks_for_req(self, req_id: str, meta: ReqMeta):
1901
+ logger.debug(
1902
+ "Remote agent %s available, calling _read_blocks for req %s",
1903
+ meta.remote_engine_id,
1904
+ req_id,
1905
+ )
1906
+ self._read_blocks(
1907
+ request_id=req_id,
1908
+ dst_engine_id=meta.remote_engine_id,
1909
+ local_block_ids=meta.local_physical_block_ids,
1910
+ remote_block_ids=meta.remote_block_ids,
1911
+ )
1912
+
1913
+ def _read_blocks(
1914
+ self,
1915
+ local_block_ids: list[int],
1916
+ remote_block_ids: list[int],
1917
+ dst_engine_id: str,
1918
+ request_id: str,
1919
+ ):
1920
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(dst_engine_id)
1921
+ if block_size_ratio > 1:
1922
+ local_block_ids = self.get_mapped_blocks(
1923
+ np.asarray(local_block_ids), block_size_ratio
1924
+ )
1925
+ if len(local_block_ids) > len(remote_block_ids):
1926
+ # NOTE:
1927
+ # get_mapped_blocks will always expand block_ids for n times.
1928
+ # ex:
1929
+ # prefill block_ids with block_size as 4:
1930
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1931
+ # Local decode block_ids with block_size as 16: [1, 2, 3]
1932
+ # expland ecode block_ids with get_mapped_blocks from [1, 2, 3] to
1933
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
1934
+ # Then we clip local to align with prefill
1935
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] to
1936
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1937
+ local_block_ids = local_block_ids[: len(remote_block_ids)]
1938
+ # NOTE(rob): having the staging blocks be on the READER side is
1939
+ # not going to work well (since we will have to call rearrange tensors).
1940
+ # after we detect the txn is complete (which means we cannot make the
1941
+ # read trxn async easily). If we want to make "READ" happen cleanly,
1942
+ # then we will need to have the staging blocks on the remote side.
1943
+
1944
+ # NOTE(rob): according to nvidia the staging blocks are used to
1945
+ # saturate IB with heterogeneous TP sizes. We should remove the staging
1946
+ # blocks until we are ready.
1947
+
1948
+ # Number of D TP workers that will read from dst P. Propagate tp_ratio
1949
+ # on notification so that dst worker can wait before freeing blocks.
1950
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(dst_engine_id)
1951
+ notif_id = f"{request_id}:{tp_ratio}".encode()
1952
+
1953
+ # Full prefix cache hit: do not need to read remote blocks,
1954
+ # just notify P worker that we have the blocks we need.
1955
+ num_local_blocks = len(local_block_ids)
1956
+ if num_local_blocks == 0:
1957
+ remote_rank = self.kv_topo.get_target_remote_rank_from_engine_id(
1958
+ dst_engine_id
1959
+ )
1960
+ agent_name = self._remote_agents[dst_engine_id][remote_rank]
1961
+ try:
1962
+ self.nixl_wrapper.send_notif(agent_name, notif_msg=notif_id)
1963
+ except Exception:
1964
+ logger.exception(
1965
+ "NIXL send_notif failed for request %s: "
1966
+ "P worker blocks will be freed after timeout. "
1967
+ "This may indicate network issues.",
1968
+ request_id,
1969
+ )
1970
+ self.xfer_stats.record_failed_notification()
1971
+ return
1972
+
1973
+ # Partial prefix cache hit: just read uncomputed blocks.
1974
+ num_remote_blocks = len(remote_block_ids)
1975
+ assert num_local_blocks <= num_remote_blocks
1976
+ if num_local_blocks < num_remote_blocks:
1977
+ remote_block_ids = remote_block_ids[-num_local_blocks:]
1978
+
1979
+ # Get side handles.
1980
+ remote_block_size = self.kv_topo.remote_block_size[dst_engine_id]
1981
+ local_xfer_side_handle = self.src_xfer_side_handles.get(
1982
+ remote_block_size, self.src_xfer_side_handle
1983
+ )
1984
+ remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
1985
+
1986
+ # NOTE (nicolo) With homogeneous TP, each TP worker loads KV from
1987
+ # corresponding rank. With heterogeneous TP, fixing D>P, the D tp
1988
+ # workers will issue xfers to parts of the P worker remote kv caches.
