passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1187 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.flint sage.libs.pari
|
|
3
|
+
r"""
|
|
4
|
+
Atkin/Hecke series for overconvergent modular forms
|
|
5
|
+
|
|
6
|
+
This file contains a function :func:`~hecke_series` to compute the
|
|
7
|
+
characteristic series `P(t)` modulo `p^m` of the Atkin/Hecke operator `U_p`
|
|
8
|
+
upon the space of `p`-adic overconvergent modular forms of level `\Gamma_0(N)`.
|
|
9
|
+
The input weight ``k`` can also be a list ``klist`` of weights which must all
|
|
10
|
+
be congruent modulo `(p-1)`.
|
|
11
|
+
|
|
12
|
+
Two optional parameters ``modformsring`` and ``weightbound`` can be specified,
|
|
13
|
+
and in most cases for levels `N > 1` they can be used to obtain the output more
|
|
14
|
+
quickly. When `m \le k-1` the output `P(t)` is also equal modulo `p^m` to the
|
|
15
|
+
reverse characteristic polynomial of the Atkin operator `U_p` on the space of
|
|
16
|
+
classical modular forms of weight `k` and level `\Gamma_0(Np)`. In addition,
|
|
17
|
+
provided `m \le (k-2)/2` the output `P(t)` is equal modulo `p^m` to the reverse
|
|
18
|
+
characteristic polynomial of the Hecke operator `T_p` on the space of classical
|
|
19
|
+
modular forms of weight `k` and level `\Gamma_0(N)`. The function is based upon
|
|
20
|
+
the main algorithm in [Lau2011]_, and has linear running time in the logarithm of
|
|
21
|
+
the weight `k`.
|
|
22
|
+
|
|
23
|
+
AUTHORS:
|
|
24
|
+
|
|
25
|
+
- Alan G.B. Lauder (2011-11-10): original implementation.
|
|
26
|
+
- David Loeffler (2011-12): minor optimizations in review stage.
|
|
27
|
+
|
|
28
|
+
EXAMPLES:
|
|
29
|
+
|
|
30
|
+
The characteristic series of the `U_{11}` operator modulo `11^{10}` on the space of 11-adic overconvergent
|
|
31
|
+
modular forms of level 1 and weight 10000::
|
|
32
|
+
|
|
33
|
+
sage: hecke_series(11, 1, 10000, 10)
|
|
34
|
+
10009319650*x^4 + 25618839103*x^3 + 6126165716*x^2 + 10120524732*x + 1
|
|
35
|
+
|
|
36
|
+
The characteristic series of the U_5 operator modulo 5^5 on the space of 5-adic overconvergent
|
|
37
|
+
modular forms of level 3 and weight 1000::
|
|
38
|
+
|
|
39
|
+
sage: hecke_series(5, 3, 1000, 5)
|
|
40
|
+
1875*x^6 + 1250*x^5 + 1200*x^4 + 1385*x^3 + 1131*x^2 + 2533*x + 1
|
|
41
|
+
|
|
42
|
+
The characteristic series of the `U_7` operator modulo `7^5` on the space of 7-adic overconvergent
|
|
43
|
+
modular forms of level 5 and weight 1000. Here the optional parameter ``modformsring`` is set to ``True``::
|
|
44
|
+
|
|
45
|
+
sage: hecke_series(7, 5, 1000, 5, modformsring=True) # long time (21s on sage.math, 2012)
|
|
46
|
+
12005*x^7 + 10633*x^6 + 6321*x^5 + 6216*x^4 + 5412*x^3 + 4927*x^2 + 4906*x + 1
|
|
47
|
+
|
|
48
|
+
The characteristic series of the `U_{13}` operator modulo `13^5` on the space of 13-adic overconvergent
|
|
49
|
+
modular forms of level 2 and weight 10000. Here the optional parameter ``weightbound`` is set to 4::
|
|
50
|
+
|
|
51
|
+
sage: hecke_series(13, 2, 10000, 5, weightbound=4) # long time (17s on sage.math, 2012)
|
|
52
|
+
325156*x^5 + 109681*x^4 + 188617*x^3 + 220858*x^2 + 269566*x + 1
|
|
53
|
+
|
|
54
|
+
A list containing the characteristic series of the `U_{23}` operator modulo `23^{10}` on the spaces of
|
|
55
|
+
23-adic overconvergent modular forms of level 1 and weights 1000 and 1022, respectively.
|
|
56
|
+
|
|
57
|
+
::
|
|
58
|
+
|
|
59
|
+
sage: hecke_series(23, 1, [1000, 1022], 10)
|
|
60
|
+
[7204610645852*x^6 + 2117949463923*x^5 + 24152587827773*x^4 + 31270783576528*x^3 + 30336366679797*x^2
|
|
61
|
+
+ 29197235447073*x + 1, 32737396672905*x^4 + 36141830902187*x^3 + 16514246534976*x^2 + 38886059530878*x + 1]
|
|
62
|
+
"""
|
|
63
|
+
|
|
64
|
+
# ****************************************************************************
|
|
65
|
+
# Copyright (C) 2011 Alan Lauder <lauder@maths.ox.ac.uk>
|
|
66
|
+
#
|
|
67
|
+
# This program is free software: you can redistribute it and/or modify
|
|
68
|
+
# it under the terms of the GNU General Public License as published by
|
|
69
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
70
|
+
# (at your option) any later version.
|
|
71
|
+
# https://www.gnu.org/licenses/
|
|
72
|
+
# ****************************************************************************
|
|
73
|
+
|
|
74
|
+
from sage.arith.misc import valuation
|
|
75
|
+
from sage.functions.other import floor, ceil
|
|
76
|
+
from sage.matrix.constructor import matrix, random_matrix
|
|
77
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
78
|
+
from sage.misc.functional import dimension, transpose, charpoly
|
|
79
|
+
from sage.misc.timing import cputime
|
|
80
|
+
from sage.misc.verbose import verbose
|
|
81
|
+
from sage.modular.dims import dimension_modular_forms
|
|
82
|
+
from sage.modular.modform.all import ModularForms, ModularFormsRing, delta_qexp, eisenstein_series_qexp
|
|
83
|
+
from sage.rings.finite_rings.finite_field_constructor import GF
|
|
84
|
+
from sage.rings.finite_rings.integer_mod_ring import Zmod
|
|
85
|
+
from sage.rings.infinity import Infinity
|
|
86
|
+
from sage.rings.integer import Integer
|
|
87
|
+
from sage.rings.integer_ring import ZZ
|
|
88
|
+
|
|
89
|
+
# AUXILIARY CODE: SPACES OF MODULAR FORMS AND LINEAR ALGEBRA
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def compute_G(p, F):
|
|
93
|
+
r"""
|
|
94
|
+
Given a power series `F \in R[[q]]^\times`, for some ring `R`, and an
|
|
95
|
+
integer `p`, compute the quotient
|
|
96
|
+
|
|
97
|
+
.. MATH::
|
|
98
|
+
|
|
99
|
+
\frac{F(q)}{F(q^p)}.
|
|
100
|
+
|
|
101
|
+
Used by :func:`level1_UpGj` and by :func:`higher_level_UpGj`, with `F` equal
|
|
102
|
+
to the Eisenstein series `E_{p-1}`.
