passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1402 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.pari
|
|
3
|
+
r"""
|
|
4
|
+
Arithmetic subgroups, finite index subgroups of `\SL_2(\ZZ)`
|
|
5
|
+
"""
|
|
6
|
+
################################################################################
|
|
7
|
+
#
|
|
8
|
+
# Copyright (C) 2009, The Sage Group -- https://www.sagemath.org/
|
|
9
|
+
#
|
|
10
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
11
|
+
#
|
|
12
|
+
# The full text of the GPL is available at:
|
|
13
|
+
#
|
|
14
|
+
# https://www.gnu.org/licenses/
|
|
15
|
+
#
|
|
16
|
+
################################################################################
|
|
17
|
+
|
|
18
|
+
from sage.groups.group import Group
|
|
19
|
+
from sage.categories.groups import Groups
|
|
20
|
+
from sage.rings.integer_ring import ZZ
|
|
21
|
+
from sage.arith.functions import lcm
|
|
22
|
+
from sage.misc.cachefunc import cached_method
|
|
23
|
+
from copy import copy # for making copies of lists of cusps
|
|
24
|
+
from sage.modular.modsym.p1list import lift_to_sl2z
|
|
25
|
+
from sage.modular.cusps import Cusp
|
|
26
|
+
|
|
27
|
+
from sage.misc.lazy_import import lazy_import
|
|
28
|
+
lazy_import('sage.modular.arithgroup.congroup_sl2z', 'SL2Z')
|
|
29
|
+
from sage.structure.element import parent
|
|
30
|
+
|
|
31
|
+
from .arithgroup_element import ArithmeticSubgroupElement, M2Z as Mat2Z
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def is_ArithmeticSubgroup(x) -> bool:
|
|
35
|
+
r"""
|
|
36
|
+
Return ``True`` if ``x`` is of type :class:`ArithmeticSubgroup`.
|
|
37
|
+
|
|
38
|
+
EXAMPLES::
|
|
39
|
+
|
|
40
|
+
sage: from sage.modular.arithgroup.all import is_ArithmeticSubgroup
|
|
41
|
+
sage: is_ArithmeticSubgroup(GL(2, GF(7)))
|
|
42
|
+
doctest:warning...
|
|
43
|
+
DeprecationWarning: The function is_ArithmeticSubgroup is deprecated; use 'isinstance(..., ArithmeticSubgroup)' instead.
|
|
44
|
+
See https://github.com/sagemath/sage/issues/38035 for details.
|
|
45
|
+
False
|
|
46
|
+
sage: is_ArithmeticSubgroup(Gamma0(4))
|
|
47
|
+
True
|
|
48
|
+
"""
|
|
49
|
+
from sage.misc.superseded import deprecation
|
|
50
|
+
deprecation(38035, "The function is_ArithmeticSubgroup is deprecated; use 'isinstance(..., ArithmeticSubgroup)' instead.")
|
|
51
|
+
return isinstance(x, ArithmeticSubgroup)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class ArithmeticSubgroup(Group):
|
|
55
|
+
r"""
|
|
56
|
+
Base class for arithmetic subgroups of `\SL_2(\ZZ)`. Not
|
|
57
|
+
intended to be used directly, but still includes quite a few
|
|
58
|
+
general-purpose routines which compute data about an arithmetic subgroup
|
|
59
|
+
assuming that it has a working element testing routine.
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
Element = ArithmeticSubgroupElement
|
|
63
|
+
|
|
64
|
+
def __init__(self) -> None:
|
|
65
|
+
r"""
|
|
66
|
+
Standard init routine.
|
|
67
|
+
|
|
68
|
+
EXAMPLES::
|
|
69
|
+
|
|
70
|
+
sage: G = Gamma1(7)
|
|
71
|
+
sage: G.category() # indirect doctest
|
|
72
|
+
Category of infinite groups
|
|
73
|
+
"""
|
|
74
|
+
Group.__init__(self, category=Groups().Infinite())
|
|
75
|
+
|
|
76
|
+
def _repr_(self) -> str:
|
|
77
|
+
r"""
|
|
78
|
+
Return the string representation of ``self``.
|
|
79
|
+
|
|
80
|
+
.. NOTE:: This function should be overridden by all subclasses.
|
|
81
|
+
|
|
82
|
+
EXAMPLES::
|
|
83
|
+
|
|
84
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup()._repr_()
|
|
85
|
+
'Generic arithmetic subgroup of SL2Z'
|
|
86
|
+
"""
|
|
87
|
+
return "Generic arithmetic subgroup of SL2Z"
|
|
88
|
+
|
|
89
|
+
def _repr_option(self, key):
|
|
90
|
+
"""
|
|
91
|
+
Metadata about the :meth:`_repr_` output.
|
|
92
|
+
|
|
93
|
+
See :meth:`sage.structure.parent._repr_option` for details.
|
|
94
|
+
|
|
95
|
+
EXAMPLES::
|
|
96
|
+
|
|
97
|
+
sage: Gamma1(7)._repr_option('element_ascii_art')
|
|
98
|
+
True
|
|
99
|
+
"""
|
|
100
|
+
if key == 'element_ascii_art':
|
|
101
|
+
return True
|
|
102
|
+
return super()._repr_option(key)
|
|
103
|
+
|
|
104
|
+
def __reduce__(self):
|
|
105
|
+
r"""
|
|
106
|
+
Used for pickling ``self``.
|
|
107
|
+
|
|
108
|
+
.. NOTE:: This function should be overridden by all subclasses.
|
|
109
|
+
|
|
110
|
+
EXAMPLES::
|
|
111
|
+
|
|
112
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().__reduce__()
|
|
113
|
+
Traceback (most recent call last):
|
|
114
|
+
...
|
|
115
|
+
NotImplementedError: all subclasses must define a __reduce__ method
|
|
116
|
+
"""
|
|
117
|
+
raise NotImplementedError("all subclasses must define a __reduce__ method")
|
|
118
|
+
|
|
119
|
+
def _element_constructor_(self, x, check=True):
|
|
120
|
+
r"""
|
|
121
|
+
Create an element of this congruence subgroup from x.
|
|
122
|
+
|
|
123
|
+
If the optional flag check is ``True`` (default), check whether
|
|
124
|
+
x actually gives an element of ``self``.
|
|
125
|
+
|
|
126
|
+
EXAMPLES::
|
|
127
|
+
|
|
128
|
+
sage: G = Gamma(5)
|
|
129
|
+
sage: G([1, 0, -10, 1]) # indirect doctest
|
|
130
|
+
[ 1 0]
|
|
131
|
+
[-10 1]
|
|
132
|
+
sage: G(matrix(ZZ, 2, [26, 5, 5, 1]))
|
|
133
|
+
[26 5]
|
|
134
|
+
[ 5 1]
|
|
135
|
+
sage: G([1, 1, 6, 7])
|
|
136
|
+
Traceback (most recent call last):
|
|
137
|
+
...
|
|
138
|
+
TypeError: matrix [1 1]
|
|
139
|
+
[6 7] is not an element of Congruence Subgroup Gamma(5)
|
|
140
|
+
"""
|
|
141
|
+
# Do not override this function! Derived classes should override
|
|
142
|
+
# _contains_sl2.
|
|
143
|
+
x = SL2Z(x, check)
|
|
144
|
+
if not check or x in self:
|
|
145
|
+
return x
|
|
146
|
+
raise TypeError("matrix %s is not an element of %s" % (x, self))
|
|
147
|
+
|
|
148
|
+
def __contains__(self, x):
|
|
149
|
+
r"""
|
|
150
|
+
Test if x is an element of this group.
|
|
151
|
+
|
|
152
|
+
This checks that x defines (is?) a 2x2 integer matrix of determinant 1, and
|
|
153
|
+
then hands over to the routine ``_contains_sl2``, which derived classes should implement.
|
|
154
|
+
|
|
155
|
+
EXAMPLES::
|
|
156
|
+
|
|
157
|
+
sage: [1,2] in SL2Z # indirect doctest
|
|
158
|
+
False
|
|
159
|
+
sage: [1,2,0,1] in SL2Z # indirect doctest
|
|
160
|
+
True
|
|
161
|
+
sage: SL2Z([1,2,0,1]) in Gamma(3) # indirect doctest
|
|
162
|
+
False
|
|
163
|
+
sage: -1 in SL2Z
|
|
164
|
+
True
|
|
165
|
+
sage: 2 in SL2Z
|
|
166
|
+
False
|
|
167
|
+
"""
|
|
168
|
+
# Do not override this function! Derived classes should override
|
|
169
|
+
# _contains_sl2.
|
|
170
|
+
if isinstance(x, list) and len(x) == 4:
|
|
171
|
+
if not all(y in ZZ for y in x):
|
|
172
|
+
return False
|
|
173
|
+
a, b, c, d = map(ZZ, x)
|
|
174
|
+
if a*d - b*c != 1:
|
|
175
|
+
return False
|
|
176
|
+
return self._contains_sl2(a, b, c, d)
|
|
177
|
+
else:
|
|
178
|
+
if parent(x) is not SL2Z:
|
|
179
|
+
try:
|
|
180
|
+
y = SL2Z(x)
|
|
181
|
+
except TypeError:
|
|
182
|
+
return False
|
|
183
|
+
x = y
|
|
184
|
+
return self._contains_sl2(x.a(), x.b(), x.c(), x.d())
|
|
185
|
+
|
|
186
|
+
def _contains_sl2(self, a, b, c, d):
|
|
187
|
+
r"""
|
|
188
|
+
Test whether the matrix [a,b;c,d], which may be assumed to have
|
|
189
|
+
determinant 1, is an element of ``self``.