1989
+
1990
+ # Get descs ids.
1991
+ local_block_descs_ids: np.ndarray
1992
+ remote_block_descs_ids: np.ndarray
1993
+
1994
+ if not self.block_window_per_layer:
1995
+ # Default case: assume global attention
1996
+ remote_block_descs_ids = self._get_block_descs_ids(
1997
+ dst_engine_id,
1998
+ remote_block_ids,
1999
+ )
2000
+ local_block_descs_ids = self._get_block_descs_ids(
2001
+ self.engine_id,
2002
+ local_block_ids,
2003
+ block_size_ratio=block_size_ratio,
2004
+ )
2005
+ else:
2006
+ # TODO(mgoin): remove this once we have hybrid memory allocator
2007
+ # Optimization for models with local attention (Llama 4)
2008
+ local_descs_list = []
2009
+ remote_descs_list = []
2010
+ for layer_idx, block_window in enumerate(self.block_window_per_layer):
2011
+ # For each layer:
2012
+ if block_window is None:
2013
+ # If not chunked, we just use the
2014
+ # full block lists (global attention)
2015
+ layer_local_block_ids = local_block_ids
2016
+ layer_remote_block_ids = remote_block_ids
2017
+ else:
2018
+ # If chunked, get the last block_window blocks
2019
+ layer_local_block_ids = local_block_ids[-block_window:]
2020
+ layer_remote_block_ids = remote_block_ids[-block_window:]
2021
+
2022
+ # Get descs ids for the layer.
2023
+ layer_local_desc_ids = self._get_block_descs_ids(
2024
+ dst_engine_id,
2025
+ layer_local_block_ids,
2026
+ layer_idx,
2027
+ )
2028
+ layer_remote_desc_ids = self._get_block_descs_ids(
2029
+ self.engine_id,
2030
+ layer_remote_block_ids,
2031
+ layer_idx,
2032
+ block_size_ratio=block_size_ratio,
2033
+ )
2034
+
2035
+ local_descs_list.append(layer_local_desc_ids)
2036
+ remote_descs_list.append(layer_remote_desc_ids)
2037
+
2038
+ local_block_descs_ids = np.concatenate(local_descs_list)
2039
+ remote_block_descs_ids = np.concatenate(remote_descs_list)
2040
+
2041
+ assert len(local_block_descs_ids) == len(remote_block_descs_ids)
2042
+
2043
+ # Prepare transfer with Nixl.
2044
+ handle = None
2045
+ try:
2046
+ handle = self.nixl_wrapper.make_prepped_xfer(
2047
+ "READ",
2048
+ local_xfer_side_handle,
2049
+ local_block_descs_ids,
2050
+ remote_xfer_side_handle,
2051
+ remote_block_descs_ids,
2052
+ notif_msg=notif_id,
2053
+ )
2054
+
2055
+ # Begin async xfer.
2056
+ self.nixl_wrapper.transfer(handle)
2057
+
2058
+ # Use handle to check completion in future step().
2059
+ self._recving_transfers[request_id].append((handle, time.perf_counter()))
2060
+ except Exception:
2061
+ logger.exception(
2062
+ "NIXL transfer setup/initiation failed for request %s. "
2063
+ "Marking blocks as invalid.",
2064
+ request_id,
2065
+ )
2066
+ # mark all (logical) blocks for this request as invalid
2067
+ if meta := self._recving_metadata.get(request_id):
2068
+ self._invalid_block_ids.update(meta.local_block_ids)
2069
+ self.xfer_stats.record_failed_transfer()
2070
+ if handle is not None:
2071
+ self.nixl_wrapper.release_xfer_handle(handle)
2072
+ self._failed_recv_reqs.add(request_id)
2073
+
2074
+ def get_mapped_blocks(self, block_ids, block_size_ratio):
2075
+ """
2076
+ Calculates the new set of block IDs by mapping every element
2077
+ in the (potentially sparse) input array.