|
|
103
|
+
|
|
104
|
+
INPUT:
|
|
105
|
+
|
|
106
|
+
- ``p`` -- integer
|
|
107
|
+
- ``F`` -- power series (with invertible constant term)
|
|
108
|
+
|
|
109
|
+
OUTPUT:
|
|
110
|
+
|
|
111
|
+
the power series `F(q) / F(q^p)`, to the same precision as `F`
|
|
112
|
+
|
|
113
|
+
EXAMPLES::
|
|
114
|
+
|
|
115
|
+
sage: E = sage.modular.overconvergent.hecke_series.eisenstein_series_qexp(2, 12, Zmod(9),normalization='constant')
|
|
116
|
+
sage: sage.modular.overconvergent.hecke_series.compute_G(3, E)
|
|
117
|
+
1 + 3*q + 3*q^4 + 6*q^7 + O(q^12)
|
|
118
|
+
"""
|
|
119
|
+
Fp = (F.truncate_powerseries(ceil(F.prec() / ZZ(p)))).V(p)
|
|
120
|
+
return F / Fp
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def low_weight_bases(N, p, m, NN, weightbound):
|
|
124
|
+
r"""
|
|
125
|
+
Return a list of integral bases of modular forms of level `N` and (even)
|
|
126
|
+
weight at most ``weightbound``, as `q`-expansions modulo `(p^m,q^{NN})`.
|
|
127
|
+
|
|
128
|
+
These forms are obtained by reduction mod `p^m` from an integral basis in
|
|
129
|
+
Hermite normal form (so they are not necessarily in reduced row echelon
|
|
130
|
+
form mod `p^m`, but they are not far off).
|
|
131
|
+
|
|
132
|
+
INPUT:
|
|
133
|
+
|
|
134
|
+
- ``N`` -- positive integer (level)
|
|
135
|
+
- ``p`` -- prime
|
|
136
|
+
- ``m``, ``NN`` -- positive integers
|
|
137
|
+
- ``weightbound`` -- (even) positive integer
|
|
138
|
+
|
|
139
|
+
OUTPUT: list of lists of `q`-expansions modulo `(p^m,q^{NN})`
|
|
140
|
+
|
|
141
|
+
EXAMPLES::
|
|
142
|
+
|
|
143
|
+
sage: from sage.modular.overconvergent.hecke_series import low_weight_bases
|
|
144
|
+
sage: low_weight_bases(2, 5, 3, 5, 6)
|
|
145
|
+
[[1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + O(q^5)],
|
|
146
|
+
[1 + 115*q^2 + 35*q^4 + O(q^5), q + 8*q^2 + 28*q^3 + 64*q^4 + O(q^5)],
|
|
147
|
+
[1 + 121*q^2 + 118*q^4 + O(q^5), q + 32*q^2 + 119*q^3 + 24*q^4 + O(q^5)]]
|
|
148
|
+
"""
|
|
149
|
+
generators = []
|
|
150
|
+
|
|
151
|
+
for k in range(2,weightbound + 2, 2):
|
|
152
|
+
b = ModularForms(N, k, base_ring=Zmod(p ** m)).q_expansion_basis(prec=NN)
|
|
153
|
+
generators.append(list(b))
|
|
154
|
+
return generators
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def random_low_weight_bases(N, p, m, NN, weightbound):
|
|
158
|
+
r"""
|
|
159
|
+
Return list of random integral bases of modular forms of level `N` and
|
|
160
|
+
(even) weight at most weightbound with coefficients reduced modulo
|
|
161
|
+
`(p^m,q^{NN})`.
|
|
162
|
+
|
|
163
|
+
INPUT:
|
|
164
|
+
|
|
165
|
+
- ``N`` -- positive integer (level)
|
|
166
|
+
- ``p`` -- prime
|
|
167
|
+
- ``m``, ``NN`` -- positive integers
|
|
168
|
+
- ``weightbound`` -- (even) positive integer
|
|
169
|
+
|
|
170
|
+
OUTPUT: list of lists of `q`-expansions modulo `(p^m,q^{NN})`
|
|
171
|
+
|
|
172
|
+
EXAMPLES::
|
|
173
|
+
|
|
174
|
+
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases
|
|
175
|
+
sage: S = random_low_weight_bases(3, 7, 2, 5, 6); S # random
|
|
176
|
+
[[4 + 48*q + 46*q^2 + 48*q^3 + 42*q^4 + O(q^5)],
|
|
177
|
+
[3 + 5*q + 45*q^2 + 22*q^3 + 22*q^4 + O(q^5),
|
|
178
|
+
1 + 3*q + 27*q^2 + 27*q^3 + 23*q^4 + O(q^5)],
|
|
179
|
+
[2*q + 4*q^2 + 16*q^3 + 48*q^4 + O(q^5),
|
|
180
|
+
2 + 6*q + q^2 + 3*q^3 + 43*q^4 + O(q^5),
|
|
181
|
+
1 + 2*q + 6*q^2 + 14*q^3 + 4*q^4 + O(q^5)]]
|
|
182
|
+
sage: S[0][0].parent()
|
|
183
|
+
Power Series Ring in q over Ring of integers modulo 49
|
|
184
|
+
sage: S[0][0].prec()
|
|
185
|
+
5
|
|
186
|
+
"""
|
|
187
|
+
LWB = low_weight_bases(N,p,m,NN,weightbound)
|
|
188
|
+
# this is "approximately" row reduced (it's the mod p^n reduction of a
|
|
189
|
+
# matrix over ZZ in Hermite form)
|
|
190
|
+
RandomLWB = []
|
|
191
|
+
for i in range(len(LWB)):
|
|
192
|
+
n = len(LWB[i])
|
|
193
|
+
c = random_matrix(Zmod(p ** m), n)
|
|
194
|
+
while c.det() % p == 0:
|
|
195
|
+
c = random_matrix(Zmod(p ** m), n)
|
|
196
|
+
RandomLWB.append([ sum([c[j, k] * LWB[i][k] for k in range(n)]) for j in range(n) ])
|
|
197
|
+
|
|
198
|
+
return RandomLWB
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def low_weight_generators(N, p, m, NN):
|
|
202
|
+
r"""
|
|
203
|
+
Return a list of lists of modular forms, and an even natural number.
|
|
204
|
+
|
|
205
|
+
The first output is a list of lists of modular forms reduced modulo
|
|
206
|
+
`(p^m,q^{NN})` which generate the `(\ZZ / p^m \ZZ)`-algebra of mod `p^m`
|
|
207
|
+
modular forms of weight at most 8, and the second output is the largest
|
|
208
|
+
weight among the forms in the generating set.
|
|
209
|
+
|
|
210
|
+
We (Alan Lauder and David Loeffler, the author and reviewer of this patch)
|
|
211
|
+
conjecture that forms of weight at most 8 are always sufficient to generate
|
|
212
|
+
the algebra of mod `p^m` modular forms of all weights. (We believe 6 to be
|
|
213
|
+
sufficient, and we can prove that 4 is sufficient when there are no
|
|
214
|
+
elliptic points, but using weights up to 8 acts as a consistency check.)
|
|
215
|
+
|
|
216
|
+
INPUT:
|
|
217
|
+
|
|
218
|
+
- ``N`` -- positive integer (level)
|
|
219
|
+
- ``p`` -- prime
|
|
220
|
+
- ``m``, ``NN`` -- positive integers
|
|
221
|
+
|
|
222
|
+
OUTPUT: a tuple consisting of:
|
|
223
|
+
|
|
224
|
+
- a list of lists of `q`-expansions modulo `(p^m,q^{NN})`,
|
|
225
|
+
- an even natural number (twice the length of the list).
