passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1207 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
r"""
|
|
3
|
+
Local data for elliptic curves over number fields
|
|
4
|
+
|
|
5
|
+
Let `E` be an elliptic curve over a number field `K` (including `\QQ`).
|
|
6
|
+
There are several local invariants at a finite place `v` that
|
|
7
|
+
can be computed via Tate's algorithm (see [Sil1994]_ IV.9.4 or [Tate1975]_).
|
|
8
|
+
|
|
9
|
+
These include the type of reduction (good, additive, multiplicative),
|
|
10
|
+
a minimal equation of `E` over `K_v`,
|
|
11
|
+
the Tamagawa number `c_v`, defined to be the index `[E(K_v):E^0(K_v)]`
|
|
12
|
+
of the points with good reduction among the local points, and the
|
|
13
|
+
exponent of the conductor `f_v`.
|
|
14
|
+
|
|
15
|
+
The functions in this file will typically be called by using ``local_data``.
|
|
16
|
+
|
|
17
|
+
EXAMPLES::
|
|
18
|
+
|
|
19
|
+
sage: # needs sage.rings.number_field
|
|
20
|
+
sage: x = polygen(ZZ, 'x')
|
|
21
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
22
|
+
sage: E = EllipticCurve([(2+i)^2, (2+i)^7])
|
|
23
|
+
sage: pp = K.fractional_ideal(2+i)
|
|
24
|
+
sage: da = E.local_data(pp)
|
|
25
|
+
sage: da.has_bad_reduction()
|
|
26
|
+
True
|
|
27
|
+
sage: da.has_multiplicative_reduction()
|
|
28
|
+
False
|
|
29
|
+
sage: da.kodaira_symbol()
|
|
30
|
+
I0*
|
|
31
|
+
sage: da.tamagawa_number()
|
|
32
|
+
4
|
|
33
|
+
sage: da.minimal_model()
|
|
34
|
+
Elliptic Curve defined by y^2 = x^3 + (4*i+3)*x + (-29*i-278)
|
|
35
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
36
|
+
|
|
37
|
+
An example to show how the Neron model can change as one extends the field::
|
|
38
|
+
|
|
39
|
+
sage: E = EllipticCurve([0,-1])
|
|
40
|
+
sage: E.local_data(2)
|
|
41
|
+
Local data at Principal ideal (2) of Integer Ring:
|
|
42
|
+
Reduction type: bad additive
|
|
43
|
+
Local minimal model: Elliptic Curve defined by y^2 = x^3 - 1 over Rational Field
|
|
44
|
+
Minimal discriminant valuation: 4
|
|
45
|
+
Conductor exponent: 4
|
|
46
|
+
Kodaira Symbol: II
|
|
47
|
+
Tamagawa Number: 1
|
|
48
|
+
|
|
49
|
+
sage: # needs sage.rings.number_field
|
|
50
|
+
sage: EK = E.base_extend(K)
|
|
51
|
+
sage: EK.local_data(1+i)
|
|
52
|
+
Local data at Fractional ideal (i + 1):
|
|
53
|
+
Reduction type: bad additive
|
|
54
|
+
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (-1)
|
|
55
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
56
|
+
Minimal discriminant valuation: 8
|
|
57
|
+
Conductor exponent: 2
|
|
58
|
+
Kodaira Symbol: IV*
|
|
59
|
+
Tamagawa Number: 3
|
|
60
|
+
|
|
61
|
+
Or how the minimal equation changes::
|
|
62
|
+
|
|
63
|
+
sage: E = EllipticCurve([0,8])
|
|
64
|
+
sage: E.is_minimal()
|
|
65
|
+
True
|
|
66
|
+
|
|
67
|
+
sage: # needs sage.rings.number_field
|
|
68
|
+
sage: EK = E.base_extend(K)
|
|
69
|
+
sage: da = EK.local_data(1+i)
|
|
70
|
+
sage: da.minimal_model()
|
|
71
|
+
Elliptic Curve defined by y^2 = x^3 + (-i)
|
|
72
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
73
|
+
|
|
74
|
+
AUTHORS:
|
|
75
|
+
|
|
76
|
+
- John Cremona: First version 2008-09-21 (refactoring code from
|
|
77
|
+
``ell_number_field.py`` and ``ell_rational_field.py``)
|
|
78
|
+
|
|
79
|
+
- Chris Wuthrich: more documentation 2010-01
|
|
80
|
+
"""
|
|
81
|
+
# ****************************************************************************
|
|
82
|
+
# Copyright (C) 2005 William Stein <wstein@gmail.com>
|
|
83
|
+
#
|
|
84
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
85
|
+
#
|
|
86
|
+
# This code is distributed in the hope that it will be useful,
|
|
87
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
88
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
89
|
+
# General Public License for more details.
|
|
90
|
+
#
|
|
91
|
+
# The full text of the GPL is available at:
|
|
92
|
+
#
|
|
93
|
+
# https://www.gnu.org/licenses/
|
|
94
|
+
# ****************************************************************************
|
|
95
|
+
|
|
96
|
+
from sage.structure.sage_object import SageObject
|
|
97
|
+
from sage.misc.verbose import verbose
|
|
98
|
+
|
|
99
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
100
|
+
from sage.rings.rational_field import QQ
|
|
101
|
+
from sage.rings.integer_ring import ZZ
|
|
102
|
+
from sage.rings.integer import Integer
|
|
103
|
+
from sage.rings.number_field.number_field_ideal import NumberFieldFractionalIdeal
|
|
104
|
+
|
|
105
|
+
from sage.rings.number_field.number_field_base import NumberField
|
|
106
|
+
from sage.rings.ideal import Ideal_generic
|
|
107
|
+
|
|
108
|
+
from .constructor import EllipticCurve
|
|
109
|
+
from .kodaira_symbol import KodairaSymbol
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
class EllipticCurveLocalData(SageObject):
|
|
113
|
+
r"""
|
|
114
|
+
The class for the local reduction data of an elliptic curve.
|
|
115
|
+
|
|
116
|
+
Currently supported are elliptic curves defined over `\QQ`, and
|
|
117
|
+
elliptic curves defined over a number field, at an arbitrary prime
|
|
118
|
+
or prime ideal.
|
|
119
|
+
|
|
120
|
+
INPUT:
|
|
121
|
+
|
|
122
|
+
- ``E`` -- an elliptic curve defined over a number field, or `\QQ`
|
|
123
|
+
|
|
124
|
+
- ``P`` -- a prime ideal of the field, or a prime integer if the field is `\QQ`
|
|
125
|
+
|
|
126
|
+
- ``proof`` -- boolean; if ``True``, only use provably correct
|
|
127
|
+
methods (default: controlled by global proof module). Note
|
|
128
|
+
that the proof module is number_field, not elliptic_curves,
|
|
129
|
+
since the functions that actually need the flag are in
|
|
130
|
+
number fields.
|
|
131
|
+
|
|
132
|
+
- ``algorithm`` -- string (default: ``'pari'``); ignored unless the
|
|
133
|
+
base field is `\QQ`. If "pari", use the PARI C-library
|
|
134
|
+
``ellglobalred`` implementation of Tate's algorithm over
|
|
135
|
+
`\QQ`. If "generic", use the general number field
|
|
136
|
+
implementation.
|
|
137
|
+
|
|
138
|
+
.. NOTE::
|
|
139
|
+
|
|
140
|
+
This function is not normally called directly by users, who
|
|
141
|
+
may access the data via methods of the EllipticCurve
|
|
142
|
+
classes.
|
|
143
|
+
|
|
144
|
+
EXAMPLES::
|
|
145
|
+
|
|
146
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
147
|
+
sage: E = EllipticCurve('14a1')
|
|
148
|
+
sage: EllipticCurveLocalData(E,2)
|
|
149
|
+
Local data at Principal ideal (2) of Integer Ring:
|
|
150
|
+
Reduction type: bad non-split multiplicative
|
|
151
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
152
|
+
over Rational Field
|
|
153
|
+
Minimal discriminant valuation: 6
|
|
154
|
+
Conductor exponent: 1
|
|
155
|
+
Kodaira Symbol: I6
|
|
156
|
+
Tamagawa Number: 2
|
|
157
|
+
"""
|
|
158
|
+
|
|
159
|
+
def __init__(self, E, P, proof=None, algorithm='pari', globally=False):
|
|
160
|
+
r"""
|
|
161
|
+
Initialize the reduction data for the elliptic curve `E` at the prime `P`.