2078
+ Example: block_ids=[0, 2], block_size_ratio=2
2079
+ get_mapped_blocks 0 1 [2 3] 4 5
2080
+ # remote is |h0-b0|h1-b0||h0-b1|h1-b1||h0-b1|h1-b1||
2081
+ # local is |h0-b0......||h1-b0......||h2-b0........
2082
+ local_block_ids 0 [1] 2
2083
+ """
2084
+ if block_ids.size == 0:
2085
+ return np.array([], dtype=np.int64)
2086
+
2087
+ start_ids = block_ids * block_size_ratio
2088
+ offsets = np.arange(block_size_ratio)
2089
+ mapped_2d = start_ids[:, None] + offsets[None, :]
2090
+
2091
+ return mapped_2d.flatten().astype(np.int64)
2092
+
2093
+ def _get_block_descs_ids(
2094
+ self,
2095
+ engine_id: str,
2096
+ block_ids: list[int],
2097
+ layer_idx: int | None = None,
2098
+ block_size_ratio: float | None = None,
2099
+ ) -> np.ndarray:
2100
+ """
2101
+ Get the descs ids for a set of block ids.
2102
+ If layer_idx is provided, we use the region_ids for the given layer.
2103
+ Otherwise, we use all regions.
2104
+ """
2105
+ if layer_idx is None:
2106
+ region_ids = np.arange(self.num_regions)
2107
+ else:
2108
+ assert layer_idx < self.num_layers
2109
+ if self.num_layers < self.num_regions:
2110
+ # If we have more regions than layers, we assume that
2111
+ # the regions are organized as [K0, V0, K1, V1, ...]
2112
+ # and we select K_i and V_i
2113
+ assert 2 * self.num_layers == self.num_regions
2114
+ region_ids = np.arange(2 * layer_idx, 2 * layer_idx + 2)
2115
+ else:
2116
+ # Otherwise, we assume we have MLA and select i-th layer
2117
+ assert self.num_layers == self.num_regions
2118
+ region_ids = np.arange(layer_idx, layer_idx + 1)
2119
+
2120
+ num_blocks = self.dst_num_blocks[engine_id]
2121
+ if block_size_ratio is not None:
2122
+ num_blocks = int(num_blocks * block_size_ratio)
2123
+
2124
+ # Compute the desc ids for each block.
2125
+ region_ids = region_ids[:, None]
2126
+ block_ids = np.array(block_ids)[None, :]
2127
+ descs_ids = region_ids * num_blocks + block_ids
2128
+ return descs_ids.flatten()
2129
+
2130
+ def _logical_to_kernel_block_ids(self, block_ids: list[int]) -> list[int]:
2131
+ """
2132
+ Convert logical block ids to kernel physical block ids.
2133
+ This is required when the logical block size (the one set by the user)
2134
+ does not match the one required by the attn backend.
2135
+ """
2136
+ if self._physical_blocks_per_logical_kv_block == 1:
2137
+ # Noop when physical and logical block sizes are the same
2138
+ return block_ids
2139
+ block_ids_np = np.array(block_ids)
2140
+ block_arange = np.arange(0, self._physical_blocks_per_logical_kv_block).reshape(
2141
+ 1, -1
2142
+ )
2143
+ return BlockTable.map_to_kernel_blocks(
2144
+ block_ids_np, self._physical_blocks_per_logical_kv_block, block_arange
2145
+ ).tolist()
2146
+
2147
+ def get_backend_aware_kv_block_len(self, layer_idx: int):
2148
+ """
2149
+ Get the block length for one K/V element (K and V have the same size).
2150
+
2151
+ For FA and other backends, this is equal to the length of the whole
2152
+ block, as K and V are in separate regions.
2153
+ For FlashInfer, this is half the length of the whole block, as K and V
2154
+ share the same region.
2155
+ """
2156
+ if self.kv_topo.is_kv_layout_blocks_first:
2157
+ # For indexing only half (either just the K or V part).
2158
+ block_len = self.block_len_per_layer[layer_idx] // 2
2159
+ else:
2160
+ block_len = self.block_len_per_layer[layer_idx]
2161
+ return block_len
2162
+
2163
+ def get_kv_connector_stats(self) -> KVConnectorStats | None:
2164
+ """
2165
+ Get the KV transfer stats for the connector.