|
|
226
|
+
|
|
227
|
+
EXAMPLES::
|
|
228
|
+
|
|
229
|
+
sage: from sage.modular.overconvergent.hecke_series import low_weight_generators
|
|
230
|
+
sage: low_weight_generators(3, 7, 3, 10) # needs sage.combinat
|
|
231
|
+
([[1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^9 + O(q^10)],
|
|
232
|
+
[1 + 240*q^3 + 102*q^6 + 203*q^9 + O(q^10)],
|
|
233
|
+
[1 + 182*q^3 + 175*q^6 + 161*q^9 + O(q^10)]], 6)
|
|
234
|
+
sage: low_weight_generators(11, 5, 3, 10) # needs sage.combinat
|
|
235
|
+
([[1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10),
|
|
236
|
+
q + 123*q^2 + 124*q^3 + 2*q^4 + q^5 + 2*q^6 + 123*q^7 + 123*q^9 + O(q^10)],
|
|
237
|
+
[q + 116*q^4 + 115*q^5 + 102*q^6 + 121*q^7 + 96*q^8 + 106*q^9 + O(q^10)]], 4)
|
|
238
|
+
"""
|
|
239
|
+
M = ModularFormsRing(N, base_ring=Zmod(p))
|
|
240
|
+
b = M.gen_forms(maxweight=8)
|
|
241
|
+
weightbound = max(f.weight() for f in b)
|
|
242
|
+
generators = [[f.qexp(NN).change_ring(Zmod(p ** m))
|
|
243
|
+
for f in b if f.weight() == k]
|
|
244
|
+
for k in range(2, weightbound + 2, 2)]
|
|
245
|
+
return generators, weightbound
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def random_solution(B, K):
|
|
249
|
+
r"""
|
|
250
|
+
Return a random solution in nonnegative integers to the equation `a_1 + 2
|
|
251
|
+
a_2 + 3 a_3 + ... + B a_B = K`, using a greedy algorithm.
|
|
252
|
+
|
|
253
|
+
Note that this is *much* faster than using
|
|
254
|
+
``WeightedIntegerVectors.random_element()``.
|
|
255
|
+
|
|
256
|
+
INPUT:
|
|
257
|
+
|
|
258
|
+
- ``B``, ``K`` -- nonnegative integers
|
|
259
|
+
|
|
260
|
+
OUTPUT: list
|
|
261
|
+
|
|
262
|
+
EXAMPLES::
|
|
263
|
+
|
|
264
|
+
sage: from sage.modular.overconvergent.hecke_series import random_solution
|
|
265
|
+
sage: s = random_solution(5, 10)
|
|
266
|
+
sage: sum(s[i] * (i + 1) for i in range(5))
|
|
267
|
+
10
|
|
268
|
+
sage: S = set()
|
|
269
|
+
sage: while len(S) != 30:
|
|
270
|
+
....: s = random_solution(5, 10)
|
|
271
|
+
....: assert sum(s[i] * (i + 1) for i in range(5)) == 10
|
|
272
|
+
....: S.add(tuple(s))
|
|
273
|
+
"""
|
|
274
|
+
a = []
|
|
275
|
+
for i in range(B,1,-1):
|
|
276
|
+
ai = ZZ.random_element((K // i) + 1)
|
|
277
|
+
a.append(ai)
|
|
278
|
+
K = K - ai*i
|
|
279
|
+
a.append(K)
|
|
280
|
+
a.reverse()
|
|
281
|
+
|
|
282
|
+
return a
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
# AUXILIARY CODE: ECHELON FORM
|
|
286
|
+
|
|
287
|
+
def ech_form(A, p):
|
|
288
|
+
r"""
|
|
289
|
+
Return echelon form of matrix ``A`` over the ring of integers modulo
|
|
290
|
+
`p^m`, for some prime `p` and `m \ge 1`.
|
|
291
|
+
|
|
292
|
+
.. TODO::
|
|
293
|
+
|
|
294
|
+
This should be moved to :mod:`sage.matrix.matrix_modn_dense` at some
|
|
295
|
+
point.
|
|
296
|
+
|
|
297
|
+
INPUT:
|
|
298
|
+
|
|
299
|
+
- ``A`` -- matrix over ``Zmod(p^m)`` for some m
|
|
300
|
+
- ``p`` -- prime p
|
|
301
|
+
|
|
302
|
+
OUTPUT: matrix over ``Zmod(p^m)``
|
|
303
|
+
|
|
304
|
+
EXAMPLES::
|
|
305
|
+
|
|
306
|
+
sage: from sage.modular.overconvergent.hecke_series import ech_form
|
|
307
|
+
sage: A = MatrixSpace(Zmod(5 ** 3), 3)([1, 2, 3, 4, 5, 6, 7, 8, 9])
|
|
308
|
+
sage: ech_form(A, 5)
|
|
309
|
+
[1 2 3]
|
|
310
|
+
[0 1 2]
|
|
311
|
+
[0 0 0]
|
|
312
|
+
"""
|
|
313
|
+
S = A[0, 0].parent()
|
|
314
|
+
a = A.nrows()
|
|
315
|
+
b = A.ncols()
|
|
316
|
+
|
|
317
|
+
k = 0 # position pivoting row will be swapped to
|
|
318
|
+
for j in range(b):
|
|
319
|
+
if k < a:
|
|
320
|
+
pivj = k # find new pivot
|
|
321
|
+
for i in range(k + 1, a):
|
|
322
|
+
if valuation(A[i, j], p) < valuation(A[pivj, j], p):
|
|
323
|
+
pivj = i
|
|
324
|
+
if valuation(A[pivj, j], p) < +Infinity: # else column already reduced
|
|
325
|
+
A.swap_rows(pivj, k)
|
|
326
|
+
A.set_row_to_multiple_of_row(k, k, S(ZZ(A[k, j])/(p ** valuation(A[k, j], p))) ** (-1))
|
|
327
|
+
for i in range(k + 1, a):
|
|
328
|
+
A.add_multiple_of_row(i, k, S(-ZZ(A[i, j]) / ZZ(A[k, j])))
|
|
329
|
+
k = k + 1
|
|
330
|
+
|
|
331
|
+
return A
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
# *** COMPLEMENTARY SPACES FOR LEVEL N > 1 ***
|
|
335
|
+
|
|
336
|
+
def random_new_basis_modp(N, p, k, LWBModp, TotalBasisModp, elldash, bound):
|
|
337
|
+
r"""
|
|
338
|
+
Return a list of lists of lists ``[j, a]`` encoding a choice of basis for
|
|
339
|
+
the `i`-th complementary space `W_i`, as explained in the documentation for the
|
|
340
|
+
function :func:`complementary_spaces_modp`.