|
|
162
|
+
|
|
163
|
+
INPUT:
|
|
164
|
+
|
|
165
|
+
- ``E`` -- an elliptic curve defined over a number field, or `\QQ`
|
|
166
|
+
|
|
167
|
+
- ``P`` -- a prime ideal of the field, or a prime integer if the field is `\QQ`
|
|
168
|
+
|
|
169
|
+
- ``proof`` -- boolean; if ``True``, only use provably correct
|
|
170
|
+
methods (default: controlled by global proof module). Note
|
|
171
|
+
that the proof module is number_field, not elliptic_curves,
|
|
172
|
+
since the functions that actually need the flag are in
|
|
173
|
+
number fields.
|
|
174
|
+
|
|
175
|
+
- ``algorithm`` -- string (default: ``'pari'``); ignored unless the
|
|
176
|
+
base field is `\QQ`. If "pari", use the PARI C-library
|
|
177
|
+
``ellglobalred`` implementation of Tate's algorithm over
|
|
178
|
+
`\QQ`. If "generic", use the general number field
|
|
179
|
+
implementation.
|
|
180
|
+
|
|
181
|
+
- ``globally`` -- boolean (default: ``False``); if ``True``, the algorithm
|
|
182
|
+
uses the generators of principal ideals rather than an arbitrary
|
|
183
|
+
uniformizer.
|
|
184
|
+
|
|
185
|
+
.. NOTE::
|
|
186
|
+
|
|
187
|
+
This function is not normally called directly by users, who
|
|
188
|
+
may access the data via methods of the EllipticCurve
|
|
189
|
+
classes.
|
|
190
|
+
|
|
191
|
+
EXAMPLES::
|
|
192
|
+
|
|
193
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
194
|
+
sage: E = EllipticCurve('14a1')
|
|
195
|
+
sage: EllipticCurveLocalData(E, 2)
|
|
196
|
+
Local data at Principal ideal (2) of Integer Ring:
|
|
197
|
+
Reduction type: bad non-split multiplicative
|
|
198
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
199
|
+
over Rational Field
|
|
200
|
+
Minimal discriminant valuation: 6
|
|
201
|
+
Conductor exponent: 1
|
|
202
|
+
Kodaira Symbol: I6
|
|
203
|
+
Tamagawa Number: 2
|
|
204
|
+
|
|
205
|
+
::
|
|
206
|
+
|
|
207
|
+
sage: EllipticCurveLocalData(E, 2, algorithm='generic')
|
|
208
|
+
Local data at Principal ideal (2) of Integer Ring:
|
|
209
|
+
Reduction type: bad non-split multiplicative
|
|
210
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
211
|
+
over Rational Field
|
|
212
|
+
Minimal discriminant valuation: 6
|
|
213
|
+
Conductor exponent: 1
|
|
214
|
+
Kodaira Symbol: I6
|
|
215
|
+
Tamagawa Number: 2
|
|
216
|
+
|
|
217
|
+
::
|
|
218
|
+
|
|
219
|
+
sage: EllipticCurveLocalData(E, 2, algorithm='pari')
|
|
220
|
+
Local data at Principal ideal (2) of Integer Ring:
|
|
221
|
+
Reduction type: bad non-split multiplicative
|
|
222
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
223
|
+
over Rational Field
|
|
224
|
+
Minimal discriminant valuation: 6
|
|
225
|
+
Conductor exponent: 1
|
|
226
|
+
Kodaira Symbol: I6
|
|
227
|
+
Tamagawa Number: 2
|
|
228
|
+
|
|
229
|
+
::
|
|
230
|
+
|
|
231
|
+
sage: EllipticCurveLocalData(E, 2, algorithm='unknown')
|
|
232
|
+
Traceback (most recent call last):
|
|
233
|
+
...
|
|
234
|
+
ValueError: algorithm must be one of 'pari', 'generic'
|
|
235
|
+
|
|
236
|
+
::
|
|
237
|
+
|
|
238
|
+
sage: EllipticCurveLocalData(E, 3)
|
|
239
|
+
Local data at Principal ideal (3) of Integer Ring:
|
|
240
|
+
Reduction type: good
|
|
241
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
242
|
+
over Rational Field
|
|
243
|
+
Minimal discriminant valuation: 0
|
|
244
|
+
Conductor exponent: 0
|
|
245
|
+
Kodaira Symbol: I0
|
|
246
|
+
Tamagawa Number: 1
|
|
247
|
+
|
|
248
|
+
::
|
|
249
|
+
|
|
250
|
+
sage: EllipticCurveLocalData(E, 7)
|
|
251
|
+
Local data at Principal ideal (7) of Integer Ring:
|
|
252
|
+
Reduction type: bad split multiplicative
|
|
253
|
+
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6
|
|
254
|
+
over Rational Field
|
|
255
|
+
Minimal discriminant valuation: 3
|
|
256
|
+
Conductor exponent: 1
|
|
257
|
+
Kodaira Symbol: I3
|
|
258
|
+
Tamagawa Number: 3
|
|
259
|
+
"""
|
|
260
|
+
self._curve = E
|
|
261
|
+
K = E.base_field()
|
|
262
|
+
p = check_prime(K,P) # error handling done in that function
|
|
263
|
+
if algorithm != "pari" and algorithm != "generic":
|
|
264
|
+
raise ValueError("algorithm must be one of 'pari', 'generic'")
|
|
265
|
+
|
|
266
|
+
self._reduction_type = None
|
|
267
|
+
if K is QQ:
|
|
268
|
+
self._prime = ZZ.ideal(p)
|
|
269
|
+
else:
|
|
270
|
+
self._prime = p
|
|
271
|
+
|
|
272
|
+
if algorithm == "pari" and K is QQ:
|
|
273
|
+
Eint = E.integral_model()
|
|
274
|
+
data = Eint.pari_curve().elllocalred(p)
|
|
275
|
+
self._fp = data[0].sage()
|
|
276
|
+
self._KS = KodairaSymbol(data[1].sage())
|
|
277
|
+
self._cp = data[3].sage()
|
|
278
|
+
# We use a global minimal model since we can:
|
|
279
|
+
self._Emin_reduced = Eint.minimal_model()
|
|
280
|
+
self._val_disc = self._Emin_reduced.discriminant().valuation(p)
|
|
281
|
+
if self._fp > 0:
|
|
282
|
+
self._reduction_type = Eint.ap(p) # = 0,-1 or +1
|
|
283
|
+
else:
|
|
284
|
+
self._Emin, _, self._val_disc, self._fp, self._KS, self._cp, self._split = self._tate(proof, globally)
|
|
285
|
+
if self._fp > 0:
|
|
286
|
+
if self._Emin.c4().valuation(p) > 0:
|
|
287
|
+
self._reduction_type = 0
|
|
288
|
+
elif self._split:
|
|
289
|
+
self._reduction_type = +1
|
|
290
|
+
else:
|
|
291
|
+
self._reduction_type = -1
|
|
292
|
+
|
|
293
|
+
def __repr__(self):
|
|
294
|
+
r"""
|
|
295
|
+
Return the string representation of this reduction data.
|
|
296
|
+
|
|
297
|
+
EXAMPLES::
|
|
298
|
+
|
|
299
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
300
|
+
sage: E = EllipticCurve('14a1')
|
|
301
|
+
sage: EllipticCurveLocalData(E,2).__repr__()
|
|
302
|
+
'Local data at Principal ideal (2) of Integer Ring:\nReduction type: bad non-split multiplicative\nLocal minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field\nMinimal discriminant valuation: 6\nConductor exponent: 1\nKodaira Symbol: I6\nTamagawa Number: 2'
|
|
303
|
+
sage: EllipticCurveLocalData(E,3).__repr__()
|
|
304
|
+
'Local data at Principal ideal (3) of Integer Ring:\nReduction type: good\nLocal minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field\nMinimal discriminant valuation: 0\nConductor exponent: 0\nKodaira Symbol: I0\nTamagawa Number: 1'
|
|
305
|
+
sage: EllipticCurveLocalData(E,7).__repr__()
|
|
306
|
+
'Local data at Principal ideal (7) of Integer Ring:\nReduction type: bad split multiplicative\nLocal minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field\nMinimal discriminant valuation: 3\nConductor exponent: 1\nKodaira Symbol: I3\nTamagawa Number: 3'
|
|
307
|
+
"""
|
|
308
|
+
red_type = "good"
|
|
309
|
+
if self._reduction_type is not None:
|
|
310
|
+
red_type = ["bad non-split multiplicative","bad additive","bad split multiplicative"][1+self._reduction_type]
|
|
311
|
+
return "Local data at %s:\nReduction type: %s\nLocal minimal model: %s\nMinimal discriminant valuation: %s\nConductor exponent: %s\nKodaira Symbol: %s\nTamagawa Number: %s" % (self._prime,red_type,self.minimal_model(),self._val_disc,self._fp,self._KS,self._cp)
|
|
312
|
+
|
|
313
|
+
def minimal_model(self, reduce=True):
|
|
314
|
+
"""
|
|
315
|
+
Return the (local) minimal model from this local reduction data.
