passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,2928 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.singular
|
|
3
|
+
r"""
|
|
4
|
+
Affine curves
|
|
5
|
+
|
|
6
|
+
Affine curves in Sage are curves in an affine space or an affine plane.
|
|
7
|
+
|
|
8
|
+
EXAMPLES:
|
|
9
|
+
|
|
10
|
+
We can construct curves in either an affine plane::
|
|
11
|
+
|
|
12
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
13
|
+
sage: C = Curve([y - x^2], A); C
|
|
14
|
+
Affine Plane Curve over Rational Field defined by -x^2 + y
|
|
15
|
+
|
|
16
|
+
or in higher dimensional affine space::
|
|
17
|
+
|
|
18
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
19
|
+
sage: C = Curve([y - x^2, z - w^3, w - y^4], A); C
|
|
20
|
+
Affine Curve over Rational Field defined by -x^2 + y, -w^3 + z, -y^4 + w
|
|
21
|
+
|
|
22
|
+
Integral affine curves over finite fields
|
|
23
|
+
-----------------------------------------
|
|
24
|
+
|
|
25
|
+
If the curve is defined over a finite field and integral, that is reduced and
|
|
26
|
+
irreducible, its function field is tightly coupled with the curve so that
|
|
27
|
+
advanced computations based on Sage's global function field machinery are
|
|
28
|
+
available.
|
|
29
|
+
|
|
30
|
+
EXAMPLES::
|
|
31
|
+
|
|
32
|
+
sage: k.<a> = GF(2)
|
|
33
|
+
sage: A.<x,y,z> = AffineSpace(k, 3)
|
|
34
|
+
sage: C = Curve([x^2 + x - y^3, y^4 - y - z^3], A)
|
|
35
|
+
sage: C.genus()
|
|
36
|
+
10
|
|
37
|
+
sage: C.function_field()
|
|
38
|
+
Function field in z defined by z^9 + x^8 + x^6 + x^5 + x^4 + x^3 + x
|
|
39
|
+
|
|
40
|
+
Closed points of arbitrary degree can be computed::
|
|
41
|
+
|
|
42
|
+
sage: # long time
|
|
43
|
+
sage: C.closed_points()
|
|
44
|
+
[Point (x, y, z), Point (x + 1, y, z)]
|
|
45
|
+
sage: C.closed_points(2)
|
|
46
|
+
[Point (x^2 + x + 1, y + 1, z),
|
|
47
|
+
Point (y^2 + y + 1, x + y, z),
|
|
48
|
+
Point (y^2 + y + 1, x + y + 1, z)]
|
|
49
|
+
sage: p = _[0]
|
|
50
|
+
sage: p.places()
|
|
51
|
+
[Place (x^2 + x + 1, (1/(x^4 + x^2 + 1))*z^7 + (1/(x^4 + x^2 + 1))*z^6 + 1)]
|
|
52
|
+
|
|
53
|
+
The places at infinity correspond to the extra closed points of the curve's
|
|
54
|
+
projective closure::
|
|
55
|
+
|
|
56
|
+
sage: C.places_at_infinity() # long time
|
|
57
|
+
[Place (1/x, 1/x*z)]
|
|
58
|
+
|
|
59
|
+
It is easy to transit to and from the function field of the curve::
|
|
60
|
+
|
|
61
|
+
sage: fx = C(x)
|
|
62
|
+
sage: fy = C(y)
|
|
63
|
+
sage: fx^2 + fx - fy^3
|
|
64
|
+
0
|
|
65
|
+
sage: fx.divisor()
|
|
66
|
+
-9*Place (1/x, 1/x*z)
|
|
67
|
+
+ 9*Place (x, z)
|
|
68
|
+
sage: p, = fx.zeros()
|
|
69
|
+
sage: C.place_to_closed_point(p)
|
|
70
|
+
Point (x, y, z)
|
|
71
|
+
sage: _.rational_point()
|
|
72
|
+
(0, 0, 0)
|
|
73
|
+
sage: _.closed_point()
|
|
74
|
+
Point (x, y, z)
|
|
75
|
+
sage: _.place()
|
|
76
|
+
Place (x, z)
|
|
77
|
+
|
|
78
|
+
Integral affine curves over `\QQ`
|
|
79
|
+
---------------------------------
|
|
80
|
+
|
|
81
|
+
An integral curve over `\QQ` is equipped also with the function field. Unlike
|
|
82
|
+
over finite fields, it is not possible to enumerate closed points.
|
|
83
|
+
|
|
84
|
+
EXAMPLES::
|
|
85
|
+
|
|
86
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
87
|
+
sage: C = Curve(x^2 + y^2 -1)
|
|
88
|
+
sage: p = C(0,1)
|
|
89
|
+
sage: p
|
|
90
|
+
(0, 1)
|
|
91
|
+
sage: p.closed_point()
|
|
92
|
+
Point (x, y - 1)
|
|
93
|
+
sage: pl = _.place()
|
|
94
|
+
sage: C.parametric_representation(pl)
|
|
95
|
+
(s + ..., 1 - 1/2*s^2 - 1/8*s^4 - 1/16*s^6 + ...)
|
|
96
|
+
sage: sx, sy = _
|
|
97
|
+
sage: sx = sx.polynomial(10); sx
|
|
98
|
+
s
|
|
99
|
+
sage: sy = sy.polynomial(10); sy
|
|
100
|
+
-7/256*s^10 - 5/128*s^8 - 1/16*s^6 - 1/8*s^4 - 1/2*s^2 + 1
|
|
101
|
+
sage: s = var('s') # needs sage.symbolic
|
|
102
|
+
sage: P1 = parametric_plot([sx, sy], (s, -1, 1), color='red') # needs sage.plot sage.symbolic
|
|
103
|
+
sage: P2 = C.plot((x, -1, 1), (y, 0, 2)) # half circle # needs sage.plot sage.symbolic
|
|
104
|
+
sage: P1 + P2 # needs sage.plot sage.symbolic
|
|
105
|
+
Graphics object consisting of 2 graphics primitives
|
|
106
|
+
|
|
107
|
+
AUTHORS:
|
|
108
|
+
|
|
109
|
+
- William Stein (2005-11-13)
|
|
110
|
+
|
|
111
|
+
- David Joyner (2005-11-13)
|
|
112
|
+
|
|
113
|
+
- David Kohel (2006-01)
|
|
114
|
+
|
|
115
|
+
- Grayson Jorgenson (2016-08)
|
|
116
|
+
|
|
117
|
+
- Kwankyu Lee (2019-05): added integral affine curves
|
|
118
|
+
"""
|
|
119
|
+
# ****************************************************************************
|
|
120
|
+
# Copyright (C) 2005 William Stein <wstein@gmail.com>
|
|
121
|
+
#
|
|
122
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
123
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
124
|
+
# the License, or (at your option) any later version.
|
|
125
|
+
# https://www.gnu.org/licenses/
|
|
126
|
+
# ****************************************************************************
|
|
127
|
+
|
|
128
|
+
from builtins import sum as add
|
|
129
|
+
|
|
130
|
+
import sage.rings.abc
|
|
131
|
+
|
|
132
|
+
from sage.arith.misc import binomial
|
|
133
|
+
from sage.categories.fields import Fields
|
|
134
|
+
from sage.categories.finite_fields import FiniteFields
|
|
135
|
+
from sage.categories.homset import Hom, End, hom
|
|
136
|
+
from sage.categories.number_fields import NumberFields
|
|
137
|
+
from sage.matrix.constructor import matrix
|
|
138
|
+
from sage.misc.cachefunc import cached_method
|
|
139
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
140
|
+
from sage.misc.lazy_import import lazy_import
|
|
141
|
+
from sage.rings.infinity import infinity
|
|
142
|
+
from sage.rings.polynomial.multi_polynomial_element import degree_lowest_rational_function
|
|
143
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
144
|
+
from sage.rings.rational_field import RationalField
|
|
145
|
+
|
|
146
|
+
from sage.schemes.affine.affine_space import AffineSpace, AffineSpace_generic
|
|
147
|
+
from sage.schemes.affine.affine_subscheme import (AlgebraicScheme_subscheme_affine,
|
|
148
|
+
AlgebraicScheme_subscheme_affine_field)
|
|
149
|
+
|
|
150
|
+
lazy_import('sage.interfaces.singular', 'singular')
|
|
151
|
+
lazy_import('sage.rings.number_field.number_field', 'NumberField')
|
|
152
|
+
lazy_import('sage.rings.qqbar', 'number_field_elements_from_algebraics')
|
|
153
|
+
|
|
154
|
+
from .curve import Curve_generic
|
|
155
|
+
|
|
156
|
+
from .point import (AffineCurvePoint_field,
|
|
157
|
+
AffinePlaneCurvePoint_field,
|
|
158
|
+
AffinePlaneCurvePoint_finite_field,
|
|
159
|
+
IntegralAffineCurvePoint,
|
|
160
|
+
IntegralAffineCurvePoint_finite_field,
|
|
161
|
+
IntegralAffinePlaneCurvePoint,
|
|
162
|
+
IntegralAffinePlaneCurvePoint_finite_field)
|
|
163
|
+
|
|
164
|
+
from .closed_point import IntegralAffineCurveClosedPoint
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class AffineCurve(Curve_generic, AlgebraicScheme_subscheme_affine):
|
|
168
|
+
"""
|
|
169
|
+
Affine curves.
|
|
170
|
+
|
|
171
|
+
EXAMPLES::
|
|
172
|
+
|
|
173
|
+
sage: # needs sage.rings.number_field
|
|
174
|
+
sage: R.<v> = QQ[]
|
|
175
|
+
sage: K.<u> = NumberField(v^2 + 3)
|
|
176
|
+
sage: A.<x,y,z> = AffineSpace(K, 3)
|
|
177
|
+
sage: C = Curve([z - u*x^2, y^2], A); C
|
|
178
|
+
Affine Curve over Number Field in u with defining polynomial v^2 + 3
|
|
179
|
+
defined by (-u)*x^2 + z, y^2
|
|
180
|
+
|
|
181
|
+
::
|
|
182
|
+
|
|
183
|
+
sage: A.<x,y,z> = AffineSpace(GF(7), 3)
|
|
184
|
+
sage: C = Curve([x^2 - z, z - 8*x], A); C
|
|
185
|
+
Affine Curve over Finite Field of size 7 defined by x^2 - z, -x + z
|
|
186
|
+
"""
|
|
187
|
+
|
|
188
|
+
def __init__(self, A, X):
|
|
189
|
+
r"""
|
|
190
|
+
Initialize.
|
|
191
|
+
|
|
192
|
+
EXAMPLES::
|
|
193
|
+
|
|
194
|
+
sage: # needs sage.rings.number_field
|
|
195
|
+
sage: R.<v> = QQ[]
|
|
196
|
+
sage: K.<u> = NumberField(v^2 + 3)
|
|
197
|
+
sage: A.<x,y,z> = AffineSpace(K, 3)
|
|
198
|
+
sage: C = Curve([z - u*x^2, y^2], A); C
|
|
199
|
+
Affine Curve over Number Field in u with defining polynomial v^2 + 3
|
|
200
|
+
defined by (-u)*x^2 + z, y^2
|
|
201
|
+
|
|
202
|
+
::
|
|
203
|
+
|
|
204
|
+
sage: A.<x,y,z> = AffineSpace(GF(7), 3)
|
|
205
|
+
sage: C = Curve([x^2 - z, z - 8*x], A); C
|
|
206
|
+
Affine Curve over Finite Field of size 7 defined by x^2 - z, -x + z
|
|
207
|
+
"""
|
|
208
|
+
if not isinstance(A, AffineSpace_generic):
|
|
209
|
+
raise TypeError("A (={}) must be an affine space".format(A))
|
|
210
|
+
|
|
211
|
+
Curve_generic.__init__(self, A, X)
|
|
212
|
+
|
|
213
|
+
def _repr_type(self):
|
|
214
|
+
r"""
|
|
215
|
+
Return a string representation of the type of this curve.
|
|
216
|
+
|
|
217
|
+
EXAMPLES::
|
|
218
|
+
|
|
219
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
220
|
+
sage: C = Curve([x - y, z - w, w - x], A)
|
|
221
|
+
sage: C._repr_type()
|
|
222
|
+
'Affine'
|
|
223
|
+
"""
|
|
224
|
+
return "Affine"
|
|
225
|
+
|
|
226
|
+
def projective_closure(self, i=0, PP=None):
|
|
227
|
+
r"""
|
|
228
|
+
Return the projective closure of this affine curve.
|
|
229
|
+
|
|
230
|
+
INPUT:
|
|
231
|
+
|
|
232
|
+
- ``i`` -- (default: 0) the index of the affine coordinate chart of the
|
|
233
|
+
projective space that the affine ambient space of this curve embeds into
|
|
234
|
+
|
|
235
|
+
- ``PP`` -- (default: ``None``) ambient projective space to compute the
|
|
236
|
+
projective closure in; this is constructed if it is not given
|
|
237
|
+
|
|
238
|
+
OUTPUT: a curve in projective space
|
|
239
|
+
|
|
240
|
+
EXAMPLES::
|
|
241
|
+
|
|
242
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
243
|
+
sage: C = Curve([y-x^2,z-x^3], A)
|
|
244
|
+
sage: C.projective_closure()
|
|
245
|
+
Projective Curve over Rational Field defined by x1^2 - x0*x2,
|
|
246
|
+
x1*x2 - x0*x3, x2^2 - x1*x3
|
|
247
|
+
|
|
248
|
+
::
|
|
249
|
+
|
|
250
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
251
|
+
sage: C = Curve([y - x^2, z - x^3], A)
|
|
252
|
+
sage: C.projective_closure()
|
|
253
|
+
Projective Curve over Rational Field defined by
|
|
254
|
+
x1^2 - x0*x2, x1*x2 - x0*x3, x2^2 - x1*x3
|
|
255
|
+
|
|
256
|
+
::
|
|
257
|
+
|
|
258
|
+
sage: A.<x,y> = AffineSpace(CC, 2)
|
|
259
|
+
sage: C = Curve(y - x^3 + x - 1, A)
|
|
260
|
+
sage: C.projective_closure(1)
|
|
261
|
+
Projective Plane Curve over Complex Field with 53 bits of precision defined by
|
|
262
|
+
x0^3 - x0*x1^2 + x1^3 - x1^2*x2
|
|
263
|
+
|
|
264
|
+
::
|
|
265
|
+
|
|
266
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
267
|
+
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
|
|
268
|
+
sage: C = Curve([y - x^2], A)
|
|
269
|
+
sage: C.projective_closure(1, P).ambient_space() == P
|
|
270
|
+
True
|
|
271
|
+
"""
|
|
272
|
+
from .constructor import Curve
|
|
273
|
+
return Curve(AlgebraicScheme_subscheme_affine.projective_closure(self, i, PP))
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
class AffinePlaneCurve(AffineCurve):
|
|
277
|
+
"""
|
|
278
|
+
Affine plane curves.
|
|
279
|
+
"""
|
|
280
|
+
|
|
281
|
+
def __init__(self, A, f):
|
|
282
|
+
r"""
|
|
283
|
+
Initialize.
|
|
284
|
+
|
|
285
|
+
EXAMPLES::
|
|
286
|
+
|
|
287
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
288
|
+
sage: C = Curve([x^3 - y^2], A); C
|
|
289
|
+
Affine Plane Curve over Rational Field defined by x^3 - y^2
|
|
290
|
+
|
|
291
|
+
::
|
|
292
|
+
|
|
293
|
+
sage: A.<x,y> = AffineSpace(CC, 2)
|
|
294
|
+
sage: C = Curve([y^2 + x^2], A); C
|
|
295
|
+
Affine Plane Curve over Complex Field with 53 bits of precision defined
|
|
296
|
+
by x^2 + y^2
|
|
297
|
+
"""
|
|
298
|
+
if not (isinstance(A, AffineSpace_generic) and A.dimension != 2):
|
|
299
|
+
raise TypeError("Argument A (= %s) must be an affine plane." % A)
|
|
300
|
+
|
|
301
|
+
super().__init__(A, [f])
|
|
302
|
+
|
|
303
|
+
def _repr_type(self):
|
|
304
|
+
r"""
|
|
305
|
+
Return a string representation of the type of this curve.
|
|
306
|
+
|
|
307
|
+
EXAMPLES::
|
|
308
|
+
|
|
309
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
310
|
+
sage: C = Curve([y - 7/2*x^5 + x - 3], A)
|
|
311
|
+
sage: C._repr_type()
|
|
312
|
+
'Affine Plane'
|
|
313
|
+
"""
|
|
314
|
+
return "Affine Plane"
|
|
315
|
+
|
|
316
|
+
def divisor_of_function(self, r):
|
|
317
|
+
"""
|
|
318
|
+
Return the divisor of a function on a curve.
|
|
319
|
+
|
|
320
|
+
INPUT:
|
|
321
|
+
|
|
322
|
+
- ``r`` -- a rational function on X
|
|
323
|
+
|
|
324
|
+
OUTPUT:
|
|
325
|
+
|
|
326
|
+
- ``list`` -- the divisor of r represented as a list of coefficients
|
|
327
|
+
and points. (TODO: This will change to a more structural output in
|
|
328
|
+
the future.)
|
|
329
|
+
|
|
330
|
+
EXAMPLES::
|
|
331
|
+
|
|
332
|
+
sage: F = GF(5)
|
|
333
|
+
sage: P2 = AffineSpace(2, F, names='xy')
|
|
334
|
+
sage: R = P2.coordinate_ring()
|
|
335
|
+
sage: x, y = R.gens()
|
|
336
|
+
sage: f = y^2 - x^9 - x
|
|
337
|
+
sage: C = Curve(f)
|
|
338
|
+
sage: K = FractionField(R)
|
|
339
|
+
sage: r = 1/x
|
|
340
|
+
sage: C.divisor_of_function(r) # not implemented (broken)
|
|
341
|
+
[[-1, (0, 0, 1)]]
|
|
342
|
+
sage: r = 1/x^3
|
|
343
|
+
sage: C.divisor_of_function(r) # not implemented (broken)
|
|
344
|
+
[[-3, (0, 0, 1)]]
|
|
345
|
+
"""
|
|
346
|
+
F = self.base_ring()
|
|
347
|
+
f = self.defining_polynomial()
|
|
348
|
+
pts = self.places_on_curve()
|
|
349
|
+
R = f.parent()
|
|
350
|
+
x, y = R.gens()
|
|
351
|
+
R0 = PolynomialRing(F, 3, names=[str(x), str(y), "t"])
|
|
352
|
+
vars0 = R0.gens()
|
|
353
|
+
t = vars0[2]
|
|
354
|
+
divf = []
|
|
355
|
+
for pt0 in pts:
|
|
356
|
+
if pt0[2] != F(0):
|
|
357
|
+
lcs = self.local_coordinates(pt0, 5)
|
|
358
|
+
yt = lcs[1]
|
|
359
|
+
xt = lcs[0]
|
|
360
|
+
ldg = degree_lowest_rational_function(r(xt, yt), t)
|
|
361
|
+
if ldg != 0:
|
|
362
|
+
divf.append([ldg, pt0])
|
|
363
|
+
return divf
|
|
364
|
+
|
|
365
|
+
def local_coordinates(self, pt, n):
|
|
366
|
+
r"""
|
|
367
|
+
Return local coordinates to precision n at the given point.
|
|
368
|
+
|
|
369
|
+
Behaviour is flaky - some choices of `n` are worst that
|
|
370
|
+
others.