|
|
190
|
+
|
|
191
|
+
This must be overridden by all subclasses.
|
|
192
|
+
|
|
193
|
+
EXAMPLES::
|
|
194
|
+
|
|
195
|
+
sage: G = sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup()
|
|
196
|
+
sage: 1 in G
|
|
197
|
+
Traceback (most recent call last):
|
|
198
|
+
...
|
|
199
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
200
|
+
"""
|
|
201
|
+
raise NotImplementedError("Please implement _contains_sl2 for %s" % self.__class__)
|
|
202
|
+
|
|
203
|
+
def __hash__(self):
|
|
204
|
+
r"""
|
|
205
|
+
Return a hash of ``self``.
|
|
206
|
+
|
|
207
|
+
EXAMPLES::
|
|
208
|
+
|
|
209
|
+
sage: h = hash(Gamma0(11))
|
|
210
|
+
sage: h = hash(Gamma1(11))
|
|
211
|
+
|
|
212
|
+
TESTS:
|
|
213
|
+
|
|
214
|
+
We test that :issue:`18743` is fixed::
|
|
215
|
+
|
|
216
|
+
sage: G1 = GammaH(37,[4]); G1
|
|
217
|
+
Congruence Subgroup Gamma_H(37) with H generated by [4]
|
|
218
|
+
sage: G2 = GammaH(37,[4,16]); G2
|
|
219
|
+
Congruence Subgroup Gamma_H(37) with H generated by [4, 7]
|
|
220
|
+
sage: G1 == G2
|
|
221
|
+
True
|
|
222
|
+
sage: hash(G1) == hash(G2)
|
|
223
|
+
True
|
|
224
|
+
sage: set([G1,G2])
|
|
225
|
+
{Congruence Subgroup Gamma_H(37) with H generated by [4]}
|
|
226
|
+
"""
|
|
227
|
+
return hash((self.level(), self.index()))
|
|
228
|
+
|
|
229
|
+
def matrix_space(self):
|
|
230
|
+
"""
|
|
231
|
+
Return the parent space of the matrices, which is always
|
|
232
|
+
``MatrixSpace(ZZ, 2)``.
|
|
233
|
+
|
|
234
|
+
EXAMPLES::
|
|
235
|
+
|
|
236
|
+
sage: Gamma(3).matrix_space()
|
|
237
|
+
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
|
|
238
|
+
"""
|
|
239
|
+
return Mat2Z
|
|
240
|
+
|
|
241
|
+
def is_parent_of(self, x) -> bool:
|
|
242
|
+
r"""
|
|
243
|
+
Check whether this group is a valid parent for the element x.
|
|
244
|
+
|
|
245
|
+
Required by Sage's testing framework.
|
|
246
|
+
|
|
247
|
+
EXAMPLES::
|
|
248
|
+
|
|
249
|
+
sage: Gamma(3).is_parent_of(ZZ(1))
|
|
250
|
+
False
|
|
251
|
+
sage: Gamma(3).is_parent_of([1,0,0,1])
|
|
252
|
+
False
|
|
253
|
+
sage: Gamma(3).is_parent_of(SL2Z([1,1,0,1]))
|
|
254
|
+
False
|
|
255
|
+
sage: Gamma(3).is_parent_of(SL2Z(1))
|
|
256
|
+
True
|
|
257
|
+
"""
|
|
258
|
+
return parent(x) == SL2Z and x in self
|
|
259
|
+
|
|
260
|
+
def coset_reps(self, G=None):
|
|
261
|
+
r"""
|
|
262
|
+
Return right coset representatives for ``self \\ G``, where `G` is
|
|
263
|
+
another arithmetic subgroup that contains ``self``. If ``G == None``,
|
|
264
|
+
default to ``G = SL2Z``.
|
|
265
|
+
|
|
266
|
+
For generic arithmetic subgroups `G` this is carried out by Todd-Coxeter
|
|
267
|
+
enumeration; here `G` is treated as a black box, implementing nothing but
|
|
268
|
+
membership testing.
|
|
269
|
+
|
|
270
|
+
EXAMPLES::
|
|
271
|
+
|
|
272
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().coset_reps()
|
|
273
|
+
Traceback (most recent call last):
|
|
274
|
+
...
|
|
275
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
276
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.coset_reps(Gamma0(3))
|
|
277
|
+
[
|
|
278
|
+
[1 0] [ 0 -1] [ 0 -1] [ 0 -1]
|
|
279
|
+
[0 1], [ 1 0], [ 1 1], [ 1 2]
|
|
280
|
+
]
|
|
281
|
+
"""
|
|
282
|
+
return self.todd_coxeter(G)[0]
|
|
283
|
+
|
|
284
|
+
@cached_method
|
|
285
|
+
def todd_coxeter(self, G=None, on_right=True):
|
|
286
|
+
r"""
|
|
287
|
+
Compute coset representatives for ``self \\ G`` and action of standard
|
|
288
|
+
generators on them via Todd-Coxeter enumeration.
|
|
289
|
+
|
|
290
|
+
If ``G`` is ``None``, default to ``SL2Z``. The method also computes
|
|
291
|
+
generators of the subgroup at same time.
|
|
292
|
+
|
|
293
|
+
INPUT:
|
|
294
|
+
|
|
295
|
+
- ``G`` -- intermediate subgroup (currently not implemented if different
|
|
296
|
+
from SL(2,Z))
|
|
297
|
+
|
|
298
|
+
- ``on_right`` -- boolean (default: ``True``); if ``True`` return right
|
|
299
|
+
coset enumeration, if ``False`` return left one
|
|
300
|
+
|
|
301
|
+
This is *extremely* slow in general.
|
|
302
|
+
|
|
303
|
+
OUTPUT: list of coset representatives
|
|
304
|
+
|
|
305
|
+
- a list of generators for the group
|
|
306
|
+
|
|
307
|
+
- ``l`` -- list of integers that correspond to the action of the
|
|
308
|
+
standard parabolic element [[1,1],[0,1]] of `SL(2,\ZZ)` on the cosets
|
|
309
|
+
of ``self``.
|
|
310
|
+
|
|
311
|
+
- ``s`` -- list of integers that correspond to the action of the standard
|
|
312
|
+
element of order `2` [[0,-1],[1,0]] on the cosets of ``self``
|
|
313
|
+
|
|
314
|
+
EXAMPLES::
|
|
315
|
+
|
|
316
|
+
sage: L = SL2Z([1,1,0,1])
|
|
317
|
+
sage: S = SL2Z([0,-1,1,0])
|
|
318
|
+
|
|
319
|
+
sage: G = Gamma(2)
|
|
320
|
+
sage: reps, gens, l, s = G.todd_coxeter()
|
|
321
|
+
sage: len(reps) == G.index()
|
|
322
|
+
True
|
|
323
|
+
sage: all(reps[i] * L * ~reps[l[i]] in G for i in range(6))
|
|
324
|
+
True
|
|
325
|
+
sage: all(reps[i] * S * ~reps[s[i]] in G for i in range(6))
|
|
326
|
+
True
|
|
327
|
+
|
|
328
|
+
sage: G = Gamma0(7)
|
|
329
|
+
sage: reps, gens, l, s = G.todd_coxeter()
|
|
330
|
+
sage: len(reps) == G.index()
|
|
331
|
+
True
|
|
332
|
+
sage: all(reps[i] * L * ~reps[l[i]] in G for i in range(8))
|
|
333
|
+
True
|
|
334
|
+
sage: all(reps[i] * S * ~reps[s[i]] in G for i in range(8))
|
|
335
|
+
True
|
|
336
|
+
|
|
337
|
+
sage: G = Gamma1(3)
|
|
338
|
+
sage: reps, gens, l, s = G.todd_coxeter(on_right=False)
|
|
339
|
+
sage: len(reps) == G.index()
|
|
340
|
+
True
|
|
341
|
+
sage: all(~reps[l[i]] * L * reps[i] in G for i in range(8))
|
|
342
|
+
True
|
|
343
|
+
sage: all(~reps[s[i]] * S * reps[i] in G for i in range(8))
|
|
344
|
+
True
|
|
345
|
+
|
|
346
|
+
sage: G = Gamma0(5)
|
|
347
|
+
sage: reps, gens, l, s = G.todd_coxeter(on_right=False)
|
|
348
|
+
sage: len(reps) == G.index()
|
|
349
|
+
True
|
|
350
|
+
sage: all(~reps[l[i]] * L * reps[i] in G for i in range(6))
|
|
351
|
+
True
|
|
352
|
+
sage: all(~reps[s[i]] * S * reps[i] in G for i in range(6))
|
|
353
|
+
True
|
|
354
|
+
"""
|
|
355
|
+
if G is None:
|
|
356
|
+
G = SL2Z
|
|
357
|
+
if G != SL2Z:
|
|
358
|
+
raise NotImplementedError("Don't know how to compute coset reps for subgroups yet")
|
|
359
|
+
|
|
360
|
+
one = SL2Z.one()
|
|
361
|
+
l = SL2Z([1, 1, 0, 1])
|
|
362
|
+