|
|
316
|
+
|
|
317
|
+
INPUT:
|
|
318
|
+
|
|
319
|
+
- ``reduce`` -- boolean (default: ``True``); if set to ``True`` and if
|
|
320
|
+
the initial elliptic curve had globally integral
|
|
321
|
+
coefficients, then the elliptic curve returned by Tate's
|
|
322
|
+
algorithm will be "reduced" as specified in _reduce_model()
|
|
323
|
+
for curves over number fields.
|
|
324
|
+
|
|
325
|
+
EXAMPLES::
|
|
326
|
+
|
|
327
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
328
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
329
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
330
|
+
sage: data = EllipticCurveLocalData(E, 2)
|
|
331
|
+
sage: data.minimal_model()
|
|
332
|
+
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
|
|
333
|
+
sage: data.minimal_model() == E.local_minimal_model(2)
|
|
334
|
+
True
|
|
335
|
+
|
|
336
|
+
To demonstrate the behaviour of the parameter ``reduce``::
|
|
337
|
+
|
|
338
|
+
sage: # needs sage.rings.number_field
|
|
339
|
+
sage: x = polygen(ZZ, 'x')
|
|
340
|
+
sage: K.<a> = NumberField(x^3 + x + 1)
|
|
341
|
+
sage: E = EllipticCurve(K, [0, 0, a, 0, 1])
|
|
342
|
+
sage: E.local_data(K.ideal(a-1)).minimal_model()
|
|
343
|
+
Elliptic Curve defined by y^2 + a*y = x^3 + 1
|
|
344
|
+
over Number Field in a with defining polynomial x^3 + x + 1
|
|
345
|
+
sage: E.local_data(K.ideal(a-1)).minimal_model(reduce=False)
|
|
346
|
+
Elliptic Curve defined by y^2 + (a+2)*y = x^3 + 3*x^2 + 3*x + (-a+1)
|
|
347
|
+
over Number Field in a with defining polynomial x^3 + x + 1
|
|
348
|
+
|
|
349
|
+
sage: E = EllipticCurve([2, 1, 0, -2, -1])
|
|
350
|
+
sage: E.local_data(ZZ.ideal(2), algorithm='generic').minimal_model(reduce=False)
|
|
351
|
+
Elliptic Curve defined by y^2 + 2*x*y + 2*y = x^3 + x^2 - 4*x - 2 over Rational Field
|
|
352
|
+
sage: E.local_data(ZZ.ideal(2), algorithm='pari').minimal_model(reduce=False)
|
|
353
|
+
Traceback (most recent call last):
|
|
354
|
+
...
|
|
355
|
+
ValueError: the argument reduce must not be False if algorithm=pari is used
|
|
356
|
+
sage: E.local_data(ZZ.ideal(2), algorithm='generic').minimal_model()
|
|
357
|
+
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
|
|
358
|
+
sage: E.local_data(ZZ.ideal(2), algorithm='pari').minimal_model()
|
|
359
|
+
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
|
|
360
|
+
|
|
361
|
+
:issue:`14476`::
|
|
362
|
+
|
|
363
|
+
sage: # needs sage.rings.number_field
|
|
364
|
+
sage: t = QQ['t'].0
|
|
365
|
+
sage: K.<g> = NumberField(t^4 - t^3-3*t^2 - t +1)
|
|
366
|
+
sage: E = EllipticCurve([-2*g^3 + 10/3*g^2 + 3*g - 2/3,
|
|
367
|
+
....: -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9,
|
|
368
|
+
....: -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9, 0, 0])
|
|
369
|
+
sage: vv = K.fractional_ideal(g^2 - g - 2)
|
|
370
|
+
sage: E.local_data(vv).minimal_model()
|
|
371
|
+
Elliptic Curve defined by
|
|
372
|
+
y^2 + (-2*g^3+10/3*g^2+3*g-2/3)*x*y + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*y
|
|
373
|
+
= x^3 + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*x^2
|
|
374
|
+
over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1
|
|
375
|
+
"""
|
|
376
|
+
if reduce:
|
|
377
|
+
try:
|
|
378
|
+
return self._Emin_reduced
|
|
379
|
+
except AttributeError:
|
|
380
|
+
pass
|
|
381
|
+
# trac 14476 we only reduce if the coefficients are globally integral
|
|
382
|
+
if all(a.is_integral() for a in self._Emin.a_invariants()):
|
|
383
|
+
self._Emin_reduced = self._Emin._reduce_model()
|
|
384
|
+
return self._Emin_reduced
|
|
385
|
+
else:
|
|
386
|
+
return self._Emin
|
|
387
|
+
else:
|
|
388
|
+
try:
|
|
389
|
+
return self._Emin
|
|
390
|
+
except AttributeError:
|
|
391
|
+
raise ValueError("the argument reduce must not be False if algorithm=pari is used")
|
|
392
|
+
|
|
393
|
+
def prime(self):
|
|
394
|
+
"""
|
|
395
|
+
Return the prime ideal associated with this local reduction data.
|
|
396
|
+
|
|
397
|
+
EXAMPLES::
|
|
398
|
+
|
|
399
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
400
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
401
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
402
|
+
sage: data = EllipticCurveLocalData(E,2)
|
|
403
|
+
sage: data.prime()
|
|
404
|
+
Principal ideal (2) of Integer Ring
|
|
405
|
+
"""
|
|
406
|
+
return self._prime
|
|
407
|
+
|
|
408
|
+
def conductor_valuation(self):
|
|
409
|
+
"""
|
|
410
|
+
Return the valuation of the conductor from this local reduction data.
|
|
411
|
+
|
|
412
|
+
EXAMPLES::
|
|
413
|
+
|
|
414
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
415
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
416
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
417
|
+
sage: data = EllipticCurveLocalData(E,2)
|
|
418
|
+
sage: data.conductor_valuation()
|
|
419
|
+
2
|
|
420
|
+
"""
|
|
421
|
+
return self._fp
|
|
422
|
+
|
|
423
|
+
def discriminant_valuation(self):
|
|
424
|
+
"""
|
|
425
|
+
Return the valuation of the minimal discriminant from this local reduction data.
|
|
426
|
+
|
|
427
|
+
EXAMPLES::
|
|
428
|
+
|
|
429
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
430
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
431
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
432
|
+
sage: data = EllipticCurveLocalData(E,2)
|
|
433
|
+
sage: data.discriminant_valuation()
|
|
434
|
+
4
|
|
435
|
+
"""
|
|
436
|
+
return self._val_disc
|
|
437
|
+
|
|
438
|
+
def kodaira_symbol(self):
|
|
439
|
+
r"""
|
|
440
|
+
Return the Kodaira symbol from this local reduction data.
|
|
441
|
+
|
|
442
|
+
EXAMPLES::
|
|
443
|
+
|
|
444
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
445
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
446
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
447
|
+
sage: data = EllipticCurveLocalData(E,2)
|
|
448
|
+
sage: data.kodaira_symbol()
|
|
449
|
+
IV
|
|
450
|
+
"""
|
|
451
|
+
return self._KS
|
|
452
|
+
|
|
453
|
+
def tamagawa_number(self):
|
|
454
|
+
r"""
|
|
455
|
+
Return the Tamagawa number from this local reduction data.
|
|
456
|
+
|
|
457
|
+
This is the index `[E(K_v):E^0(K_v)]`.
|
|
458
|
+
|
|
459
|
+
EXAMPLES::
|
|
460
|
+
|
|
461
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
462
|
+
sage: E = EllipticCurve([0,0,0,0,64]); E
|
|
463
|
+
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
|
|
464
|
+
sage: data = EllipticCurveLocalData(E,2)
|
|
465
|
+
sage: data.tamagawa_number()
|
|
466
|
+
3
|
|
467
|
+
"""
|
|
468
|
+
return self._cp
|
|
469
|
+
|
|
470
|
+
def tamagawa_exponent(self):
|
|
471
|
+
r"""
|
|
472
|
+
Return the Tamagawa index from this local reduction data.