|
|
341
|
+
|
|
342
|
+
INPUT:
|
|
343
|
+
|
|
344
|
+
- ``N`` -- positive integer at least 2 and not divisible by `p` (level)
|
|
345
|
+
- ``p`` -- prime at least 5
|
|
346
|
+
- ``k`` -- nonnegative integer
|
|
347
|
+
- ``LWBModp`` -- list of list of `q`-expansions modulo `(p,q^\text{elldash})`
|
|
348
|
+
- ``TotalBasisModp`` -- matrix over `\mathrm{GF}(p)`
|
|
349
|
+
- ``elldash`` -- positive integer
|
|
350
|
+
- ``bound`` -- positive even integer (twice the length of the list ``LWBModp``)
|
|
351
|
+
|
|
352
|
+
OUTPUT: list of lists of lists ``[j, a]``
|
|
353
|
+
|
|
354
|
+
.. NOTE::
|
|
355
|
+
|
|
356
|
+
As well as having a non-trivial return value, this function also
|
|
357
|
+
modifies the input matrix ``TotalBasisModp``.
|
|
358
|
+
|
|
359
|
+
EXAMPLES::
|
|
360
|
+
|
|
361
|
+
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp
|
|
362
|
+
sage: LWB = random_low_weight_bases(2, 5, 2, 4, 6)
|
|
363
|
+
sage: LWBModp = [ [f.change_ring(GF(5)) for f in x] for x in LWB]
|
|
364
|
+
sage: complementary_spaces_modp(2, 5, 2, 3, 4, LWBModp, 4) # random, indirect doctest
|
|
365
|
+
[[[[0, 0]]], [[[0, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1], [1, 1]]]]
|
|
366
|
+
"""
|
|
367
|
+
|
|
368
|
+
R = LWBModp[0][0].parent()
|
|
369
|
+
|
|
370
|
+
# Case k0 + i(p-1) = 0 + 0(p-1) = 0
|
|
371
|
+
|
|
372
|
+
if k == 0:
|
|
373
|
+
TotalBasisModp[0,0] = 1
|
|
374
|
+
return [[]]
|
|
375
|
+
|
|
376
|
+
# Case k = k0 + i(p-1) > 0
|
|
377
|
+
|
|
378
|
+
di = dimension_modular_forms(N, k)
|
|
379
|
+
diminus1 = dimension_modular_forms(N, k - (p - 1))
|
|
380
|
+
mi = di - diminus1
|
|
381
|
+
|
|
382
|
+
NewBasisCode = []
|
|
383
|
+
rk = diminus1
|
|
384
|
+
for i in range(1, mi + 1):
|
|
385
|
+
while (rk < diminus1 + i):
|
|
386
|
+
# take random product of basis elements
|
|
387
|
+
exps = random_solution(bound // 2, k // 2)
|
|
388
|
+
TotalBasisi = R(1)
|
|
389
|
+
TotalBasisiCode = []
|
|
390
|
+
for j in range(len(exps)):
|
|
391
|
+
for l in range(exps[j]):
|
|
392
|
+
a = ZZ.random_element(len(LWBModp[j]))
|
|
393
|
+
TotalBasisi = TotalBasisi * LWBModp[j][a]
|
|
394
|
+
TotalBasisiCode.append([j, a])
|
|
395
|
+
TotalBasisModp[rk] = [TotalBasisi[j] for j in range(elldash)]
|
|
396
|
+
TotalBasisModp.echelonize()
|
|
397
|
+
rk = TotalBasisModp.rank()
|
|
398
|
+
NewBasisCode.append(TotalBasisiCode) # this choice increased the rank
|
|
399
|
+
|
|
400
|
+
return NewBasisCode
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def complementary_spaces_modp(N, p, k0, n, elldash, LWBModp, bound):
|
|
404
|
+
r"""
|
|
405
|
+
Return a list of lists of lists of lists ``[j, a]``. The pairs ``[j, a]``
|
|
406
|
+
encode the choice of the `a`-th element in the `j`-th list of the input
|
|
407
|
+
``LWBModp``, i.e., the `a`-th element in a particular basis modulo
|
|
408
|
+
`(p,q^\text{elldash})` for the space of modular forms of level
|
|
409
|
+
`\Gamma_0(N)` and weight `2(j+1)`. The list ``[[j_1, a_1], ...,[j_r, a_r]]``
|
|
410
|
+
then encodes the product of the r modular forms associated to each
|
|
411
|
+
``[j_i, a_i]``; this has weight `k + (p-1)i` for some `0 \le i \le n`; here
|
|
412
|
+
the `i` is such that this *list of lists* occurs in the `i`-th list of the
|
|
413
|
+
output. The `i`-th list of the output thus encodes a choice of basis for the
|
|
414
|
+
complementary space `W_i` which occurs in Step 2 of Algorithm 2 in [Lau2011]_.
|
|
415
|
+
The idea is that one searches for this space `W_i` first modulo
|
|
416
|
+
`(p,q^\text{elldash})` and then, having found the correct products of
|
|
417
|
+
generating forms, one can reconstruct these spaces modulo
|
|
418
|
+
`(p^\text{mdash},q^\text{elldashp})` using the output of this function.
|
|
419
|
+
(This idea is based upon a suggestion of John Voight.)
|
|
420
|
+
|
|
421
|
+
INPUT:
|
|
422
|
+
|
|
423
|
+
- ``N`` -- positive integer at least 2 and not divisible by `p` (level)
|
|
424
|
+
- ``p`` -- prime at least 5
|
|
425
|
+
- ``k0`` -- integer in range 0 to `p-1`
|
|
426
|
+
- ``n``, ``elldash`` -- positive integers
|
|
427
|
+
- ``LWBModp`` -- list of lists of `q`-expansions over `GF(p)`
|
|
428
|
+
- ``bound`` -- positive even integer (twice the length of the list ``LWBModp``)
|
|
429
|
+
|
|
430
|
+
OUTPUT: list of list of list of lists
|
|
431
|
+
|
|
432
|
+
EXAMPLES::
|
|
433
|
+
|
|
434
|
+
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp
|
|
435
|
+
sage: LWB = random_low_weight_bases(2, 5, 2, 4, 6)
|
|
436
|
+
sage: LWBModp = [[f.change_ring(Zmod(5)) for f in x] for x in LWB]
|
|
437
|
+
sage: complementary_spaces_modp(2, 5, 0, 3, 4, LWBModp, 6) # random, indirect doctest
|
|
438
|
+
[[[]], [[[0, 0], [0, 0]]], [[[0, 0], [2, 1]]], [[[0, 0], [0, 0], [0, 0], [2, 1]]]]
|
|
439
|
+
"""
|
|
440
|
+
CompSpacesCode = []
|
|
441
|
+
ell = dimension_modular_forms(N, k0 + n * (p - 1))
|
|
442
|
+
TotalBasisModp = matrix(GF(p), ell, elldash) # zero matrix
|
|
443
|
+
|
|
444
|
+
for i in range(n + 1):
|
|
445
|
+
NewBasisCodemi = random_new_basis_modp(N, p, k0 + i * (p - 1), LWBModp, TotalBasisModp, elldash, bound)
|
|
446
|
+
# TotalBasisModp is passed by reference and updated in function
|
|
447
|
+
CompSpacesCode.append(NewBasisCodemi)
|
|
448
|
+
|
|
449
|
+
return CompSpacesCode
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
def complementary_spaces(N, p, k0, n, mdash, elldashp, elldash, modformsring, bound):
|
|
453
|
+
r"""
|
|
454
|
+
Return a list ``Ws``, each element in which is a list ``Wi`` of
|
|
455
|
+
`q`-expansions modulo `(p^\text{mdash},q^\text{elldashp})`. The list ``Wi`` is
|
|
456
|
+
a basis for a choice of complementary space in level `\Gamma_0(N)` and
|
|
457
|
+
weight `k` to the image of weight `k - (p-1)` forms under multiplication by
|
|
458
|
+
the Eisenstein series `E_{p-1}`.