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+
INPUT:
|
|
374
|
+
|
|
375
|
+
- ``pt`` -- an F-rational point on X which is not a
|
|
376
|
+
point of ramification for the projection (x,y) - x
|
|
377
|
+
|
|
378
|
+
- ``n`` -- the number of terms desired
|
|
379
|
+
|
|
380
|
+
OUTPUT: x = x0 + t y = y0 + power series in t
|
|
381
|
+
|
|
382
|
+
EXAMPLES::
|
|
383
|
+
|
|
384
|
+
sage: F = GF(5)
|
|
385
|
+
sage: pt = (2,3)
|
|
386
|
+
sage: R = PolynomialRing(F, 2, names = ['x','y'])
|
|
387
|
+
sage: x,y = R.gens()
|
|
388
|
+
sage: f = y^2 - x^9 - x
|
|
389
|
+
sage: C = Curve(f)
|
|
390
|
+
sage: C.local_coordinates(pt, 9)
|
|
391
|
+
[t + 2, -2*t^12 - 2*t^11 + 2*t^9 + t^8 - 2*t^7 - 2*t^6 - 2*t^4 + t^3 - 2*t^2 - 2]
|
|
392
|
+
"""
|
|
393
|
+
f = self.defining_polynomial()
|
|
394
|
+
R = f.parent()
|
|
395
|
+
F = self.base_ring()
|
|
396
|
+
p = F.characteristic()
|
|
397
|
+
x0 = F(pt[0])
|
|
398
|
+
y0 = F(pt[1])
|
|
399
|
+
astr = ["a" + str(i) for i in range(1, 2 * n)]
|
|
400
|
+
x, y = R.gens()
|
|
401
|
+
R0 = PolynomialRing(F, 2 * n + 2, names=[str(x), str(y), "t"] + astr)
|
|
402
|
+
vars0 = R0.gens()
|
|
403
|
+
t = vars0[2]
|
|
404
|
+
yt = y0*t**0+add([vars0[i]*t**(i-2) for i in range(3, 2*n+2)])
|
|
405
|
+
xt = x0+t
|
|
406
|
+
ft = f(xt, yt)
|
|
407
|
+
S = singular
|
|
408
|
+
S.eval('ring s = '+str(p)+','+str(R0.gens())+',lp;')
|
|
409
|
+
S.eval('poly f = '+str(ft) + ';')
|
|
410
|
+
c = S('coeffs(%s, t)' % ft)
|
|
411
|
+
N = int(c.size())
|
|
412
|
+
b = ','.join("%s[%s,1]" % (c.name(), i) for i in range(2, N//2-4))
|
|
413
|
+
cmd = 'ideal I = ' + b
|
|
414
|
+
S.eval(cmd)
|
|
415
|
+
S.eval('short=0') # print using *'s and ^'s.
|
|
416
|
+
c = S.eval('slimgb(I)')
|
|
417
|
+
d = c.split("=")
|
|
418
|
+
d = d[1:]
|
|
419
|
+
d[len(d)-1] += "\n"
|
|
420
|
+
e = [xx[:xx.index("\n")] for xx in d]
|
|
421
|
+
vals = []
|
|
422
|
+
for x in e:
|
|
423
|
+
for y in vars0:
|
|
424
|
+
if str(y) in x:
|
|
425
|
+
if x.replace(str(y), ""):
|
|
426
|
+
i = x.find("-")
|
|
427
|
+
if i > 0:
|
|
428
|
+
vals.append([eval(x[1:i]), x[:i], F(eval(x[i+1:]))])
|
|
429
|
+
i = x.find("+")
|
|
430
|
+
if i > 0:
|
|
431
|
+
vals.append([eval(x[1:i]), x[:i], -F(eval(x[i+1:]))])
|
|
432
|
+
else:
|
|
433
|
+
vals.append([eval(str(y)[1:]), str(y), F(0)])
|
|
434
|
+
vals.sort()
|
|
435
|
+
return [x0 + t, y0 + add(v[2] * t**(j + 1) for j, v in enumerate(vals))]
|
|
436
|
+
|
|
437
|
+
def plot(self, *args, **kwds):
|
|
438
|
+
r"""
|
|
439
|
+
Plot the real points on this affine plane curve.
|
|
440
|
+
|
|
441
|
+
INPUT:
|
|
442
|
+
|
|
443
|
+
- ``*args`` -- (optional) tuples (variable, minimum, maximum) for
|
|
444
|
+
plotting dimensions
|
|
445
|
+
|
|
446
|
+
- ``**kwds`` -- optional keyword arguments passed on to ``implicit_plot``
|
|
447
|
+
|
|
448
|
+
EXAMPLES:
|
|
449
|
+
|
|
450
|
+
A cuspidal curve::
|
|
451
|
+
|
|
452
|
+
sage: R.<x, y> = QQ[]
|
|
453
|
+
sage: C = Curve(x^3 - y^2)
|
|
454
|
+
sage: C.plot() # needs sage.plot
|
|
455
|
+
Graphics object consisting of 1 graphics primitive
|
|
456
|
+
|
|
457
|
+
A 5-nodal curve of degree 11. This example also illustrates
|
|
458
|
+
some of the optional arguments::
|
|
459
|
+
|
|
460
|
+
sage: # needs sage.plot
|
|
461
|
+
sage: R.<x, y> = ZZ[]
|
|
462
|
+
sage: C = Curve(32*x^2 - 2097152*y^11 + 1441792*y^9
|
|
463
|
+
....: - 360448*y^7 + 39424*y^5 - 1760*y^3 + 22*y - 1)
|
|
464
|
+
sage: C.plot((x, -1, 1), (y, -1, 1), plot_points=400)
|
|
465
|
+
Graphics object consisting of 1 graphics primitive
|
|
466
|
+
|
|
467
|
+
A line over `\mathbf{RR}`::
|
|
468
|
+
|
|
469
|
+
sage: # needs sage.symbolic sage.plot
|
|
470
|
+
sage: R.<x, y> = RR[]
|
|
471
|
+
sage: C = Curve(R(y - sqrt(2)*x))
|
|
472
|
+
sage: C.plot()
|
|
473
|
+
Graphics object consisting of 1 graphics primitive
|
|
474
|
+
"""
|
|
475
|
+
Id = self.defining_ideal()
|
|
476
|
+
return Id.plot(*args, **kwds)
|
|
477
|
+
|
|
478
|
+
def is_transverse(self, C, P):
|
|
479
|
+
r"""
|
|
480
|
+
Return whether the intersection of this curve with the curve ``C`` at the point ``P`` is transverse.
|
|
481
|
+
|
|
482
|
+
The intersection at ``P`` is transverse if ``P`` is a nonsingular point of both curves, and if the
|
|
483
|
+
tangents of the curves at ``P`` are distinct.
|
|
484
|
+
|
|
485
|
+
INPUT:
|
|
486
|
+
|
|
487
|
+
- ``C`` -- a curve in the ambient space of this curve
|
|
488
|
+
|
|
489
|
+
- ``P`` -- a point in the intersection of both curves
|
|
490
|
+
|
|
491
|
+
OUTPUT: boolean
|
|
492
|
+
|
|
493
|
+
EXAMPLES::
|
|
494
|
+
|
|
495
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
496
|
+
sage: C = Curve([x^2 + y^2 - 1], A)
|
|
497
|
+
sage: D = Curve([x - 1], A)
|
|
498
|
+
sage: Q = A([1,0])
|
|
499
|
+
sage: C.is_transverse(D, Q)
|
|
500
|
+
False
|
|
501
|
+
|
|
502
|
+
::
|
|
503
|
+
|
|
504
|
+
sage: # needs sage.rings.number_field
|
|
505
|
+
sage: R.<a> = QQ[]
|
|
506
|
+
sage: K.<b> = NumberField(a^3 + 2)
|
|
507
|
+
sage: A.<x,y> = AffineSpace(K, 2)
|
|
508
|
+
sage: C = A.curve([x*y])
|
|
509
|
+
sage: D = A.curve([y - b*x])
|
|
510
|
+
sage: Q = A([0,0])
|
|
511
|
+
sage: C.is_transverse(D, Q)
|
|
512
|
+
False
|
|
513
|
+
|
|
514
|
+
::
|
|
515
|
+
|
|
516
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
517
|
+
sage: C = Curve([y - x^3], A)
|
|
518
|
+
sage: D = Curve([y + x], A)
|
|
519
|
+
sage: Q = A([0,0])
|
|
520
|
+
sage: C.is_transverse(D, Q)
|
|
521
|
+
True
|
|
522
|
+
"""
|
|
523
|
+
if not self.intersects_at(C, P):
|
|
524
|
+
raise TypeError("(=%s) must be a point in the intersection of (=%s) and this curve" % (P, C))
|
|
525
|
+
if self.is_singular(P) or C.is_singular(P):
|
|
526
|
+
return False
|
|
527
|
+
|
|
528
|
+
# there is only one tangent at a nonsingular point of a plane curve
|
|
529
|
+
return not self.tangents(P)[0] == C.tangents(P)[0]
|
|
530
|
+
|
|
531
|
+
def multiplicity(self, P):
|
|
532
|
+
r"""
|
|
533
|
+
Return the multiplicity of this affine plane curve at the point ``P``.
|
|
534
|
+
|
|
535
|
+
In the special case of affine plane curves, the multiplicity of an affine
|
|
536
|
+
plane curve at the point (0,0) can be computed as the minimum of the degrees
|
|
537
|
+
of the homogeneous components of its defining polynomial. To compute the
|
|
538
|
+
multiplicity of a different point, a linear change of coordinates is used.
|
|
539
|
+
|
|
540
|
+
This curve must be defined over a field. An error if raised if ``P`` is
|
|
541
|
+
not a point on this curve.
|
|
542
|
+
|
|
543
|
+
INPUT:
|
|
544
|
+
|
|
545
|
+
- ``P`` -- a point in the ambient space of this curve
|
|
546
|
+
|
|
547
|
+
OUTPUT: integer
|
|
548
|
+
|
|
549
|
+
EXAMPLES::
|
|
550
|
+
|
|
551
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
552
|
+
sage: C = Curve([y^2 - x^3], A)
|
|
553
|
+
sage: Q1 = A([1,1])
|
|
554
|
+
sage: C.multiplicity(Q1)
|
|
555
|
+
1
|
|
556
|
+
sage: Q2 = A([0,0])
|
|
557
|
+
sage: C.multiplicity(Q2)
|
|
558
|
+
2
|
|
559
|
+
|
|
560
|
+
::
|
|
561
|
+
|
|
562
|
+
sage: # needs sage.rings.number_field
|
|
563
|
+
sage: A.<x,y> = AffineSpace(QQbar,2)
|
|
564
|
+
sage: C = Curve([-x^7 + (-7)*x^6 + y^6 + (-21)*x^5 + 12*y^5
|
|
565
|
+
....: + (-35)*x^4 + 60*y^4 + (-35)*x^3 + 160*y^3
|
|
566
|
+
....: + (-21)*x^2 + 240*y^2 + (-7)*x + 192*y + 63], A)
|
|
567
|
+
sage: Q = A([-1,-2])
|
|
568
|
+
sage: C.multiplicity(Q)
|
|
569
|
+
6
|
|
570
|
+
|
|
571
|
+
::
|
|
572
|
+
|
|
573
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
574
|
+
sage: C = A.curve([y^3 - x^3 + x^6])
|
|
575
|
+
sage: Q = A([1,1])
|
|
576
|
+
sage: C.multiplicity(Q)
|
|
577
|
+
Traceback (most recent call last):
|
|
578
|
+
...
|
|
579
|
+
TypeError: (=(1, 1)) is not a point on (=Affine Plane Curve over
|
|
580
|
+
Rational Field defined by x^6 - x^3 + y^3)
|
|
581
|
+
"""
|
|
582
|
+
if self.base_ring() not in Fields():
|
|
583
|
+
raise TypeError("curve must be defined over a field")
|
|
584
|
+
|
|
585
|
+
# Check whether P is a point on this curve
|
|
586
|
+
try:
|
|
587
|
+
P = self(P)
|
|
588
|
+
except TypeError:
|
|
589
|
+
raise TypeError("(=%s) is not a point on (=%s)" % (P, self))
|
|
590
|
+
|
|
591
|
+
# Apply a linear change of coordinates to self so that P becomes (0,0)
|
|
592
|
+
AA = self.ambient_space()
|
|
593
|
+
f = self.defining_polynomials()[0](AA.gens()[0] + P[0], AA.gens()[1] + P[1])
|
|
594
|
+
|
|
595
|
+
# Compute the multiplicity of the new curve at (0,0), which is the minimum of the degrees of its
|
|
596
|
+
# nonzero terms
|
|
597
|
+
return min([g.degree() for g in f.monomials()])
|
|
598
|
+
|
|
599
|
+
def tangents(self, P, factor=True):
|
|
600
|
+
r"""
|
|
601
|
+
Return the tangents of this affine plane curve at the point ``P``.
|
|
602
|
+
|
|
603
|
+
The point ``P`` must be a point on this curve.
|
|
604
|
+
|
|
605
|
+
INPUT:
|
|
606
|
+
|
|
607
|
+
- ``P`` -- a point on this curve
|
|
608
|
+
|
|
609
|
+
- ``factor`` -- boolean (default: ``True``); whether to attempt computing the
|
|
610
|
+
polynomials of the individual tangent lines over the base field of this
|
|
611
|
+
curve, or to just return the polynomial corresponding to the union of
|
|
612
|
+
the tangent lines (which requires fewer computations)
|
|
613
|
+
|
|
614
|
+
OUTPUT: list of polynomials in the coordinate ring of the ambient space
|
|
615
|
+
|
|
616
|
+
EXAMPLES::
|
|
617
|
+
|
|
618
|
+
sage: # needs sage.rings.number_field
|
|
619
|
+
sage: set_verbose(-1)
|
|
620
|
+
sage: A.<x,y> = AffineSpace(QQbar, 2)
|
|
621
|
+
sage: C = Curve([x^5*y^3 + 2*x^4*y^4 + x^3*y^5 + 3*x^4*y^3
|
|
622
|
+
....: + 6*x^3*y^4 + 3*x^2*y^5 + 3*x^3*y^3
|
|
623
|
+
....: + 6*x^2*y^4 + 3*x*y^5 + x^5 + 10*x^4*y
|
|
624
|
+
....: + 40*x^3*y^2 + 81*x^2*y^3 + 82*x*y^4 + 33*y^5], A)
|
|
625
|
+
sage: Q = A([0,0])
|
|
626
|
+
sage: C.tangents(Q)
|
|
627
|
+
[x + 3.425299577684700?*y,
|
|
628
|
+
x + (1.949159013086856? + 1.179307909383728?*I)*y,
|
|
629
|
+
x + (1.949159013086856? - 1.179307909383728?*I)*y,
|
|
630
|
+
x + (1.338191198070795? + 0.2560234251008043?*I)*y,
|
|
631
|
+
x + (1.338191198070795? - 0.2560234251008043?*I)*y]
|
|
632
|
+
sage: C.tangents(Q, factor=False)
|
|
633
|
+
[120*x^5 + 1200*x^4*y + 4800*x^3*y^2 + 9720*x^2*y^3 + 9840*x*y^4 + 3960*y^5]
|
|
634
|
+
|
|
635
|
+
::
|
|
636
|
+
|
|
637
|
+
sage: # needs sage.rings.number_field
|
|
638
|
+
sage: R.<a> = QQ[]
|
|
639
|
+
sage: K.<b> = NumberField(a^2 - 3)
|
|
640
|
+
sage: A.<x,y> = AffineSpace(K, 2)
|
|
641
|
+
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
|
|
642
|
+
sage: Q = A([0,0])
|
|
643
|
+
sage: C.tangents(Q)
|
|
644
|
+
[x + (-1/3*b)*y, x + (1/3*b)*y]
|
|
645
|
+
|
|
646
|
+
::
|
|
647
|
+
|
|
648
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
649
|
+
sage: C = A.curve([y^2 - x^3 - x^2])
|
|
650
|
+
sage: Q = A([0,0])
|
|
651
|
+
sage: C.tangents(Q)
|
|
652
|
+
[x - y, x + y]
|
|
653
|
+
|
|
654
|
+
::
|
|
655
|
+
|
|
656
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
657
|
+
sage: C = A.curve([y*x - x^4 + 2*x^2])
|
|
658
|
+
sage: Q = A([1,1])
|
|
659
|
+
sage: C.tangents(Q)
|
|
660
|
+
Traceback (most recent call last):
|
|
661
|
+
...
|
|
662
|
+
TypeError: (=(1, 1)) is not a point on (=Affine Plane Curve over
|
|
663
|
+
Rational Field defined by -x^4 + 2*x^2 + x*y)
|
|
664
|
+
"""
|
|
665
|
+
r = self.multiplicity(P)
|
|
666
|
+
f = self.defining_polynomial()
|
|
667
|
+
# move P to (0,0)
|
|
668
|
+
vars = self.ambient_space().gens()
|
|
669
|
+
coords = [vars[0] + P[0], vars[1] + P[1]]
|
|
670
|
+
f = f(coords)
|
|
671
|
+
coords = [vars[0] - P[0], vars[1] - P[1]] # coords to change back with
|
|
672
|
+
deriv = [f.derivative(vars[0], i).derivative(vars[1], r-i)([0, 0]) for i in range(r+1)]
|
|
673
|
+
T = sum([binomial(r, i)*deriv[i]*(vars[0])**i*(vars[1])**(r-i) for i in range(r+1)])
|
|
674
|
+
if not factor:
|
|
675
|
+
return [T(coords)]
|
|
676
|
+
if isinstance(self.base_ring(), sage.rings.abc.AlgebraicField):
|
|
677
|
+
fact = []
|
|
678
|
+
# first add tangents corresponding to vars[0], vars[1] if they divide T
|
|
679
|
+
t = min([e[0] for e in T.exponents()])
|
|
680
|
+
# vars[0] divides T
|
|
681
|
+
if t > 0:
|
|
682
|
+
fact.append(vars[0])
|
|
683
|
+
# divide T by that power of vars[0]
|
|
684
|
+
T = self.ambient_space().coordinate_ring()({(v[0] - t, v[1]): h for (v, h) in T.dict().items()})
|
|
685
|
+
t = min([e[1] for e in T.exponents()])
|
|
686
|
+
# vars[1] divides T
|
|
687
|
+
if t > 0:
|
|
688
|
+
fact.append(vars[1])
|
|
689
|
+
# divide T by that power of vars[1]
|
|
690
|
+
T = self.ambient_space().coordinate_ring()({(v[0], v[1] - t): h for (v, h) in T.dict().items()})
|
|
691
|
+
# T is homogeneous in var[0], var[1] if nonconstant, so dehomogenize
|
|
692
|
+
if T not in self.base_ring():
|
|
693
|
+
if T.degree(vars[0]) > 0:
|
|
694
|
+
T = T(vars[0], 1)
|
|
695
|
+
roots = T.univariate_polynomial().roots()
|
|
696
|
+
fact.extend([vars[0] - roots[i][0]*vars[1] for i in range(len(roots))])
|
|
697
|
+
else:
|
|
698
|
+
T = T(1, vars[1])
|
|
699
|
+
roots = T.univariate_polynomial().roots()
|
|
700
|
+
fact.extend([vars[1] - roots[i][0]*vars[0] for i in range(len(roots))])
|
|
701
|
+
return [ff(coords) for ff in fact]
|
|
702
|
+
else:
|
|
703
|
+
return [ll[0](coords) for ll in T.factor()]
|
|
704
|
+
|
|
705
|
+
def is_ordinary_singularity(self, P):
|
|
706
|
+
r"""
|
|
707
|
+
Return whether the singular point ``P`` of this affine plane curve is
|
|
708
|
+
an ordinary singularity.
|
|
709
|
+
|
|
710
|
+
The point ``P`` is an ordinary singularity of this curve if it is a
|
|
711
|
+
singular point, and if the tangents of this curve at ``P`` are
|
|
712
|
+
distinct.
|
|
713
|
+
|
|
714
|
+
INPUT:
|
|
715
|
+
|
|
716
|
+
- ``P`` -- a point on this curve
|
|
717
|
+
|
|
718
|
+
OUTPUT:
|
|
719
|
+
|
|
720
|
+
``True`` or ``False`` depending on whether ``P`` is or is not an ordinary
|
|
721
|
+
singularity of this curve, respectively. An error is raised if ``P`` is
|
|
722
|
+
not a singular point of this curve.
|
|
723
|
+
|
|
724
|
+
EXAMPLES::
|
|
725
|
+
|
|
726
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
727
|
+
sage: C = Curve([y^2 - x^3], A)
|
|
728
|
+
sage: Q = A([0,0])
|
|
729
|
+
sage: C.is_ordinary_singularity(Q)
|
|
730
|
+
False
|
|
731
|
+
|
|
732
|
+
::
|
|
733
|
+
|
|
734
|
+
sage: # needs sage.rings.number_field
|
|
735
|
+
sage: R.<a> = QQ[]
|
|
736
|
+
sage: K.<b> = NumberField(a^2 - 3)
|
|
737
|
+
sage: A.<x,y> = AffineSpace(K, 2)
|
|
738
|
+
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
|
|
739
|
+
sage: Q = A([0,0])
|
|
740
|
+
sage: C.is_ordinary_singularity(Q)
|
|
741
|
+
True
|
|
742
|
+
|
|
743
|
+
::
|
|
744
|
+
|
|
745
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
746
|
+
sage: C = A.curve([x^2*y - y^2*x + y^2 + x^3])
|
|
747
|
+
sage: Q = A([-1,-1])
|
|
748
|
+
sage: C.is_ordinary_singularity(Q)
|
|
749
|
+
Traceback (most recent call last):
|
|
750
|
+
...
|
|
751
|
+
TypeError: (=(-1, -1)) is not a singular point of (=Affine Plane Curve
|
|
752
|
+
over Rational Field defined by x^3 + x^2*y - x*y^2 + y^2)
|
|
753
|
+
"""
|
|
754
|
+
r = self.multiplicity(P)
|
|
755
|
+
if r < 2:
|
|
756
|
+
raise TypeError("(=%s) is not a singular point of (=%s)" % (P, self))
|
|
757
|
+
|
|
758
|
+
T = self.tangents(P, factor=False)[0]
|
|
759
|
+
vars = self.ambient_space().gens()
|
|
760
|
+
|
|
761
|
+
# use resultants to determine if there is a higher multiplicity tangent
|
|
762
|
+
if T.degree(vars[0]) > 0:
|
|
763
|
+
return T.resultant(T.derivative(vars[0]), vars[0]) != 0
|
|
764
|
+
else:
|
|
765
|
+
return T.resultant(T.derivative(vars[1]), vars[1]) != 0
|
|
766
|
+
|
|
767
|
+
def rational_parameterization(self):
|
|
768
|
+
r"""
|
|
769
|
+
Return a rational parameterization of this curve.
|
|
770
|
+
|
|
771
|
+
This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible
|
|
772
|
+
over the algebraic closure of the rational field). The curve must also be rational (have
|
|
773
|
+
geometric genus zero).