|
|
473
|
+
|
|
474
|
+
This is the exponent of `E(K_v)/E^0(K_v)`; in most cases it is
|
|
475
|
+
the same as the Tamagawa index.
|
|
476
|
+
|
|
477
|
+
EXAMPLES::
|
|
478
|
+
|
|
479
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
480
|
+
sage: E = EllipticCurve('816a1')
|
|
481
|
+
sage: data = EllipticCurveLocalData(E, 2)
|
|
482
|
+
sage: data.kodaira_symbol()
|
|
483
|
+
I2*
|
|
484
|
+
sage: data.tamagawa_number()
|
|
485
|
+
4
|
|
486
|
+
sage: data.tamagawa_exponent()
|
|
487
|
+
2
|
|
488
|
+
|
|
489
|
+
sage: E = EllipticCurve('200c4')
|
|
490
|
+
sage: data = EllipticCurveLocalData(E, 5)
|
|
491
|
+
sage: data.kodaira_symbol()
|
|
492
|
+
I4*
|
|
493
|
+
sage: data.tamagawa_number()
|
|
494
|
+
4
|
|
495
|
+
sage: data.tamagawa_exponent()
|
|
496
|
+
2
|
|
497
|
+
"""
|
|
498
|
+
cp = self._cp
|
|
499
|
+
if cp != 4:
|
|
500
|
+
return cp
|
|
501
|
+
ks = self._KS
|
|
502
|
+
if ks._roman == 1 and ks._n % 2 == 0 and ks._starred:
|
|
503
|
+
return ZZ(2)
|
|
504
|
+
return ZZ(4)
|
|
505
|
+
|
|
506
|
+
def bad_reduction_type(self):
|
|
507
|
+
r"""
|
|
508
|
+
Return the type of bad reduction of this reduction data.
|
|
509
|
+
|
|
510
|
+
OUTPUT:
|
|
511
|
+
|
|
512
|
+
integer or ``None``:
|
|
513
|
+
|
|
514
|
+
- +1 for split multiplicative reduction
|
|
515
|
+
- -1 for non-split multiplicative reduction
|
|
516
|
+
- 0 for additive reduction
|
|
517
|
+
- ``None`` for good reduction
|
|
518
|
+
|
|
519
|
+
EXAMPLES::
|
|
520
|
+
|
|
521
|
+
sage: E = EllipticCurve('14a1')
|
|
522
|
+
sage: [(p,E.local_data(p).bad_reduction_type()) for p in prime_range(15)]
|
|
523
|
+
[(2, -1), (3, None), (5, None), (7, 1), (11, None), (13, None)]
|
|
524
|
+
|
|
525
|
+
sage: # needs sage.rings.number_field
|
|
526
|
+
sage: x = polygen(ZZ, 'x')
|
|
527
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
528
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
529
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
530
|
+
sage: [(p,E.local_data(p).bad_reduction_type()) for p in [P17a,P17b]]
|
|
531
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), None), (Fractional ideal (2*a + 1), 0)]
|
|
532
|
+
"""
|
|
533
|
+
return self._reduction_type
|
|
534
|
+
|
|
535
|
+
def has_good_reduction(self) -> bool:
|
|
536
|
+
r"""
|
|
537
|
+
Return ``True`` if there is good reduction.
|
|
538
|
+
|
|
539
|
+
EXAMPLES::
|
|
540
|
+
|
|
541
|
+
sage: E = EllipticCurve('14a1')
|
|
542
|
+
sage: [(p,E.local_data(p).has_good_reduction()) for p in prime_range(15)]
|
|
543
|
+
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]
|
|
544
|
+
|
|
545
|
+
sage: # needs sage.rings.number_field
|
|
546
|
+
sage: x = polygen(ZZ, 'x')
|
|
547
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
548
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
549
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
550
|
+
sage: [(p,E.local_data(p).has_good_reduction()) for p in [P17a,P17b]]
|
|
551
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), True),
|
|
552
|
+
(Fractional ideal (2*a + 1), False)]
|
|
553
|
+
"""
|
|
554
|
+
return self._reduction_type is None
|
|
555
|
+
|
|
556
|
+
def has_bad_reduction(self) -> bool:
|
|
557
|
+
r"""
|
|
558
|
+
Return ``True`` if there is bad reduction.
|
|
559
|
+
|
|
560
|
+
EXAMPLES::
|
|
561
|
+
|
|
562
|
+
sage: E = EllipticCurve('14a1')
|
|
563
|
+
sage: [(p,E.local_data(p).has_bad_reduction()) for p in prime_range(15)]
|
|
564
|
+
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
565
|
+
|
|
566
|
+
::
|
|
567
|
+
|
|
568
|
+
sage: # needs sage.rings.number_field
|
|
569
|
+
sage: x = polygen(ZZ, 'x')
|
|
570
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
571
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
572
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
573
|
+
sage: [(p,E.local_data(p).has_bad_reduction()) for p in [P17a,P17b]]
|
|
574
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
575
|
+
(Fractional ideal (2*a + 1), True)]
|
|
576
|
+
"""
|
|
577
|
+
return self._reduction_type is not None
|
|
578
|
+
|
|
579
|
+
def has_multiplicative_reduction(self) -> bool:
|
|
580
|
+
r"""
|
|
581
|
+
Return ``True`` if there is multiplicative reduction.
|
|
582
|
+
|
|
583
|
+
.. NOTE::
|
|
584
|
+
|
|
585
|
+
See also ``has_split_multiplicative_reduction()`` and
|
|
586
|
+
``has_nonsplit_multiplicative_reduction()``.
|
|
587
|
+
|
|
588
|
+
EXAMPLES::
|
|
589
|
+
|
|
590
|
+
sage: E = EllipticCurve('14a1')
|
|
591
|
+
sage: [(p, E.local_data(p).has_multiplicative_reduction()) for p in prime_range(15)]
|
|
592
|
+
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
593
|
+
|
|
594
|
+
::
|
|
595
|
+
|
|
596
|
+
sage: # needs sage.rings.number_field
|
|
597
|
+
sage: x = polygen(ZZ, 'x')
|
|
598
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
599
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
600
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
601
|
+
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in [P17a,P17b]]
|
|
602
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
|
|
603
|
+
"""
|
|
604
|
+
return self._reduction_type in (-1, 1)
|
|
605
|
+
|
|
606
|
+
def has_split_multiplicative_reduction(self) -> bool:
|
|
607
|
+
r"""
|
|
608
|
+
Return ``True`` if there is split multiplicative reduction.
|
|
609
|
+
|
|
610
|
+
EXAMPLES::
|
|
611
|
+
|
|
612
|
+
sage: E = EllipticCurve('14a1')
|
|
613
|
+
sage: [(p, E.local_data(p).has_split_multiplicative_reduction())
|
|
614
|
+
....: for p in prime_range(15)]
|
|
615
|
+
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
616
|
+
|
|
617
|
+
::
|
|
618
|
+
|
|
619
|
+
sage: # needs sage.rings.number_field
|
|
620
|
+
sage: x = polygen(ZZ, 'x')
|
|
621
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
622
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
623
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
624
|
+
sage: [(p,E .local_data(p).has_split_multiplicative_reduction())
|
|
625
|
+
....: for p in [P17a,P17b]]
|
|
626
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
627
|
+
(Fractional ideal (2*a + 1), False)]
|
|
628
|
+
"""
|
|
629
|
+
return self._reduction_type == 1
|
|
630
|
+
|
|
631
|
+
def has_nonsplit_multiplicative_reduction(self) -> bool:
|
|
632
|
+
r"""
|
|
633
|
+
Return ``True`` if there is non-split multiplicative reduction.
|
|
634
|
+
|
|
635
|
+
EXAMPLES::
|
|
636
|
+
|
|
637
|
+
sage: E = EllipticCurve('14a1')
|
|
638
|
+
sage: [(p, E.local_data(p).has_nonsplit_multiplicative_reduction())
|
|
639
|
+
....: for p in prime_range(15)]
|
|
640
|
+
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]
|
|
641
|
+
|
|
642
|
+
::
|
|
643
|
+
|
|
644
|
+
sage: # needs sage.rings.number_field
|
|
645
|
+
sage: x = polygen(ZZ, 'x')
|
|
646
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
647
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
648
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
649
|
+
sage: [(p, E.local_data(p).has_nonsplit_multiplicative_reduction())
|
|
650
|
+
....: for p in [P17a,P17b]]
|
|
651
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
|
|
652
|
+
"""
|
|
653
|
+
return self._reduction_type == -1
|
|
654
|
+
|
|
655
|
+
def has_additive_reduction(self) -> bool:
|
|
656
|
+
r"""
|
|
657
|
+
Return ``True`` if there is additive reduction.