|
|
459
|
+
|
|
460
|
+
The lists ``Wi`` play the same role as `W_i` in Step 2 of Algorithm 2 in
|
|
461
|
+
[Lau2011]_. (The parameters ``k0, n, mdash, elldash, elldashp = elldash * p`` are
|
|
462
|
+
defined as in Step 1 of that algorithm when this function is used in
|
|
463
|
+
:func:`hecke_series`.) However, the complementary spaces are computed in a
|
|
464
|
+
different manner, combining a suggestion of David Loeffler with one of John
|
|
465
|
+
Voight. That is, one builds these spaces recursively using random products
|
|
466
|
+
of forms in low weight, first searching for suitable products modulo
|
|
467
|
+
`(p,q^\text{elldash})`, and then later reconstructing only the required
|
|
468
|
+
products to the full precision modulo `(p^\text{mdash},q^\text{elldashp})`. The
|
|
469
|
+
forms in low weight are chosen from either bases of all forms up to weight
|
|
470
|
+
``bound`` or from a (tentative) generating set for the ring of all modular
|
|
471
|
+
forms, according to whether ``modformsring`` is ``False`` or ``True``.
|
|
472
|
+
|
|
473
|
+
INPUT:
|
|
474
|
+
|
|
475
|
+
- ``N`` -- positive integer at least 2 and not divisible by p (level)
|
|
476
|
+
- ``p`` -- prime at least 5
|
|
477
|
+
- ``k0`` -- integer in range 0 to `p - 1`
|
|
478
|
+
- ``n``, ``mdash``, ``elldashp``, ``elldash`` -- positive integers
|
|
479
|
+
- ``modformsring`` -- boolean
|
|
480
|
+
- ``bound`` -- positive (even) integer (ignored if ``modformsring`` is True)
|
|
481
|
+
|
|
482
|
+
OUTPUT:
|
|
483
|
+
|
|
484
|
+
- list of lists of `q`-expansions modulo
|
|
485
|
+
`(p^\text{mdash},q^\text{elldashp})`.
|
|
486
|
+
|
|
487
|
+
EXAMPLES::
|
|
488
|
+
|
|
489
|
+
sage: from sage.modular.overconvergent.hecke_series import complementary_spaces
|
|
490
|
+
sage: complementary_spaces(2, 5, 0, 3, 2, 5, 4, True, 6) # random # needs sage.combinat
|
|
491
|
+
[[1],
|
|
492
|
+
[1 + 23*q + 24*q^2 + 19*q^3 + 7*q^4 + O(q^5)],
|
|
493
|
+
[1 + 21*q + 2*q^2 + 17*q^3 + 14*q^4 + O(q^5)],
|
|
494
|
+
[1 + 19*q + 9*q^2 + 11*q^3 + 9*q^4 + O(q^5)]]
|
|
495
|
+
sage: complementary_spaces(2, 5, 0, 3, 2, 5, 4, False, 6) # random # needs sage.combinat
|
|
496
|
+
[[1],
|
|
497
|
+
[3 + 4*q + 2*q^2 + 12*q^3 + 11*q^4 + O(q^5)],
|
|
498
|
+
[2 + 2*q + 14*q^2 + 19*q^3 + 18*q^4 + O(q^5)],
|
|
499
|
+
[6 + 8*q + 10*q^2 + 23*q^3 + 4*q^4 + O(q^5)]]
|
|
500
|
+
"""
|
|
501
|
+
if not modformsring:
|
|
502
|
+
LWB = random_low_weight_bases(N, p, mdash, elldashp, bound)
|
|
503
|
+
else:
|
|
504
|
+
LWB, bound = low_weight_generators(N, p, mdash, elldashp)
|
|
505
|
+
|
|
506
|
+
LWBModp = [ [ f.change_ring(GF(p)).truncate_powerseries(elldash) for f in x] for x in LWB]
|
|
507
|
+
|
|
508
|
+
CompSpacesCode = complementary_spaces_modp(N, p, k0, n, elldash, LWBModp, bound)
|
|
509
|
+
|
|
510
|
+
Ws = []
|
|
511
|
+
Epm1 = eisenstein_series_qexp(p - 1, prec=elldashp, K=Zmod(p**mdash), normalization='constant')
|
|
512
|
+
for i in range(n + 1):
|
|
513
|
+
CompSpacesCodemi = CompSpacesCode[i]
|
|
514
|
+
Wi = []
|
|
515
|
+
for k in range(len(CompSpacesCodemi)):
|
|
516
|
+
CompSpacesCodemik = CompSpacesCodemi[k]
|
|
517
|
+
Wik = Epm1.parent()(1)
|
|
518
|
+
for j in range(len(CompSpacesCodemik)):
|
|
519
|
+
l = CompSpacesCodemik[j][0]
|
|
520
|
+
index = CompSpacesCodemik[j][1]
|
|
521
|
+
Wik = Wik*LWB[l][index]
|
|
522
|
+
Wi.append(Wik)
|
|
523
|
+
Ws.append(Wi)
|
|
524
|
+
|
|
525
|
+
return Ws
|
|
526
|
+
|
|
527
|
+
# AUXILIARY CODE: KATZ EXPANSIONS
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
def higher_level_katz_exp(p, N, k0, m, mdash, elldash, elldashp, modformsring, bound):
|
|
531
|
+
r"""
|
|
532
|
+
Return a matrix `e` of size ``ell x elldashp`` over the integers modulo
|
|
533
|
+
`p^\text{mdash}`, and the Eisenstein series `E_{p-1} = 1 + .\dots \bmod
|
|
534
|
+
(p^\text{mdash},q^\text{elldashp})`. The matrix `e` contains the coefficients
|
|
535
|
+
of the elements `e_{i,s}` in the Katz expansions basis in Step 3 of
|
|
536
|
+
Algorithm 2 in [Lau2011]_ when one takes as input to that algorithm
|
|
537
|
+
`p, N, m` and `k` and define ``k0``, ``mdash``, ``n``, ``elldash``,
|
|
538
|
+
``elldashp = ell * dashp`` as in Step 1.