s = SL2Z([0, -1, 1, 0])
|
|
363
|
+
|
|
364
|
+
reps = [one] # coset representatives
|
|
365
|
+
reps_inv = {one: 0} # coset representatives index
|
|
366
|
+
|
|
367
|
+
l_wait_back = [one] # rep with no incoming s_edge
|
|
368
|
+
s_wait_back = [one] # rep with no incoming l_edge
|
|
369
|
+
l_wait = [one] # rep with no outgoing l_edge
|
|
370
|
+
s_wait = [one] # rep with no outgoing s_edge
|
|
371
|
+
|
|
372
|
+
l_edges = [None] # edges for l
|
|
373
|
+
s_edges = [None] # edges for s
|
|
374
|
+
|
|
375
|
+
gens = []
|
|
376
|
+
|
|
377
|
+
while l_wait or s_wait:
|
|
378
|
+
if l_wait:
|
|
379
|
+
x = l_wait.pop(0)
|
|
380
|
+
y = x
|
|
381
|
+
not_end = True
|
|
382
|
+
while not_end:
|
|
383
|
+
if on_right:
|
|
384
|
+
y = y*l
|
|
385
|
+
else:
|
|
386
|
+
y = l*y
|
|
387
|
+
for i in range(len(l_wait_back)):
|
|
388
|
+
v = l_wait_back[i]
|
|
389
|
+
if on_right:
|
|
390
|
+
yy = y*~v
|
|
391
|
+
else:
|
|
392
|
+
yy = ~v*y
|
|
393
|
+
if yy in self:
|
|
394
|
+
l_edges[reps_inv[x]] = reps_inv[v]
|
|
395
|
+
del l_wait_back[i]
|
|
396
|
+
if yy != one:
|
|
397
|
+
gens.append(self(yy))
|
|
398
|
+
not_end = False
|
|
399
|
+
break
|
|
400
|
+
else:
|
|
401
|
+
reps_inv[y] = len(reps)
|
|
402
|
+
l_edges[reps_inv[x]] = len(reps)
|
|
403
|
+
reps.append(y)
|
|
404
|
+
l_edges.append(None)
|
|
405
|
+
s_edges.append(None)
|
|
406
|
+
s_wait_back.append(y)
|
|
407
|
+
s_wait.append(y)
|
|
408
|
+
x = y
|
|
409
|
+
|
|
410
|
+
if s_wait:
|
|
411
|
+
x = s_wait.pop(0)
|
|
412
|
+
y = x
|
|
413
|
+
not_end = True
|
|
414
|
+
while not_end:
|
|
415
|
+
if on_right:
|
|
416
|
+
y = y*s
|
|
417
|
+
else:
|
|
418
|
+
y = s*y
|
|
419
|
+
for i in range(len(s_wait_back)):
|
|
420
|
+
v = s_wait_back[i]
|
|
421
|
+
if on_right:
|
|
422
|
+
yy = y*~v
|
|
423
|
+
else:
|
|
424
|
+
yy = ~v*y
|
|
425
|
+
if yy in self:
|
|
426
|
+
s_edges[reps_inv[x]] = reps_inv[v]
|
|
427
|
+
del s_wait_back[i]
|
|
428
|
+
if yy != one:
|
|
429
|
+
gens.append(self(yy))
|
|
430
|
+
not_end = False
|
|
431
|
+
break
|
|
432
|
+
else:
|
|
433
|
+
reps_inv[y] = len(reps)
|
|
434
|
+
s_edges[reps_inv[x]] = len(reps)
|
|
435
|
+
reps.append(y)
|
|
436
|
+
l_edges.append(None)
|
|
437
|
+
s_edges.append(None)
|
|
438
|
+
l_wait_back.append(y)
|
|
439
|
+
l_wait.append(y)
|
|
440
|
+
x = y
|
|
441
|
+
|
|
442
|
+
return reps, gens, l_edges, s_edges
|
|
443
|
+
|
|
444
|
+
def nu2(self) -> int:
|
|
445
|
+
r"""
|
|
446
|
+
Return the number of orbits of elliptic points of order 2 for this
|
|
447
|
+
arithmetic subgroup.
|
|
448
|
+
|
|
449
|
+
EXAMPLES::
|
|
450
|
+
|
|
451
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().nu2()
|
|
452
|
+
Traceback (most recent call last):
|
|
453
|
+
...
|
|
454
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
455
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.nu2(Gamma0(1105)) == 8
|
|
456
|
+
True
|
|
457
|
+
"""
|
|
458
|
+
|
|
459
|
+
# Subgroups not containing -1 have no elliptic points of order 2.
|
|
460
|
+
|
|
461
|
+
if not self.is_even():
|
|
462
|
+
return 0
|
|
463
|
+
|
|
464
|
+
# Cheap trick: if self is a subgroup of something with no elliptic points,
|
|
465
|
+
# then self has no elliptic points either.
|
|
466
|
+
|
|
467
|
+
from .all import Gamma0, CongruenceSubgroupBase
|
|
468
|
+
if isinstance(self, CongruenceSubgroupBase):
|
|
469
|
+
if self.is_subgroup(Gamma0(self.level())) and Gamma0(self.level()).nu2() == 0:
|
|
470
|
+
return 0
|
|
471
|
+
|
|
472
|
+
# Otherwise, the number of elliptic points is the number of g in self \
|
|
473
|
+
# SL2Z such that the stabiliser of g * i in self is not trivial. (Note
|
|
474
|
+
# that the points g*i for g in the coset reps are not distinct, but it
|
|
475
|
+
# still works, since the failure of these points to be distinct happens
|
|
476
|
+
# precisely when the preimages are not elliptic.)
|
|
477
|
+
|
|
478
|
+
count = 0
|
|
479
|
+
mati = SL2Z([0, 1, -1, 0])
|
|
480
|
+
for g in self.coset_reps():
|
|
481
|
+
if g * mati * (~g) in self:
|
|
482
|
+
count += 1
|
|
483
|
+
return count
|
|
484
|
+
|
|
485
|
+
def nu3(self):
|
|
486
|
+
r"""
|
|
487
|
+
Return the number of orbits of elliptic points of order 3 for this
|
|
488
|
+
arithmetic subgroup.
|
|
489
|
+
|
|
490
|
+
EXAMPLES::
|
|
491
|
+
|
|
492
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().nu3()
|
|
493
|
+
Traceback (most recent call last):
|
|
494
|
+
...
|
|
495
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
496
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.nu3(Gamma0(1729)) == 8
|
|
497
|
+
True
|
|
498
|
+
|
|
499
|
+
We test that a bug in handling of subgroups not containing -1 is fixed::
|
|
500
|
+
|
|
501
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.nu3(GammaH(7, [2]))
|
|
502
|
+
2
|
|
503
|
+
"""
|
|
504
|
+
|
|
505
|
+
# Cheap trick: if self is a subgroup of something with no elliptic points,
|
|
506
|
+
# then self has no elliptic points either.
|
|
507
|
+
|
|
508
|
+
from .all import Gamma0, CongruenceSubgroupBase
|
|
509
|
+
if isinstance(self, CongruenceSubgroupBase):
|
|
510
|
+
if self.is_subgroup(Gamma0(self.level())) and Gamma0(self.level()).nu3() == 0:
|
|
511
|
+
return 0
|
|
512
|
+
|
|
513
|
+
count = 0
|
|
514
|
+
matj = SL2Z([0, 1, -1, -1])
|
|
515
|
+
for g in self.coset_reps():
|
|
516
|
+
if g * matj * (~g) in self:
|
|
517
|
+
count += 1
|
|
518
|
+
|
|
519
|
+
return count if self.is_even() else count // 2
|
|
520
|
+
|
|
521
|
+
def is_abelian(self) -> bool:
|
|
522
|
+
r"""
|
|
523
|
+
Return ``True`` if this arithmetic subgroup is abelian.
|
|
524
|
+
|
|
525
|
+
Since arithmetic subgroups are always nonabelian, this always
|
|
526
|
+
returns ``False``.
|
|
527
|
+
|
|
528
|
+
EXAMPLES::
|
|
529
|
+
|
|
530
|
+
sage: SL2Z.is_abelian()
|
|
531
|
+
False
|
|
532
|
+
sage: Gamma0(3).is_abelian()
|
|
533
|
+
False
|
|
534
|
+
sage: Gamma1(12).is_abelian()
|
|
535
|
+
False
|
|
536
|
+
sage: GammaH(4, [3]).is_abelian()
|
|
537
|
+
False
|
|
538
|
+
"""
|
|
539
|
+
return False
|
|
540
|
+
|
|
541
|
+
def is_finite(self) -> bool:
|
|
542
|
+
r"""
|
|
543
|
+
Return ``True`` if this arithmetic subgroup is finite.
|
|
544
|
+
|
|
545
|
+
Since arithmetic subgroups are always infinite, this always
|
|
546
|
+
returns ``False``.