|
|
658
|
+
|
|
659
|
+
EXAMPLES::
|
|
660
|
+
|
|
661
|
+
sage: E = EllipticCurve('27a1')
|
|
662
|
+
sage: [(p, E.local_data(p).has_additive_reduction()) for p in prime_range(15)]
|
|
663
|
+
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]
|
|
664
|
+
|
|
665
|
+
::
|
|
666
|
+
|
|
667
|
+
sage: # needs sage.rings.number_field
|
|
668
|
+
sage: x = polygen(ZZ, 'x')
|
|
669
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
670
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
671
|
+
sage: E = EllipticCurve([0, 0, 0, 0, 2*a+1])
|
|
672
|
+
sage: [(p, E.local_data(p).has_additive_reduction()) for p in [P17a,P17b]]
|
|
673
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
674
|
+
(Fractional ideal (2*a + 1), True)]
|
|
675
|
+
"""
|
|
676
|
+
return self._reduction_type == 0
|
|
677
|
+
|
|
678
|
+
def _tate(self, proof=None, globally=False):
|
|
679
|
+
r"""
|
|
680
|
+
Tate's algorithm for an elliptic curve over a number field.
|
|
681
|
+
|
|
682
|
+
This computes both local reduction data at a prime ideal and a
|
|
683
|
+
local minimal model.
|
|
684
|
+
|
|
685
|
+
The model is not required to be integral on input. If `P` is
|
|
686
|
+
principal, uses a generator as uniformizer, so it will not
|
|
687
|
+
affect integrality or minimality at other primes. If `P` is not
|
|
688
|
+
principal, the minimal model returned will preserve
|
|
689
|
+
integrality at other primes, but not minimality.
|
|
690
|
+
|
|
691
|
+
The optional argument globally, when set to True, tells the algorithm to use the generator of the prime ideal if it is principal. Otherwise just any uniformizer will be used.
|
|
692
|
+
|
|
693
|
+
.. NOTE::
|
|
694
|
+
|
|
695
|
+
Called only by ``EllipticCurveLocalData.__init__()``.
|
|
696
|
+
|
|
697
|
+
OUTPUT:
|
|
698
|
+
|
|
699
|
+
(tuple) ``(Emin, p, val_disc, fp, KS, cp)`` where:
|
|
700
|
+
|
|
701
|
+
- ``Emin`` -- :class:`EllipticCurve`; a model (integral and) minimal at P
|
|
702
|
+
- ``p`` -- integer; the residue characteristic
|
|
703
|
+
- ``val_disc`` -- integer; the valuation of the local minimal discriminant
|
|
704
|
+
- ``fp`` -- integer; the valuation of the conductor
|
|
705
|
+
- ``KS`` -- string; the Kodaira symbol
|
|
706
|
+
- ``cp`` -- integer; the Tamagawa number
|
|
707
|
+
|
|
708
|
+
EXAMPLES (this raised a type error in sage prior to 4.4.4, see :issue:`7930`) ::
|
|
709
|
+
|
|
710
|
+
sage: # needs sage.rings.number_field
|
|
711
|
+
sage: E = EllipticCurve('99d1')
|
|
712
|
+
sage: R.<X> = QQ[]
|
|
713
|
+
sage: K.<t> = NumberField(X^3 + X^2 - 2*X - 1)
|
|
714
|
+
sage: L.<s> = NumberField(X^3 + X^2 - 36*X - 4)
|
|
715
|
+
sage: EK = E.base_extend(K)
|
|
716
|
+
sage: toK = EK.torsion_order()
|
|
717
|
+
sage: da = EK.local_data() # indirect doctest
|
|
718
|
+
sage: EL = E.base_extend(L)
|
|
719
|
+
sage: da = EL.local_data() # indirect doctest
|
|
720
|
+
|
|
721
|
+
EXAMPLES:
|
|
722
|
+
|
|
723
|
+
The following example shows that the bug at :issue:`9324` is fixed::
|
|
724
|
+
|
|
725
|
+
sage: # needs sage.rings.number_field
|
|
726
|
+
sage: x = polygen(ZZ, 'x')
|
|
727
|
+
sage: K.<a> = NumberField(x^2 - x + 6)
|
|
728
|
+
sage: E = EllipticCurve([0,0,0,-53160*a-43995,-5067640*a+19402006])
|
|
729
|
+
sage: E.conductor() # indirect doctest
|
|
730
|
+
Fractional ideal (18, 6*a)
|
|
731
|
+
|
|
732
|
+
The following example shows that the bug at :issue:`9417` is fixed::
|
|
733
|
+
|
|
734
|
+
sage: # needs sage.rings.number_field
|
|
735
|
+
sage: K.<a> = NumberField(x^2 + 18*x + 1)
|
|
736
|
+
sage: E = EllipticCurve(K, [0, -36, 0, 320, 0])
|
|
737
|
+
sage: E.tamagawa_number(K.ideal(2))
|
|
738
|
+
4
|
|
739
|
+
|
|
740
|
+
This is to show that the bug :issue:`11630` is fixed. (The computation of the class group would produce a warning)::
|
|
741
|
+
|
|
742
|
+
sage: # needs sage.rings.number_field
|
|
743
|
+
sage: K.<t> = NumberField(x^7 - 2*x + 177)
|
|
744
|
+
sage: E = EllipticCurve([0,1,0,t,t])
|
|
745
|
+
sage: P = K.ideal(2, t^3 + t + 1)
|
|
746
|
+
sage: E.local_data(P).kodaira_symbol()
|
|
747
|
+
II
|
|
748
|
+
"""
|
|
749
|
+
E = self._curve
|
|
750
|
+
P = self._prime
|
|
751
|
+
K = E.base_ring()
|
|
752
|
+
OK = K.maximal_order()
|
|
753
|
+
t = verbose("Running Tate's algorithm with P = %s" % P, level=1)
|
|
754
|
+
F = OK.residue_field(P)
|
|
755
|
+
p = F.characteristic()
|
|
756
|
+
|
|
757
|
+
# In case P is not principal we mostly use a uniformiser which
|
|
758
|
+
# is globally integral (with positive valuation at some other
|
|
759
|
+
# primes); for this to work, it is essential that we can
|
|
760
|
+
# reduce (mod P) elements of K which are not integral (but are
|
|
761
|
+
# P-integral). However, if the model is non-minimal and we
|
|
762
|
+
# end up dividing a_i by pi^i then at that point we use a
|
|
763
|
+
# uniformiser pi which has nonpositive valuation at all other
|
|
764
|
+
# primes, so that we can divide by it without losing
|
|
765
|
+
# integrality at other primes.
|
|
766
|
+
|
|
767
|
+
if globally:
|
|
768
|
+
principal_flag = P.is_principal()
|
|
769
|
+
else:
|
|
770
|
+
principal_flag = False
|
|
771
|
+
|
|
772
|
+
if (K is QQ) or principal_flag:
|
|
773
|
+
pi = P.gens_reduced()[0]
|
|
774
|
+
verbose("P is principal, generator pi = %s" % pi, t, 1)
|
|
775
|
+
else:
|
|
776
|
+
pi = K.uniformizer(P, 'positive')
|
|
777
|
+
verbose("uniformizer pi = %s" % pi, t, 1)
|
|
778
|
+
pi2 = pi * pi
|
|
779
|
+
pi3 = pi * pi2
|
|
780
|
+
pi4 = pi * pi3
|
|
781
|
+
pi_neg = None
|
|
782
|
+
prime = pi if K is QQ else P
|
|
783
|
+
|
|
784
|
+
pval = lambda x: x.valuation(prime)