|
|
774
|
+
|
|
775
|
+
The rational parameterization may have coefficients in a quadratic extension of the rational
|
|
776
|
+
field.
|
|
777
|
+
|
|
778
|
+
OUTPUT: a birational map between `\mathbb{A}^{1}` and this curve, given
|
|
779
|
+
as a scheme morphism
|
|
780
|
+
|
|
781
|
+
EXAMPLES::
|
|
782
|
+
|
|
783
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
784
|
+
sage: C = Curve([y^2 - x], A)
|
|
785
|
+
sage: C.rational_parameterization()
|
|
786
|
+
Scheme morphism:
|
|
787
|
+
From: Affine Space of dimension 1 over Rational Field
|
|
788
|
+
To: Affine Plane Curve over Rational Field defined by y^2 - x
|
|
789
|
+
Defn: Defined on coordinates by sending (t) to
|
|
790
|
+
(t^2, t)
|
|
791
|
+
|
|
792
|
+
::
|
|
793
|
+
|
|
794
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
795
|
+
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
|
|
796
|
+
sage: C.rational_parameterization()
|
|
797
|
+
Scheme morphism:
|
|
798
|
+
From: Affine Space of dimension 1 over Rational Field
|
|
799
|
+
To: Affine Plane Curve over Rational Field defined by x^4 +
|
|
800
|
+
2*x^2*y^2 + y^4 - 4*x^3 - 4*x*y^2 + 3*x^2 - y^2
|
|
801
|
+
Defn: Defined on coordinates by sending (t) to
|
|
802
|
+
((-12*t^4 + 6*t^3 + 4*t^2 - 2*t)/(-25*t^4 + 40*t^3 - 26*t^2 +
|
|
803
|
+
8*t - 1), (-9*t^4 + 12*t^3 - 4*t + 1)/(-25*t^4 + 40*t^3 - 26*t^2 + 8*t - 1))
|
|
804
|
+
|
|
805
|
+
::
|
|
806
|
+
|
|
807
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
808
|
+
sage: C = Curve([x^2 + y^2 + 7], A)
|
|
809
|
+
sage: C.rational_parameterization()
|
|
810
|
+
Scheme morphism:
|
|
811
|
+
From: Affine Space of dimension 1 over Number Field in a with defining polynomial a^2 + 7
|
|
812
|
+
To: Affine Plane Curve over Number Field in a with defining
|
|
813
|
+
polynomial a^2 + 7 defined by x^2 + y^2 + 7
|
|
814
|
+
Defn: Defined on coordinates by sending (t) to
|
|
815
|
+
((-7*t^2 + 7)/((-a)*t^2 + (-a)), 14*t/((-a)*t^2 + (-a)))
|
|
816
|
+
"""
|
|
817
|
+
para = self.projective_closure(i=0).rational_parameterization().defining_polynomials()
|
|
818
|
+
# these polynomials are homogeneous in two indeterminants, so dehomogenize wrt one of the variables
|
|
819
|
+
R = para[0].parent()
|
|
820
|
+
A_line = AffineSpace(R.base_ring(), 1, 't')
|
|
821
|
+
para = [A_line.coordinate_ring()(para[i].substitute({R.gens()[0]: 1})) for i in range(3)]
|
|
822
|
+
C = self.change_ring(R.base_ring())
|
|
823
|
+
# because of the parameter i=0, the projective closure is constructed with respect to the
|
|
824
|
+
# affine patch corresponding to the first coordinate being nonzero. Thus para[0] will not be
|
|
825
|
+
# the zero polynomial, and dehomogenization won't change this
|
|
826
|
+
H = Hom(A_line, C)
|
|
827
|
+
return H([para[1]/para[0], para[2]/para[0]])
|
|
828
|
+
|
|
829
|
+
|
|
830
|
+
class AffineCurve_field(AffineCurve, AlgebraicScheme_subscheme_affine_field):
|
|
831
|
+
"""
|
|
832
|
+
Affine curves over fields.
|
|
833
|
+
"""
|
|
834
|
+
_point = AffineCurvePoint_field
|
|
835
|
+
|
|
836
|
+
def __init__(self, A, X):
|
|
837
|
+
r"""
|
|
838
|
+
Initialize.
|
|
839
|
+
|
|
840
|
+
EXAMPLES::
|
|
841
|
+
|
|
842
|
+
sage: # needs sage.rings.number_field
|
|
843
|
+
sage: R.<v> = QQ[]
|
|
844
|
+
sage: K.<u> = NumberField(v^2 + 3)
|
|
845
|
+
sage: A.<x,y,z> = AffineSpace(K, 3)
|
|
846
|
+
sage: C = Curve([z - u*x^2, y^2], A); C
|
|
847
|
+
Affine Curve over Number Field in u with defining polynomial v^2 + 3
|
|
848
|
+
defined by (-u)*x^2 + z, y^2
|
|
849
|
+
|
|
850
|
+
::
|
|
851
|
+
|
|
852
|
+
sage: A.<x,y,z> = AffineSpace(GF(7), 3)
|
|
853
|
+
sage: C = Curve([x^2 - z, z - 8*x], A); C
|
|
854
|
+
Affine Curve over Finite Field of size 7 defined by x^2 - z, -x + z
|
|
855
|
+
|
|
856
|
+
TESTS::
|
|
857
|
+
|
|
858
|
+
sage: K.<x,y,z,t> = QQ[]
|
|
859
|
+
sage: t1 = x^2*z^2 + y*t
|
|
860
|
+
sage: t2 = y*z^2 + x^2*t
|
|
861
|
+
sage: C = Curve([x^4 - y^2 - 19, z^4 - t^2 - 23, t1^2 - t2^2 - 19*23])
|
|
862
|
+
Traceback (most recent call last):
|
|
863
|
+
...
|
|
864
|
+
ValueError: defining equations (=[x^4 - y^2 - 19, z^4 - t^2 - 23,
|
|
865
|
+
x^4*z^4 - y^2*z^4 - x^4*t^2 + y^2*t^2 - 437]) define a scheme of dimension 2 != 1
|
|
866
|
+
"""
|
|
867
|
+
super().__init__(A, X)
|
|
868
|
+
|
|
869
|
+
if A.base_ring() not in Fields():
|
|
870
|
+
raise TypeError("curve not defined over a field")
|
|
871
|
+
|
|
872
|
+
d = super(Curve_generic, self).dimension()
|
|
873
|
+
if d != 1:
|
|
874
|
+
raise ValueError("defining equations (={}) define a scheme of dimension {} != 1".format(X, d))
|
|
875
|
+
|
|
876
|
+
def projection(self, indices, AS=None):
|
|
877
|
+
r"""
|
|
878
|
+
Return the projection of this curve onto the coordinates specified by
|
|
879
|
+
``indices``.
|
|
880
|
+
|
|
881
|
+
INPUT:
|
|
882
|
+
|
|
883
|
+
- ``indices`` -- list or tuple of distinct integers specifying the
|
|
884
|
+
indices of the coordinates to use in the projection. Can also be a list
|
|
885
|
+
or tuple consisting of variables of the coordinate ring of the ambient
|
|
886
|
+
space of this curve. If integers are used to specify the coordinates, 0
|
|
887
|
+
denotes the first coordinate. The length of ``indices`` must be between
|
|
888
|
+
two and one less than the dimension of the ambient space of this curve,
|
|
889
|
+
inclusive.
|
|
890
|
+
|
|
891
|
+
- ``AS`` -- (default: ``None``) the affine space the projected curve will
|
|
892
|
+
be defined in. This space must be defined over the same base field as
|
|
893
|
+
this curve, and must have dimension equal to the length of ``indices``.
|
|
894
|
+
This space is constructed if not specified.
|
|
895
|
+
|
|
896
|
+
OUTPUT: a tuple of
|
|
897
|
+
|
|
898
|
+
- a scheme morphism from this curve to affine space of dimension equal
|
|
899
|
+
to the number of coordinates specified in ``indices``
|
|
900
|
+
|
|
901
|
+
- the affine subscheme that is the image of that morphism. If the image
|
|
902
|
+
is a curve, the second element of the tuple will be a curve.
|
|
903
|
+
|
|
904
|
+
EXAMPLES::
|
|
905
|
+
|
|
906
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
907
|
+
sage: C = Curve([y^7 - x^2 + x^3 - 2*z, z^2 - x^7 - y^2], A)
|
|
908
|
+
sage: C.projection([0,1])
|
|
909
|
+
(Scheme morphism:
|
|
910
|
+
From: Affine Curve over Rational Field
|
|
911
|
+
defined by y^7 + x^3 - x^2 - 2*z, -x^7 - y^2 + z^2
|
|
912
|
+
To: Affine Space of dimension 2 over Rational Field
|
|
913
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
914
|
+
(x, y),
|
|
915
|
+
Affine Plane Curve over Rational Field defined by x1^14 + 2*x0^3*x1^7 -
|
|
916
|
+
2*x0^2*x1^7 - 4*x0^7 + x0^6 - 2*x0^5 + x0^4 - 4*x1^2)
|
|
917
|
+
sage: C.projection([0,1,3,4])
|
|
918
|
+
Traceback (most recent call last):
|
|
919
|
+
...
|
|
920
|
+
ValueError: (=[0, 1, 3, 4]) must be a list or tuple of length between 2
|
|
921
|
+
and (=2), inclusive
|
|
922
|
+
|
|
923
|
+
::
|
|
924
|
+
|
|
925
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
926
|
+
sage: C = Curve([x - 2, y - 3, z - 1], A)
|
|
927
|
+
sage: B.<a,b,c> = AffineSpace(QQ, 3)
|
|
928
|
+
sage: C.projection([0,1,2], AS=B)
|
|
929
|
+
(Scheme morphism:
|
|
930
|
+
From: Affine Curve over Rational Field defined by x - 2, y - 3, z - 1
|
|
931
|
+
To: Affine Space of dimension 3 over Rational Field
|
|
932
|
+
Defn: Defined on coordinates by sending (x, y, z, w) to
|
|
933
|
+
(x, y, z),
|
|
934
|
+
Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
|
|
935
|
+
c - 1,
|
|
936
|
+
b - 3,
|
|
937
|
+
a - 2)
|
|
938
|
+
|
|
939
|
+
::
|
|
940
|
+
|
|
941
|
+
sage: A.<x,y,z,w,u> = AffineSpace(GF(11), 5)
|
|
942
|
+
sage: C = Curve([x^3 - 5*y*z + u^2, x - y^2 + 3*z^2,
|
|
943
|
+
....: w^2 + 2*u^3*y, y - u^2 + z*x], A)
|
|
944
|
+
sage: B.<a,b,c> = AffineSpace(GF(11), 3)
|
|
945
|
+
sage: proj1 = C.projection([1,2,4], AS=B); proj1
|
|
946
|
+
(Scheme morphism:
|
|
947
|
+
From: Affine Curve over Finite Field of size 11 defined by x^3 -
|
|
948
|
+
5*y*z + u^2, -y^2 + 3*z^2 + x, 2*y*u^3 + w^2, x*z - u^2 + y
|
|
949
|
+
To: Affine Space of dimension 3 over Finite Field of size 11
|
|
950
|
+
Defn: Defined on coordinates by sending (x, y, z, w, u) to
|
|
951
|
+
(y, z, u),
|
|
952
|
+
Affine Curve over Finite Field of size 11 defined by a^2*b - 3*b^3 -
|
|
953
|
+
c^2 + a, c^6 - 5*a*b^4 + b^3*c^2 - 3*a*c^4 + 3*a^2*c^2 - a^3, a^2*c^4 -
|
|
954
|
+
3*b^2*c^4 - 2*a^3*c^2 - 5*a*b^2*c^2 + a^4 - 5*a*b^3 + 2*b^4 + b^2*c^2 -
|
|
955
|
+
3*b*c^2 + 3*a*b, a^4*c^2 + 2*b^4*c^2 - a^5 - 2*a*b^4 + 5*b*c^4 + a*b*c^2
|
|
956
|
+
- 5*a*b^2 + 4*b^3 + b*c^2 + 5*c^2 - 5*a, a^6 - 5*b^6 - 5*b^3*c^2 +
|
|
957
|
+
5*a*b^3 + 2*c^4 - 4*a*c^2 + 2*a^2 - 5*a*b + c^2)
|
|
958
|
+
sage: proj1[1].ambient_space() is B
|
|
959
|
+
True
|
|
960
|
+
sage: proj2 = C.projection([1,2,4])
|
|
961
|
+
sage: proj2[1].ambient_space() is B
|
|
962
|
+
False
|
|
963
|
+
sage: C.projection([1,2,3,5], AS=B)
|
|
964
|
+
Traceback (most recent call last):
|
|
965
|
+
...
|
|
966
|
+
TypeError: (=Affine Space of dimension 3 over Finite Field of size 11)
|
|
967
|
+
must have dimension (=4)
|
|
968
|
+
|
|
969
|
+
::
|
|
970
|
+
|
|
971
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
972
|
+
sage: C = A.curve([x*y - z^3, x*z - w^3, w^2 - x^3])
|
|
973
|
+
sage: C.projection([y,z])
|
|
974
|
+
(Scheme morphism:
|
|
975
|
+
From: Affine Curve over Rational Field defined by
|
|
976
|
+
-z^3 + x*y, -w^3 + x*z, -x^3 + w^2
|
|
977
|
+
To: Affine Space of dimension 2 over Rational Field
|
|
978
|
+
Defn: Defined on coordinates by sending (x, y, z, w) to (y, z),
|
|
979
|
+
Affine Plane Curve over Rational Field defined by x1^23 - x0^7*x1^4)
|
|
980
|
+
sage: B.<x,y,z> = AffineSpace(QQ, 3)
|
|
981
|
+
sage: C.projection([x,y,z], AS=B)
|
|
982
|
+
(Scheme morphism:
|
|
983
|
+
From: Affine Curve over Rational Field defined by
|
|
984
|
+
-z^3 + x*y, -w^3 + x*z, -x^3 + w^2
|
|
985
|
+
To: Affine Space of dimension 3 over Rational Field
|
|
986
|
+
Defn: Defined on coordinates by sending (x, y, z, w) to
|
|
987
|
+
(x, y, z),
|
|
988
|
+
Affine Curve over Rational Field defined by
|
|
989
|
+
z^3 - x*y, x^8 - x*z^2, x^7*z^2 - x*y*z)
|
|
990
|
+
sage: C.projection([y,z,z])
|
|
991
|
+
Traceback (most recent call last):
|
|
992
|
+
...
|
|
993
|
+
ValueError: (=[y, z, z]) must be a list or tuple of distinct indices or
|
|
994
|
+
variables
|
|
995
|
+
"""
|
|
996
|
+
AA = self.ambient_space()
|
|
997
|
+
n = AA.dimension_relative()
|
|
998
|
+
if n == 2:
|
|
999
|
+
raise TypeError("this curve is already a plane curve")
|
|
1000
|
+
if self.base_ring() not in Fields():
|
|
1001
|
+
raise TypeError("this curve must be defined over a field")
|
|
1002
|
+
if len(indices) < 2 or len(indices) >= n:
|
|
1003
|
+
raise ValueError("(=%s) must be a list or tuple of length between 2 and (=%s), inclusive" % (indices, n - 1))
|
|
1004
|
+
if len(set(indices)) < len(indices):
|
|
1005
|
+
raise ValueError("(=%s) must be a list or tuple of distinct indices or variables" % indices)
|
|
1006
|
+
if AS is not None:
|
|
1007
|
+
if not isinstance(AS, AffineSpace_generic):
|
|
1008
|
+
raise TypeError("(=%s) must be an affine space" % AS)
|
|
1009
|
+
if AS.dimension_relative() != len(indices):
|
|
1010
|
+
raise TypeError("(=%s) must have dimension (=%s)" % (AS, len(indices)))
|
|
1011
|
+
if AS.base_ring() != AA.base_ring():
|
|
1012
|
+
raise TypeError("(=%s) must be defined over the same base field as this curve" % AS)
|
|
1013
|
+
indices = list(indices)
|
|
1014
|
+
if all(f in AA.gens() for f in indices):
|
|
1015
|
+
indices = [AA.gens().index(f) for f in indices]
|
|
1016
|
+
indices.sort()
|
|
1017
|
+
else:
|
|
1018
|
+
indices = [int(i) for i in indices] # type checking
|
|
1019
|
+
indices.sort()
|
|
1020
|
+
if indices[0] < 0 or indices[-1] > n - 1:
|
|
1021
|
+
raise ValueError("index values must be between 0 and one "
|
|
1022
|
+
"minus the dimension of the ambient space "
|
|
1023
|
+
"of this curve")
|
|
1024
|
+
# construct the projection map
|
|
1025
|
+
if AS is None:
|
|
1026
|
+
AA2 = AffineSpace(self.base_ring(), len(indices))
|
|
1027
|
+
else:
|
|
1028
|
+
AA2 = AS
|
|
1029
|
+
H = Hom(self, AA2)
|
|
1030
|
+
psi = H([AA.gens()[i] for i in indices])
|
|
1031
|
+
# compute the image via elimination
|
|
1032
|
+
removecoords = list(AA.gens())
|
|
1033
|
+
for i in range(len(indices) - 1, -1, -1):
|
|
1034
|
+
removecoords.pop(indices[i])
|
|
1035
|
+
J = self.defining_ideal().elimination_ideal(removecoords)
|
|
1036
|
+
K = Hom(AA.coordinate_ring(), AA2.coordinate_ring())
|
|
1037
|
+
ll = [0]*(n)
|
|
1038
|
+
for i in range(len(indices)):
|
|
1039
|
+
ll[indices[i]] = AA2.gens()[i]
|
|
1040
|
+
phi = K(ll)
|
|
1041
|
+
G = [phi(f) for f in J.gens()]
|
|
1042
|
+
try:
|
|
1043
|
+
C = AA2.curve(G)
|
|
1044
|
+
except (TypeError, ValueError):
|
|
1045
|
+
C = AA2.subscheme(G)
|
|
1046
|
+
return (psi, C)
|
|
1047
|
+
|
|
1048
|
+
def plane_projection(self, AP=None):
|
|
1049
|
+
r"""
|
|
1050
|
+
Return a projection of this curve into an affine plane so that the
|
|
1051
|
+
image of the projection is a plane curve.
|
|
1052
|
+
|
|
1053
|
+
INPUT:
|
|
1054
|
+
|
|
1055
|
+
- ``AP`` -- (default: ``None``) the affine plane to project this curve
|
|
1056
|
+
into. This space must be defined over the same base field as this
|
|
1057
|
+
curve, and must have dimension two. This space will be constructed if
|
|
1058
|
+
not specified.
|
|
1059
|
+
|
|
1060
|
+
OUTPUT: a tuple of
|
|
1061
|
+
|
|
1062
|
+
- a scheme morphism from this curve into an affine plane
|
|
1063
|
+
|
|
1064
|
+
- the plane curve that defines the image of that morphism
|
|
1065
|
+
|
|
1066
|
+
EXAMPLES::
|
|
1067
|
+
|
|
1068
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
1069
|
+
sage: C = Curve([x^2 - y*z*w, z^3 - w, w + x*y - 3*z^3], A)
|
|
1070
|
+
sage: C.plane_projection()
|
|
1071
|
+
(Scheme morphism:
|
|
1072
|
+
From: Affine Curve over Rational Field defined by
|
|
1073
|
+
-y*z*w + x^2, z^3 - w, -3*z^3 + x*y + w
|
|
1074
|
+
To: Affine Space of dimension 2 over Rational Field
|
|
1075
|
+
Defn: Defined on coordinates by sending (x, y, z, w) to (x, y),
|
|
1076
|
+
Affine Plane Curve over Rational Field defined by
|
|
1077
|
+
x0^2*x1^7 - 16*x0^4)
|
|
1078
|
+
|
|
1079
|
+
::
|
|
1080
|
+
|
|
1081
|
+
sage: # needs sage.rings.number_field
|
|
1082
|
+
sage: R.<a> = QQ[]
|
|
1083
|
+
sage: K.<b> = NumberField(a^2 + 2)
|
|
1084
|
+
sage: A.<x,y,z> = AffineSpace(K, 3)
|
|
1085
|
+
sage: C = A.curve([x - b, y - 2])
|
|
1086
|
+
sage: B.<a,b> = AffineSpace(K, 2)
|
|
1087
|
+
sage: proj1 = C.plane_projection(AP=B)
|
|
1088
|
+
sage: proj1
|
|
1089
|
+
(Scheme morphism:
|
|
1090
|
+
From: Affine Curve over Number Field in b
|
|
1091
|
+
with defining polynomial a^2 + 2 defined by x + (-b), y - 2
|
|
1092
|
+
To: Affine Space of dimension 2 over Number Field in b
|
|
1093
|
+
with defining polynomial a^2 + 2
|
|
1094
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
1095
|
+
(x, z),
|
|
1096
|
+
Affine Plane Curve over Number Field in b
|
|
1097
|
+
with defining polynomial a^2 + 2 defined by a + (-b))
|
|
1098
|
+
sage: proj1[1].ambient_space() is B
|
|
1099
|
+
True
|
|
1100
|
+
sage: proj2 = C.plane_projection()
|
|
1101
|
+
sage: proj2[1].ambient_space() is B
|
|
1102
|
+
False
|
|
1103
|
+
"""
|
|
1104
|
+
n = self.ambient_space().dimension_relative()
|
|
1105
|
+
# finds a projection that will have a plane curve as its image
|
|
1106
|
+
# the following iterates over all pairs (i,j) with j > i to test all
|
|
1107
|
+
# possible projections
|
|
1108
|
+
for i in range(n - 1):
|
|
1109
|
+
for j in range(i + 1, n):
|
|
1110
|
+
L = self.projection([i, j], AP)
|
|
1111
|
+
if isinstance(L[1], Curve_generic):
|
|
1112
|
+
return L
|
|
1113
|
+
|
|
1114
|
+
def blowup(self, P=None):
|
|
1115
|
+
r"""
|
|
1116
|
+
Return the blow up of this affine curve at the point ``P``.