|
|
547
|
+
|
|
548
|
+
EXAMPLES::
|
|
549
|
+
|
|
550
|
+
sage: SL2Z.is_finite()
|
|
551
|
+
False
|
|
552
|
+
sage: Gamma0(3).is_finite()
|
|
553
|
+
False
|
|
554
|
+
sage: Gamma1(12).is_finite()
|
|
555
|
+
False
|
|
556
|
+
sage: GammaH(4, [3]).is_finite()
|
|
557
|
+
False
|
|
558
|
+
"""
|
|
559
|
+
return False
|
|
560
|
+
|
|
561
|
+
def is_subgroup(self, right) -> bool:
|
|
562
|
+
r"""
|
|
563
|
+
Return ``True`` if ``self`` is a subgroup of right, and ``False`` otherwise.
|
|
564
|
+
|
|
565
|
+
For generic arithmetic subgroups this is done by the absurdly
|
|
566
|
+
slow algorithm of checking all of the generators of ``self``
|
|
567
|
+
to see if they are in ``right``.
|
|
568
|
+
|
|
569
|
+
EXAMPLES::
|
|
570
|
+
|
|
571
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().is_subgroup(SL2Z)
|
|
572
|
+
Traceback (most recent call last):
|
|
573
|
+
...
|
|
574
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
575
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.is_subgroup(Gamma1(18), Gamma0(6))
|
|
576
|
+
True
|
|
577
|
+
"""
|
|
578
|
+
# ridiculously slow generic algorithm
|
|
579
|
+
return all(g in right for g in self.gens())
|
|
580
|
+
|
|
581
|
+
def is_normal(self) -> bool:
|
|
582
|
+
r"""
|
|
583
|
+
Return ``True`` precisely if this subgroup is a normal subgroup of
|
|
584
|
+
``SL2Z``.
|
|
585
|
+
|
|
586
|
+
EXAMPLES::
|
|
587
|
+
|
|
588
|
+
sage: Gamma(3).is_normal()
|
|
589
|
+
True
|
|
590
|
+
sage: Gamma1(3).is_normal()
|
|
591
|
+
False
|
|
592
|
+
"""
|
|
593
|
+
for x in self.gens():
|
|
594
|
+
for y in SL2Z.gens():
|
|
595
|
+
if y * SL2Z(x) * (~y) not in self:
|
|
596
|
+
return False
|
|
597
|
+
return True
|
|
598
|
+
|
|
599
|
+
def is_odd(self) -> bool:
|
|
600
|
+
r"""
|
|
601
|
+
Return ``True`` precisely if this subgroup does not contain the
|
|
602
|
+
matrix -1.
|
|
603
|
+
|
|
604
|
+
EXAMPLES::
|
|
605
|
+
|
|
606
|
+
sage: SL2Z.is_odd()
|
|
607
|
+
False
|
|
608
|
+
sage: Gamma0(20).is_odd()
|
|
609
|
+
False
|
|
610
|
+
sage: Gamma1(5).is_odd()
|
|
611
|
+
True
|
|
612
|
+
sage: GammaH(11, [3]).is_odd()
|
|
613
|
+
True
|
|
614
|
+
"""
|
|
615
|
+
return not self.is_even()
|
|
616
|
+
|
|
617
|
+
def is_even(self) -> bool:
|
|
618
|
+
r"""
|
|
619
|
+
Return ``True`` precisely if this subgroup contains the matrix -1.
|
|
620
|
+
|
|
621
|
+
EXAMPLES::
|
|
622
|
+
|
|
623
|
+
sage: SL2Z.is_even()
|
|
624
|
+
True
|
|
625
|
+
sage: Gamma0(20).is_even()
|
|
626
|
+
True
|
|
627
|
+
sage: Gamma1(5).is_even()
|
|
628
|
+
False
|
|
629
|
+
sage: GammaH(11, [3]).is_even()
|
|
630
|
+
False
|
|
631
|
+
"""
|
|
632
|
+
return [-1, 0, 0, -1] in self
|
|
633
|
+
|
|
634
|
+
def to_even_subgroup(self):
|
|
635
|
+
r"""
|
|
636
|
+
Return the smallest even subgroup of `SL(2, \ZZ)` containing ``self``.
|
|
637
|
+
|
|
638
|
+
EXAMPLES::
|
|
639
|
+
|
|
640
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().to_even_subgroup()
|
|
641
|
+
Traceback (most recent call last):
|
|
642
|
+
...
|
|
643
|
+
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
|
|
644
|
+
"""
|
|
645
|
+
if self.is_even():
|
|
646
|
+
return self
|
|
647
|
+
else:
|
|
648
|
+
raise NotImplementedError
|
|
649
|
+
|
|
650
|
+
def order(self):
|
|
651
|
+
r"""
|
|
652
|
+
Return the number of elements in this arithmetic subgroup.
|
|
653
|
+
|
|
654
|
+
Since arithmetic subgroups are always infinite, this always returns
|
|
655
|
+
infinity.
|
|
656
|
+
|
|
657
|
+
EXAMPLES::
|
|
658
|
+
|
|
659
|
+
sage: SL2Z.order()
|
|
660
|
+
+Infinity
|
|
661
|
+
sage: Gamma0(5).order()
|
|
662
|
+
+Infinity
|
|
663
|
+
sage: Gamma1(2).order()
|
|
664
|
+
+Infinity
|
|
665
|
+
sage: GammaH(12, [5]).order()
|
|
666
|
+
+Infinity
|
|
667
|
+
"""
|
|
668
|
+
from sage.rings.infinity import infinity
|
|
669
|
+
return infinity
|
|
670
|
+
|
|
671
|
+
def reduce_cusp(self, c):
|
|
672
|
+
r"""
|
|
673
|
+
Given a cusp `c \in \mathbb{P}^1(\QQ)`, return the unique reduced cusp
|
|
674
|
+
equivalent to c under the action of self, where a reduced cusp is an
|
|
675
|
+
element `\tfrac{r}{s}` with r,s coprime nonnegative integers, s as
|
|
676
|
+
small as possible, and r as small as possible for that s.
|
|
677
|
+
|
|
678
|
+
.. NOTE:: This function should be overridden by all subclasses.
|
|
679
|
+
|
|
680
|
+
EXAMPLES::
|
|
681
|
+
|
|
682
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().reduce_cusp(1/4)
|
|
683
|
+
Traceback (most recent call last):
|
|
684
|
+
...
|
|
685
|
+
NotImplementedError
|
|
686
|
+
"""
|
|
687
|
+
raise NotImplementedError
|
|
688
|
+
|
|
689
|
+
def cusps(self, algorithm='default'):
|
|
690
|
+
r"""
|
|
691
|
+
Return a sorted list of inequivalent cusps for ``self``, i.e. a set of
|
|
692
|
+
representatives for the orbits of ``self`` on `\mathbb{P}^1(\QQ)`.
|
|
693
|
+
|
|
694
|
+
These should be returned in a reduced form where this makes sense.
|
|
695
|
+
|
|
696
|
+
INPUT:
|
|
697
|
+
|
|
698
|
+
- ``algorithm`` -- which algorithm to use to compute the cusps of ``self``.
|
|
699
|
+
``'default'`` finds representatives for a known complete set of
|
|
700
|
+
cusps. ``'modsym'`` computes the boundary map on the space of weight
|
|
701
|
+
two modular symbols associated to ``self``, which finds the cusps for
|
|
702
|
+
``self`` in the process.
|
|
703
|
+
|
|
704
|
+
EXAMPLES::
|
|
705
|
+
|
|
706
|
+
sage: Gamma0(36).cusps()
|
|
707
|
+
[0, 1/18, 1/12, 1/9, 1/6, 1/4, 1/3, 5/12, 1/2, 2/3, 5/6, Infinity]
|
|
708
|
+
sage: Gamma0(36).cusps(algorithm='modsym') == Gamma0(36).cusps() # needs sage.libs.flint
|
|
709
|
+
True
|
|
710
|
+
sage: GammaH(36, [19,29]).cusps() == Gamma0(36).cusps()
|
|
711
|
+
True
|
|
712
|
+
sage: Gamma0(1).cusps()
|
|
713
|
+
[Infinity]
|
|
714
|
+
"""
|
|
715
|
+
try:
|
|
716
|
+
return copy(self._cusp_list[algorithm])
|
|
717
|
+
except (AttributeError, KeyError):
|
|
718
|
+
self._cusp_list = {}
|
|
719
|
+
|
|
720
|
+
from .congroup_sl2z import SL2Z_class
|
|
721
|
+
if algorithm == 'default':
|
|
722
|
+
if isinstance(self, SL2Z_class):
|
|
723
|
+
s = [Cusp(1, 0)]
|
|
724
|
+
else:
|
|
725
|
+
s = self._find_cusps()
|
|
726
|
+
elif algorithm == 'modsym':
|
|
727
|
+
s = sorted(self.reduce_cusp(c)
|
|
728
|
+
for c in self.modular_symbols().cusps())
|
|
729
|
+
else:
|
|
730
|
+
raise ValueError("unknown algorithm: %s" % algorithm)
|
|
731
|
+
|
|
732
|
+
self._cusp_list[algorithm] = s
|
|
733
|
+
return copy(s)
|
|
734
|
+
|
|
735
|
+
def _find_cusps(self):
|
|
736
|
+
r"""
|
|
737
|
+
Calculate a list of inequivalent cusps.