|
|
539
|
+
|
|
540
|
+
INPUT:
|
|
541
|
+
|
|
542
|
+
- ``p`` -- prime at least 5
|
|
543
|
+
- ``N`` -- positive integer at least 2 and not divisible by `p` (level)
|
|
544
|
+
- ``k0`` -- integer in range 0 to `p-1`
|
|
545
|
+
- ``m``, ``mdash, ``elldash``, ``elldashp`` -- positive integers
|
|
546
|
+
- ``modformsring`` -- boolean
|
|
547
|
+
- ``bound`` -- positive (even) integer
|
|
548
|
+
|
|
549
|
+
OUTPUT: matrix and `q`-expansion
|
|
550
|
+
|
|
551
|
+
EXAMPLES::
|
|
552
|
+
|
|
553
|
+
sage: # needs sage.combinat
|
|
554
|
+
sage: from sage.modular.overconvergent.hecke_series import higher_level_katz_exp
|
|
555
|
+
sage: e, Ep1 = higher_level_katz_exp(5, 2, 0, 1, 2, 4, 20, True, 6)
|
|
556
|
+
sage: e
|
|
557
|
+
[ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
|
|
558
|
+
[ 0 1 18 23 19 6 9 9 17 7 3 17 12 8 22 8 11 19 1 5]
|
|
559
|
+
[ 0 0 1 11 20 16 0 8 4 0 18 15 24 6 15 23 5 18 7 15]
|
|
560
|
+
[ 0 0 0 1 4 16 23 13 6 5 23 5 2 16 4 18 10 23 5 15]
|
|
561
|
+
sage: Ep1
|
|
562
|
+
1 + 15*q + 10*q^2 + 20*q^3 + 20*q^4 + 15*q^5 + 5*q^6 + 10*q^7 +
|
|
563
|
+
5*q^9 + 10*q^10 + 5*q^11 + 10*q^12 + 20*q^13 + 15*q^14 + 20*q^15 + 15*q^16 +
|
|
564
|
+
10*q^17 + 20*q^18 + O(q^20)
|
|
565
|
+
"""
|
|
566
|
+
ordr = 1 / (p + 1)
|
|
567
|
+
S = Zmod(p ** mdash)
|
|
568
|
+
Ep1 = eisenstein_series_qexp(p - 1, prec=elldashp, K=S, normalization='constant')
|
|
569
|
+
|
|
570
|
+
n = floor(((p + 1) / (p - 1)) * (m + 1))
|
|
571
|
+
Wjs = complementary_spaces(N, p, k0, n, mdash, elldashp, elldash, modformsring, bound)
|
|
572
|
+
|
|
573
|
+
Basis = []
|
|
574
|
+
for j in range(n + 1):
|
|
575
|
+
Wj = Wjs[j]
|
|
576
|
+
dimj = len(Wj)
|
|
577
|
+
Ep1minusj = Ep1 ** (-j)
|
|
578
|
+
for i in range(dimj):
|
|
579
|
+
wji = Wj[i]
|
|
580
|
+
b = p ** floor(ordr * j) * wji * Ep1minusj
|
|
581
|
+
Basis.append(b)
|
|
582
|
+
|
|
583
|
+
# extract basis as a matrix
|
|
584
|
+
|
|
585
|
+
ell = len(Basis)
|
|
586
|
+
M = matrix(S, ell, elldashp)
|
|
587
|
+
for i in range(ell):
|
|
588
|
+
for j in range(elldashp):
|
|
589
|
+
M[i, j] = Basis[i][j]
|
|
590
|
+
|
|
591
|
+
ech_form(M, p) # put it into echelon form
|
|
592
|
+
|
|
593
|
+
return M, Ep1
|
|
594
|
+
|
|
595
|
+
|
|
596
|
+
def compute_elldash(p, N, k0, n):
|
|
597
|
+
r"""
|
|
598
|
+
Return the "Sturm bound" for the space of modular forms of level
|
|
599
|
+
`\Gamma_0(N)` and weight `k_0 + n(p-1)`.
|
|
600
|
+
|
|
601
|
+
.. SEEALSO::
|
|
602
|
+
|
|
603
|
+
:meth:`~sage.modular.modform.space.ModularFormsSpace.sturm_bound`
|
|
604
|
+
|
|
605
|
+
INPUT:
|
|
606
|
+
|
|
607
|
+
- ``p`` -- prime
|
|
608
|
+
- ``N`` -- positive integer (level)
|
|
609
|
+
- ``k0``, ``n`` -- nonnegative integers not both zero
|
|
610
|
+
|
|
611
|
+
OUTPUT: positive integer
|
|
612
|
+
|
|
613
|
+
EXAMPLES::
|
|
614
|
+
|
|
615
|
+
sage: from sage.modular.overconvergent.hecke_series import compute_elldash
|
|
616
|
+
sage: compute_elldash(11, 5, 4, 10)
|
|
617
|
+
53
|
|
618
|
+
"""
|
|
619
|
+
|
|
620
|
+
return ModularForms(N, k0 + n * (p - 1)).sturm_bound()
|
|
621
|
+
|
|
622
|
+
# *** DEGREE BOUND ON HECKE SERIES ***
|
|
623
|
+
|
|
624
|
+
|
|
625
|
+
def hecke_series_degree_bound(p, N, k, m):
|
|
626
|
+
r"""
|
|
627
|
+
Return the ``Wan bound`` on the degree of the characteristic series of the
|
|
628
|
+
Atkin operator on `p`-adic overconvergent modular forms of level
|
|
629
|
+
`\Gamma_0(N)` and weight `k` when reduced modulo `p^m`.
|
|
630
|
+
|
|
631
|
+
This bound depends only upon `p, k \pmod{p-1}`, and `N`. It uses Lemma 3.1 in
|
|
632
|
+
[Wan1998]_.
|
|
633
|
+
|
|
634
|
+
INPUT:
|
|
635
|
+
|
|
636
|
+
- ``p`` -- prime at least 5
|
|
637
|
+
- ``N`` -- positive integer not divisible by `p`
|
|
638
|
+
- ``k`` -- even integer
|
|
639
|
+
- ``m`` -- positive integer
|
|
640
|
+
|
|
641
|
+
OUTPUT: nonnegative integer
|
|
642
|
+
|
|
643
|
+
EXAMPLES::
|
|
644
|
+
|
|
645
|
+
sage: from sage.modular.overconvergent.hecke_series import hecke_series_degree_bound
|
|
646
|
+
sage: hecke_series_degree_bound(13,11,100,5)
|
|
647
|
+
39
|
|
648
|
+
"""
|
|
649
|
+
k0 = k % (p - 1)
|
|
650
|
+
ds = [dimension_modular_forms(N, k0)]
|
|
651
|
+
ms = [ds[0]]
|
|
652
|
+
sum = 0
|
|
653
|
+
u = 1
|
|
654
|
+
|
|
655
|
+
ord = 0
|
|
656
|
+
while ord < m:
|
|
657
|
+
ds.append(dimension_modular_forms(N, k0 + u * (p - 1)))
|
|
658
|
+
ms.append(ds[u] - ds[u - 1])
|
|
659
|
+
sum = sum + u * ms[u]
|
|
660
|
+
ord = floor(((p - 1) / (p + 1)) * sum - ds[u])
|
|
661
|
+
u = u + 1
|
|
662
|
+
|
|
663
|
+
return (ds[u - 1] - 1)
|
|
664
|
+
|
|
665
|
+
# *** MAIN FUNCTION FOR LEVEL > 1 ***
|
|
666
|
+
|
|
667
|
+
# Returns matrix A modulo p^m from Step 6 of Algorithm 2.
|
|
668
|
+
|
|
669
|
+
|
|
670
|
+
def higher_level_UpGj(p, N, klist, m, modformsring, bound, extra_data=False):
|
|
671
|
+
r"""
|
|
672
|
+
Return a list ``[A_k]`` of square matrices over ``IntegerRing(p^m)``
|
|
673
|
+
parameterised by the weights `k` in ``klist``.
|
|
674
|
+
|
|
675
|
+
The matrix `A_k` is the finite square matrix which occurs on input
|
|
676
|
+
`p, k, N` and `m` in Step 6 of Algorithm 2 in [Lau2011]_.
|
|
677
|
+
|
|
678
|
+
Notational change from paper: In Step 1 following Wan we defined
|
|
679
|
+
`j` by `k = k_0 + j(p-1)` with `0 \le k_0 < p-1`. Here we replace `j` by
|
|
680
|
+
``kdiv`` so that we may use `j` as a column index for matrices.)