|
|
1117
|
+
|
|
1118
|
+
The blow up is described by affine charts. This curve must be irreducible.
|
|
1119
|
+
|
|
1120
|
+
INPUT:
|
|
1121
|
+
|
|
1122
|
+
- ``P`` -- (default: ``None``) a point on this curve at which to blow up;
|
|
1123
|
+
if ``None``, then ``P`` is taken to be the origin
|
|
1124
|
+
|
|
1125
|
+
OUTPUT: a tuple of
|
|
1126
|
+
|
|
1127
|
+
- a tuple of curves in affine space of the same dimension as the
|
|
1128
|
+
ambient space of this curve, which define the blow up in each affine
|
|
1129
|
+
chart.
|
|
1130
|
+
|
|
1131
|
+
- a tuple of tuples such that the j-th element of the i-th tuple is the
|
|
1132
|
+
transition map from the i-th affine patch to the j-th affine patch.
|
|
1133
|
+
|
|
1134
|
+
- a tuple consisting of the restrictions of the projection map from the
|
|
1135
|
+
blow up back to the original curve, restricted to each affine patch.
|
|
1136
|
+
There the i-th element will be the projection from the i-th affine patch.
|
|
1137
|
+
|
|
1138
|
+
EXAMPLES::
|
|
1139
|
+
|
|
1140
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1141
|
+
sage: C = Curve([y^2 - x^3], A)
|
|
1142
|
+
sage: C.blowup()
|
|
1143
|
+
((Affine Plane Curve over Rational Field defined by s1^2 - x,
|
|
1144
|
+
Affine Plane Curve over Rational Field defined by y*s0^3 - 1),
|
|
1145
|
+
([Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1146
|
+
defined by s1^2 - x
|
|
1147
|
+
Defn: Defined on coordinates by sending (x, s1) to (x, s1),
|
|
1148
|
+
Scheme morphism:
|
|
1149
|
+
From: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1150
|
+
To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1151
|
+
Defn: Defined on coordinates by sending (x, s1) to (x*s1, 1/s1)],
|
|
1152
|
+
[Scheme morphism:
|
|
1153
|
+
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1154
|
+
To: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1155
|
+
Defn: Defined on coordinates by sending (y, s0) to (y*s0, 1/s0),
|
|
1156
|
+
Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1157
|
+
defined by y*s0^3 - 1
|
|
1158
|
+
Defn: Defined on coordinates by sending (y, s0) to (y, s0)]),
|
|
1159
|
+
(Scheme morphism:
|
|
1160
|
+
From: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1161
|
+
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
|
|
1162
|
+
Defn: Defined on coordinates by sending (x, s1) to (x, x*s1),
|
|
1163
|
+
Scheme morphism:
|
|
1164
|
+
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1165
|
+
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
|
|
1166
|
+
Defn: Defined on coordinates by sending (y, s0) to (y*s0, y)))
|
|
1167
|
+
|
|
1168
|
+
::
|
|
1169
|
+
|
|
1170
|
+
sage: # needs sage.rings.number_field
|
|
1171
|
+
sage: K.<a> = QuadraticField(2)
|
|
1172
|
+
sage: A.<x,y,z> = AffineSpace(K, 3)
|
|
1173
|
+
sage: C = Curve([y^2 - a*x^5, x - z], A)
|
|
1174
|
+
sage: B = C.blowup()
|
|
1175
|
+
sage: B[0]
|
|
1176
|
+
(Affine Curve over Number Field in a with defining polynomial x^2 - 2
|
|
1177
|
+
with a = 1.414213562373095? defined by s2 - 1, 2*x^3 + (-a)*s1^2,
|
|
1178
|
+
Affine Curve over Number Field in a with defining polynomial x^2 - 2
|
|
1179
|
+
with a = 1.414213562373095? defined by s0 - s2, 2*y^3*s2^5 + (-a),
|
|
1180
|
+
Affine Curve over Number Field in a with defining polynomial x^2 - 2
|
|
1181
|
+
with a = 1.414213562373095? defined by s0 - 1, 2*z^3 + (-a)*s1^2)
|
|
1182
|
+
sage: B[1][0][2]
|
|
1183
|
+
Scheme morphism:
|
|
1184
|
+
From: Affine Curve over Number Field in a
|
|
1185
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1186
|
+
defined by s2 - 1, 2*x^3 + (-a)*s1^2
|
|
1187
|
+
To: Affine Curve over Number Field in a
|
|
1188
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1189
|
+
defined by s0 - 1, 2*z^3 + (-a)*s1^2
|
|
1190
|
+
Defn: Defined on coordinates by sending (x, s1, s2) to
|
|
1191
|
+
(x*s2, 1/s2, s1/s2)
|
|
1192
|
+
sage: B[1][2][0]
|
|
1193
|
+
Scheme morphism:
|
|
1194
|
+
From: Affine Curve over Number Field in a
|
|
1195
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1196
|
+
defined by s0 - 1, 2*z^3 + (-a)*s1^2
|
|
1197
|
+
To: Affine Curve over Number Field in a
|
|
1198
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1199
|
+
defined by s2 - 1, 2*x^3 + (-a)*s1^2
|
|
1200
|
+
Defn: Defined on coordinates by sending (z, s0, s1) to
|
|
1201
|
+
(z*s0, s1/s0, 1/s0)
|
|
1202
|
+
sage: B[2]
|
|
1203
|
+
(Scheme morphism:
|
|
1204
|
+
From: Affine Curve over Number Field in a
|
|
1205
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1206
|
+
defined by s2 - 1, 2*x^3 + (-a)*s1^2
|
|
1207
|
+
To: Affine Curve over Number Field in a
|
|
1208
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1209
|
+
defined by (-a)*x^5 + y^2, x - z
|
|
1210
|
+
Defn: Defined on coordinates by sending (x, s1, s2) to
|
|
1211
|
+
(x, x*s1, x*s2),
|
|
1212
|
+
Scheme morphism:
|
|
1213
|
+
From: Affine Curve over Number Field in a
|
|
1214
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1215
|
+
defined by s0 - s2, 2*y^3*s2^5 + (-a)
|
|
1216
|
+
To: Affine Curve over Number Field in a
|
|
1217
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1218
|
+
defined by (-a)*x^5 + y^2, x - z
|
|
1219
|
+
Defn: Defined on coordinates by sending (y, s0, s2) to
|
|
1220
|
+
(y*s0, y, y*s2),
|
|
1221
|
+
Scheme morphism:
|
|
1222
|
+
From: Affine Curve over Number Field in a
|
|
1223
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1224
|
+
defined by s0 - 1, 2*z^3 + (-a)*s1^2
|
|
1225
|
+
To: Affine Curve over Number Field in a
|
|
1226
|
+
with defining polynomial x^2 - 2 with a = 1.414213562373095?
|
|
1227
|
+
defined by (-a)*x^5 + y^2, x - z
|
|
1228
|
+
Defn: Defined on coordinates by sending (z, s0, s1) to
|
|
1229
|
+
(z*s0, z*s1, z))
|
|
1230
|
+
|
|
1231
|
+
::
|
|
1232
|
+
|
|
1233
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1234
|
+
sage: C = A.curve((y - 3/2)^3 - (x + 2)^5 - (x + 2)^6)
|
|
1235
|
+
sage: Q = A([-2,3/2])
|
|
1236
|
+
sage: C.blowup(Q)
|
|
1237
|
+
((Affine Plane Curve over Rational Field
|
|
1238
|
+
defined by x^3 - s1^3 + 7*x^2 + 16*x + 12,
|
|
1239
|
+
Affine Plane Curve over Rational Field
|
|
1240
|
+
defined by 8*y^3*s0^6 - 36*y^2*s0^6 + 8*y^2*s0^5
|
|
1241
|
+
+ 54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8),
|
|
1242
|
+
([Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1243
|
+
defined by x^3 - s1^3 + 7*x^2 + 16*x + 12
|
|
1244
|
+
Defn: Defined on coordinates by sending (x, s1) to (x, s1),
|
|
1245
|
+
Scheme morphism:
|
|
1246
|
+
From: Affine Plane Curve over Rational Field
|
|
1247
|
+
defined by x^3 - s1^3 + 7*x^2 + 16*x + 12
|
|
1248
|
+
To: Affine Plane Curve over Rational Field
|
|
1249
|
+
defined by 8*y^3*s0^6 - 36*y^2*s0^6 + 8*y^2*s0^5
|
|
1250
|
+
+ 54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
|
|
1251
|
+
Defn: Defined on coordinates by sending (x, s1) to
|
|
1252
|
+
(x*s1 + 2*s1 + 3/2, 1/s1)],
|
|
1253
|
+
[Scheme morphism:
|
|
1254
|
+
From: Affine Plane Curve over Rational Field
|
|
1255
|
+
defined by 8*y^3*s0^6 - 36*y^2*s0^6 + 8*y^2*s0^5
|
|
1256
|
+
+ 54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
|
|
1257
|
+
To: Affine Plane Curve over Rational Field
|
|
1258
|
+
defined by x^3 - s1^3 + 7*x^2 + 16*x + 12
|
|
1259
|
+
Defn: Defined on coordinates by sending (y, s0) to
|
|
1260
|
+
(y*s0 - 3/2*s0 - 2, 1/s0),
|
|
1261
|
+
Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1262
|
+
defined by 8*y^3*s0^6 - 36*y^2*s0^6 + 8*y^2*s0^5 + 54*y*s0^6
|
|
1263
|
+
- 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
|
|
1264
|
+
Defn: Defined on coordinates by sending (y, s0) to (y, s0)]),
|
|
1265
|
+
(Scheme morphism:
|
|
1266
|
+
From: Affine Plane Curve over Rational Field
|
|
1267
|
+
defined by x^3 - s1^3 + 7*x^2 + 16*x + 12
|
|
1268
|
+
To: Affine Plane Curve over Rational Field
|
|
1269
|
+
defined by -x^6 - 13*x^5 - 70*x^4 - 200*x^3 + y^3
|
|
1270
|
+
- 320*x^2 - 9/2*y^2 - 272*x + 27/4*y - 795/8
|
|
1271
|
+
Defn: Defined on coordinates by sending (x, s1) to
|
|
1272
|
+
(x, x*s1 + 2*s1 + 3/2),
|
|
1273
|
+
Scheme morphism:
|
|
1274
|
+
From: Affine Plane Curve over Rational Field
|
|
1275
|
+
defined by 8*y^3*s0^6 - 36*y^2*s0^6 + 8*y^2*s0^5
|
|
1276
|
+
+ 54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
|
|
1277
|
+
To: Affine Plane Curve over Rational Field
|
|
1278
|
+
defined by -x^6 - 13*x^5 - 70*x^4 - 200*x^3 + y^3
|
|
1279
|
+
- 320*x^2 - 9/2*y^2 - 272*x + 27/4*y - 795/8
|
|
1280
|
+
Defn: Defined on coordinates by sending (y, s0) to
|
|
1281
|
+
(y*s0 - 3/2*s0 - 2, y)))
|
|
1282
|
+
|
|
1283
|
+
::
|
|
1284
|
+
|
|
1285
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
1286
|
+
sage: C = A.curve([((x + 1)^2 + y^2)^3 - 4*(x + 1)^2*y^2, y - z, w - 4])
|
|
1287
|
+
sage: Q = C([-1,0,0,4])
|
|
1288
|
+
sage: B = C.blowup(Q)
|
|
1289
|
+
sage: B[0]
|
|
1290
|
+
(Affine Curve over Rational Field defined by s3, s1 - s2,
|
|
1291
|
+
x^2*s2^6 + 2*x*s2^6 + 3*x^2*s2^4 + s2^6 + 6*x*s2^4
|
|
1292
|
+
+ 3*x^2*s2^2 + 3*s2^4 + 6*x*s2^2 + x^2 - s2^2 + 2*x + 1,
|
|
1293
|
+
Affine Curve over Rational Field defined by s3, s2 - 1,
|
|
1294
|
+
y^2*s0^6 + 3*y^2*s0^4 + 3*y^2*s0^2 + y^2 - 4*s0^2,
|
|
1295
|
+
Affine Curve over Rational Field defined by s3, s1 - 1,
|
|
1296
|
+
z^2*s0^6 + 3*z^2*s0^4 + 3*z^2*s0^2 + z^2 - 4*s0^2,
|
|
1297
|
+
Closed subscheme of Affine Space of dimension 4 over Rational Field
|
|
1298
|
+
defined by: 1)
|
|
1299
|
+
sage: Q = A([6,2,3,1])
|
|
1300
|
+
sage: B = C.blowup(Q)
|
|
1301
|
+
Traceback (most recent call last):
|
|
1302
|
+
...
|
|
1303
|
+
TypeError: (=(6, 2, 3, 1)) must be a point on this curve
|
|
1304
|
+
|
|
1305
|
+
::
|
|
1306
|
+
|
|
1307
|
+
sage: # needs sage.rings.number_field
|
|
1308
|
+
sage: A.<x,y> = AffineSpace(QuadraticField(-1), 2)
|
|
1309
|
+
sage: C = A.curve([y^2 + x^2])
|
|
1310
|
+
sage: C.blowup()
|
|
1311
|
+
Traceback (most recent call last):
|
|
1312
|
+
...
|
|
1313
|
+
TypeError: this curve must be irreducible
|
|
1314
|
+
"""
|
|
1315
|
+
A = self.ambient_space()
|
|
1316
|
+
n = A.dimension_relative()
|
|
1317
|
+
if P is None:
|
|
1318
|
+
P = A([0]*n)
|
|
1319
|
+
try:
|
|
1320
|
+
self(P)
|
|
1321
|
+
except TypeError:
|
|
1322
|
+
raise TypeError("(=%s) must be a point on this curve" % P)
|
|
1323
|
+
if self.base_ring() not in Fields():
|
|
1324
|
+
raise TypeError("the base ring of this curve must be a field")
|
|
1325
|
+
if not self.is_irreducible():
|
|
1326
|
+
raise TypeError("this curve must be irreducible")
|
|
1327
|
+
# attempt to make the variable names more organized
|
|
1328
|
+
# the convention used here is to have the homogeneous coordinates for the projective component of the
|
|
1329
|
+
# product space the blow up resides in be generated from the letter 's'. The following loop is in place
|
|
1330
|
+
# to prevent conflicts in the names from occurring
|
|
1331
|
+
rf = 1
|
|
1332
|
+
for i in range(n):
|
|
1333
|
+
if str(A.gens()[i])[0] == 's' and len(str(A.gens()[i])) > rf:
|
|
1334
|
+
rf = len(str(A.gens()[i]))
|
|
1335
|
+
var_names = [str(A.gens()[i]) for i in range(n)] + ['s'*rf + str(i) for i in range(n)]
|
|
1336
|
+
R = PolynomialRing(A.base_ring(), 2*n, var_names)
|
|
1337
|
+
# move the defining polynomials of this curve into R
|
|
1338
|
+
H = Hom(A.coordinate_ring(), R)
|
|
1339
|
+
psi = H([R.gens()[i] for i in range(n)])
|
|
1340
|
+
n_polys = [psi(f) for f in self.defining_polynomials()]
|
|
1341
|
+
# the blow up ideal of A at P is the ideal generated by
|
|
1342
|
+
# (z_i - p_i)*s_j - (z_j - p_j)*s_i for i != j from 0,...,n-1
|
|
1343
|
+
# in the mixed product space of A^n and P^{n-1} where the z_i are the gens
|
|
1344
|
+
# of A^n, the s_i are the gens for P^{n-1}, and P = (p_1,...,p_n). We describe the
|
|
1345
|
+
# blow up of this curve at P in each affine chart
|
|
1346
|
+
patches = []
|
|
1347
|
+
for i in range(n):
|
|
1348
|
+
# in this chart, s_i is assumed to be 1
|
|
1349
|
+
# substitute in z_j = (z_i - p_i)*s_j + p_j for each j != i
|
|
1350
|
+
coords = list(R.gens())
|
|
1351
|
+
for j in range(n):
|
|
1352
|
+
if j != i:
|
|
1353
|
+
coords[j] = (R.gens()[i] - P[i])*R.gens()[j + n] + P[j]
|
|
1354
|
+
c_polys = [f(coords) for f in n_polys]
|
|
1355
|
+
var_names = list(R.gens())[n:2*n]
|
|
1356
|
+
var_names.pop(i)
|
|
1357
|
+
var_names.insert(0, R.gens()[i])
|
|
1358
|
+
c_A = AffineSpace(R.base_ring(), n, var_names)
|
|
1359
|
+
H = Hom(R, c_A.coordinate_ring())
|
|
1360
|
+
coords = [0]*(2*n)
|
|
1361
|
+
coords[i] = c_A.gens()[0]
|
|
1362
|
+
t = 1
|
|
1363
|
+
for j in range(n):
|
|
1364
|
+
if j != i:
|
|
1365
|
+
coords[j + n] = c_A.gens()[t]
|
|
1366
|
+
t = t + 1
|
|
1367
|
+
else:
|
|
1368
|
+
coords[j + n] = 1
|
|
1369
|
+
psi = H(coords)
|
|
1370
|
+
c_polys = [psi(f) for f in c_polys]
|
|
1371
|
+
# choose the component of the subscheme defined by these polynomials
|
|
1372
|
+
# that corresponds to the proper transform
|
|
1373
|
+
irr_comps = c_A.subscheme(c_polys).irreducible_components()
|
|
1374
|
+
for j in range(len(irr_comps)):
|
|
1375
|
+
proper_transform = True
|
|
1376
|
+
for f in irr_comps[j].defining_polynomials():
|
|
1377
|
+
if (c_A.gens()[0] - P[i]).divides(f):
|
|
1378
|
+
proper_transform = False
|
|
1379
|
+
break
|
|
1380
|
+
if proper_transform:
|
|
1381
|
+
patches.append(c_A.curve(irr_comps[j].defining_polynomials()))
|
|
1382
|
+
break
|
|
1383
|
+
elif j + 1 == len(irr_comps):
|
|
1384
|
+
# patch of blowup in this chart is empty
|
|
1385
|
+
patches.append(c_A.subscheme(1))
|
|
1386
|
+
# create the transition maps between the charts
|
|
1387
|
+
t_maps = []
|
|
1388
|
+
for i in range(n):
|
|
1389
|
+
maps = []
|
|
1390
|
+
for j in range(n):
|
|
1391
|
+
AA = patches[i].ambient_space()
|
|
1392
|
+
H = Hom(patches[i], patches[j])
|
|
1393
|
+
vars = AA.gens()
|
|
1394
|
+
homvars = list(AA.gens())
|
|
1395
|
+
homvars.pop(0)
|
|
1396
|
+
homvars.insert(i, 1)
|
|
1397
|
+
coords = [(vars[0] - P[i])*homvars[j] + P[j]]
|
|
1398
|
+
for t in range(n):
|
|
1399
|
+
if t != j:
|
|
1400
|
+
coords.append(homvars[t]/homvars[j])
|
|
1401
|
+
maps.append(H(coords))
|
|
1402
|
+
t_maps.append(maps)
|
|
1403
|
+
# create the restrictions of the projection map
|
|
1404
|
+
proj_maps = []
|
|
1405
|
+
for i in range(n):
|
|
1406
|
+
p_A = patches[i].ambient_space()
|
|
1407
|
+
H = Hom(patches[i], self)
|
|
1408
|
+
homvars = list(p_A.gens())[1:n]
|
|
1409
|
+
homvars.insert(i, 1)
|
|
1410
|
+
coords = [(p_A.gens()[0] - P[i])*homvars[j] + P[j] for j in range(n)]
|
|
1411
|
+
proj_maps.append(H(coords))
|
|
1412
|
+
return (tuple(patches), tuple(t_maps), tuple(proj_maps))
|
|
1413
|
+
|
|
1414
|
+
def resolution_of_singularities(self, extend=False):
|
|
1415
|
+
r"""
|
|
1416
|
+
Return a nonsingular model for this affine curve created by blowing up
|
|
1417
|
+
its singular points.
|
|
1418
|
+
|
|
1419
|
+
The nonsingular model is given as a collection of affine patches that
|
|
1420
|
+
cover it. If ``extend`` is ``False`` and if the base field is a number
|
|
1421
|
+
field, or if the base field is a finite field, the model returned may
|
|
1422
|
+
have singularities with coordinates not contained in the base field. An
|
|
1423
|
+
error is returned if this curve is already nonsingular, or if it has no
|
|
1424
|
+
singular points over its base field. This curve must be irreducible,
|
|
1425
|
+
and must be defined over a number field or finite field.