|
|
738
|
+
|
|
739
|
+
EXAMPLES::
|
|
740
|
+
|
|
741
|
+
sage: sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5)._find_cusps()
|
|
742
|
+
Traceback (most recent call last):
|
|
743
|
+
...
|
|
744
|
+
NotImplementedError
|
|
745
|
+
|
|
746
|
+
.. NOTE::
|
|
747
|
+
|
|
748
|
+
There is a generic algorithm implemented at the top level that
|
|
749
|
+
uses the coset representatives of ``self``. This is *very slow* and for all
|
|
750
|
+
the standard congruence subgroups there is a quicker way of doing it,
|
|
751
|
+
so this should usually be overridden in subclasses; but it doesn't have
|
|
752
|
+
to be.
|
|
753
|
+
"""
|
|
754
|
+
i = Cusp([1, 0])
|
|
755
|
+
L = [i]
|
|
756
|
+
for a in self.coset_reps():
|
|
757
|
+
ai = i.apply([a.a(), a.b(), a.c(), a.d()])
|
|
758
|
+
new = 1
|
|
759
|
+
for v in L:
|
|
760
|
+
if self.are_equivalent(ai, v):
|
|
761
|
+
new = 0
|
|
762
|
+
break
|
|
763
|
+
if new == 1:
|
|
764
|
+
L.append(ai)
|
|
765
|
+
return L
|
|
766
|
+
|
|
767
|
+
def are_equivalent(self, x, y, trans=False):
|
|
768
|
+
r"""
|
|
769
|
+
Test whether or not cusps `x` and `y` are equivalent modulo ``self``.
|
|
770
|
+
|
|
771
|
+
If ``self`` has a ``reduce_cusp()`` method, use that; otherwise do a
|
|
772
|
+
slow explicit test.
|
|
773
|
+
|
|
774
|
+
If ``trans == False``, returns ``True`` or ``False``. If
|
|
775
|
+
``trans == True``, then return either ``False`` or an element of
|
|
776
|
+
``self`` mapping `x` onto `y`.
|
|
777
|
+
|
|
778
|
+
EXAMPLES::
|
|
779
|
+
|
|
780
|
+
sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(0), trans=True)
|
|
781
|
+
[ 3 -1]
|
|
782
|
+
[-14 5]
|
|
783
|
+
sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(1/7))
|
|
784
|
+
False
|
|
785
|
+
"""
|
|
786
|
+
x = Cusp(x)
|
|
787
|
+
y = Cusp(y)
|
|
788
|
+
if not trans:
|
|
789
|
+
try:
|
|
790
|
+
xr = self.reduce_cusp(x)
|
|
791
|
+
yr = self.reduce_cusp(y)
|
|
792
|
+
if xr != yr:
|
|
793
|
+
return False
|
|
794
|
+
if xr == yr:
|
|
795
|
+
return True
|
|
796
|
+
except NotImplementedError:
|
|
797
|
+
pass
|
|
798
|
+
|
|
799
|
+
vx = lift_to_sl2z(x.numerator(),x.denominator(), 0)
|
|
800
|
+
dx = SL2Z([vx[2], -vx[0], vx[3], -vx[1]])
|
|
801
|
+
vy = lift_to_sl2z(y.numerator(),y.denominator(), 0)
|
|
802
|
+
dy = SL2Z([vy[2], -vy[0], vy[3], -vy[1]])
|
|
803
|
+
|
|
804
|
+
for i in range(self.index()):
|
|
805
|
+
# Note that the width of any cusp is bounded above by the index of self.
|
|
806
|
+
# If self is congruence, then the level of self is a much better bound, but
|
|
807
|
+
# this method is written to work with non-congruence subgroups as well,
|
|
808
|
+
if dy * SL2Z([1,i,0,1])*(~dx) in self:
|
|
809
|
+
if trans:
|
|
810
|
+
return dy * SL2Z([1,i,0,1]) * ~dx
|
|
811
|
+
else:
|
|
812
|
+
return True
|
|
813
|
+
elif (self.is_odd() and dy * SL2Z([-1,-i,0,-1]) * ~dx in self):
|
|
814
|
+
if trans:
|
|
815
|
+
return dy * SL2Z([-1,-i,0,-1]) * ~dx
|
|
816
|
+
else:
|
|
817
|
+
return True
|
|
818
|
+
return False
|
|
819
|
+
|
|
820
|
+
def cusp_data(self, c) -> tuple:
|
|
821
|
+
r"""
|
|
822
|
+
Return a triple `(g, w, t)` where `g` is an element of ``self``
|
|
823
|
+
generating the stabiliser of the given cusp, `w` is the width of the
|
|
824
|
+
cusp, and `t` is 1 if the cusp is regular and -1 if not.
|
|
825
|
+
|
|
826
|
+
EXAMPLES::
|
|
827
|
+
|
|
828
|
+
sage: Gamma1(4).cusp_data(Cusps(1/2))
|
|
829
|
+
(
|
|
830
|
+
[ 1 -1]
|
|
831
|
+
[ 4 -3], 1, -1
|
|
832
|
+
)
|
|
833
|
+
"""
|
|
834
|
+
c = Cusp(c)
|
|
835
|
+
|
|
836
|
+
# first find an element of SL2Z sending infinity to the given cusp
|
|
837
|
+
w = lift_to_sl2z(c.denominator(), c.numerator(), 0)
|
|
838
|
+
g = SL2Z([w[3], w[1], w[2], w[0]])
|
|
839
|
+
|
|
840
|
+
for d in range(1,1+self.index()):
|
|
841
|
+
if g * SL2Z([1, d, 0, 1]) * (~g) in self:
|
|
842
|
+
return (g * SL2Z([1,d,0,1]) * (~g), d, 1)
|
|
843
|
+
elif g * SL2Z([-1, -d, 0, -1]) * (~g) in self:
|
|
844
|
+
return (g * SL2Z([-1, -d, 0, -1]) * (~g), d, -1)
|
|
845
|
+
raise ArithmeticError("Can't get here!")
|
|
846
|
+
|
|
847
|
+
def is_regular_cusp(self, c) -> bool:
|
|
848
|
+
r"""
|
|
849
|
+
Return ``True`` if the orbit of the given cusp is a regular cusp for
|
|
850
|
+
``self``, otherwise ``False``.
|
|
851
|
+
|
|
852
|
+
This is automatically true if -1 is in ``self``.
|
|
853
|
+
|
|
854
|
+
EXAMPLES::
|
|
855
|
+
|
|
856
|
+
sage: Gamma1(4).is_regular_cusp(Cusps(1/2))
|
|
857
|
+
False
|
|
858
|
+
sage: Gamma1(4).is_regular_cusp(Cusps(oo))
|
|
859
|
+
True
|
|
860
|
+
"""
|
|
861
|
+
if self.is_even():
|
|
862
|
+
return True
|
|
863
|
+
return self.cusp_data(c)[2] == 1
|
|
864
|
+
|
|
865
|
+
def cusp_width(self, c):
|
|
866
|
+
r"""
|
|
867
|
+
Return the width of the orbit of cusps represented by c.
|
|
868
|
+
|
|
869
|
+
EXAMPLES::
|
|
870
|
+
|
|
871
|
+
sage: Gamma0(11).cusp_width(Cusps(oo))
|
|
872
|
+
1
|
|
873
|
+
sage: Gamma0(11).cusp_width(0)
|
|
874
|
+
11
|
|
875
|
+
sage: [Gamma0(100).cusp_width(c) for c in Gamma0(100).cusps()]
|
|
876
|
+
[100, 1, 4, 1, 1, 1, 4, 25, 1, 1, 4, 1, 25, 4, 1, 4, 1, 1]
|
|
877
|
+
"""
|
|
878
|
+
return self.cusp_data(c)[1]
|
|
879
|
+
|
|
880
|
+
def index(self):
|
|
881
|
+
r"""
|
|
882
|
+
Return the index of ``self`` in the full modular group.
|
|
883
|
+
|
|
884
|
+
EXAMPLES::
|
|
885
|
+
|
|
886
|
+
sage: Gamma0(17).index()
|
|
887
|
+
18
|
|
888
|
+
sage: sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5).index()
|
|
889
|
+
Traceback (most recent call last):
|
|
890
|
+
...
|
|
891
|
+
NotImplementedError
|
|
892
|
+
"""
|
|
893
|
+
return len(list(self.coset_reps()))
|
|
894
|
+
|
|
895
|
+
def generalised_level(self):
|
|
896
|
+
r"""
|
|
897
|
+
Return the generalised level of ``self``, i.e., the least common multiple of
|
|
898
|
+
the widths of all cusps.
|
|
899
|
+
|
|
900
|
+
If ``self`` is *even*, Wohlfart's theorem tells us that this is equal to
|
|
901
|
+
the (conventional) level of ``self`` when ``self`` is a congruence subgroup.
|
|
902
|
+
This can fail if ``self`` is odd, but the actual level is at most twice the
|
|
903
|
+
generalised level. See the paper by Kiming, Schuett and Verrill for
|
|
904
|
+
more examples.