|
|
681
|
+
|
|
682
|
+
INPUT:
|
|
683
|
+
|
|
684
|
+
- ``p`` -- prime at least 5
|
|
685
|
+
- ``N`` -- integer at least 2 and not divisible by `p` (level)
|
|
686
|
+
- ``klist`` -- list of integers all congruent modulo `(p-1)` (the weights)
|
|
687
|
+
- ``m`` -- positive integer
|
|
688
|
+
- ``modformsring`` -- boolean
|
|
689
|
+
- ``bound`` -- (even) positive integer
|
|
690
|
+
- ``extra_data`` -- boolean (default: ``False``)
|
|
691
|
+
|
|
692
|
+
OUTPUT:
|
|
693
|
+
|
|
694
|
+
- list of square matrices. If ``extra_data`` is ``True``, return also
|
|
695
|
+
extra intermediate data, namely the matrix `E` in [Lau2011]_ and
|
|
696
|
+
the integers ``elldash`` and ``mdash``.
|
|
697
|
+
|
|
698
|
+
EXAMPLES::
|
|
699
|
+
|
|
700
|
+
sage: # needs sage.combinat
|
|
701
|
+
sage: from sage.modular.overconvergent.hecke_series import higher_level_UpGj
|
|
702
|
+
sage: A = Matrix([
|
|
703
|
+
....: [1, 0, 0, 0, 0, 0],
|
|
704
|
+
....: [0, 1, 0, 0, 0, 0],
|
|
705
|
+
....: [0, 7, 0, 0, 0, 0],
|
|
706
|
+
....: [0, 5, 10, 20, 0, 0],
|
|
707
|
+
....: [0, 7, 20, 0, 20, 0],
|
|
708
|
+
....: [0, 1, 24, 0, 20, 0]])
|
|
709
|
+
sage: B = Matrix([
|
|
710
|
+
....: [1, 0, 0, 0, 0, 0],
|
|
711
|
+
....: [0, 1, 0, 0, 0, 0],
|
|
712
|
+
....: [0, 7, 0, 0, 0, 0],
|
|
713
|
+
....: [0, 19, 0, 20, 0, 0],
|
|
714
|
+
....: [0, 7, 20, 0, 20, 0],
|
|
715
|
+
....: [0, 1, 24, 0, 20, 0]])
|
|
716
|
+
sage: C = higher_level_UpGj(5, 3, [4], 2, True, 6)
|
|
717
|
+
sage: len(C)
|
|
718
|
+
1
|
|
719
|
+
sage: C[0] in (A, B)
|
|
720
|
+
True
|
|
721
|
+
sage: len(higher_level_UpGj(5, 3, [4], 2, True, 6, extra_data=True))
|
|
722
|
+
4
|
|
723
|
+
"""
|
|
724
|
+
t = cputime()
|
|
725
|
+
# Step 1
|
|
726
|
+
|
|
727
|
+
k0 = klist[0] % (p - 1)
|
|
728
|
+
n = floor(((p + 1) / (p - 1)) * (m + 1))
|
|
729
|
+
elldash = compute_elldash(p, N, k0, n)
|
|
730
|
+
elldashp = elldash * p
|
|
731
|
+
mdash = m + ceil(n / (p + 1))
|
|
732
|
+
|
|
733
|
+
verbose("done step 1", t)
|
|
734
|
+
t = cputime()
|
|
735
|
+
# Steps 2 and 3
|
|
736
|
+
|
|
737
|
+
e, Ep1 = higher_level_katz_exp(p, N, k0, m, mdash, elldash, elldashp,
|
|
738
|
+
modformsring, bound)
|
|
739
|
+
ell = dimension(transpose(e)[0].parent())
|
|
740
|
+
S = e[0, 0].parent()
|
|
741
|
+
|
|
742
|
+
verbose("done steps 2+3", t)
|
|
743
|
+
t = cputime()
|
|
744
|
+
# Step 4
|
|
745
|
+
|
|
746
|
+
R = Ep1.parent()
|
|
747
|
+
G = compute_G(p, Ep1)
|
|
748
|
+
Alist = []
|
|
749
|
+
|
|
750
|
+
verbose("done step 4a", t)
|
|
751
|
+
t = cputime()
|
|
752
|
+
for k in klist:
|
|
753
|
+
k = ZZ(k) # convert to sage integer
|
|
754
|
+
kdiv = k // (p - 1)
|
|
755
|
+
Gkdiv = G ** kdiv
|
|
756
|
+
|
|
757
|
+
T = matrix(S, ell, elldash)
|
|
758
|
+
for i in range(ell):
|
|
759
|
+
ei = R(e[i].list())
|
|
760
|
+
Gkdivei = Gkdiv * ei # act by G^kdiv
|
|
761
|
+
for j in range(elldash):
|
|
762
|
+
T[i, j] = Gkdivei[p * j]
|
|
763
|
+
|
|
764
|
+
verbose("done steps 4b and 5", t)
|
|
765
|
+
t = cputime()
|
|
766
|
+
|
|
767
|
+
# Step 6: solve T = AE using fact E is upper triangular.
|
|
768
|
+
# Warning: assumes that T = AE (rather than pT = AE) has
|
|
769
|
+
# a solution over Z/(p^mdash). This has always been the case in
|
|
770
|
+
# examples computed by the author, see Note 3.1.
|
|
771
|
+
|
|
772
|
+
A = matrix(S, ell, ell)
|
|
773
|
+
verbose("solving a square matrix problem of dimension %s" % ell)
|
|
774
|
+
verbose("elldash is %s" % elldash)
|
|
775
|
+
|
|
776
|
+
for i in range(ell):
|
|
777
|
+
Ti = T[i]
|
|
778
|
+
for j in range(ell):
|
|
779
|
+
ej = Ti.parent()([e[j][l] for l in range(elldash)])
|
|
780
|
+
ejleadpos = ej.nonzero_positions()[0]
|
|
781
|
+
lj = ZZ(ej[ejleadpos])
|
|
782
|
+
A[i, j] = S(ZZ(Ti[j]) / lj)
|
|
783
|
+
Ti = Ti - A[i, j] * ej
|
|
784
|
+
|
|
785
|
+
Alist.append(MatrixSpace(Zmod(p ** m), ell, ell)(A))
|
|
786
|
+
verbose("done step 6", t)
|
|
787
|
+
|
|
788
|
+
if extra_data:
|
|
789
|
+
return Alist, e, elldash, mdash
|
|
790
|
+
else:
|
|
791
|
+
return Alist
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
# *** LEVEL 1 CODE ***
|
|
795
|
+
|
|
796
|
+
def compute_Wi(k, p, h, hj, E4, E6):
|
|
797
|
+
r"""
|
|
798
|
+
This function computes a list `W_i` of `q`-expansions, together with an
|
|
799
|
+
auxiliary quantity `h^j` (see below) which is to be used on the next
|
|
800
|
+
call of this function. (The precision is that of input `q`-expansions.)