|
|
1426
|
+
|
|
1427
|
+
INPUT:
|
|
1428
|
+
|
|
1429
|
+
- ``extend`` -- boolean (default: ``False``); specifies whether to
|
|
1430
|
+
extend the base field when necessary to find all singular points when
|
|
1431
|
+
this curve is defined over a number field. If ``extend`` is
|
|
1432
|
+
``False``, then only singularities with coordinates in the base field
|
|
1433
|
+
of this curve will be resolved. However, setting ``extend`` to
|
|
1434
|
+
``True`` will slow down computations.
|
|
1435
|
+
|
|
1436
|
+
OUTPUT: a tuple of
|
|
1437
|
+
|
|
1438
|
+
- a tuple of curves in affine space of the same dimension as the
|
|
1439
|
+
ambient space of this curve, which represent affine patches of the
|
|
1440
|
+
resolution of singularities.
|
|
1441
|
+
|
|
1442
|
+
- a tuple of tuples such that the j-th element of the i-th tuple is the
|
|
1443
|
+
transition map from the i-th patch to the j-th patch.
|
|
1444
|
+
|
|
1445
|
+
- a tuple consisting of birational maps from the patches back to the
|
|
1446
|
+
original curve that were created by composing the projection maps
|
|
1447
|
+
generated from the blow up computations. There the i-th element will
|
|
1448
|
+
be a map from the i-th patch.
|
|
1449
|
+
|
|
1450
|
+
EXAMPLES::
|
|
1451
|
+
|
|
1452
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1453
|
+
sage: C = Curve([y^2 - x^3], A)
|
|
1454
|
+
sage: C.resolution_of_singularities()
|
|
1455
|
+
((Affine Plane Curve over Rational Field defined by s1^2 - x,
|
|
1456
|
+
Affine Plane Curve over Rational Field defined by y*s0^3 - 1),
|
|
1457
|
+
((Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1458
|
+
defined by s1^2 - x
|
|
1459
|
+
Defn: Defined on coordinates by sending (x, s1) to (x, s1),
|
|
1460
|
+
Scheme morphism:
|
|
1461
|
+
From: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1462
|
+
To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1463
|
+
Defn: Defined on coordinates by sending (x, s1) to (x*s1, 1/s1)),
|
|
1464
|
+
(Scheme morphism:
|
|
1465
|
+
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1466
|
+
To: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1467
|
+
Defn: Defined on coordinates by sending (y, s0) to (y*s0, 1/s0),
|
|
1468
|
+
Scheme endomorphism of Affine Plane Curve over Rational Field
|
|
1469
|
+
defined by y*s0^3 - 1
|
|
1470
|
+
Defn: Defined on coordinates by sending (y, s0) to (y, s0))),
|
|
1471
|
+
(Scheme morphism:
|
|
1472
|
+
From: Affine Plane Curve over Rational Field defined by s1^2 - x
|
|
1473
|
+
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
|
|
1474
|
+
Defn: Defined on coordinates by sending (x, s1) to (x, x*s1),
|
|
1475
|
+
Scheme morphism:
|
|
1476
|
+
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
|
|
1477
|
+
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
|
|
1478
|
+
Defn: Defined on coordinates by sending (y, s0) to (y*s0, y)))
|
|
1479
|
+
|
|
1480
|
+
::
|
|
1481
|
+
|
|
1482
|
+
sage: # needs sage.rings.number_field
|
|
1483
|
+
sage: set_verbose(-1)
|
|
1484
|
+
sage: K.<a> = QuadraticField(3)
|
|
1485
|
+
sage: A.<x,y> = AffineSpace(K, 2)
|
|
1486
|
+
sage: C = A.curve(x^4 + 2*x^2 + a*y^3 + 1)
|
|
1487
|
+
sage: C.resolution_of_singularities(extend=True)[0] # long time (2 s)
|
|
1488
|
+
(Affine Plane Curve over Number Field in a0
|
|
1489
|
+
with defining polynomial y^4 - 4*y^2 + 16
|
|
1490
|
+
defined by 24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0),
|
|
1491
|
+
Affine Plane Curve over Number Field in a0
|
|
1492
|
+
with defining polynomial y^4 - 4*y^2 + 16
|
|
1493
|
+
defined by 24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (-6*a0^3)*s1,
|
|
1494
|
+
Affine Plane Curve over Number Field in a0
|
|
1495
|
+
with defining polynomial y^4 - 4*y^2 + 16
|
|
1496
|
+
defined by 8*y^2*s0^4 + (4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y)
|
|
1497
|
+
|
|
1498
|
+
::
|
|
1499
|
+
|
|
1500
|
+
sage: A.<x,y,z> = AffineSpace(GF(5), 3)
|
|
1501
|
+
sage: C = Curve([y - x^3, (z - 2)^2 - y^3 - x^3], A)
|
|
1502
|
+
sage: R = C.resolution_of_singularities()
|
|
1503
|
+
sage: R[0]
|
|
1504
|
+
(Affine Curve over Finite Field of size 5
|
|
1505
|
+
defined by x^2 - s1, s1^4 - x*s2^2 + s1, x*s1^3 - s2^2 + x,
|
|
1506
|
+
Affine Curve over Finite Field of size 5
|
|
1507
|
+
defined by y*s2^2 - y^2 - 1, s2^4 - s0^3 - y^2 - 2, y*s0^3 - s2^2 + y,
|
|
1508
|
+
Affine Curve over Finite Field of size 5
|
|
1509
|
+
defined by s0^3*s1 + z*s1^3 + s1^4 - 2*s1^3 - 1,
|
|
1510
|
+
z*s0^3 + z*s1^3 - 2*s0^3 - 2*s1^3 - 1,
|
|
1511
|
+
z^2*s1^3 + z*s1^3 - s1^3 - z + s1 + 2)
|
|
1512
|
+
|
|
1513
|
+
::
|
|
1514
|
+
|
|
1515
|
+
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
|
|
1516
|
+
sage: C = A.curve([((x - 2)^2 + y^2)^2 - (x - 2)^2 - y^2 + (x - 2)^3,
|
|
1517
|
+
....: z - y - 7, w - 4])
|
|
1518
|
+
sage: B = C.resolution_of_singularities()
|
|
1519
|
+
sage: B[0]
|
|
1520
|
+
(Affine Curve over Rational Field defined by s3, s1 - s2,
|
|
1521
|
+
x^2*s2^4 - 4*x*s2^4 + 2*x^2*s2^2 + 4*s2^4 - 8*x*s2^2
|
|
1522
|
+
+ x^2 + 7*s2^2 - 3*x + 1,
|
|
1523
|
+
Affine Curve over Rational Field defined by s3, s2 - 1,
|
|
1524
|
+
y^2*s0^4 + 2*y^2*s0^2 + y*s0^3 + y^2 - s0^2 - 1,
|
|
1525
|
+
Affine Curve over Rational Field defined by s3, s1 - 1,
|
|
1526
|
+
z^2*s0^4 - 14*z*s0^4 + 2*z^2*s0^2 + z*s0^3 + 49*s0^4
|
|
1527
|
+
- 28*z*s0^2 - 7*s0^3 + z^2 + 97*s0^2 - 14*z + 48,
|
|
1528
|
+
Closed subscheme of Affine Space of dimension 4 over Rational Field
|
|
1529
|
+
defined by: 1)
|
|
1530
|
+
|
|
1531
|
+
::
|
|
1532
|
+
|
|
1533
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1534
|
+
sage: C = Curve([y - x^2 + 1], A)
|
|
1535
|
+
sage: C.resolution_of_singularities()
|
|
1536
|
+
Traceback (most recent call last):
|
|
1537
|
+
...
|
|
1538
|
+
TypeError: this curve is already nonsingular
|
|
1539
|
+
|
|
1540
|
+
::
|
|
1541
|
+
|
|
1542
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1543
|
+
sage: C = A.curve([(x^2 + y^2 - y - 2)*(y - x^2 + 2) + y^3])
|
|
1544
|
+
sage: C.resolution_of_singularities()
|
|
1545
|
+
Traceback (most recent call last):
|
|
1546
|
+
...
|
|
1547
|
+
TypeError: this curve has no singular points over its base field. If
|
|
1548
|
+
working over a number field use extend=True
|
|
1549
|
+
"""
|
|
1550
|
+
# helper function for extending the base field (in the case of working over a number field)
|
|
1551
|
+
|
|
1552
|
+
def extension(self):
|
|
1553
|
+
F = self.base_ring()
|
|
1554
|
+
from sage.rings.qqbar import QQbar
|
|
1555
|
+
pts = self.change_ring(F.embeddings(QQbar)[0]).rational_points()
|
|
1556
|
+
L = [t for pt in pts for t in pt]
|
|
1557
|
+
K = number_field_elements_from_algebraics(L)[0]
|
|
1558
|
+
if isinstance(K, RationalField):
|
|
1559
|
+
return F.embeddings(F)[0]
|
|
1560
|
+
else:
|
|
1561
|
+
if isinstance(F, RationalField):
|
|
1562
|
+
return F.embeddings(K)[0]
|
|
1563
|
+
else:
|
|
1564
|
+
# make sure the defining polynomial variable names are the same for K, N
|
|
1565
|
+
N = NumberField(K.defining_polynomial().parent()(F.defining_polynomial()), str(K.gen()))
|
|
1566
|
+
return N.composite_fields(K, both_maps=True)[0][1]*F.embeddings(N)[0]
|
|
1567
|
+
# find the set of singular points of this curve
|
|
1568
|
+
# in the case that the base field is a number field, extend it as needed (if extend == True)
|
|
1569
|
+
C = self
|
|
1570
|
+
n = C.ambient_space().dimension_relative()
|
|
1571
|
+
if not self.is_irreducible():
|
|
1572
|
+
raise TypeError("this curve must be irreducible")
|
|
1573
|
+
if not (self.base_ring() in NumberFields() or self.base_ring() in FiniteFields()):
|
|
1574
|
+
raise NotImplementedError("this curve must be defined over either a number field or a finite field")
|
|
1575
|
+
if C.base_ring() in NumberFields() and extend:
|
|
1576
|
+
C = C.change_ring(extension(C.singular_subscheme()))
|
|
1577
|
+
H = End(C)
|
|
1578
|
+
placeholder = H(C.ambient_space().gens())
|
|
1579
|
+
# the list res holds the data for the patches of the resolution of singularities
|
|
1580
|
+
# each element is a list consisting of the curve defining the patch, a list
|
|
1581
|
+
# of the transition maps from that patch to the other patches, a projection
|
|
1582
|
+
# map from the patch to the original curve, and the set of singular points
|
|
1583
|
+
# of the patch
|
|
1584
|
+
res = [[C, [placeholder], placeholder, C.singular_points()]]
|
|
1585
|
+
if not res[0][3]:
|
|
1586
|
+
if C.is_smooth():
|
|
1587
|
+
raise TypeError("this curve is already nonsingular")
|
|
1588
|
+
else:
|
|
1589
|
+
raise TypeError("this curve has no singular points over "
|
|
1590
|
+
"its base field. If working over "
|
|
1591
|
+
"a number field use extend=True")
|
|
1592
|
+
not_resolved = True
|
|
1593
|
+
t = 0
|
|
1594
|
+
# loop through the patches and blow up each until no patch has singular points
|
|
1595
|
+
while not_resolved:
|
|
1596
|
+
BC, t_maps, pi, pts = res[t][0], res[t][1], res[t][2], res[t][3]
|
|
1597
|
+
# check if there are any singular points in this patch
|
|
1598
|
+
if not pts:
|
|
1599
|
+
t += 1
|
|
1600
|
+
if t == len(res):
|
|
1601
|
+
not_resolved = False
|
|
1602
|
+
continue
|
|
1603
|
+
# the identity map should be replaced for each of the charts of the blow up
|
|
1604
|
+
t_maps.pop(t)
|
|
1605
|
+
# blow up pts[0]
|
|
1606
|
+
B = list(BC.blowup(pts[0]))
|
|
1607
|
+
B = [list(B[0]), [list(B[1][i]) for i in range(len(B[1]))], list(B[2])]
|
|
1608
|
+
# the t-th element of res will be replaced with the new data corresponding to the charts
|
|
1609
|
+
# of the blow up
|
|
1610
|
+
res.pop(t)
|
|
1611
|
+
# take out the transition maps from the other resolution patches to the t-th patch
|
|
1612
|
+
old_maps = [res[i][1].pop(t) for i in range(len(res))]
|
|
1613
|
+
patches_to_add = []
|
|
1614
|
+
# generate the needed data for each patch of the blow up
|
|
1615
|
+
for i in range(len(B[0])):
|
|
1616
|
+
# check if there are any singular points where this patch meets the exceptional divisor
|
|
1617
|
+
AA = AffineSpace(B[0][i].base_ring(), n - 1, 'x')
|
|
1618
|
+
coords = [pts[0][i]]
|
|
1619
|
+
coords.extend(list(AA.gens()))
|
|
1620
|
+
H = Hom(B[0][i].ambient_space().coordinate_ring(), AA.coordinate_ring())
|
|
1621
|
+
poly_hom = H(coords)
|
|
1622
|
+
X = AA.subscheme([poly_hom(f) for f in B[0][i].defining_polynomials()])
|
|
1623
|
+
# in the case of working over a number field, it might be necessary to extend the base
|
|
1624
|
+
# field in order to find all intersection points
|
|
1625
|
+
n_pts = []
|
|
1626
|
+
if B[0][i].base_ring() in NumberFields() and extend:
|
|
1627
|
+
emb = extension(X)
|
|
1628
|
+
X = X.change_ring(emb)
|
|
1629
|
+
tmp_curve = B[0][i].change_ring(emb)
|
|
1630
|
+
for pt in X.rational_points():
|
|
1631
|
+
tmp_pt = tmp_curve([pts[0][i]] + list(pt))
|
|
1632
|
+
if tmp_curve.is_singular(tmp_pt):
|
|
1633
|
+
n_pts.append(tmp_pt)
|
|
1634
|
+
# avoid needlessly extending the base field
|
|
1635
|
+
if n_pts:
|
|
1636
|
+
# coerce everything to the new base field
|
|
1637
|
+
BC = BC.change_ring(emb)
|
|
1638
|
+
t_maps = [t_maps[j].change_ring(emb) for j in range(len(t_maps))]
|
|
1639
|
+
old_maps = [old_maps[j].change_ring(emb) for j in range(len(old_maps))]
|
|
1640
|
+
pi = pi.change_ring(emb)
|
|
1641
|
+
pts = [pt.change_ring(emb) for pt in pts]
|
|
1642
|
+
# coerce the current blow up data
|
|
1643
|
+
for j in range(len(B[0])):
|
|
1644
|
+
B[0][j] = B[0][j].change_ring(emb)
|
|
1645
|
+
for j in range(len(B[1])):
|
|
1646
|
+
for k in range(len(B[1])):
|
|
1647
|
+
B[1][j][k] = B[1][j][k].change_ring(emb)
|
|
1648
|
+
for j in range(len(B[2])):
|
|
1649
|
+
B[2][j] = B[2][j].change_ring(emb)
|
|
1650
|
+
# coerce the other data in res
|
|
1651
|
+
for j in range(len(res)):
|
|
1652
|
+
res[j][0] = res[j][0].change_ring(emb)
|
|
1653
|
+
for k in range(len(res[j][1])):
|
|
1654
|
+
res[j][1][k] = res[j][1][k].change_ring(emb)
|
|
1655
|
+
res[j][2].change_ring(emb)
|
|
1656
|
+
for k in range(len(res[j][3])):
|
|
1657
|
+
res[j][3][k] = res[j][3][k].change_ring(emb)
|
|
1658
|
+
else:
|
|
1659
|
+
for pt in X.rational_points():
|
|
1660
|
+
tmp_pt = B[0][i]([pts[0][i]] + list(pt))
|
|
1661
|
+
if B[0][i].is_singular(tmp_pt):
|
|
1662
|
+
n_pts.append(tmp_pt)
|
|
1663
|
+
b_data = [B[0][i]]
|
|
1664
|
+
# projection map and its inverse
|
|
1665
|
+
t_pi = B[2][i]
|
|
1666
|
+
coords = [(BC.ambient_space().gens()[j] - pts[0][j]) / (BC.ambient_space().gens()[i] - pts[0][i])
|
|
1667
|
+
for j in range(n)]
|
|
1668
|
+
coords.pop(i)
|
|
1669
|
+
coords.insert(0, BC.ambient_space().gens()[i])
|
|
1670
|
+
H = Hom(BC, B[0][i])
|
|
1671
|
+
t_pi_inv = H(coords)
|
|
1672
|
+
# compose the current transition maps from the original curve to the other patches
|
|
1673
|
+
# with the projection map
|
|
1674
|
+
L = list(t_maps)
|
|
1675
|
+
for j in range(len(t_maps)):
|
|
1676
|
+
L[j] = L[j] * t_pi
|
|
1677
|
+
for j in range(len(B[1][i])):
|
|
1678
|
+
L.insert(t + j, B[1][i][j])
|
|
1679
|
+
b_data.append(L)
|
|
1680
|
+
# update transition maps of each other element of res
|
|
1681
|
+
for j in range(len(res)):
|
|
1682
|
+
new_t_map = t_pi_inv*old_maps[j]
|
|
1683
|
+
res[j][1].insert(t + i, new_t_map)
|
|
1684
|
+
# create the projection map
|
|
1685
|
+
b_data.append(pi*t_pi)
|
|
1686
|
+
# singular points
|
|
1687
|
+
# translate the singular points of the parent patch (other than that which was the center of the
|
|
1688
|
+
# blow up) by the inverse of the first projection map
|
|
1689
|
+
for j in range(1, len(pts)):
|
|
1690
|
+
# make sure this point is in this chart before attempting to map it
|
|
1691
|
+
try:
|
|
1692
|
+
n_pts.append(t_pi_inv(BC(pts[j])))
|
|
1693
|
+
except (TypeError, ZeroDivisionError):
|
|
1694
|
+
pass
|
|
1695
|
+
b_data.append(n_pts)
|
|
1696
|
+
patches_to_add.append(b_data)
|
|
1697
|
+
for i in range(len(patches_to_add)):
|
|
1698
|
+
res.insert(t + i, patches_to_add[i])
|
|
1699
|
+
t = 0
|
|
1700
|
+
patches = [res[i][0] for i in range(len(res))]
|
|
1701
|
+
t_maps = [tuple(res[i][1]) for i in range(len(res))]
|
|
1702
|
+
p_maps = [res[i][2] for i in range(len(res))]
|
|
1703
|
+
return (tuple(patches), tuple(t_maps), tuple(p_maps))
|
|
1704
|
+
|
|
1705
|
+
def tangent_line(self, p):
|
|
1706
|
+
"""
|
|
1707
|
+
Return the tangent line at the point ``p``.
|
|
1708
|
+
|
|
1709
|
+
INPUT:
|
|
1710
|
+
|
|
1711
|
+
- ``p`` -- a rational point of the curve
|
|
1712
|
+
|
|
1713
|
+
EXAMPLES::
|
|
1714
|
+
|
|
1715
|
+
sage: A3.<x,y,z> = AffineSpace(3, QQ)
|
|
1716
|
+
sage: C = Curve([x + y + z, x^2 - y^2*z^2 + z^3])
|
|
1717
|
+
sage: p = C(0,0,0)
|
|
1718
|
+
sage: C.tangent_line(p)
|
|
1719
|
+
Traceback (most recent call last):
|
|
1720
|
+
...
|
|
1721
|
+
ValueError: the curve is not smooth at (0, 0, 0)
|
|
1722
|
+
sage: p = C(1,0,-1)
|
|
1723
|
+
sage: C.tangent_line(p)
|
|
1724
|
+
Affine Curve over Rational Field defined by x + y + z, 2*x + 3*z + 1
|
|
1725
|
+
|
|
1726
|
+
We check that the tangent line at ``p`` is the tangent space at ``p``,
|
|
1727
|
+
translated to ``p``. ::
|
|
1728
|
+
|
|
1729
|
+
sage: Tp = C.tangent_space(p)
|
|
1730
|
+
sage: Tp
|
|
1731
|
+
Closed subscheme of Affine Space of dimension 3 over Rational Field
|
|
1732
|
+
defined by: x + y + z, 2*x + 3*z
|
|
1733
|
+
sage: phi = A3.translation(A3.origin(), p)
|
|
1734
|
+
sage: T = phi * Tp.embedding_morphism()
|
|
1735
|
+
sage: T.image()
|
|
1736
|
+
Closed subscheme of Affine Space of dimension 3 over Rational Field
|
|
1737
|
+
defined by: -2*y + z + 1, x + y + z
|
|
1738
|
+
sage: _ == C.tangent_line(p)
|
|
1739
|
+
True
|
|
1740
|
+
"""
|
|
1741
|
+
A = self.ambient_space()
|
|
1742
|
+
R = A.coordinate_ring()
|
|
1743
|
+
gens = R.gens()
|
|
1744
|
+
|
|
1745
|
+
Tp = self.tangent_space(p)
|
|
1746
|
+
|
|
1747
|
+
if Tp.dimension() > 1:
|
|
1748
|
+
raise ValueError("the curve is not smooth at {}".format(p))
|
|
1749
|
+
|
|
1750
|
+
from sage.schemes.curves.constructor import Curve
|
|
1751
|
+
|
|
1752
|
+
# translate to p
|
|
1753
|
+
I0 = []
|
|
1754
|
+
for poly in Tp.defining_polynomials():
|
|
1755
|
+
I0.append(poly.subs({x: x - c for x, c in zip(gens, p)}))
|
|
1756
|
+
|
|
1757
|
+
return Curve(I0, A)
|
|
1758
|
+
|
|
1759
|
+
|
|
1760
|
+
class AffinePlaneCurve_field(AffinePlaneCurve, AffineCurve_field):
|
|
1761
|
+
"""
|
|
1762
|
+
Affine plane curves over fields.