|
|
905
|
+
|
|
906
|
+
EXAMPLES::
|
|
907
|
+
|
|
908
|
+
sage: Gamma0(18).generalised_level()
|
|
909
|
+
18
|
|
910
|
+
sage: from sage.modular.arithgroup.arithgroup_perm import HsuExample18 # needs sage.groups
|
|
911
|
+
sage: HsuExample18().generalised_level() # needs sage.groups
|
|
912
|
+
24
|
|
913
|
+
|
|
914
|
+
In the following example, the actual level is twice the generalised
|
|
915
|
+
level. This is the group `G_2` from Example 17 of K-S-V.
|
|
916
|
+
|
|
917
|
+
::
|
|
918
|
+
|
|
919
|
+
sage: G = CongruenceSubgroup(8, [ [1,1,0,1], [3,-1,4,-1] ])
|
|
920
|
+
sage: G.level()
|
|
921
|
+
8
|
|
922
|
+
sage: G.generalised_level()
|
|
923
|
+
4
|
|
924
|
+
"""
|
|
925
|
+
return lcm([self.cusp_width(c) for c in self.cusps()])
|
|
926
|
+
|
|
927
|
+
def projective_index(self):
|
|
928
|
+
r"""
|
|
929
|
+
Return the index of the image of ``self`` in `\PSL_2(\ZZ)`. This is equal
|
|
930
|
+
to the index of ``self`` if ``self`` contains -1, and half of this otherwise.
|
|
931
|
+
|
|
932
|
+
This is equal to the degree of the natural map from the modular curve
|
|
933
|
+
of ``self`` to the `j`-line.
|
|
934
|
+
|
|
935
|
+
EXAMPLES::
|
|
936
|
+
|
|
937
|
+
sage: Gamma0(5).projective_index()
|
|
938
|
+
6
|
|
939
|
+
sage: Gamma1(5).projective_index()
|
|
940
|
+
12
|
|
941
|
+
"""
|
|
942
|
+
if self.is_even():
|
|
943
|
+
return self.index()
|
|
944
|
+
else:
|
|
945
|
+
return self.index() // 2
|
|
946
|
+
|
|
947
|
+
def is_congruence(self) -> bool:
|
|
948
|
+
r"""
|
|
949
|
+
Return ``True`` if ``self`` is a congruence subgroup.
|
|
950
|
+
|
|
951
|
+
EXAMPLES::
|
|
952
|
+
|
|
953
|
+
sage: Gamma0(5).is_congruence()
|
|
954
|
+
True
|
|
955
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().is_congruence()
|
|
956
|
+
Traceback (most recent call last):
|
|
957
|
+
...
|
|
958
|
+
NotImplementedError
|
|
959
|
+
"""
|
|
960
|
+
raise NotImplementedError
|
|
961
|
+
|
|
962
|
+
def genus(self):
|
|
963
|
+
r"""
|
|
964
|
+
Return the genus of the modular curve of ``self``.
|
|
965
|
+
|
|
966
|
+
EXAMPLES::
|
|
967
|
+
|
|
968
|
+
sage: Gamma1(5).genus()
|
|
969
|
+
0
|
|
970
|
+
sage: Gamma1(31).genus()
|
|
971
|
+
26
|
|
972
|
+
sage: from sage.modular.dims import dimension_cusp_forms
|
|
973
|
+
sage: Gamma1(157).genus() == dimension_cusp_forms(Gamma1(157), 2)
|
|
974
|
+
True
|
|
975
|
+
sage: GammaH(7, [2]).genus()
|
|
976
|
+
0
|
|
977
|
+
sage: [Gamma0(n).genus() for n in [1..23]]
|
|
978
|
+
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2]
|
|
979
|
+
sage: [n for n in [1..200] if Gamma0(n).genus() == 1]
|
|
980
|
+
[11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49]
|
|
981
|
+
"""
|
|
982
|
+
return ZZ(1 + (self.projective_index()) / ZZ(12) - (self.nu2())/ZZ(4) - (self.nu3())/ZZ(3) - self.ncusps()/ZZ(2))
|
|
983
|
+
|
|
984
|
+
def farey_symbol(self):
|
|
985
|
+
r"""
|
|
986
|
+
Return the Farey symbol associated to this subgroup.
|
|
987
|
+
|
|
988
|
+
See the :mod:`~sage.modular.arithgroup.farey_symbol` module for more
|
|
989
|
+
information.
|
|
990
|
+
|
|
991
|
+
EXAMPLES::
|
|
992
|
+
|
|
993
|
+
sage: Gamma1(4).farey_symbol()
|
|
994
|
+
FareySymbol(Congruence Subgroup Gamma1(4))
|
|
995
|
+
"""
|
|
996
|
+
from .farey_symbol import Farey
|
|
997
|
+
return Farey(self)
|
|
998
|
+
|
|
999
|
+
@cached_method
|
|
1000
|
+
def generators(self, algorithm='farey'):
|
|
1001
|
+
r"""
|
|
1002
|
+
Return a list of generators for this congruence subgroup. The result is cached.
|
|
1003
|
+
|
|
1004
|
+
INPUT:
|
|
1005
|
+
|
|
1006
|
+
- ``algorithm`` -- string; either ``farey`` or ``todd-coxeter``
|
|
1007
|
+
|
|
1008
|
+
If ``algorithm`` is set to ``'farey'``, then the generators will be
|
|
1009
|
+
calculated using Farey symbols, which will always return a *minimal*
|
|
1010
|
+
generating set. See :mod:`~sage.modular.arithgroup.farey_symbol` for
|
|
1011
|
+
more information.
|
|
1012
|
+
|
|
1013
|
+
If ``algorithm`` is set to ``'todd-coxeter'``, a simpler algorithm
|
|
1014
|
+
based on Todd-Coxeter enumeration will be used. This is *exceedingly*
|
|
1015
|
+
slow for general subgroups, and the list of generators will be far from
|
|
1016
|
+
minimal (indeed it may contain repetitions).
|
|
1017
|
+
|
|
1018
|
+
EXAMPLES::
|
|
1019
|
+
|
|
1020
|
+
sage: Gamma(2).generators()
|
|
1021
|
+
[
|
|
1022
|
+
[1 2] [ 3 -2] [-1 0]
|
|
1023
|
+
[0 1], [ 2 -1], [ 0 -1]
|
|
1024
|
+
]
|
|
1025
|
+
sage: Gamma(2).generators(algorithm='todd-coxeter')
|
|
1026
|
+
[
|
|
1027
|
+
[1 2] [-1 0] [ 1 0] [-1 0] [-1 2] [-1 0] [1 0]
|
|
1028
|
+
[0 1], [ 0 -1], [-2 1], [ 0 -1], [-2 3], [ 2 -1], [2 1]
|
|
1029
|
+
]
|
|
1030
|
+
"""
|
|
1031
|
+
if algorithm == "farey":
|
|
1032
|
+
return self.farey_symbol().generators()
|
|
1033
|
+
elif algorithm == "todd-coxeter":
|
|
1034
|
+
return self.todd_coxeter()[1]
|
|
1035
|
+
else:
|
|
1036
|
+
raise ValueError("Unknown algorithm '%s' (should be either 'farey' or 'todd-coxeter')" % algorithm)
|
|
1037
|
+
|
|
1038
|
+
def gens(self, *args, **kwds) -> tuple:
|
|
1039
|
+
r"""
|
|
1040
|
+
Return a tuple of generators for this congruence subgroup.
|
|
1041
|
+
|
|
1042
|
+
The generators need not be minimal. For arguments, see :meth:`~generators`.
|
|
1043
|
+
|
|
1044
|
+
EXAMPLES::
|
|
1045
|
+
|
|
1046
|
+
sage: SL2Z.gens()
|
|
1047
|
+
(
|
|
1048
|
+
[ 0 -1] [1 1]
|
|
1049
|
+
[ 1 0], [0 1]
|
|
1050
|
+
)
|
|
1051
|
+
"""
|
|
1052
|
+
return tuple(self.generators(*args, **kwds))
|
|
1053
|
+
|
|
1054
|
+
def gen(self, i):
|
|
1055
|
+
r"""
|
|
1056
|
+
Return the `i`-th generator of self, i.e. the `i`-th element of the
|
|
1057
|
+
tuple ``self.gens()``.
|
|
1058
|
+
|
|
1059
|
+
EXAMPLES::
|
|
1060
|
+
|
|
1061
|
+
sage: SL2Z.gen(1)
|
|
1062
|
+
[1 1]
|
|
1063
|
+
[0 1]
|
|
1064
|
+
"""
|
|
1065
|
+
return self.generators()[i]
|
|
1066
|
+
|
|
1067
|
+
def ngens(self):
|
|
1068
|
+
r"""
|
|
1069
|
+
Return the size of the minimal generating set of ``self`` returned by
|
|
1070
|
+
:meth:`generators`.
|
|
1071
|
+
|
|
1072
|
+
EXAMPLES::
|
|
1073
|
+
|
|
1074
|
+
sage: Gamma0(22).ngens()
|
|
1075
|
+
8
|
|
1076
|
+
sage: Gamma1(14).ngens()
|
|
1077
|
+
13
|
|
1078
|
+
sage: GammaH(11, [3]).ngens()
|
|
1079
|
+
3
|
|
1080
|
+
sage: SL2Z.ngens()
|
|
1081
|
+
2
|
|
1082
|
+
"""
|
|
1083
|
+
return len(self.generators())
|
|
1084
|
+
|
|
1085
|
+
def ncusps(self):
|
|
1086
|
+
r"""
|
|
1087
|
+
Return the number of cusps of this arithmetic subgroup.