|
|
785
|
+
pdiv = lambda x: x.is_zero() or pval(x) > 0
|
|
786
|
+
# Since ResidueField is cached in a way that
|
|
787
|
+
# does not care much about embeddings of number
|
|
788
|
+
# fields, it can happen that F.p.ring() is different
|
|
789
|
+
# from K. This is a problem: If F.p.ring() has no
|
|
790
|
+
# embedding but K has, then there is no coercion
|
|
791
|
+
# from F.p.ring().maximal_order() to K. But it is
|
|
792
|
+
# no problem to do an explicit conversion in that
|
|
793
|
+
# case (Simon King, github issue #8800).
|
|
794
|
+
|
|
795
|
+
from sage.categories.pushout import pushout, CoercionException
|
|
796
|
+
try:
|
|
797
|
+
if hasattr(F.p.ring(), 'maximal_order'): # it is not ZZ
|
|
798
|
+
pushout(F.p.ring().maximal_order(), K)
|
|
799
|
+
pinv = lambda x: F.lift(~F(x))
|
|
800
|
+
proot = lambda x,e: F.lift(F(x).nth_root(e, extend=False, all=True)[0])
|
|
801
|
+
preduce = lambda x: F.lift(F(x))
|
|
802
|
+
except CoercionException: # the pushout does not exist, we need conversion
|
|
803
|
+
pinv = lambda x: K(F.lift(~F(x)))
|
|
804
|
+
proot = lambda x,e: K(F.lift(F(x).nth_root(e, extend=False, all=True)[0]))
|
|
805
|
+
preduce = lambda x: K(F.lift(F(x)))
|
|
806
|
+
|
|
807
|
+
def _pquadroots(a, b, c):
|
|
808
|
+
r"""
|
|
809
|
+
Local function returning ``True`` iff `ax^2 + bx + c` has roots
|
|
810
|
+
modulo `P`.
|
|
811
|
+
"""
|
|
812
|
+
(a, b, c) = (F(a), F(b), F(c))
|
|
813
|
+
if a == 0:
|
|
814
|
+
return (b != 0) or (c == 0)
|
|
815
|
+
elif p == 2:
|
|
816
|
+
return len(PolynomialRing(F, "x")([c,b,a]).roots()) > 0
|
|
817
|
+
else:
|
|
818
|
+
return (b**2 - 4*a*c).is_square()
|
|
819
|
+
|
|
820
|
+
def _pcubicroots(b, c, d):
|
|
821
|
+
r"""
|
|
822
|
+
Local function returning the number of roots of `x^3 +
|
|
823
|
+
b*x^2 + c*x + d` modulo `P`, counting multiplicities
|
|
824
|
+
"""
|
|
825
|
+
|
|
826
|
+
return sum([rr[1] for rr in PolynomialRing(F, 'x')([F(d), F(c), F(b), F(1)]).roots()],0)
|
|
827
|
+
|
|
828
|
+
if p == 2:
|
|
829
|
+
halfmodp = OK(Integer(0))
|
|
830
|
+
else:
|
|
831
|
+
halfmodp = pinv(Integer(2))
|
|
832
|
+
|
|
833
|
+
A = E.a_invariants()
|
|
834
|
+
A = [0, A[0], A[1], A[2], A[3], 0, A[4]]
|
|
835
|
+
indices = [1,2,3,4,6]
|
|
836
|
+
if min([pval(a) for a in A if a != 0]) < 0:
|
|
837
|
+
verbose("Non-integral model at P: valuations are %s; making integral" % ([pval(a) for a in A if a != 0]), t, 1)
|
|
838
|
+
e = 0
|
|
839
|
+
for i in range(7):
|
|
840
|
+
if A[i] != 0:
|
|
841
|
+
e = max(e, (-pval(A[i])/i).ceil())
|
|
842
|
+
pie = pi**e
|
|
843
|
+
for i in range(7):
|
|
844
|
+
if A[i] != 0:
|
|
845
|
+
A[i] *= pie**i
|
|
846
|
+
verbose("P-integral model is %s, with valuations %s" % ([A[i] for i in indices], [pval(A[i]) for i in indices]), t, 1)
|
|
847
|
+
|
|
848
|
+
split = None # only relevant for multiplicative reduction
|
|
849
|
+
|
|
850
|
+
(a1, a2, a3, a4, a6) = (A[1], A[2], A[3], A[4], A[6])
|
|
851
|
+
while True:
|
|
852
|
+
C = EllipticCurve([a1, a2, a3, a4, a6])
|
|
853
|
+
(b2, b4, b6, b8) = C.b_invariants()
|
|
854
|
+
(c4, c6) = C.c_invariants()
|
|
855
|
+
delta = C.discriminant()
|
|
856
|
+
val_disc = pval(delta)
|
|
857
|
+
|
|
858
|
+
if val_disc == 0:
|
|
859
|
+
## Good reduction already
|
|
860
|
+
cp = 1
|
|
861
|
+
fp = 0
|
|
862
|
+
KS = KodairaSymbol("I0")
|
|
863
|
+
break #return
|
|
864
|
+
|
|
865
|
+
# Otherwise, we change coordinates so that p | a3, a4, a6
|
|
866
|
+
if p == 2:
|
|
867
|
+
if pdiv(b2):
|
|
868
|
+
r = proot(a4, 2)
|
|
869
|
+
t = proot(((r + a2)*r + a4)*r + a6, 2)
|
|
870
|
+
else:
|
|
871
|
+
temp = pinv(a1)
|
|
872
|
+
r = temp * a3
|
|
873
|
+
t = temp * (a4 + r*r)
|
|
874
|
+
elif p == 3:
|
|
875
|
+
if pdiv(b2):
|
|
876
|
+
r = proot(-b6, 3)
|
|
877
|
+
else:
|
|
878
|
+
r = -pinv(b2) * b4
|
|
879
|
+
t = a1 * r + a3
|
|
880
|
+
else:
|
|
881
|
+
if pdiv(c4):
|
|
882
|
+
r = -pinv(12) * b2
|
|
883
|
+
else:
|
|
884
|
+
r = -pinv(12*c4) * (c6 + b2 * c4)
|
|
885
|
+
t = -halfmodp * (a1 * r + a3)
|
|
886
|
+
r = preduce(r)
|
|
887
|
+
t = preduce(t)
|
|
888
|
+
verbose("Before first transform C = %s" % C)
|
|
889
|
+
verbose("[a1,a2,a3,a4,a6] = %s" % ([a1, a2, a3, a4, a6]))
|
|
890
|
+
C = C.rst_transform(r, 0, t)
|
|
891
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
892
|
+
(b2, b4, b6, b8) = C.b_invariants()
|
|
893
|
+
if min([pval(a) for a in (a1, a2, a3, a4, a6) if a != 0]) < 0:
|
|
894
|
+
raise RuntimeError("Non-integral model after first transform!")
|
|
895
|
+
verbose("After first transform %s\n, [a1,a2,a3,a4,a6] = %s\n, valuations = %s" % ([r, 0, t], [a1, a2, a3, a4, a6], [pval(a1), pval(a2), pval(a3), pval(a4), pval(a6)]), t, 2)
|
|
896
|
+
if pval(a3) == 0:
|
|
897
|
+
raise RuntimeError("p does not divide a3 after first transform!")
|
|
898
|
+
if pval(a4) == 0:
|
|
899
|
+
raise RuntimeError("p does not divide a4 after first transform!")
|
|
900
|
+
if pval(a6) == 0:
|
|
901
|
+
raise RuntimeError("p does not divide a6 after first transform!")