|
|
1763
|
+
"""
|
|
1764
|
+
_point = AffinePlaneCurvePoint_field
|
|
1765
|
+
|
|
1766
|
+
def has_vertical_asymptote(self) -> bool:
|
|
1767
|
+
"""
|
|
1768
|
+
Check if the curve is not a line and has vertical asymptotes.
|
|
1769
|
+
|
|
1770
|
+
EXAMPLES::
|
|
1771
|
+
|
|
1772
|
+
sage: A2.<x,y> = AffineSpace(2, QQ)
|
|
1773
|
+
sage: Curve(x).has_vertical_asymptote()
|
|
1774
|
+
False
|
|
1775
|
+
sage: Curve(y^2 * x + x + y).has_vertical_asymptote()
|
|
1776
|
+
True
|
|
1777
|
+
"""
|
|
1778
|
+
A = self.ambient_space()
|
|
1779
|
+
R = A.coordinate_ring()
|
|
1780
|
+
x, y = R.gens()
|
|
1781
|
+
f = self.defining_polynomial().radical()
|
|
1782
|
+
dy = f.degree(y)
|
|
1783
|
+
dxy = f.coefficient({y: dy}).degree()
|
|
1784
|
+
return dxy > 0 and f.degree() > 1
|
|
1785
|
+
|
|
1786
|
+
def is_vertical_line(self) -> bool:
|
|
1787
|
+
"""
|
|
1788
|
+
Check if the curve is a vertical line.
|
|
1789
|
+
|
|
1790
|
+
EXAMPLES::
|
|
1791
|
+
|
|
1792
|
+
sage: A2.<x, y> = AffineSpace(2, QQ)
|
|
1793
|
+
sage: Curve(x - 1).is_vertical_line()
|
|
1794
|
+
True
|
|
1795
|
+
sage: Curve(x - y).is_vertical_line()
|
|
1796
|
+
False
|
|
1797
|
+
sage: Curve(y^2 * x + x + y).is_vertical_line()
|
|
1798
|
+
False
|
|
1799
|
+
"""
|
|
1800
|
+
A = self.ambient_space()
|
|
1801
|
+
R = A.coordinate_ring()
|
|
1802
|
+
x, y = R.gens()
|
|
1803
|
+
f = self.defining_polynomial().radical()
|
|
1804
|
+
return f.degree(y) == 0 and f.degree() == 1
|
|
1805
|
+
|
|
1806
|
+
@cached_method
|
|
1807
|
+
def fundamental_group(self, simplified=True, puiseux=True):
|
|
1808
|
+
r"""
|
|
1809
|
+
Return a presentation of the fundamental group of the complement
|
|
1810
|
+
of ``self``.
|
|
1811
|
+
|
|
1812
|
+
INPUT:
|
|
1813
|
+
|
|
1814
|
+
- ``simplified`` -- boolean (default: ``True``); to simplify the presentation
|
|
1815
|
+
|
|
1816
|
+
- ``puiseux`` -- boolean (default: ``True``); to decide if the
|
|
1817
|
+
presentation is constructed in the classical way or using Puiseux
|
|
1818
|
+
shortcut
|
|
1819
|
+
|
|
1820
|
+
OUTPUT:
|
|
1821
|
+
|
|
1822
|
+
A presentation with generators `x_1, \dots, x_d` and relations. If ``puiseux``
|
|
1823
|
+
is ``False`` the relations are `(x_j\cdot \tau)\cdot x_j^{-1}` for `1\leq j<d`
|
|
1824
|
+
and `tau` a braid in the braid monodromy; finally the presentation
|
|
1825
|
+
is simplified. If ``puiseux`` is ``True``, each
|
|
1826
|
+
`tau` is decomposed as `\alpha^{-1}\cdot\beta\cdot\alpha`, where `\beta` is
|
|
1827
|
+
a positive braid; the relations are `((x_j\cdot \beta)\cdot x_j^{-1})\cdot \alpha`
|
|
1828
|
+
where `j` is an integer of the ``Tietze`` word of `\beta`. This presentation
|
|
1829
|
+
is not simplified by default since it represents the homotopy type of
|
|
1830
|
+
the complement of the curve.
|
|
1831
|
+
|
|
1832
|
+
.. NOTE::
|
|
1833
|
+
|
|
1834
|
+
The curve must be defined over the rationals or a number field
|
|
1835
|
+
with an embedding over `\QQbar`. This functionality requires
|
|
1836
|
+
the ``sirocco`` package to be installed.
|
|
1837
|
+
|
|
1838
|
+
EXAMPLES::
|
|
1839
|
+
|
|
1840
|
+
sage: # needs sirocco
|
|
1841
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1842
|
+
sage: C = A.curve(y^2 - x^3 - x^2)
|
|
1843
|
+
sage: C.fundamental_group(puiseux=False)
|
|
1844
|
+
Finitely presented group < x0 | >
|
|
1845
|
+
sage: bm = C.braid_monodromy()
|
|
1846
|
+
sage: g = C.fundamental_group(simplified=False)
|
|
1847
|
+
sage: g.sorted_presentation()
|
|
1848
|
+
Finitely presented group < x0, x1 | x1^-1*x0^-1*x1*x0, x1^-1*x0 >
|
|
1849
|
+
sage: g.simplified()
|
|
1850
|
+
Finitely presented group < x0 | >
|
|
1851
|
+
|
|
1852
|
+
In the case of number fields, they need to have an embedding
|
|
1853
|
+
to the algebraic field::
|
|
1854
|
+
|
|
1855
|
+
sage: # needs sage.rings.number_field
|
|
1856
|
+
sage: x = polygen(ZZ)
|
|
1857
|
+
sage: a = QQ[x](x^2 + 5).roots(QQbar)[0][0]
|
|
1858
|
+
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
|
|
1859
|
+
sage: F.inject_variables()
|
|
1860
|
+
Defining a
|
|
1861
|
+
sage: A.<x,y> = AffineSpace(F, 2)
|
|
1862
|
+
sage: C = A.curve(y^2 - a*x^3 - x^2)
|
|
1863
|
+
sage: C.fundamental_group() # needs sirocco
|
|
1864
|
+
Finitely presented group < x0 | >
|
|
1865
|
+
sage: C = A.curve(x * (x - 1))
|
|
1866
|
+
sage: C.fundamental_group() # needs sirocco
|
|
1867
|
+
Finitely presented group < x0, x1 | >
|
|
1868
|
+
"""
|
|
1869
|
+
from sage.schemes.curves.zariski_vankampen import fundamental_group_from_braid_mon
|
|
1870
|
+
bm = self.braid_monodromy()
|
|
1871
|
+
if not bm:
|
|
1872
|
+
f = self.defining_polynomial()
|
|
1873
|
+
x, y = f.parent().gens()
|
|
1874
|
+
d0 = f.degree(y)
|
|
1875
|
+
f0 = f.coefficient({y: d0})
|
|
1876
|
+
d = d0 + f0.degree(x)
|
|
1877
|
+
else:
|
|
1878
|
+
d = bm[0].parent().strands()
|
|
1879
|
+
G = fundamental_group_from_braid_mon(bm, degree=d,
|
|
1880
|
+
simplified=simplified,
|
|
1881
|
+
puiseux=puiseux)
|
|
1882
|
+
if simplified:
|
|
1883
|
+
G = G.simplified()
|
|
1884
|
+
return G
|
|
1885
|
+
|
|
1886
|
+
@cached_method
|
|
1887
|
+
def braid_monodromy(self):
|
|
1888
|
+
r"""
|
|
1889
|
+
Compute the braid monodromy of a projection of the curve.
|
|
1890
|
+
|
|
1891
|
+
OUTPUT:
|
|
1892
|
+
|
|
1893
|
+
A list of braids. The braids correspond to paths based in the same point;
|
|
1894
|
+
each of this paths is the conjugated of a loop around one of the points
|
|
1895
|
+
in the discriminant of the projection of ``self``.
|
|
1896
|
+
|
|
1897
|
+
.. NOTE::
|
|
1898
|
+
|
|
1899
|
+
The projection over the `x` axis is used if there are no vertical asymptotes.
|
|
1900
|
+
Otherwise, a linear change of variables is done to fall into the previous case.
|
|
1901
|
+
|
|
1902
|
+
.. NOTE::
|
|
1903
|
+
|
|
1904
|
+
This functionality requires the ``sirocco`` package to be installed.
|
|
1905
|
+
|
|
1906
|
+
EXAMPLES::
|
|
1907
|
+
|
|
1908
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1909
|
+
sage: C = A.curve((x^2-y^3)*(x+3*y-5))
|
|
1910
|
+
sage: C.braid_monodromy() # needs sirocco
|
|
1911
|
+
[s1*s0*(s1*s2)^2*s0*s2^2*s0^-1*(s2^-1*s1^-1)^2*s0^-1*s1^-1,
|
|
1912
|
+
s1*s0*(s1*s2)^2*(s0*s2^-1*s1*s2*s1*s2^-1)^2*(s2^-1*s1^-1)^2*s0^-1*s1^-1,
|
|
1913
|
+
s1*s0*(s1*s2)^2*s2*s1^-1*s2^-1*s1^-1*s0^-1*s1^-1,
|
|
1914
|
+
s1*s0*s2*s0^-1*s2*s1^-1]
|
|
1915
|
+
sage: T.<t> = QQ[]
|
|
1916
|
+
sage: K.<a> = NumberField(t^3 + 2, 'a')
|
|
1917
|
+
sage: A.<x, y> = AffineSpace(K, 2)
|
|
1918
|
+
sage: Curve(y^2 + a * x).braid_monodromy() # needs sage.graphs
|
|
1919
|
+
Traceback (most recent call last):
|
|
1920
|
+
...
|
|
1921
|
+
NotImplementedError: the base field must have an embedding to the algebraic field
|
|
1922
|
+
"""
|
|
1923
|
+
from sage.schemes.curves.zariski_vankampen import braid_monodromy
|
|
1924
|
+
F = self.base_ring()
|
|
1925
|
+
from sage.rings.qqbar import QQbar
|
|
1926
|
+
if QQbar.coerce_map_from(F) is None:
|
|
1927
|
+
raise NotImplementedError("the base field must have an embedding"
|
|
1928
|
+
" to the algebraic field")
|
|
1929
|
+
f = self.defining_polynomial()
|
|
1930
|
+
return braid_monodromy(f)[0]
|
|
1931
|
+
|
|
1932
|
+
def riemann_surface(self, **kwargs):
|
|
1933
|
+
r"""
|
|
1934
|
+
Return the complex Riemann surface determined by this curve.
|
|
1935
|
+
|
|
1936
|
+
OUTPUT: a :class:`~sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface` object
|
|
1937
|
+
|
|
1938
|
+
EXAMPLES::
|
|
1939
|
+
|
|
1940
|
+
sage: R.<x,y> = QQ[]
|
|
1941
|
+
sage: C = Curve(x^3 + 3*y^3 + 5)
|
|
1942
|
+
sage: C.riemann_surface() # needs sage.graphs
|
|
1943
|
+
Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0,
|
|
1944
|
+
with 53 bits of precision
|
|
1945
|
+
"""
|
|
1946
|
+
from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
|
|
1947
|
+
S = RiemannSurface(self.defining_polynomial(), **kwargs)
|
|
1948
|
+
S._curve = self
|
|
1949
|
+
return S
|
|
1950
|
+
|
|
1951
|
+
|
|
1952
|
+
class AffinePlaneCurve_finite_field(AffinePlaneCurve_field):
|
|
1953
|
+
"""
|
|
1954
|
+
Affine plane curves over finite fields.
|
|
1955
|
+
"""
|
|
1956
|
+
_point = AffinePlaneCurvePoint_finite_field
|
|
1957
|
+
|
|
1958
|
+
# CHECK WHAT ASSUMPTIONS ARE MADE REGARDING AFFINE VS. PROJECTIVE MODELS!!!
|
|
1959
|
+
# THIS IS VERY DIRTY STILL -- NO DATASTRUCTURES FOR DIVISORS.
|
|
1960
|
+
def riemann_roch_basis(self, D):
|
|
1961
|
+
r"""
|
|
1962
|
+
Return a basis of the Riemann-Roch space of the divisor ``D``.
|
|
1963
|
+
|
|
1964
|
+
This interfaces with Singular's Brill-Noether command.
|
|
1965
|
+
|
|
1966
|
+
This curve is assumed to be a plane curve defined by a polynomial
|
|
1967
|
+
equation `f(x,y) = 0` over a prime finite field `F = GF(p)` in 2
|
|
1968
|
+
variables `x,y` representing a curve `X: f(x,y) = 0` having `n`
|
|
1969
|
+
`F`-rational points (see the Sage function ``places_on_curve``)
|
|
1970
|
+
|
|
1971
|
+
INPUT:
|
|
1972
|
+
|
|
1973
|
+
- ``D`` -- an `n`-tuple of integers `(d_1, ..., d_n)` representing the
|
|
1974
|
+
divisor `Div = d_1P_1 + \dots + d_nP_n`, where `X(F) = \{P_1, \dots,
|
|
1975
|
+
P_n\}`. The ordering is that dictated by ``places_on_curve``.
|
|
1976
|
+
|
|
1977
|
+
OUTPUT: a basis of `L(Div)`.
|
|
1978
|
+
|
|
1979
|
+
EXAMPLES::
|
|
1980
|
+
|
|
1981
|
+
sage: R = PolynomialRing(GF(5), 2, names=["x","y"])
|
|
1982
|
+
sage: x, y = R.gens()
|
|
1983
|
+
sage: f = y^2 - x^9 - x
|
|
1984
|
+
sage: C = Curve(f)
|
|
1985
|
+
sage: D = [6,0,0,0,0,0]
|
|
1986
|
+
sage: C.riemann_roch_basis(D)
|
|
1987
|
+
[1, (-x*z^5 + y^2*z^4)/x^6, (-x*z^6 + y^2*z^5)/x^7, (-x*z^7 + y^2*z^6)/x^8]
|
|
1988
|
+
"""
|
|
1989
|
+
F = self.base_ring()
|
|
1990
|
+
if not F.is_prime_field():
|
|
1991
|
+
raise TypeError("only works for curves over prime finite fields")
|
|
1992
|
+
|
|
1993
|
+
p = F.characteristic()
|
|
1994
|
+
f = self.defining_polynomial()
|
|
1995
|
+
gens = f.parent().gens()
|
|
1996
|
+
|
|
1997
|
+
G = singular(','.join(str(x) for x in D), type='intvec')
|
|
1998
|
+
|
|
1999
|
+
singular.lib('brnoeth')
|
|
2000
|
+
singular.ring(p, gens, 'lp')
|
|
2001
|
+
|
|
2002
|
+
X = singular(f).Adj_div()
|
|
2003
|
+
P = singular.NSplaces(1, X)
|
|
2004
|
+
T = P[1][2]
|
|
2005
|
+
T.set_ring() # necessary
|
|
2006
|
+
|
|
2007
|
+
return [g[1].sage() / g[2].sage() for g in G.BrillNoether(P)]
|
|
2008
|
+
|
|
2009
|
+
def rational_points(self, algorithm='enum'):
|
|
2010
|
+
r"""
|
|
2011
|
+
Return sorted list of all rational points on this curve.
|
|
2012
|
+
|
|
2013
|
+
INPUT:
|
|
2014
|
+
|
|
2015
|
+
- ``algorithm`` -- possible choices:
|
|
2016
|
+
|
|
2017
|
+
+ ``'enum'`` -- use *very* naive point enumeration to find all
|
|
2018
|
+
rational points on this curve over a finite field.
|
|
2019
|
+
|
|
2020
|
+
+ ``'bn'`` -- via Singular's Brill-Noether package.
|
|
2021
|
+
|
|
2022
|
+
+ ``'all'`` -- use all implemented algorithms and verify that they
|
|
2023
|
+
give the same answer, then return it
|
|
2024
|
+
|
|
2025
|
+
.. NOTE::
|
|
2026
|
+
|
|
2027
|
+
The Brill-Noether package does not always work. When it fails, a
|
|
2028
|
+
:exc:`RuntimeError` exception is raised.
|
|
2029
|
+
|
|
2030
|
+
EXAMPLES::
|
|
2031
|
+
|
|
2032
|
+
sage: x, y = (GF(5)['x,y']).gens()
|
|
2033
|
+
sage: f = y^2 - x^9 - x
|
|
2034
|
+
sage: C = Curve(f); C
|
|
2035
|
+
Affine Plane Curve over Finite Field of size 5 defined by -x^9 + y^2 - x
|
|
2036
|
+
sage: C.rational_points(algorithm='bn')
|
|
2037
|
+
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
|
|
2038
|
+
sage: C = Curve(x - y + 1)
|
|
2039
|
+
sage: C.rational_points()
|
|
2040
|
+
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
|
|
2041
|
+
|
|
2042
|
+
We compare Brill-Noether and enumeration::
|
|
2043
|
+
|
|
2044
|
+
sage: x, y = (GF(17)['x,y']).gens()
|
|
2045
|
+
sage: C = Curve(x^2 + y^5 + x*y - 19)
|
|
2046
|
+
sage: v = C.rational_points(algorithm='bn')
|
|
2047
|
+
sage: w = C.rational_points(algorithm='enum')
|
|
2048
|
+
sage: len(v)
|
|
2049
|
+
20
|
|
2050
|
+
sage: v == w
|
|
2051
|
+
True
|
|
2052
|
+
|
|
2053
|
+
sage: # needs sage.rings.finite_rings
|
|
2054
|
+
sage: A.<x,y> = AffineSpace(2, GF(9,'a'))
|
|
2055
|
+
sage: C = Curve(x^2 + y^2 - 1); C
|
|
2056
|
+
Affine Plane Curve over Finite Field in a of size 3^2
|
|
2057
|
+
defined by x^2 + y^2 - 1
|
|
2058
|
+
sage: C.rational_points()
|
|
2059
|
+
[(0, 1), (0, 2), (1, 0), (2, 0), (a + 1, a + 1),
|
|
2060
|
+
(a + 1, 2*a + 2), (2*a + 2, a + 1), (2*a + 2, 2*a + 2)]
|
|
2061
|
+
"""
|
|
2062
|
+
if algorithm == "enum":
|
|
2063
|
+
f = self.defining_polynomial()
|
|
2064
|
+
K = f.parent().base_ring()
|
|
2065
|
+
return sorted(self((x, y)) for x in K for y in K if f(x, y) == 0)
|
|
2066
|
+
|
|
2067
|
+
F = self.base_ring()
|
|
2068
|
+
if not F.is_prime_field():
|
|
2069
|
+
raise TypeError("other algorithms only work for curves over prime finite fields")
|
|
2070
|
+
|
|
2071
|
+
if algorithm == "bn":
|
|
2072
|
+
f = self.defining_polynomial()._singular_()
|
|
2073
|
+
singular = f.parent()
|
|
2074
|
+
singular.lib('brnoeth')
|
|
2075
|
+
try:
|
|
2076
|
+
X1 = f.Adj_div()
|
|
2077
|
+
except (TypeError, RuntimeError) as s:
|
|
2078
|
+
raise RuntimeError(str(s) + "\n\n ** Unable to use the Brill-Noether Singular package to compute all points (see above).")
|
|
2079
|
+
|
|
2080
|
+
X2 = singular.NSplaces(1, X1)
|
|
2081
|
+
R = X2[5][1][1]
|
|
2082
|
+
singular.set_ring(R)
|
|
2083
|
+
|
|
2084
|
+
# We use sage_flattened_str_list since iterating through
|
|
2085
|
+
# the entire list through the sage/singular interface directly
|
|
2086
|
+
# would involve hundreds of calls to singular, and timing issues
|
|
2087
|
+
# with the expect interface could crop up. Also, this is vastly
|
|
2088
|
+
# faster (and more robust).
|
|
2089
|
+
v = singular('POINTS').sage_flattened_str_list()
|
|
2090
|
+
pnts = [self(int(v[3*i]), int(v[3*i+1]))
|
|
2091
|
+
for i in range(len(v)//3) if int(v[3*i+2])]
|
|
2092
|
+
# remove multiple points
|
|
2093
|
+
return sorted(set(pnts))
|
|
2094
|
+
|
|
2095
|
+
elif algorithm == "all":
|
|
2096
|
+
S_enum = self.rational_points(algorithm='enum')
|
|
2097
|
+
S_bn = self.rational_points(algorithm='bn')
|
|
2098
|
+
if S_enum != S_bn:
|
|
2099
|
+
raise RuntimeError("Bug in rational_points -- different algorithms give different answers for curve %s!" % self)
|
|
2100
|
+
return S_enum
|
|
2101
|
+
else:
|
|
2102
|
+
raise ValueError("No algorithm '%s' known" % algorithm)
|
|
2103
|
+
|
|
2104
|
+
|
|
2105
|
+
class IntegralAffineCurve(AffineCurve_field):
|
|
2106
|
+
"""
|
|
2107
|
+
Base class for integral affine curves.