|
|
1088
|
+
|
|
1089
|
+
This is provided as a separate function since for dimension
|
|
1090
|
+
formulae in even weight all we need to know is the number of
|
|
1091
|
+
cusps, and this can be calculated very quickly, while
|
|
1092
|
+
enumerating all cusps is much slower.
|
|
1093
|
+
|
|
1094
|
+
EXAMPLES::
|
|
1095
|
+
|
|
1096
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.ncusps(Gamma0(7))
|
|
1097
|
+
2
|
|
1098
|
+
"""
|
|
1099
|
+
return ZZ(len(self.cusps()))
|
|
1100
|
+
|
|
1101
|
+
def nregcusps(self):
|
|
1102
|
+
r"""
|
|
1103
|
+
Return the number of cusps of ``self`` that are "regular", i.e. their
|
|
1104
|
+
stabiliser has a generator with both eigenvalues +1 rather than -1.
|
|
1105
|
+
|
|
1106
|
+
If the group contains -1, every cusp is clearly regular.
|
|
1107
|
+
|
|
1108
|
+
EXAMPLES::
|
|
1109
|
+
|
|
1110
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.nregcusps(Gamma1(4))
|
|
1111
|
+
2
|
|
1112
|
+
"""
|
|
1113
|
+
return self.ncusps() - self.nirregcusps()
|
|
1114
|
+
|
|
1115
|
+
def nirregcusps(self):
|
|
1116
|
+
r"""
|
|
1117
|
+
Return the number of cusps of ``self`` that are "irregular", i.e. their
|
|
1118
|
+
stabiliser can only be generated by elements with both eigenvalues -1
|
|
1119
|
+
rather than +1.
|
|
1120
|
+
|
|
1121
|
+
If the group contains -1, every cusp is clearly regular.
|
|
1122
|
+
|
|
1123
|
+
EXAMPLES::
|
|
1124
|
+
|
|
1125
|
+
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup.nirregcusps(Gamma1(4))
|
|
1126
|
+
1
|
|
1127
|
+
"""
|
|
1128
|
+
if self.is_even():
|
|
1129
|
+
return ZZ.zero()
|
|
1130
|
+
return ZZ(len([1 for c in self.cusps() if not self.is_regular_cusp(c)]))
|
|
1131
|
+
|
|
1132
|
+
def dimension_modular_forms(self, k=2):
|
|
1133
|
+
r"""
|
|
1134
|
+
Return the dimension of the space of weight k modular forms for this
|
|
1135
|
+
group.
|
|
1136
|
+
|
|
1137
|
+
This is given by a standard formula in terms of k and various
|
|
1138
|
+
invariants of the group; see Diamond + Shurman, "A First Course in
|
|
1139
|
+
Modular Forms", section 3.5 and 3.6. If k is not given, defaults to k =
|
|
1140
|
+
2.
|
|
1141
|
+
|
|
1142
|
+
For dimensions of spaces of modular forms with character for Gamma1, use
|
|
1143
|
+
the dimension_modular_forms method of the Gamma1 class, or the standalone
|
|
1144
|
+
function dimension_modular_forms().
|
|
1145
|
+
|
|
1146
|
+
For weight 1 modular forms this generic implementation only works in
|
|
1147
|
+
cases where one can prove solely via Riemann-Roch theory that there
|
|
1148
|
+
aren't any cusp forms (i.e. when the number of regular cusps is
|
|
1149
|
+
strictly greater than the degree of the canonical divisor). Otherwise a
|
|
1150
|
+
:exc:`NotImplementedError` is raised.
|
|
1151
|
+
|
|
1152
|
+
EXAMPLES::
|
|
1153
|
+
|
|
1154
|
+
sage: Gamma1(31).dimension_modular_forms(2)
|
|
1155
|
+
55
|
|
1156
|
+
sage: Gamma1(3).dimension_modular_forms(1)
|
|
1157
|
+
1
|
|
1158
|
+
sage: Gamma1(4).dimension_modular_forms(1) # irregular cusp
|
|
1159
|
+
1
|
|
1160
|
+
sage: Gamma(13).dimension_modular_forms(1)
|
|
1161
|
+
Traceback (most recent call last):
|
|
1162
|
+
...
|
|
1163
|
+
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general
|
|
1164
|
+
"""
|
|
1165
|
+
return self.dimension_cusp_forms(k) + self.dimension_eis(k)
|
|
1166
|
+
|
|
1167
|
+
def dimension_cusp_forms(self, k=2):
|
|
1168
|
+
r"""
|
|
1169
|
+
Return the dimension of the space of weight k cusp forms for this
|
|
1170
|
+
group.
|
|
1171
|
+
|
|
1172
|
+
For `k \ge 2`, this is given by a standard formula in terms of k
|
|
1173
|
+
and various invariants of the group; see Diamond + Shurman, "A First
|
|
1174
|
+
Course in Modular Forms", section 3.5 and 3.6. If k is not given,
|
|
1175
|
+
default to k = 2.
|
|
1176
|
+
|
|
1177
|
+
For dimensions of spaces of cusp forms with character for Gamma1, use
|
|
1178
|
+
the dimension_cusp_forms method of the Gamma1 class, or the standalone
|
|
1179
|
+
function dimension_cusp_forms().
|
|
1180
|
+
|
|
1181
|
+
For weight 1 cusp forms this generic implementation only works in cases
|
|
1182
|
+
where one can prove solely via Riemann-Roch theory that there aren't
|
|
1183
|
+
any cusp forms (i.e. when the number of regular cusps is strictly
|
|
1184
|
+
greater than the degree of the canonical divisor). Otherwise a
|
|
1185
|
+
:exc:`NotImplementedError` is raised.
|
|
1186
|
+
|
|
1187
|
+
EXAMPLES::
|
|
1188
|
+
|
|
1189
|
+
sage: Gamma1(31).dimension_cusp_forms(2)
|
|
1190
|
+
26
|
|
1191
|
+
sage: Gamma(5).dimension_cusp_forms(1)
|
|
1192
|
+
0
|
|
1193
|
+
sage: Gamma1(4).dimension_cusp_forms(1) # irregular cusp
|
|
1194
|
+
0
|
|
1195
|
+
sage: Gamma(13).dimension_cusp_forms(1)
|
|
1196
|
+
Traceback (most recent call last):
|
|
1197
|
+
...
|
|
1198
|
+
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general
|
|
1199
|
+
"""
|
|
1200
|
+
k = ZZ(k)
|
|
1201
|
+
if k <= 0:
|
|
1202
|
+
return ZZ.zero()
|
|
1203
|
+
|
|
1204
|
+
if not (k % 2):
|
|
1205
|
+
# k even
|
|
1206
|
+
|
|
1207
|
+
if k == 2:
|
|
1208
|
+
return self.genus()
|
|
1209
|
+
|
|
1210
|
+
else:
|
|
1211
|
+
return (k-1) * (self.genus() - 1) + (k // ZZ(4))*self.nu2() + (k // ZZ(3))*self.nu3() + (k // ZZ(2) - 1)*self.ncusps()
|
|
1212
|
+
|
|
1213
|
+
else:
|
|
1214
|
+
# k odd
|
|
1215
|
+
|
|
1216
|
+
if self.is_even():
|
|
1217
|
+
return ZZ.zero()
|
|
1218
|
+
|
|
1219
|
+
else:
|
|
1220
|
+
e_reg = self.nregcusps()
|
|
1221
|
+
e_irr = self.nirregcusps()
|
|
1222
|
+
|
|
1223
|
+
if k > 1:
|
|
1224
|
+
return (k-1)*(self.genus()-1) + (k // ZZ(3)) * self.nu3() + (k-2)/ZZ(2) * e_reg + (k-1)/ZZ(2) * e_irr
|
|
1225
|
+
else:
|
|
1226
|
+
if e_reg > 2*self.genus() - 2:
|
|
1227
|
+
return ZZ.zero()
|
|
1228
|
+
else:
|
|
1229
|
+
raise NotImplementedError("Computation of dimensions of weight 1 cusp forms spaces not implemented in general")
|
|
1230
|
+
|
|
1231
|
+
def dimension_eis(self, k=2):
|
|
1232
|
+
r"""
|
|
1233
|
+
Return the dimension of the space of weight k Eisenstein series for
|
|
1234
|
+
this group, which is a subspace of the space of modular forms
|
|
1235
|
+
complementary to the space of cusp forms.