2166
+ """
2167
+ # Clear stats for next iteration
2168
+ if not self.xfer_stats.is_empty():
2169
+ return self.xfer_stats.clone_and_reset()
2170
+ return None
2171
+
2172
+ def get_block_ids_with_load_errors(self) -> set[int]:
2173
+ """
2174
+ Return and clear the set of block IDs that failed to load.
2175
+
2176
+ This is called by the scheduler to identify blocks that need
2177
+ to be retried after a NIXL transfer failure.
2178
+ """
2179
+ result = self._invalid_block_ids
2180
+ self._invalid_block_ids = set()
2181
+ return result
2182
+
2183
+ def __del__(self):
2184
+ self.shutdown()
2185
+
2186
+ def shutdown(self):
2187
+ """Shutdown the connector worker."""
2188
+ self._handshake_initiation_executor.shutdown(wait=False)
2189
+ for handles in self._recving_transfers.values():
2190
+ for handle, _ in handles:
2191
+ self.nixl_wrapper.release_xfer_handle(handle)
2192
+ self._recving_transfers.clear()
2193
+ if self.src_xfer_side_handle:
2194
+ self.nixl_wrapper.release_dlist_handle(self.src_xfer_side_handle)
2195
+ self.src_xfer_side_handle = 0
2196
+ for dst_xfer_side_handle in self.dst_xfer_side_handles.values():
2197
+ self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
2198
+ self.dst_xfer_side_handles.clear()
2199
+ for remote_agents in self._remote_agents.values():
2200
+ for agent_name in remote_agents.values():
2201
+ self.nixl_wrapper.remove_remote_agent(agent_name)
2202
+ self._remote_agents.clear()
2203
+ for desc in self._registered_descs:
2204
+ self.nixl_wrapper.deregister_memory(desc)
2205
+ self._registered_descs.clear()
2206
+
2207
+
2208
+ @contextlib.contextmanager
2209
+ def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
2210
+ """Context manager for a ZMQ socket"""
2211
+
2212
+ if socket_type not in (zmq.ROUTER, zmq.REQ):
2213
+ raise ValueError(f"Unexpected socket type: {socket_type}")
2214
+
2215
+ ctx: zmq.Context | None = None
2216
+ try:
2217
+ ctx = zmq.Context() # type: ignore[attr-defined]
2218
+ yield make_zmq_socket(
2219
+ ctx=ctx, path=addr, socket_type=socket_type, bind=socket_type == zmq.ROUTER
2220
+ )
2221
+ finally:
2222
+ if ctx is not None:
2223
+ ctx.destroy(linger=0)
2224
+
2225
+
2226
+ @dataclass
2227
+ class NixlKVConnectorStats(KVConnectorStats):
2228
+ """Container for transfer performance metrics"""
2229
+
2230
+ def __post_init__(self):
2231
+ if not self.data:
2232
+ # Empty container init, no data is passed in.
2233
+ self.reset()
2234
+
2235
+ def reset(self):
2236
+ # Must be serializable
2237
+ self.data: dict[str, list[float]] = {
2238
+ "transfer_duration": [],
2239
+ "post_duration": [],
2240
+ "bytes_transferred": [],
2241
+ "num_descriptors": [],
2242
+ "num_failed_transfers": [],
2243
+ "num_failed_notifications": [],
2244
+ }
2245
+
2246
+ def record_transfer(self, res: nixlXferTelemetry):
2247
+ # Keep metrics units consistent with rest of the code: time us->s
2248
+ self.data["transfer_duration"].append(res.xferDuration / 1e6)
2249
+ self.data["post_duration"].append(res.postDuration / 1e6)
2250
+ self.data["bytes_transferred"].append(res.totalBytes)
2251
+ self.data["num_descriptors"].append(res.descCount)
2252
+
2253
+ def record_failed_transfer(self):
2254
+ """Record a failed NIXL transfer operation."""