|
|
2108
|
+
"""
|
|
2109
|
+
_point = IntegralAffineCurvePoint
|
|
2110
|
+
_closed_point = IntegralAffineCurveClosedPoint
|
|
2111
|
+
|
|
2112
|
+
def function_field(self):
|
|
2113
|
+
"""
|
|
2114
|
+
Return the function field of the curve.
|
|
2115
|
+
|
|
2116
|
+
EXAMPLES::
|
|
2117
|
+
|
|
2118
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
2119
|
+
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
|
|
2120
|
+
sage: C.function_field()
|
|
2121
|
+
Function field in y defined by y^4 + y^2 + x^4 - x^3
|
|
2122
|
+
|
|
2123
|
+
::
|
|
2124
|
+
|
|
2125
|
+
sage: # needs sage.rings.finite_rings
|
|
2126
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2127
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2128
|
+
sage: C.function_field()
|
|
2129
|
+
Function field in y defined by y^5 + x*y + x^5 + 1
|
|
2130
|
+
"""
|
|
2131
|
+
return self._function_field
|
|
2132
|
+
|
|
2133
|
+
@lazy_attribute
|
|
2134
|
+
def _genus(self):
|
|
2135
|
+
"""
|
|
2136
|
+
The geometric genus of the curve.
|
|
2137
|
+
|
|
2138
|
+
EXAMPLES::
|
|
2139
|
+
|
|
2140
|
+
sage: A.<x,y> = AffineSpace(GF(2), 2)
|
|
2141
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2142
|
+
sage: C.genus() # indirect doctest
|
|
2143
|
+
1
|
|
2144
|
+
|
|
2145
|
+
TESTS::
|
|
2146
|
+
|
|
2147
|
+
sage: # needs sage.rings.number_field
|
|
2148
|
+
sage: R.<T> = QQ[]
|
|
2149
|
+
sage: N.<a> = NumberField(T^2 + 1)
|
|
2150
|
+
sage: A2.<x,y> = AffineSpace(N, 2)
|
|
2151
|
+
sage: C = Curve(y^2 - x^3 + x, A2)
|
|
2152
|
+
sage: C.genus()
|
|
2153
|
+
1
|
|
2154
|
+
"""
|
|
2155
|
+
# Singular's genus command is usually much faster than the genus method
|
|
2156
|
+
# of function fields in Sage. But unfortunately Singular's genus
|
|
2157
|
+
# command does not work over extension fields.
|
|
2158
|
+
if self.base_ring().degree() > 1:
|
|
2159
|
+
return self._function_field.genus()
|
|
2160
|
+
|
|
2161
|
+
# call Singular's genus command
|
|
2162
|
+
return self.defining_ideal().genus()
|
|
2163
|
+
|
|
2164
|
+
def __call__(self, *args):
|
|
2165
|
+
"""
|
|
2166
|
+
Return a rational point, a pointset or a function depending on ``args``.
|
|
2167
|
+
|
|
2168
|
+
EXAMPLES::
|
|
2169
|
+
|
|
2170
|
+
sage: # needs sage.rings.finite_rings
|
|
2171
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2172
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2173
|
+
sage: C(1,1)
|
|
2174
|
+
(1, 1)
|
|
2175
|
+
sage: C(x/y)
|
|
2176
|
+
(x/(x^5 + 1))*y^4 + x^2/(x^5 + 1)
|
|
2177
|
+
sage: C(GF(8^2))
|
|
2178
|
+
Set of rational points of Closed subscheme of Affine Space of dimension 2
|
|
2179
|
+
over Finite Field in z6 of size 2^6 defined by: x^5 + y^5 + x*y + 1
|
|
2180
|
+
|
|
2181
|
+
::
|
|
2182
|
+
|
|
2183
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2184
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2185
|
+
sage: C([0,0,0])
|
|
2186
|
+
(0, 0, 0)
|
|
2187
|
+
sage: C(y)
|
|
2188
|
+
z^2
|
|
2189
|
+
sage: C(A.coordinate_ring()(y))
|
|
2190
|
+
z^2
|
|
2191
|
+
"""
|
|
2192
|
+
try:
|
|
2193
|
+
return super().__call__(*args)
|
|
2194
|
+
except TypeError as e:
|
|
2195
|
+
try:
|
|
2196
|
+
return self.function(*args)
|
|
2197
|
+
except AttributeError:
|
|
2198
|
+
raise e
|
|
2199
|
+
|
|
2200
|
+
def function(self, f):
|
|
2201
|
+
"""
|
|
2202
|
+
Return the function field element coerced from ``f``.
|
|
2203
|
+
|
|
2204
|
+
INPUT:
|
|
2205
|
+
|
|
2206
|
+
- ``f`` -- an element of the fraction field of the coordinate ring of
|
|
2207
|
+
the ambient space or the coordinate ring of the curve
|
|
2208
|
+
|
|
2209
|
+
OUTPUT: an element of the function field of this curve
|
|
2210
|
+
|
|
2211
|
+
EXAMPLES::
|
|
2212
|
+
|
|
2213
|
+
sage: # needs sage.rings.finite_rings
|
|
2214
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2215
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2216
|
+
sage: f = C.function(x/y)
|
|
2217
|
+
sage: f
|
|
2218
|
+
(x/(x^5 + 1))*y^4 + x^2/(x^5 + 1)
|
|
2219
|
+
sage: df = f.differential(); df
|
|
2220
|
+
((1/(x^10 + 1))*y^4 + x^6/(x^10 + 1)) d(x)
|
|
2221
|
+
sage: df.divisor() # long time
|
|
2222
|
+
2*Place (1/x, 1/x^4*y^4 + 1/x^3*y^3 + 1/x^2*y^2 + 1/x*y + 1)
|
|
2223
|
+
+ 2*Place (1/x, 1/x*y + 1)
|
|
2224
|
+
- 2*Place (x + 1, y)
|
|
2225
|
+
- 2*Place (x^4 + x^3 + x^2 + x + 1, y)
|
|
2226
|
+
"""
|
|
2227
|
+
R = self.ambient_space().coordinate_ring()
|
|
2228
|
+
if f not in R and f.parent() is self.coordinate_ring():
|
|
2229
|
+
f = f.lift()
|
|
2230
|
+
|
|
2231
|
+
phi = self._map_to_function_field
|
|
2232
|
+
num = R(f.numerator())
|
|
2233
|
+
den = R(f.denominator())
|
|
2234
|
+
return phi(num) / phi(den)
|
|
2235
|
+
|
|
2236
|
+
def coordinate_functions(self):
|
|
2237
|
+
"""
|
|
2238
|
+
Return the coordinate functions.
|
|
2239
|
+
|
|
2240
|
+
EXAMPLES::
|
|
2241
|
+
|
|
2242
|
+
sage: # needs sage.rings.finite_rings
|
|
2243
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2244
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2245
|
+
sage: x, y = C.coordinate_functions()
|
|
2246
|
+
sage: x^5 + y^5 + x*y + 1
|
|
2247
|
+
0
|
|
2248
|
+
"""
|
|
2249
|
+
return self._coordinate_functions
|
|
2250
|
+
|
|
2251
|
+
def pull_from_function_field(self, f):
|
|
2252
|
+
"""
|
|
2253
|
+
Return the fraction corresponding to ``f``.
|
|
2254
|
+
|
|
2255
|
+
INPUT:
|
|
2256
|
+
|
|
2257
|
+
- ``f`` -- an element of the function field
|
|
2258
|
+
|
|
2259
|
+
OUTPUT:
|
|
2260
|
+
|
|
2261
|
+
A fraction of polynomials in the coordinate ring of the ambient space
|
|
2262
|
+
of the curve.
|
|
2263
|
+
|
|
2264
|
+
EXAMPLES::
|
|
2265
|
+
|
|
2266
|
+
sage: # needs sage.rings.finite_rings
|
|
2267
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2268
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2269
|
+
sage: F = C.function_field()
|
|
2270
|
+
sage: C.pull_from_function_field(F.gen())
|
|
2271
|
+
y
|
|
2272
|
+
sage: C.pull_from_function_field(F.one())
|
|
2273
|
+
1
|
|
2274
|
+
sage: C.pull_from_function_field(F.zero())
|
|
2275
|
+
0
|
|
2276
|
+
sage: f1 = F.gen()
|
|
2277
|
+
sage: f2 = F.base_ring().gen()
|
|
2278
|
+
sage: C.function(C.pull_from_function_field(f1)) == f1
|
|
2279
|
+
True
|
|
2280
|
+
sage: C.function(C.pull_from_function_field(f2)) == f2
|
|
2281
|
+
True
|
|
2282
|
+
"""
|
|
2283
|
+
return self._map_from_function_field(f)
|
|
2284
|
+
|
|
2285
|
+
@lazy_attribute
|
|
2286
|
+
def _nonsingular_model(self):
|
|
2287
|
+
"""
|
|
2288
|
+
Return the data of a nonsingular model of the curve.
|
|
2289
|
+
|
|
2290
|
+
The data consists of an abstract function field `M`, a map from the
|
|
2291
|
+
fraction field of the coordinate ring `R` of the ambient space of the
|
|
2292
|
+
curve to the function field, and the inverse map.
|
|
2293
|
+
|
|
2294
|
+
The coordinate ring of the curve is the quotient of `R` by the kernel
|
|
2295
|
+
of the map restricted to `R`.
|
|
2296
|
+
|
|
2297
|
+
TESTS::
|
|
2298
|
+
|
|
2299
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2300
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2301
|
+
sage: C._nonsingular_model
|
|
2302
|
+
(Function field in z defined by z^3 + 10*x,
|
|
2303
|
+
Ring morphism:
|
|
2304
|
+
From: Fraction Field of Multivariate Polynomial Ring in x, y, z
|
|
2305
|
+
over Finite Field of size 11
|
|
2306
|
+
To: Function field in z defined by z^3 + 10*x
|
|
2307
|
+
Defn: x |--> x
|
|
2308
|
+
y |--> z^2
|
|
2309
|
+
z |--> z,
|
|
2310
|
+
Ring morphism:
|
|
2311
|
+
From: Function field in z defined by z^3 + 10*x
|
|
2312
|
+
To: Fraction Field of Multivariate Polynomial Ring in x, y, z
|
|
2313
|
+
over Finite Field of size 11)
|
|
2314
|
+
"""
|
|
2315
|
+
from sage.structure.sequence import Sequence
|
|
2316
|
+
from sage.rings.fraction_field import FractionField
|
|
2317
|
+
from sage.rings.function_field.constructor import FunctionField
|
|
2318
|
+
from sage.rings.function_field.maps import FunctionFieldRingMorphism
|
|
2319
|
+
|
|
2320
|
+
k = self.base_ring()
|
|
2321
|
+
I = self.defining_ideal()
|
|
2322
|
+
|
|
2323
|
+
# invlex is the lex order with x < y < z for R = k[x,y,z] for instance
|
|
2324
|
+
R = I.parent().ring().change_ring(order='invlex')
|
|
2325
|
+
I0 = I.change_ring(R)
|
|
2326
|
+
n = R.ngens()
|
|
2327
|
+
|
|
2328
|
+
names = R.variable_names()
|
|
2329
|
+
|
|
2330
|
+
gbasis = I0.groebner_basis()
|
|
2331
|
+
|
|
2332
|
+
if not I0.is_prime():
|
|
2333
|
+
raise TypeError("the curve is not integral")
|
|
2334
|
+
|
|
2335
|
+
# Suppose the generators of the defining ideal I of the curve is
|
|
2336
|
+
#
|
|
2337
|
+
# -y^2 + x*z, -z^2 + y, -y*z + x.
|
|
2338
|
+
#
|
|
2339
|
+
# Then the Groebner basis of the ideal with respect to the elimination
|
|
2340
|
+
# order invlex is
|
|
2341
|
+
#
|
|
2342
|
+
# f0 = z^2 - y,
|
|
2343
|
+
# f1 = y*z - x,
|
|
2344
|
+
# f2 = x*z - y^2,
|
|
2345
|
+
# f3 = y^3 - x^2.
|
|
2346
|
+
#
|
|
2347
|
+
# Now the task is to find f that has minimal degree as a polynomial
|
|
2348
|
+
# in the i-th variable. The result is
|
|
2349
|
+
#
|
|
2350
|
+
# f0 z^2
|
|
2351
|
+
# f1 y*z
|
|
2352
|
+
# f2 x*z o
|
|
2353
|
+
# f3 y^3 o
|
|
2354
|
+
# ------------------------------
|
|
2355
|
+
# k[x] k[x,y] k[x,y,z]
|
|
2356
|
+
#
|
|
2357
|
+
# Hence x is an independent variable; f3 is the syzygy for y; f2 is the
|
|
2358
|
+
# syzygy for z. Now x is the generator of a rational function field F0;
|
|
2359
|
+
# y is the generator of the extension F1 of F0 by f3; z is the
|
|
2360
|
+
# generator of the extension F2 of F1 by f2.
|
|
2361
|
+
|
|
2362
|
+
basis = list(gbasis)
|
|
2363
|
+
syzygy = {}
|
|
2364
|
+
for i in range(n):
|
|
2365
|
+
S = k[R._first_ngens(i + 1)]
|
|
2366
|
+
while basis:
|
|
2367
|
+
f = basis.pop()
|
|
2368
|
+
if f in S:
|
|
2369
|
+
if i not in syzygy and f:
|
|
2370
|
+
syzygy[i] = f
|
|
2371
|
+
else:
|
|
2372
|
+
basis.append(f)
|
|
2373
|
+
break
|
|
2374
|
+
|
|
2375
|
+
# sanity check
|
|
2376
|
+
indeps = [i for i in range(n) if i not in syzygy]
|
|
2377
|
+
if len(indeps) != 1:
|
|
2378
|
+
raise TypeError("not a curve")
|
|
2379
|
+
indep = indeps[0]
|
|
2380
|
+
|
|
2381
|
+
F = FunctionField(k, names[indep])
|
|
2382
|
+
coords = {indep: F.gen()}
|
|
2383
|
+
|
|
2384
|
+
for i in range(n):
|
|
2385
|
+
if i == indep:
|
|
2386
|
+
continue
|
|
2387
|
+
P = PolynomialRing(F, 'T')
|
|
2388
|
+
f = P([R(c).subs(coords) for c in syzygy[i].polynomial(R.gen(i))])
|
|
2389
|
+
F = F.extension(f, names[i])
|
|
2390
|
+
coords[i] = F.gen()
|
|
2391
|
+
|
|
2392
|
+
proper_extension = F.base_field() is not F
|
|
2393
|
+
|
|
2394
|
+
if proper_extension:
|
|
2395
|
+
N, from_N, to_N = F.simple_model()
|
|
2396
|
+
M, from_M, to_M = N.separable_model()
|
|
2397
|
+
coordinate_functions = tuple([to_M(to_N(F(coords[i]))) for i in range(n)])
|
|
2398
|
+
else:
|
|
2399
|
+
M = F # is rational function field
|
|
2400
|
+
coordinate_functions = tuple([coords[i] for i in range(n)])
|
|
2401
|
+
|
|
2402
|
+
# map to M
|
|
2403
|
+
|
|
2404
|
+
FR = FractionField(I.ring())
|
|
2405
|
+
map_to_function_field = hom(FR, M, coordinate_functions)
|
|
2406
|
+
|
|
2407
|
+
# map from M
|
|
2408
|
+
|
|
2409
|
+
def convert(f, i):
|
|
2410
|
+
if i == indep:
|
|
2411
|
+
i = i - 1
|
|
2412
|
+
if i < 0:
|
|
2413
|
+
return f._x # fraction representing rational function field element
|
|
2414
|
+
fx = f._x # polynomial representing function field element
|
|
2415
|
+
if not fx:
|
|
2416
|
+
fxlist = [fx.base_ring().zero()]
|
|
2417
|
+
else:
|
|
2418
|
+
fxlist = fx.list()
|
|
2419
|
+
coeffs = Sequence(convert(c, i - 1) for c in fxlist)
|
|
2420
|
+
B = coeffs.universe()
|
|
2421
|
+
S = B[names[i]]
|
|
2422
|
+
return S(coeffs)
|
|
2423
|
+
|
|
2424
|
+
z = M.gen()
|
|
2425
|
+
|
|
2426
|
+
if proper_extension:
|
|
2427
|
+
Z = FR(convert(from_N(from_M(z)), n - 1))
|
|
2428
|
+
|
|
2429
|
+
def evaluate(f):
|
|
2430
|
+
coeffs = f._x.list()
|
|
2431
|
+
v = 0
|
|
2432
|
+
while coeffs:
|
|
2433
|
+
v = v * Z + coeffs.pop()._x
|
|
2434
|
+
return FR(v)
|
|
2435
|
+
else:
|
|
2436
|
+
def evaluate(f):
|
|
2437
|
+
return FR(f._x)
|
|
2438
|
+
|
|
2439
|
+
map_from_function_field = FunctionFieldRingMorphism(Hom(M, FR), evaluate)
|
|
2440
|
+
|
|
2441
|
+
# sanity check
|
|
2442
|
+
assert all(map_to_function_field(f).is_zero() for f in I.gens())
|
|
2443
|
+
assert map_to_function_field(map_from_function_field(z)) == z
|
|
2444
|
+
|
|
2445
|
+
return M, map_to_function_field, map_from_function_field
|
|
2446
|
+
|
|
2447
|
+
@lazy_attribute
|
|
2448
|
+
def _function_field(self):
|
|
2449
|
+
"""
|
|
2450
|
+
Return the abstract function field of the curve.
|
|
2451
|
+
|
|
2452
|
+
TESTS::
|
|
2453
|
+
|
|
2454
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2455
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2456
|
+
sage: C._function_field
|
|
2457
|
+
Function field in z defined by z^3 + 10*x
|
|
2458
|
+
"""
|
|
2459
|
+
return self._nonsingular_model[0]
|
|
2460
|
+
|
|
2461
|
+
@lazy_attribute
|
|
2462
|
+
def _map_to_function_field(self):
|
|
2463
|
+
"""
|
|
2464
|
+
Return the map to the function field of the curve.
|
|
2465
|
+
|
|
2466
|
+
TESTS::
|
|
2467
|
+
|
|
2468
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2469
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2470
|
+
sage: C._map_to_function_field
|
|
2471
|
+
Ring morphism:
|
|
2472
|
+
From: Fraction Field of Multivariate Polynomial Ring in x, y, z
|
|
2473
|
+
over Finite Field of size 11
|
|
2474
|
+
To: Function field in z defined by z^3 + 10*x
|
|
2475
|
+
Defn: x |--> x
|
|
2476
|
+
y |--> z^2
|
|
2477
|
+
z |--> z
|
|
2478
|
+
"""
|
|
2479
|
+
return self._nonsingular_model[1]
|
|
2480
|
+
|
|
2481
|
+
@lazy_attribute
|
|
2482
|
+
def _coordinate_functions(self):
|
|
2483
|
+
"""
|
|
2484
|
+
Return the coordinate functions of the curve.
|
|
2485
|
+
|
|
2486
|
+
TESTS::
|
|
2487
|
+
|
|
2488
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2489
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2490
|
+
sage: C._coordinate_functions
|
|
2491
|
+
[x, z^2, z]
|
|
2492
|
+
"""
|
|
2493
|
+
return self._nonsingular_model[1].im_gens()
|
|
2494
|
+
|
|
2495
|
+
@lazy_attribute
|
|
2496
|
+
def _map_from_function_field(self):
|
|
2497
|
+
"""
|
|
2498
|
+
Return the map from the function field of the curve.
|
|
2499
|
+
|
|
2500
|
+
TESTS::
|
|
2501
|
+
|
|
2502
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2503
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2504
|
+
sage: C._map_from_function_field
|
|
2505
|
+
Ring morphism:
|
|
2506
|
+
From: Function field in z defined by z^3 + 10*x
|
|
2507
|
+
To: Fraction Field of Multivariate Polynomial Ring in x, y, z
|
|
2508
|
+
over Finite Field of size 11
|
|
2509
|
+
"""
|
|
2510
|
+
return self._nonsingular_model[2]
|
|
2511
|
+
|
|
2512
|
+
@lazy_attribute
|
|
2513
|
+
def _singularities(self):
|
|
2514
|
+
"""
|
|
2515
|
+
Return a list of the pairs of a singular closed point and the places
|
|
2516
|
+
above it.