|
|
1236
|
+
|
|
1237
|
+
INPUT:
|
|
1238
|
+
|
|
1239
|
+
- ``k`` -- integer (default: 2)
|
|
1240
|
+
|
|
1241
|
+
EXAMPLES::
|
|
1242
|
+
|
|
1243
|
+
sage: GammaH(33,[2]).dimension_eis()
|
|
1244
|
+
7
|
|
1245
|
+
sage: GammaH(33,[2]).dimension_eis(3)
|
|
1246
|
+
0
|
|
1247
|
+
sage: GammaH(33, [2,5]).dimension_eis(2)
|
|
1248
|
+
3
|
|
1249
|
+
sage: GammaH(33, [4]).dimension_eis(1)
|
|
1250
|
+
4
|
|
1251
|
+
"""
|
|
1252
|
+
if k < 0:
|
|
1253
|
+
return ZZ.zero()
|
|
1254
|
+
if k == 0:
|
|
1255
|
+
return ZZ.one()
|
|
1256
|
+
|
|
1257
|
+
if not (k % 2): # k even
|
|
1258
|
+
if k > 2:
|
|
1259
|
+
return self.ncusps()
|
|
1260
|
+
else: # k = 2
|
|
1261
|
+
return self.ncusps() - 1
|
|
1262
|
+
|
|
1263
|
+
else: # k odd
|
|
1264
|
+
if self.is_even():
|
|
1265
|
+
return ZZ.zero()
|
|
1266
|
+
if k > 1:
|
|
1267
|
+
return self.nregcusps()
|
|
1268
|
+
else: # k = 1
|
|
1269
|
+
return ZZ(self.nregcusps() // ZZ(2))
|
|
1270
|
+
|
|
1271
|
+
def as_permutation_group(self):
|
|
1272
|
+
r"""
|
|
1273
|
+
Return ``self`` as an arithmetic subgroup defined in terms of the
|
|
1274
|
+
permutation action of `SL(2,\ZZ)` on its right cosets.
|
|
1275
|
+
|
|
1276
|
+
This method uses Todd-Coxeter enumeration (via the method
|
|
1277
|
+
:meth:`~todd_coxeter`) which can be extremely slow for arithmetic
|
|
1278
|
+
subgroups with relatively large index in `SL(2,\ZZ)`.
|
|
1279
|
+
|
|
1280
|
+
EXAMPLES::
|
|
1281
|
+
|
|
1282
|
+
sage: # needs sage.groups
|
|
1283
|
+
sage: G = Gamma(3)
|
|
1284
|
+
sage: P = G.as_permutation_group(); P
|
|
1285
|
+
Arithmetic subgroup of index 24
|
|
1286
|
+
sage: G.ncusps() == P.ncusps()
|
|
1287
|
+
True
|
|
1288
|
+
sage: G.nu2() == P.nu2()
|
|
1289
|
+
True
|
|
1290
|
+
sage: G.nu3() == P.nu3()
|
|
1291
|
+
True
|
|
1292
|
+
sage: G.an_element() in P
|
|
1293
|
+
True
|
|
1294
|
+
sage: P.an_element() in G
|
|
1295
|
+
True
|
|
1296
|
+
"""
|
|
1297
|
+
_, _, l_edges, s2_edges = self.todd_coxeter()
|
|
1298
|
+
n = len(l_edges)
|
|
1299
|
+
s3_edges = [None] * n
|
|
1300
|
+
r_edges = [None] * n
|
|
1301
|
+
for i in range(n):
|
|
1302
|
+
ii = s2_edges[l_edges[i]]
|
|
1303
|
+
s3_edges[ii] = i
|
|
1304
|
+
r_edges[ii] = s2_edges[i]
|
|
1305
|
+
if self.is_even():
|
|
1306
|
+
from sage.modular.arithgroup.arithgroup_perm import EvenArithmeticSubgroup_Permutation
|
|
1307
|
+
g = EvenArithmeticSubgroup_Permutation(S2=s2_edges,S3=s3_edges,L=l_edges,R=r_edges)
|
|
1308
|
+
else:
|
|
1309
|
+
from sage.modular.arithgroup.arithgroup_perm import OddArithmeticSubgroup_Permutation
|
|
1310
|
+
g = OddArithmeticSubgroup_Permutation(S2=s2_edges,S3=s3_edges,L=l_edges,R=r_edges)
|
|
1311
|
+
g.relabel()
|
|
1312
|
+
return g
|
|
1313
|
+
|
|
1314
|
+
def sturm_bound(self, weight=2):
|
|
1315
|
+
r"""
|
|
1316
|
+
Return the Sturm bound for modular forms of the given weight and level
|
|
1317
|
+
this subgroup.
|
|
1318
|
+
|
|
1319
|
+
INPUT:
|
|
1320
|
+
|
|
1321
|
+
- ``weight`` -- integer `\geq 2` (default: 2)
|
|
1322
|
+
|
|
1323
|
+
EXAMPLES::
|
|
1324
|
+
|
|
1325
|
+
sage: Gamma0(11).sturm_bound(2)
|
|
1326
|
+
2
|
|
1327
|
+
sage: Gamma0(389).sturm_bound(2)
|
|
1328
|
+
65
|
|
1329
|
+
sage: Gamma0(1).sturm_bound(12)
|
|
1330
|
+
1
|
|
1331
|
+
sage: Gamma0(100).sturm_bound(2)
|
|
1332
|
+
30
|
|
1333
|
+
sage: Gamma0(1).sturm_bound(36)
|
|
1334
|
+
3
|
|
1335
|
+
sage: Gamma0(11).sturm_bound()
|
|
1336
|
+
2
|
|
1337
|
+
sage: Gamma0(13).sturm_bound()
|
|
1338
|
+
3
|
|
1339
|
+
sage: Gamma0(16).sturm_bound()
|
|
1340
|
+
4
|
|
1341
|
+
sage: GammaH(16,[13]).sturm_bound()
|
|
1342
|
+
8
|
|
1343
|
+
sage: GammaH(16,[15]).sturm_bound()
|
|
1344
|
+
16
|
|
1345
|
+
sage: Gamma1(16).sturm_bound()
|
|
1346
|
+
32
|
|
1347
|
+
sage: Gamma1(13).sturm_bound()
|
|
1348
|
+
28
|
|
1349
|
+
sage: Gamma1(13).sturm_bound(5)
|
|
1350
|
+
70
|
|
1351
|
+
|
|
1352
|
+
FURTHER DETAILS: This function returns a positive integer
|
|
1353
|
+
`n` such that the Hecke operators
|
|
1354
|
+
`T_1,\ldots, T_n` acting on *cusp forms* generate the
|
|
1355
|
+
Hecke algebra as a `\ZZ`-module when the character
|
|
1356
|
+
is trivial or quadratic. Otherwise, `T_1,\ldots,T_n`
|
|
1357
|
+
generate the Hecke algebra at least as a
|
|
1358
|
+
`\ZZ[\varepsilon]`-module, where
|
|
1359
|
+
`\ZZ[\varepsilon]` is the ring generated by the
|
|
1360
|
+
values of the Dirichlet character `\varepsilon`.
|
|
1361
|
+
Alternatively, this is a bound such that if two cusp forms
|
|
1362
|
+
associated to this space of modular symbols are congruent modulo
|
|
1363
|
+
`(\lambda, q^n)`, then they are congruent modulo
|
|
1364
|
+
`\lambda`.
|
|
1365
|
+
|
|
1366
|
+
REFERENCES:
|
|
1367
|
+
|
|
1368
|
+
- See the Agashe-Stein appendix to Lario and Schoof,
|
|
1369
|
+
*Some computations with Hecke rings and deformation rings*,
|
|
1370
|
+
Experimental Math., 11 (2002), no. 2, 303-311.
|
|
1371
|
+
|
|
1372
|
+
- This result originated in the paper Sturm,
|
|
1373
|
+
*On the congruence of modular forms*,
|
|
1374
|
+
Springer LNM 1240, 275-280, 1987.
|
|
1375
|
+
|
|
1376
|
+
REMARK: Kevin Buzzard pointed out to me (William Stein) in Fall
|
|
1377
|
+
2002 that the above bound is fine for `\Gamma_1(N)` with
|
|
1378
|
+
character, as one sees by taking a power of `f`. More
|
|
1379
|
+
precisely, if `f \cong 0 \pmod{p}` for first
|
|
1380
|
+
`s` coefficients, then `f^r \cong 0 \pmod{p}` for
|
|
1381
|
+
first `sr` coefficients. Since the weight of `f^r`
|
|
1382
|
+
is `r\cdot k(f)`, it follows that if
|
|
1383
|
+
`s \geq b`, where `b` is the Sturm bound for
|
|
1384
|
+
`\Gamma_0(N)` at weight `k(f)`, then `f^r`
|
|
1385
|
+
has valuation large enough to be forced to be `0` at
|
|
1386
|
+
`r*k(f)` by Sturm bound (which is valid if we choose
|
|
1387
|
+
`r` correctly). Thus `f \cong 0 \pmod{p}`.
|
|
1388
|
+
Conclusion: For `\Gamma_1(N)` with fixed character, the
|
|
1389
|
+
Sturm bound is *exactly* the same as for `\Gamma_0(N)`.
|
|
1390
|
+
|
|
1391
|
+
A key point is that we are finding
|
|
1392
|
+
`\ZZ[\varepsilon]` generators for the Hecke algebra
|
|
1393
|
+
here, not `\ZZ`-generators. So if one wants
|
|
1394
|
+
generators for the Hecke algebra over `\ZZ`, this
|
|
1395
|
+
bound must be suitably modified (and I'm not sure what the
|
|
1396
|
+
modification is).
|
|
1397
|
+
|
|
1398
|
+
AUTHORS:
|
|
1399
|
+
|
|
1400
|
+
- William Stein
|
|
1401
|
+
"""
|
|
1402
|
+
return ZZ((self.index() * weight / ZZ(12)).ceil())
|