2255
+ self.data["num_failed_transfers"].append(1.0)
2256
+
2257
+ def record_failed_notification(self):
2258
+ """Record a failed NIXL notification (send_notif)."""
2259
+ self.data["num_failed_notifications"].append(1.0)
2260
+
2261
+ def clone_and_reset(self) -> "NixlKVConnectorStats":
2262
+ old = copy.copy(self)
2263
+ self.reset()
2264
+ return old
2265
+
2266
+ def is_empty(self) -> bool:
2267
+ return self.num_successful_transfers == 0
2268
+
2269
+ def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
2270
+ if not other.is_empty():
2271
+ for k, v in other.data.items():
2272
+ accumulator = self.data[k]
2273
+ assert isinstance(accumulator, list)
2274
+ accumulator.extend(v)
2275
+ return self
2276
+
2277
+ def reduce(self) -> dict[str, int | float]:
2278
+ # Compute compact representative stats suitable for CLI logging
2279
+ if self.is_empty():
2280
+ return {
2281
+ "Num successful transfers": 0,
2282
+ "Avg xfer time (ms)": 0,
2283
+ "P90 xfer time (ms)": 0,
2284
+ "Avg post time (ms)": 0,
2285
+ "P90 post time (ms)": 0,
2286
+ "Avg MB per transfer": 0,
2287
+ "Throughput (MB/s)": 0,
2288
+ "Avg number of descriptors": 0,
2289
+ }
2290
+
2291
+ xfer_time = np.asarray(self.data["transfer_duration"])
2292
+ post_time = np.asarray(self.data["post_duration"])
2293
+ # Convert to MB for CLI logging.
2294
+ mb = np.asarray(self.data["bytes_transferred"]) / 2**20
2295
+ descs = np.asarray(self.data["num_descriptors"], dtype=np.uint32)
2296
+ n = len(descs)
2297
+ assert n == self.num_successful_transfers
2298
+
2299
+ total_mb = mb.sum()
2300
+ avg_mb = total_mb / n
2301
+
2302
+ total_time_seconds = xfer_time.sum()
2303
+ throughput_mb_s = total_mb / total_time_seconds
2304
+
2305
+ return {
2306
+ "Num successful transfers": n,
2307
+ "Avg xfer time (ms)": round(xfer_time.mean() * 1e3, 3),
2308
+ "P90 xfer time (ms)": round(np.percentile(xfer_time, 90) * 1e3, 3),
2309
+ "Avg post time (ms)": round(post_time.mean() * 1e3, 3),
2310
+ "P90 post time (ms)": round(np.percentile(post_time, 90) * 1e3, 3),
2311
+ "Avg MB per transfer": round(avg_mb, 3),
2312
+ "Throughput (MB/s)": round(throughput_mb_s, 3),
2313
+ "Avg number of descriptors": round(descs.mean(), 1),
2314
+ }
2315
+
2316
+ @property
2317
+ def num_successful_transfers(self) -> int:
2318
+ return len(self.data["transfer_duration"])
2319
+
2320
+
2321
+ class NixlPromMetrics(KVConnectorPromMetrics):
2322
+ def __init__(
2323
+ self,
2324
+ vllm_config: VllmConfig,
2325
+ metric_types: dict[type[PromMetric], type[PromMetricT]],
2326
+ labelnames: list[str],
2327
+ per_engine_labelvalues: dict[int, list[str]],
2328
+ ):
2329
+ super().__init__(vllm_config, metric_types, labelnames, per_engine_labelvalues)
2330
+
2331
+ buckets = [
2332
+ 0.001,
2333
+ 0.005,
2334
+ 0.01,
2335
+ 0.025,
2336
+ 0.05,
2337
+ 0.075,
2338
+ 0.1,
2339
+ 0.2,
2340
+ 0.3,
2341
+ 0.5,
2342
+ 0.75,
2343
+ 1.0,
2344
+ 5.0,
2345
+ ]
2346
+ nixl_histogram_xfer_time = self._histogram_cls(
2347
+ name="vllm:nixl_xfer_time_seconds",
2348
+ documentation="Histogram of transfer duration for NIXL KV Cache transfers.",
2349