|
|
902
|
+
|
|
903
|
+
# Now we test for Types In, II, III, IV
|
|
904
|
+
# NB the c invariants never change.
|
|
905
|
+
|
|
906
|
+
if not pdiv(c4):
|
|
907
|
+
# Multiplicative reduction: Type In (n = val_disc)
|
|
908
|
+
split = False
|
|
909
|
+
if _pquadroots(1, a1, -a2):
|
|
910
|
+
cp = val_disc
|
|
911
|
+
split = True
|
|
912
|
+
elif Integer(2).divides(val_disc):
|
|
913
|
+
cp = 2
|
|
914
|
+
else:
|
|
915
|
+
cp = 1
|
|
916
|
+
KS = KodairaSymbol("I%s" % val_disc)
|
|
917
|
+
fp = 1
|
|
918
|
+
break #return
|
|
919
|
+
|
|
920
|
+
# Additive reduction
|
|
921
|
+
|
|
922
|
+
if pval(a6) < 2:
|
|
923
|
+
## Type II
|
|
924
|
+
KS = KodairaSymbol("II")
|
|
925
|
+
fp = val_disc
|
|
926
|
+
cp = 1
|
|
927
|
+
break #return
|
|
928
|
+
if pval(b8) < 3:
|
|
929
|
+
## Type III
|
|
930
|
+
KS = KodairaSymbol("III")
|
|
931
|
+
fp = val_disc - 1
|
|
932
|
+
cp = 2
|
|
933
|
+
break #return
|
|
934
|
+
if pval(b6) < 3:
|
|
935
|
+
## Type IV
|
|
936
|
+
cp = 1
|
|
937
|
+
a3t = preduce(a3/pi)
|
|
938
|
+
a6t = preduce(a6/pi2)
|
|
939
|
+
if _pquadroots(1, a3t, -a6t):
|
|
940
|
+
cp = 3
|
|
941
|
+
KS = KodairaSymbol("IV")
|
|
942
|
+
fp = val_disc - 2
|
|
943
|
+
break #return
|
|
944
|
+
|
|
945
|
+
# If our curve is none of these types, we change coords so that
|
|
946
|
+
# p | a1, a2; p^2 | a3, a4; p^3 | a6
|
|
947
|
+
if p == 2:
|
|
948
|
+
s = proot(a2, 2) # so s^2=a2 (mod pi)
|
|
949
|
+
t = pi*proot(a6/pi2, 2) # so t^2=a6 (mod pi^3)
|
|
950
|
+
elif p == 3:
|
|
951
|
+
s = a1 # so a1'=2s+a1=3a1=0 (mod pi)
|
|
952
|
+
t = a3 # so a3'=2t+a3=3a3=0 (mod pi^2)
|
|
953
|
+
else:
|
|
954
|
+
s = -a1*halfmodp # so a1'=2s+a1=0 (mod pi)
|
|
955
|
+
t = -a3*halfmodp # so a3'=2t+a3=0 (mod pi^2)
|
|
956
|
+
C = C.rst_transform(0, s, t)
|
|
957
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
958
|
+
|
|
959
|
+
verbose("After second transform %s\n[a1, a2, a3, a4, a6] = %s\nValuations: %s" % ([0, s, t], [a1,a2,a3,a4,a6],[pval(a1),pval(a2),pval(a3),pval(a4),pval(a6)]), t, 2)
|
|
960
|
+
if pval(a1) == 0:
|
|
961
|
+
raise RuntimeError("p does not divide a1 after second transform!")
|
|
962
|
+
if pval(a2) == 0:
|
|
963
|
+
raise RuntimeError("p does not divide a2 after second transform!")
|
|
964
|
+
if pval(a3) < 2:
|
|
965
|
+
raise RuntimeError("p^2 does not divide a3 after second transform!")
|
|
966
|
+
if pval(a4) < 2:
|
|
967
|
+
raise RuntimeError("p^2 does not divide a4 after second transform!")
|
|
968
|
+
if pval(a6) < 3:
|
|
969
|
+
raise RuntimeError("p^3 does not divide a6 after second transform!")
|
|
970
|
+
if min(pval(a1), pval(a2), pval(a3), pval(a4), pval(a6)) < 0:
|
|
971
|
+
raise RuntimeError("Non-integral model after second transform!")
|
|
972
|
+
|
|
973
|
+
# Analyze roots of the cubic T^3 + bT^2 + cT + d = 0 mod P, where
|
|
974
|
+
# b = a2/p, c = a4/p^2, d = a6/p^3
|
|
975
|
+
b = preduce(a2/pi)
|
|
976
|
+
c = preduce(a4/pi2)
|
|
977
|
+
d = preduce(a6/pi3)
|
|
978
|
+
bb = b*b
|
|
979
|
+
cc = c*c
|
|
980
|
+
bc = b*c
|
|
981
|
+
w = 27*d*d - bb*cc + 4*b*bb*d - 18*bc*d + 4*c*cc
|
|
982
|
+
x = 3*c - bb
|
|
983
|
+
if pdiv(w):
|
|
984
|
+
if pdiv(x):
|
|
985
|
+
sw = 3
|
|
986
|
+
else:
|
|
987
|
+
sw = 2
|
|
988
|
+
else:
|
|
989
|
+
sw = 1
|
|
990
|
+
verbose("Analyzing roots of cubic T^3 + %s*T^2 + %s*T + %s, case %s" % (b, c, d, sw), t, 1)
|
|
991
|
+
if sw == 1:
|
|
992
|
+
## Three distinct roots - Type I*0
|
|
993
|
+
verbose("Distinct roots", t, 1)
|
|
994
|
+
KS = KodairaSymbol("I0*")
|
|
995
|
+
cp = 1 + _pcubicroots(b, c, d)
|
|
996
|
+
fp = val_disc - 4
|
|
997
|
+
break #return
|
|
998
|
+
elif sw == 2:
|
|
999
|
+
## One double root - Type I*m for some m
|
|
1000
|
+
verbose("One double root", t, 1)
|
|
1001
|
+
## Change coords so that the double root is T = 0 mod p
|
|
1002
|
+
if p == 2:
|
|
1003
|
+
r = proot(c, 2)
|
|
1004
|
+
elif p == 3:
|
|
1005
|
+
r = c * pinv(b)
|
|
1006
|
+
else:
|
|
1007
|
+
r = (bc - 9*d)*pinv(2*x)
|
|
1008
|
+
r = pi * preduce(r)
|
|
1009
|
+
C = C.rst_transform(r, 0, 0)
|
|
1010
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
1011
|
+
|
|
1012
|
+
# The rest of this branch is just to compute cp, fp, KS.
|
|
1013
|
+
# We use pi to keep transforms integral.
|
|
1014
|
+
ix = 3
|
|
1015
|
+
iy = 3
|
|
1016
|
+
mx = pi2
|
|
1017
|
+
my = mx
|
|
1018
|
+
while True:
|
|
1019
|
+
a2t = preduce(a2 / pi)
|
|
1020
|
+
a3t = preduce(a3 / my)
|
|
1021
|
+
a4t = preduce(a4 / (pi*mx))
|
|
1022
|
+
a6t = preduce(a6 / (mx*my))
|
|
1023
|
+
if pdiv(a3t*a3t + 4*a6t):
|
|
1024
|
+
if p == 2:
|
|
1025
|
+
t = my*proot(a6t, 2)
|
|
1026
|
+
else:
|
|
1027
|
+
t = my*preduce(-a3t*halfmodp)
|
|
1028
|
+
C = C.rst_transform(0, 0, t)
|
|
1029
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
1030
|
+
|
|
1031
|
+
my *= pi
|
|
1032
|
+
iy += 1
|
|
1033
|
+
a2t = preduce(a2 / pi)
|
|
1034
|
+
a3t = preduce(a3/my)
|
|
1035
|
+
a4t = preduce(a4/(pi*mx))
|
|
1036
|
+
a6t = preduce(a6/(mx*my))
|
|
1037
|
+
if pdiv(a4t*a4t - 4*a6t*a2t):
|
|
1038
|
+
if p == 2:
|
|
1039
|
+
r = mx*proot(a6t*pinv(a2t), 2)
|
|
1040
|
+
else:
|
|
1041
|
+
r = mx*preduce(-a4t*pinv(2*a2t))
|
|
1042
|
+
C = C.rst_transform(r, 0, 0)
|
|
1043
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
1044
|
+
|
|
1045
|
+
mx *= pi
|
|
1046
|
+
ix += 1 # and stay in loop
|
|
1047
|
+
else:
|
|
1048
|
+
if _pquadroots(a2t, a4t, a6t):
|
|
1049
|
+
cp = 4
|
|
1050
|
+
else:
|
|
1051
|
+
cp = 2
|
|
1052
|
+
break # exit loop
|
|
1053
|
+
else:
|
|
1054
|
+
if _pquadroots(1, a3t, -a6t):
|
|
1055
|
+
cp = 4
|
|
1056
|
+
else:
|
|
1057
|
+
cp = 2
|
|
1058
|
+
break
|
|
1059
|
+
KS = KodairaSymbol("I%s*" % (ix+iy-5))
|
|
1060
|
+
fp = val_disc - ix - iy + 1
|
|
1061
|
+
break #return
|
|
1062
|
+
else: # sw == 3
|
|
1063
|
+
## The cubic has a triple root
|
|
1064
|
+
verbose("Triple root", t, 1)
|
|
1065
|
+
## First we change coordinates so that T = 0 mod p
|
|
1066
|
+
if p == 2:
|
|
1067
|
+
r = b
|
|
1068
|
+
elif p == 3:
|
|
1069
|
+
r = proot(-d, 3)
|
|
1070
|
+
else:
|
|
1071
|
+
r = -b * pinv(3)
|
|
1072
|
+
r = pi*preduce(r)
|
|
1073
|
+
C = C.rst_transform(r, 0, 0)
|
|
1074
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
1075
|
+
|
|
1076
|
+
verbose("After third transform %s\n[a1,a2,a3,a4,a6] = %s\nValuations: %s" % ([r,0,0],[a1,a2,a3,a4,a6],[pval(ai) for ai in [a1,a2,a3,a4,a6]]), t, 2)
|
|
1077
|
+
if min(pval(ai) for ai in [a1,a2,a3,a4,a6]) < 0:
|
|
1078
|
+
raise RuntimeError("Non-integral model after third transform!")