|
|
2517
|
+
|
|
2518
|
+
TESTS::
|
|
2519
|
+
|
|
2520
|
+
sage: # needs sage.rings.finite_rings
|
|
2521
|
+
sage: A.<x,y> = AffineSpace(GF(7^2), 2)
|
|
2522
|
+
sage: C = Curve(x^2 - x^4 - y^4)
|
|
2523
|
+
sage: C._singularities # long time
|
|
2524
|
+
[(Point (x, y),
|
|
2525
|
+
[Place (x, 1/x*y^3 + 1/x*y^2 + 1), Place (x, 1/x*y^3 + 1/x*y^2 + 6)])]
|
|
2526
|
+
"""
|
|
2527
|
+
to_F = self._map_to_function_field
|
|
2528
|
+
sing = self.singular_subscheme()
|
|
2529
|
+
|
|
2530
|
+
funcs = []
|
|
2531
|
+
for p in sing.defining_polynomials():
|
|
2532
|
+
f = to_F(p)
|
|
2533
|
+
if not f.is_zero():
|
|
2534
|
+
funcs.append(f)
|
|
2535
|
+
|
|
2536
|
+
if funcs:
|
|
2537
|
+
f = funcs.pop()
|
|
2538
|
+
places = f.zeros()
|
|
2539
|
+
for f in funcs:
|
|
2540
|
+
places = [p for p in places if f.valuation(p) > 0]
|
|
2541
|
+
else:
|
|
2542
|
+
places = []
|
|
2543
|
+
|
|
2544
|
+
points = []
|
|
2545
|
+
for place in places:
|
|
2546
|
+
p = self.place_to_closed_point(place)
|
|
2547
|
+
|
|
2548
|
+
for q, places in points:
|
|
2549
|
+
if p == q:
|
|
2550
|
+
places.append(place)
|
|
2551
|
+
break
|
|
2552
|
+
else: # new singularity
|
|
2553
|
+
points.append((p, [place]))
|
|
2554
|
+
|
|
2555
|
+
return points
|
|
2556
|
+
|
|
2557
|
+
def singular_closed_points(self):
|
|
2558
|
+
"""
|
|
2559
|
+
Return the singular closed points of the curve.
|
|
2560
|
+
|
|
2561
|
+
EXAMPLES::
|
|
2562
|
+
|
|
2563
|
+
sage: # needs sage.rings.finite_rings
|
|
2564
|
+
sage: A.<x,y> = AffineSpace(GF(7^2), 2)
|
|
2565
|
+
sage: C = Curve(x^2 - x^4 - y^4)
|
|
2566
|
+
sage: C.singular_closed_points()
|
|
2567
|
+
[Point (x, y)]
|
|
2568
|
+
|
|
2569
|
+
::
|
|
2570
|
+
|
|
2571
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2572
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2573
|
+
sage: C.singular_closed_points()
|
|
2574
|
+
[]
|
|
2575
|
+
"""
|
|
2576
|
+
return [p for p, _ in self._singularities]
|
|
2577
|
+
|
|
2578
|
+
@cached_method
|
|
2579
|
+
def place_to_closed_point(self, place):
|
|
2580
|
+
"""
|
|
2581
|
+
Return the closed point on the place.
|
|
2582
|
+
|
|
2583
|
+
INPUT:
|
|
2584
|
+
|
|
2585
|
+
- ``place`` -- a place of the function field of the curve
|
|
2586
|
+
|
|
2587
|
+
EXAMPLES::
|
|
2588
|
+
|
|
2589
|
+
sage: # needs sage.rings.finite_rings
|
|
2590
|
+
sage: A.<x,y> = AffineSpace(GF(4), 2)
|
|
2591
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1)
|
|
2592
|
+
sage: F = C.function_field()
|
|
2593
|
+
sage: pls = F.places(1)
|
|
2594
|
+
sage: C.place_to_closed_point(pls[-1])
|
|
2595
|
+
Point (x + 1, y + 1)
|
|
2596
|
+
sage: C.place_to_closed_point(pls[-2])
|
|
2597
|
+
Point (x + 1, y + 1)
|
|
2598
|
+
"""
|
|
2599
|
+
F = self.function_field()
|
|
2600
|
+
|
|
2601
|
+
A = self.ambient_space()
|
|
2602
|
+
R = A.coordinate_ring().change_ring(order='degrevlex')
|
|
2603
|
+
|
|
2604
|
+
coords = self._coordinate_functions
|
|
2605
|
+
|
|
2606
|
+
if any(f.valuation(place) < 0 for f in coords):
|
|
2607
|
+
raise ValueError("the place is at infinity")
|
|
2608
|
+
|
|
2609
|
+
k, from_k, to_k = place.residue_field()
|
|
2610
|
+
V, from_V, to_V = k.vector_space(F.constant_base_field(), map=True)
|
|
2611
|
+
|
|
2612
|
+
# implement an FGLM-like algorithm
|
|
2613
|
+
e = [0 for i in range(R.ngens())]
|
|
2614
|
+
basis = [R.one()]
|
|
2615
|
+
basis_vecs = [to_V(k.one())] # represent as a vector
|
|
2616
|
+
|
|
2617
|
+
gens = []
|
|
2618
|
+
gens_lts = []
|
|
2619
|
+
terminate = False
|
|
2620
|
+
while True: # check FGLM termination condition
|
|
2621
|
+
# compute next exponent in degree reverse lexicographical order
|
|
2622
|
+
j = R.ngens() - 1
|
|
2623
|
+
while j > 0 and not e[j]:
|
|
2624
|
+
j -= 1
|
|
2625
|
+
|
|
2626
|
+
if not j: # j is zero
|
|
2627
|
+
if terminate:
|
|
2628
|
+
break
|
|
2629
|
+
terminate = True
|
|
2630
|
+
d = e[0]
|
|
2631
|
+
e[0] = 0
|
|
2632
|
+
e[-1] = d + 1
|
|
2633
|
+
else:
|
|
2634
|
+
e[j] -= 1
|
|
2635
|
+
e[j - 1] += 1
|
|
2636
|
+
|
|
2637
|
+
m = R.monomial(*e)
|
|
2638
|
+
if any(g.divides(m) for g in gens_lts):
|
|
2639
|
+
continue
|
|
2640
|
+
|
|
2641
|
+
prod = 1
|
|
2642
|
+
for i in range(R.ngens()):
|
|
2643
|
+
prod *= coords[i]**e[i]
|
|
2644
|
+
vec = to_V(to_k(prod)) # represent as a vector
|
|
2645
|
+
mat = matrix(basis_vecs)
|
|
2646
|
+
try:
|
|
2647
|
+
s = mat.solve_left(vec)
|
|
2648
|
+
except ValueError: # no solution
|
|
2649
|
+
basis.append(m)
|
|
2650
|
+
basis_vecs.append(vec)
|
|
2651
|
+
terminate = False
|
|
2652
|
+
continue
|
|
2653
|
+
|
|
2654
|
+
gens.append(m - sum([s[i] * basis[i] for i in range(len(basis))]))
|
|
2655
|
+
gens_lts.append(m)
|
|
2656
|
+
|
|
2657
|
+
prime = R.ideal(gens).groebner_basis().ideal()
|
|
2658
|
+
|
|
2659
|
+
return self._closed_point(self, prime, len(basis))
|
|
2660
|
+
|
|
2661
|
+
def places_at_infinity(self):
|
|
2662
|
+
"""
|
|
2663
|
+
Return the places of the curve at infinity.
|
|
2664
|
+
|
|
2665
|
+
EXAMPLES::
|
|
2666
|
+
|
|
2667
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
2668
|
+
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
|
|
2669
|
+
sage: C.places_at_infinity()
|
|
2670
|
+
[Place (1/x, 1/x^2*y, 1/x^3*y^2, 1/x^4*y^3)]
|
|
2671
|
+
|
|
2672
|
+
::
|
|
2673
|
+
|
|
2674
|
+
sage: # needs sage.rings.finite_rings
|
|
2675
|
+
sage: F = GF(9)
|
|
2676
|
+
sage: A2.<x,y> = AffineSpace(F, 2)
|
|
2677
|
+
sage: C = A2.curve(y^3 + y - x^4)
|
|
2678
|
+
sage: C.places_at_infinity()
|
|
2679
|
+
[Place (1/x, 1/x^3*y^2)]
|
|
2680
|
+
|
|
2681
|
+
::
|
|
2682
|
+
|
|
2683
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2684
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
|
|
2685
|
+
sage: C.places_at_infinity()
|
|
2686
|
+
[Place (1/x, 1/x*z^2)]
|
|
2687
|
+
"""
|
|
2688
|
+
return list({p for f in self._coordinate_functions if f for p in f.poles()})
|
|
2689
|
+
|
|
2690
|
+
def places_on(self, point):
|
|
2691
|
+
"""
|
|
2692
|
+
Return the places on the closed point.
|
|
2693
|
+
|
|
2694
|
+
INPUT:
|
|
2695
|
+
|
|
2696
|
+
- ``point`` -- a closed point of the curve
|
|
2697
|
+
|
|
2698
|
+
OUTPUT: list of the places of the function field of the curve
|
|
2699
|
+
|
|
2700
|
+
EXAMPLES::
|
|
2701
|
+
|
|
2702
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
2703
|
+
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
|
|
2704
|
+
sage: C.singular_closed_points()
|
|
2705
|
+
[Point (x, y)]
|
|
2706
|
+
sage: p, = _
|
|
2707
|
+
sage: C.places_on(p)
|
|
2708
|
+
[Place (x, y, y^2, 1/x*y^3 + 1/x*y)]
|
|
2709
|
+
|
|
2710
|
+
::
|
|
2711
|
+
|
|
2712
|
+
sage: # needs sage.rings.finite_rings
|
|
2713
|
+
sage: k.<a> = GF(9)
|
|
2714
|
+
sage: A.<x,y> = AffineSpace(k, 2)
|
|
2715
|
+
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
|
|
2716
|
+
sage: pts = C.closed_points()
|
|
2717
|
+
sage: pts
|
|
2718
|
+
[Point (x, y + (a + 1)),
|
|
2719
|
+
Point (x, y + (-a - 1)),
|
|
2720
|
+
Point (x + (a + 1), y + (a - 1)),
|
|
2721
|
+
Point (x + (a + 1), y + (-a + 1)),
|
|
2722
|
+
Point (x - 1, y + (a + 1)),
|
|
2723
|
+
Point (x - 1, y + (-a - 1)),
|
|
2724
|
+
Point (x + (-a - 1), y + a),
|
|
2725
|
+
Point (x + (-a - 1), y + (-a)),
|
|
2726
|
+
Point (x + 1, y + 1),
|
|
2727
|
+
Point (x + 1, y - 1)]
|
|
2728
|
+
sage: p1, p2, p3 = pts[:3]
|
|
2729
|
+
sage: C.places_on(p1)
|
|
2730
|
+
[Place (x, y + a + 1)]
|
|
2731
|
+
sage: C.places_on(p2)
|
|
2732
|
+
[Place (x, y + 2*a + 2)]
|
|
2733
|
+
sage: C.places_on(p3)
|
|
2734
|
+
[Place (x + a + 1, y + a + 2)]
|
|
2735
|
+
|
|
2736
|
+
::
|
|
2737
|
+
|
|
2738
|
+
sage: # needs sage.rings.finite_rings
|
|
2739
|
+
sage: F.<a> = GF(8)
|
|
2740
|
+
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
|
|
2741
|
+
sage: Cp = Curve(x^3*y + y^3*z + x*z^3)
|
|
2742
|
+
sage: C = Cp.affine_patch(0)
|
|
2743
|
+
"""
|
|
2744
|
+
phi = self._map_to_function_field
|
|
2745
|
+
gs = [phi(g) for g in point.prime_ideal().gens()]
|
|
2746
|
+
fs = [g for g in gs if not g.is_zero()]
|
|
2747
|
+
f = fs.pop()
|
|
2748
|
+
places = []
|
|
2749
|
+
for p in f.zeros():
|
|
2750
|
+
if all(f.valuation(p) > 0 for f in fs):
|
|
2751
|
+
places.append(p)
|
|
2752
|
+
return places
|
|
2753
|
+
|
|
2754
|
+
def parametric_representation(self, place, name=None):
|
|
2755
|
+
"""
|
|
2756
|
+
Return a power series representation of the branch of the
|
|
2757
|
+
curve given by ``place``.
|
|
2758
|
+
|
|
2759
|
+
INPUT:
|
|
2760
|
+
|
|
2761
|
+
- ``place`` -- a place on the curve
|
|
2762
|
+
|
|
2763
|
+
EXAMPLES::
|
|
2764
|
+
|
|
2765
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
2766
|
+
sage: C = Curve(x^2 + y^2 -1)
|
|
2767
|
+
sage: p = C(0,1)
|
|
2768
|
+
sage: p.closed_point()
|
|
2769
|
+
Point (x, y - 1)
|
|
2770
|
+
sage: pl = _.place()
|
|
2771
|
+
sage: C.parametric_representation(pl)
|
|
2772
|
+
(s + ..., 1 - 1/2*s^2 - 1/8*s^4 - 1/16*s^6 + ...)
|
|
2773
|
+
|
|
2774
|
+
::
|
|
2775
|
+
|
|
2776
|
+
sage: # needs sage.rings.finite_rings
|
|
2777
|
+
sage: A.<x,y> = AffineSpace(GF(7^2), 2)
|
|
2778
|
+
sage: C = Curve(x^2 - x^4 - y^4)
|
|
2779
|
+
sage: p, = C.singular_closed_points()
|
|
2780
|
+
sage: b1, b2 = p.places()
|
|
2781
|
+
sage: xs, ys = C.parametric_representation(b1)
|
|
2782
|
+
sage: f = xs^2 - xs^4 - ys^4
|
|
2783
|
+
sage: [f.coefficient(i) for i in range(5)]
|
|
2784
|
+
[0, 0, 0, 0, 0]
|
|
2785
|
+
sage: xs, ys = C.parametric_representation(b2)
|
|
2786
|
+
sage: f = xs^2 - xs^4 - ys^4
|
|
2787
|
+
sage: [f.coefficient(i) for i in range(5)]
|
|
2788
|
+
[0, 0, 0, 0, 0]
|
|
2789
|
+
"""
|
|
2790
|
+
F = place.function_field()
|
|
2791
|
+
F_place = F.completion(place, prec=infinity, name=name)
|
|
2792
|
+
|
|
2793
|
+
return tuple(F_place._expand_lazy(c) for c in self._coordinate_functions)
|
|
2794
|
+
|
|
2795
|
+
|
|
2796
|
+
class IntegralAffineCurve_finite_field(IntegralAffineCurve):
|
|
2797
|
+
"""
|
|
2798
|
+
Integral affine curves.
|
|
2799
|
+
|
|
2800
|
+
INPUT:
|
|
2801
|
+
|
|
2802
|
+
- ``A`` -- an ambient space in which the curve lives
|
|
2803
|
+
|
|
2804
|
+
- ``X`` -- list of polynomials that define the curve
|
|
2805
|
+
|
|
2806
|
+
EXAMPLES::
|
|
2807
|
+
|
|
2808
|
+
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
|
|
2809
|
+
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A); C
|
|
2810
|
+
Affine Curve over Finite Field of size 11
|
|
2811
|
+
defined by -y^2 + x*z, -z^2 + y, -y*z + x
|
|
2812
|
+
sage: C.function_field()
|
|
2813
|
+
Function field in z defined by z^3 + 10*x
|
|
2814
|
+
"""
|
|
2815
|
+
_point = IntegralAffineCurvePoint_finite_field
|
|
2816
|
+
|
|
2817
|
+
def places(self, degree=1):
|
|
2818
|
+
"""
|
|
2819
|
+
Return all places on the curve of the ``degree``.
|
|
2820
|
+
|
|
2821
|
+
INPUT:
|
|
2822
|
+
|
|
2823
|
+
- ``degree`` -- positive integer
|
|
2824
|
+
|
|
2825
|
+
EXAMPLES::
|
|
2826
|
+
|
|
2827
|
+
sage: # needs sage.rings.finite_rings
|
|
2828
|
+
sage: F = GF(9)
|
|
2829
|
+
sage: A2.<x,y> = AffineSpace(F, 2)
|
|
2830
|
+
sage: C = A2.curve(y^3 + y - x^4)
|
|
2831
|
+
sage: C.places()
|
|
2832
|
+
[Place (1/x, 1/x^3*y^2),
|
|
2833
|
+
Place (x, y),
|
|
2834
|
+
Place (x, y + z2 + 1),
|
|
2835
|
+
Place (x, y + 2*z2 + 2),
|
|
2836
|
+
Place (x + z2, y + 2),
|
|
2837
|
+
Place (x + z2, y + z2),
|
|
2838
|
+
Place (x + z2, y + 2*z2 + 1),
|
|
2839
|
+
Place (x + z2 + 1, y + 1),
|
|
2840
|
+
Place (x + z2 + 1, y + z2 + 2),
|
|
2841
|
+
Place (x + z2 + 1, y + 2*z2),
|
|
2842
|
+
Place (x + 2*z2 + 1, y + 2),
|
|
2843
|
+
Place (x + 2*z2 + 1, y + z2),
|
|
2844
|
+
Place (x + 2*z2 + 1, y + 2*z2 + 1),
|
|
2845
|
+
Place (x + 2, y + 1),
|
|
2846
|
+
Place (x + 2, y + z2 + 2),
|
|
2847
|
+
Place (x + 2, y + 2*z2),
|
|
2848
|
+
Place (x + 2*z2, y + 2),
|
|
2849
|
+
Place (x + 2*z2, y + z2),
|
|
2850
|
+
Place (x + 2*z2, y + 2*z2 + 1),
|
|
2851
|
+
Place (x + 2*z2 + 2, y + 1),
|
|
2852
|
+
Place (x + 2*z2 + 2, y + z2 + 2),
|
|
2853
|
+
Place (x + 2*z2 + 2, y + 2*z2),
|
|
2854
|
+
Place (x + z2 + 2, y + 2),
|
|
2855
|
+
Place (x + z2 + 2, y + z2),
|
|
2856
|
+
Place (x + z2 + 2, y + 2*z2 + 1),
|
|
2857
|
+
Place (x + 1, y + 1),
|
|
2858
|
+
Place (x + 1, y + z2 + 2),
|
|
2859
|
+
Place (x + 1, y + 2*z2)]
|
|
2860
|
+
"""
|
|
2861
|
+
F = self.function_field()
|
|
2862
|
+
return F.places(degree)
|
|
2863
|
+
|
|
2864
|
+
@cached_method(do_pickle=True)
|
|
2865
|
+
def closed_points(self, degree=1):
|
|
2866
|
+
"""
|
|
2867
|
+
Return a list of the closed points of ``degree`` of the curve.
|
|
2868
|
+
|
|
2869
|
+
INPUT:
|
|
2870
|
+
|
|
2871
|
+
- ``degree`` -- positive integer
|
|
2872
|
+
|
|
2873
|
+
EXAMPLES::
|
|
2874
|
+
|
|
2875
|
+
sage: A.<x,y> = AffineSpace(GF(7), 2)
|
|
2876
|
+
sage: C = Curve(x^2 - x^4 - y^4)
|
|
2877
|
+
sage: C.closed_points()
|
|
2878
|
+
[Point (x, y),
|
|
2879
|
+
Point (x + 1, y),
|
|
2880
|
+
Point (x + 2, y + 2),
|
|
2881
|
+
Point (x + 2, y - 2),
|
|
2882
|
+
Point (x - 2, y + 2),
|
|
2883
|
+
Point (x - 2, y - 2),
|
|
2884
|
+
Point (x - 1, y)]
|
|
2885
|
+
"""
|
|
2886
|
+
F = self.function_field()
|
|
2887
|
+
places_above = F.places(degree)
|
|
2888
|
+
|
|
2889
|
+
points = []
|
|
2890
|
+
|
|
2891
|
+
# consider singular points
|
|
2892
|
+
for p in self.singular_closed_points():
|
|
2893
|
+
if p.degree() == degree:
|
|
2894
|
+
points.append(p)
|
|
2895
|
+
for place in p.places():
|
|
2896
|
+
if place.degree() == degree:
|
|
2897
|
+
places_above.remove(place)
|
|
2898
|
+
|
|
2899
|
+
for place in places_above:
|
|
2900
|
+
try:
|
|
2901
|
+
p = self.place_to_closed_point(place)
|
|
2902
|
+
except ValueError: # place is at infinity
|
|
2903
|
+
continue
|
|
2904
|
+
assert p.degree() == degree # sanity check
|
|
2905
|
+
points.append(p)
|
|
2906
|
+
|
|
2907
|
+
return points
|
|
2908
|
+
|
|
2909
|
+
|
|
2910
|
+
class IntegralAffinePlaneCurve(IntegralAffineCurve, AffinePlaneCurve_field):
|
|
2911
|
+
_point = IntegralAffinePlaneCurvePoint
|
|
2912
|
+
|
|
2913
|
+
|
|
2914
|
+
class IntegralAffinePlaneCurve_finite_field(AffinePlaneCurve_finite_field, IntegralAffineCurve_finite_field):
|
|
2915
|
+
"""
|
|
2916
|
+
Integral affine plane curve over a finite field.
|
|
2917
|
+
|
|
2918
|
+
EXAMPLES::
|
|
2919
|
+
|
|
2920
|
+
sage: # needs sage.rings.finite_rings
|
|
2921
|
+
sage: A.<x,y> = AffineSpace(GF(8), 2)
|
|
2922
|
+
sage: C = Curve(x^5 + y^5 + x*y + 1); C
|
|
2923
|
+
Affine Plane Curve over Finite Field in z3 of size 2^3
|
|
2924
|
+
defined by x^5 + y^5 + x*y + 1
|
|
2925
|
+
sage: C.function_field()
|
|
2926
|
+
Function field in y defined by y^5 + x*y + x^5 + 1
|
|
2927
|
+
"""
|
|
2928
|
+
_point = IntegralAffinePlaneCurvePoint_finite_field
|