+ buckets=buckets[1:],
2350
+ labelnames=labelnames,
2351
+ )
2352
+ self.nixl_histogram_xfer_time = self.make_per_engine(nixl_histogram_xfer_time)
2353
+ nixl_histogram_post_time = self._histogram_cls(
2354
+ name="vllm:nixl_post_time_seconds",
2355
+ documentation="Histogram of transfer post time for NIXL KV"
2356
+ " Cache transfers.",
2357
+ buckets=buckets,
2358
+ labelnames=labelnames,
2359
+ )
2360
+ self.nixl_histogram_post_time = self.make_per_engine(nixl_histogram_post_time)
2361
+ # uniform 2kb to 16gb range
2362
+ buckets = [2 ** (10 + i) for i in range(1, 25, 2)]
2363
+ nixl_histogram_bytes_transferred = self._histogram_cls(
2364
+ name="vllm:nixl_bytes_transferred",
2365
+ documentation="Histogram of bytes transferred per NIXL KV Cache transfers.",
2366
+ buckets=buckets,
2367
+ labelnames=labelnames,
2368
+ )
2369
+ self.nixl_histogram_bytes_transferred = self.make_per_engine(
2370
+ nixl_histogram_bytes_transferred
2371
+ )
2372
+ buckets = [
2373
+ 10,
2374
+ 20,
2375
+ 30,
2376
+ 50,
2377
+ 75,
2378
+ 100,
2379
+ 200,
2380
+ 400,
2381
+ 1000,
2382
+ 2000,
2383
+ 4000,
2384
+ 10000,
2385
+ 20000,
2386
+ 50000,
2387
+ ]
2388
+ nixl_histogram_num_descriptors = self._histogram_cls(
2389
+ name="vllm:nixl_num_descriptors",
2390
+ documentation="Histogram of number of descriptors per NIXL"
2391
+ " KV Cache transfers.",
2392
+ buckets=buckets,
2393
+ labelnames=labelnames,
2394
+ )
2395
+ self.nixl_histogram_num_descriptors = self.make_per_engine(
2396
+ nixl_histogram_num_descriptors
2397
+ )
2398
+ counter_nixl_num_failed_transfers = self._counter_cls(
2399
+ name="vllm:nixl_num_failed_transfers",
2400
+ documentation="Number of failed NIXL KV Cache transfers.",
2401
+ labelnames=labelnames,
2402
+ )
2403
+ self.counter_nixl_num_failed_transfers = self.make_per_engine(
2404
+ counter_nixl_num_failed_transfers
2405
+ )
2406
+ counter_nixl_num_failed_notifications = self._counter_cls(
2407
+ name="vllm:nixl_num_failed_notifications",
2408
+ documentation="Number of failed NIXL KV Cache notifications.",
2409
+ labelnames=labelnames,
2410
+ )
2411
+ self.counter_nixl_num_failed_notifications = self.make_per_engine(
2412
+ counter_nixl_num_failed_notifications
2413
+ )
2414
+
2415
+ def observe(self, transfer_stats_data: dict[str, Any], engine_idx: int = 0):
2416
+ for prom_obj, list_item_key in zip(
2417
+ [
2418
+ self.nixl_histogram_xfer_time,
2419
+ self.nixl_histogram_post_time,
2420
+ self.nixl_histogram_bytes_transferred,
2421
+ self.nixl_histogram_num_descriptors,
2422
+ ],
2423
+ [
2424
+ "transfer_duration",
2425
+ "post_duration",
2426
+ "bytes_transferred",
2427
+ "num_descriptors",
2428
+ ],
2429
+ ):
2430
+ for list_item in transfer_stats_data[list_item_key]:
2431
+ prom_obj[engine_idx].observe(list_item)
2432
+ for counter_obj, counter_item_key in zip(
2433
+ [
2434
+ self.counter_nixl_num_failed_transfers,
2435
+ self.counter_nixl_num_failed_notifications,
2436
+ ],
2437
+ ["num_failed_transfers", "num_failed_notifications"],
2438
+ ):
2439
+ for list_item in transfer_stats_data[counter_item_key]:
2440
+ counter_obj[engine_idx].inc(list_item)