|
|
1079
|
+
if pval(a2) < 2 or pval(a4) < 3 or pval(a6) < 4:
|
|
1080
|
+
raise RuntimeError("Cubic after transform does not have a triple root at 0")
|
|
1081
|
+
a3t = preduce(a3/pi2)
|
|
1082
|
+
a6t = preduce(a6/pi4)
|
|
1083
|
+
# We test for Type IV*
|
|
1084
|
+
if not pdiv(a3t*a3t + 4*a6t):
|
|
1085
|
+
cp = 3 if _pquadroots(1, a3t, -a6t) else 1
|
|
1086
|
+
KS = KodairaSymbol("IV*")
|
|
1087
|
+
fp = val_disc - 6
|
|
1088
|
+
break #return
|
|
1089
|
+
# Now change coordinates so that p^3|a3, p^5|a6
|
|
1090
|
+
if p == 2:
|
|
1091
|
+
t = -pi2*proot(a6t, 2)
|
|
1092
|
+
else:
|
|
1093
|
+
t = pi2*preduce(-a3t*halfmodp)
|
|
1094
|
+
C = C.rst_transform(0, 0, t)
|
|
1095
|
+
(a1, a2, a3, a4, a6) = C.a_invariants()
|
|
1096
|
+
|
|
1097
|
+
# We test for types III* and II*
|
|
1098
|
+
if pval(a4) < 4:
|
|
1099
|
+
## Type III*
|
|
1100
|
+
KS = KodairaSymbol("III*")
|
|
1101
|
+
fp = val_disc - 7
|
|
1102
|
+
cp = 2
|
|
1103
|
+
break #return
|
|
1104
|
+
if pval(a6) < 6:
|
|
1105
|
+
## Type II*
|
|
1106
|
+
KS = KodairaSymbol("II*")
|
|
1107
|
+
fp = val_disc - 8
|
|
1108
|
+
cp = 1
|
|
1109
|
+
break #return
|
|
1110
|
+
if pi_neg is None:
|
|
1111
|
+
if principal_flag:
|
|
1112
|
+
pi_neg = pi
|
|
1113
|
+
else:
|
|
1114
|
+
pi_neg = K.uniformizer(P, 'negative')
|
|
1115
|
+
pi_neg2 = pi_neg*pi_neg
|
|
1116
|
+
pi_neg3 = pi_neg*pi_neg2
|
|
1117
|
+
pi_neg4 = pi_neg*pi_neg3
|
|
1118
|
+
pi_neg6 = pi_neg4*pi_neg2
|
|
1119
|
+
a1 /= pi_neg
|
|
1120
|
+
a2 /= pi_neg2
|
|
1121
|
+
a3 /= pi_neg3
|
|
1122
|
+
a4 /= pi_neg4
|
|
1123
|
+
a6 /= pi_neg6
|
|
1124
|
+
verbose("Non-minimal equation, dividing out...\nNew model is %s" % ([a1, a2, a3, a4, a6]), t, 1)
|
|
1125
|
+
return (C, p, val_disc, fp, KS, cp, split)
|
|
1126
|
+
|
|
1127
|
+
|
|
1128
|
+
def check_prime(K, P):
|
|
1129
|
+
r"""
|
|
1130
|
+
Function to check that `P` determines a prime of `K`, and return that ideal.
|
|
1131
|
+
|
|
1132
|
+
INPUT:
|
|
1133
|
+
|
|
1134
|
+
- ``K`` -- a number field (including `\QQ`)
|
|
1135
|
+
|
|
1136
|
+
- ``P`` -- an element of ``K`` or a (fractional) ideal of ``K``
|
|
1137
|
+
|
|
1138
|
+
OUTPUT: if ``K`` is `\QQ`: the prime integer equal to or which generates `P`
|
|
1139
|
+
|
|
1140
|
+
- If ``K`` is not `\QQ`: the prime ideal equal to or generated by `P`.
|
|
1141
|
+
|
|
1142
|
+
.. NOTE::
|
|
1143
|
+
|
|
1144
|
+
If `P` is not a prime and does not generate a prime, a :exc:`TypeError`
|
|
1145
|
+
is raised.
|
|
1146
|
+
|
|
1147
|
+
EXAMPLES::
|
|
1148
|
+
|
|
1149
|
+
sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
|
|
1150
|
+
sage: check_prime(QQ, 3)
|
|
1151
|
+
3
|
|
1152
|
+
sage: check_prime(QQ, QQ(3))
|
|
1153
|
+
3
|
|
1154
|
+
sage: check_prime(QQ, ZZ.ideal(31))
|
|
1155
|
+
31
|
|
1156
|
+
|
|
1157
|
+
sage: # needs sage.rings.number_field
|
|
1158
|
+
sage: x = polygen(ZZ, 'x')
|
|
1159
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1160
|
+
sage: check_prime(K, a)
|
|
1161
|
+
Fractional ideal (a)
|
|
1162
|
+
sage: check_prime(K, a + 1)
|
|
1163
|
+
Fractional ideal (a + 1)
|
|
1164
|
+
sage: [check_prime(K, P) for P in K.primes_above(31)]
|
|
1165
|
+
[Fractional ideal (-5/2*a - 1/2), Fractional ideal (-5/2*a + 1/2)]
|
|
1166
|
+
sage: L.<b> = NumberField(x^2 + 3)
|
|
1167
|
+
sage: check_prime(K, L.ideal(5))
|
|
1168
|
+
Traceback (most recent call last):
|
|
1169
|
+
...
|
|
1170
|
+
TypeError: The ideal Fractional ideal (5) is not a prime ideal of
|
|
1171
|
+
Number Field in a with defining polynomial x^2 - 5
|
|
1172
|
+
sage: check_prime(K, L.ideal(b))
|
|
1173
|
+
Traceback (most recent call last):
|
|
1174
|
+
...
|
|
1175
|
+
TypeError: No compatible natural embeddings found for
|
|
1176
|
+
Number Field in a with defining polynomial x^2 - 5 and
|
|
1177
|
+
Number Field in b with defining polynomial x^2 + 3
|
|
1178
|
+
"""
|
|
1179
|
+
if K is QQ:
|
|
1180
|
+
if P in ZZ or isinstance(P, (Integer, int)):
|
|
1181
|
+
P = Integer(P)
|
|
1182
|
+
if P.is_prime():
|
|
1183
|
+
return P
|
|
1184
|
+
else:
|
|
1185
|
+
raise TypeError("The element %s is not prime" % (P,))
|
|
1186
|
+
elif P in QQ:
|
|
1187
|
+
raise TypeError("The element %s is not prime" % (P,))
|
|
1188
|
+
elif isinstance(P, Ideal_generic) and P.base_ring() is ZZ:
|
|
1189
|
+
if P.is_prime():
|
|
1190
|
+
return P.gen()
|
|
1191
|
+
else:
|
|
1192
|
+
raise TypeError("The ideal %s is not a prime ideal of %s" % (P, ZZ))
|
|
1193
|
+
else:
|
|
1194
|
+
raise TypeError("%s is neither an element of QQ or an ideal of %s" % (P, ZZ))
|
|
1195
|
+
|
|
1196
|
+
if not isinstance(K, NumberField):
|
|
1197
|
+
raise TypeError("%s is not a number field" % (K,))
|
|
1198
|
+
|
|
1199
|
+
if isinstance(P, NumberFieldFractionalIdeal) or P in K:
|
|
1200
|
+
# if P is an ideal, making sure it is a fractional ideal of K
|
|
1201
|
+
P = K.fractional_ideal(P)
|
|
1202
|
+
if P.is_prime():
|
|
1203
|
+
return P
|
|
1204
|
+
else:
|
|
1205
|
+
raise TypeError("The ideal %s is not a prime ideal of %s" % (P, K))
|
|
1206
|
+
|
|
1207
|
+
raise TypeError("%s is not a valid prime of %s" % (P, K))
|