|
|
801
|
+
|
|
802
|
+
The list `W_i` is a certain subset of a basis of the modular forms of
|
|
803
|
+
weight `k` and level 1. Suppose `(a, b)` is the pair of nonnegative
|
|
804
|
+
integers with `4a + 6b = k` and `a` minimal among such pairs. Then this
|
|
805
|
+
space has a basis given by
|
|
806
|
+
|
|
807
|
+
.. MATH::
|
|
808
|
+
|
|
809
|
+
\{ \Delta^j E_6^{b - 2j} E_4^a : 0 \le j < d\}
|
|
810
|
+
|
|
811
|
+
where `d` is the dimension.
|
|
812
|
+
|
|
813
|
+
What this function returns is the subset of the above basis corresponding
|
|
814
|
+
to `e \le j < d` where `e` is the dimension of the space of modular forms
|
|
815
|
+
of weight `k - (p-1)`. This set is a basis for the complement of the image
|
|
816
|
+
of the weight `k - (p-1)` forms under multiplication by `E_{p-1}`.
|
|
817
|
+
|
|
818
|
+
This function is used repeatedly in the construction of the Katz expansion
|
|
819
|
+
basis. Hence considerable care is taken to reuse steps in the computation
|
|
820
|
+
wherever possible: we keep track of powers of the form `h = \Delta /
|
|
821
|
+
E_6^2`.
|
|
822
|
+
|
|
823
|
+
INPUT:
|
|
824
|
+
|
|
825
|
+
- ``k`` -- nonnegative integer
|
|
826
|
+
- ``p`` -- prime at least 5
|
|
827
|
+
- ``h`` -- `q`-expansion of `h` (to some finite precision)
|
|
828
|
+
- ``hj`` -- `q`-expansion of `h^j` where `j` is the dimension of the space of
|
|
829
|
+
modular forms of level 1 and weight `k - (p-1)` (to same finite
|
|
830
|
+
precision)
|
|
831
|
+
- ``E4`` -- `q`-expansion of `E_4` (to same finite precision)
|
|
832
|
+
- ``E6`` -- `q`-expansion of `E_6` (to same finite precision)
|
|
833
|
+
|
|
834
|
+
The Eisenstein series `q`-expansions should be normalized to have constant
|
|
835
|
+
term 1.
|
|
836
|
+
|
|
837
|
+
OUTPUT:
|
|
838
|
+
|
|
839
|
+
- list of `q`-expansions (to same finite precision), and `q`-expansion.
|
|
840
|
+
|
|
841
|
+
EXAMPLES::
|
|
842
|
+
|
|
843
|
+
sage: from sage.modular.overconvergent.hecke_series import compute_Wi
|
|
844
|
+
sage: p = 17
|
|
845
|
+
sage: prec = 10
|
|
846
|
+
sage: k = 24
|
|
847
|
+
sage: S = Zmod(17^3)
|
|
848
|
+
sage: E4 = eisenstein_series_qexp(4, prec, K=S, normalization='constant')
|
|
849
|
+
sage: E6 = eisenstein_series_qexp(6, prec, K=S, normalization='constant')
|
|
850
|
+
sage: h = delta_qexp(prec, K=S) / E6^2
|
|
851
|
+
sage: from sage.modular.dims import dimension_modular_forms
|
|
852
|
+
sage: j = dimension_modular_forms(1, k - (p - 1))
|
|
853
|
+
sage: hj = h ** j
|
|
854
|
+
sage: c = compute_Wi(k, p, h, hj, E4, E6); c
|
|
855
|
+
([q + 3881*q^2 + 4459*q^3 + 4665*q^4 + 2966*q^5 + 1902*q^6 + 1350*q^7 + 3836*q^8 + 1752*q^9 + O(q^10), q^2 + 4865*q^3 + 1080*q^4 + 4612*q^5 + 1343*q^6 + 1689*q^7 + 3876*q^8 + 1381*q^9 + O(q^10)], q^3 + 2952*q^4 + 1278*q^5 + 3225*q^6 + 1286*q^7 + 589*q^8 + 122*q^9 + O(q^10))
|
|
856
|
+
sage: c == ([delta_qexp(10) * E6^2, delta_qexp(10)^2], h**3)
|
|
857
|
+
True
|
|
858
|
+
"""
|
|
859
|
+
|
|
860
|
+
# Define a and b
|
|
861
|
+
a = k % 3
|
|
862
|
+
b = (k // 2) % 2
|
|
863
|
+
|
|
864
|
+
# Compute dimensions required for Miller basis
|
|
865
|
+
d = dimension_modular_forms(1, k) - 1
|
|
866
|
+
e = dimension_modular_forms(1, k - (p - 1)) - 1
|
|
867
|
+
|
|
868
|
+
# This next line is a bit of a bottleneck, particularly when m is large but
|
|
869
|
+
# p is small. It would be good to reuse values calculated on the previous
|
|
870
|
+
# call here somehow.
|
|
871
|
+
r = E6 ** (2 * d + b) * E4 ** a
|
|
872
|
+
|
|
873
|
+
prec = E4.prec() # everything gets truncated to this precision
|
|
874
|
+
|
|
875
|
+
# Construct basis for Wi
|
|
876
|
+
Wi = []
|
|
877
|
+
for j in range(e + 1,d + 1):
|
|
878
|
+
# compute aj = delta^j*E6^(2*(d-j) + b)*E4^a
|
|
879
|
+
verbose("k = %s, computing Delta^%s E6^%s E4^%s" % (k, j, 2 * (d - j) + b, a), level=2)
|
|
880
|
+
aj = (hj * r).truncate_powerseries(prec)
|
|
881
|
+
hj = (hj * h).truncate_powerseries(prec)
|
|
882
|
+
Wi.append(aj)
|
|
883
|
+
|
|
884
|
+
return Wi, hj
|
|
885
|
+
|
|
886
|
+
|
|
887
|
+
def katz_expansions(k0, p, ellp, mdash, n):
|
|
888
|
+
r"""
|
|
889
|
+
Return a list `e` of `q`-expansions, and the Eisenstein series `E_{p-1} = 1 +
|
|
890
|
+
\dots`, all modulo `(p^\text{mdash},q^\text{ellp})`. The list `e` contains
|
|
891
|
+
the elements `e_{i,s}` in the Katz expansions basis in Step 3 of Algorithm
|
|
892
|
+
1 in [Lau2011]_ when one takes as input to that algorithm `p,m` and `k` and define
|
|
893
|
+
``k0``, ``mdash``, ``n``, ``ellp = ell * p`` as in Step 1.
|
|
894
|
+
|
|
895
|
+
INPUT:
|
|
896
|
+
|
|
897
|
+
- ``k0`` -- integer in range 0 to `p - 1`
|
|
898
|
+
- ``p`` -- prime at least 5
|
|
899
|
+
- ``ellp``, ``mdash``, ``n`` -- positive integers
|
|
900
|
+
|
|
901
|
+
OUTPUT:
|
|
902
|
+
|
|
903
|
+
- list of `q`-expansions and the Eisenstein series `E_{p-1}` modulo
|
|
904
|
+
`(p^\text{mdash},q^\text{ellp})`.
|
|
905
|
+
|
|
906
|
+
EXAMPLES::
|
|
907
|
+
|
|
908
|
+
sage: from sage.modular.overconvergent.hecke_series import katz_expansions
|
|
909
|
+
sage: katz_expansions(0, 5, 10, 3, 4)
|
|
910
|
+
([1 + O(q^10), q + 6*q^2 + 27*q^3 + 98*q^4 + 65*q^5 + 37*q^6 + 81*q^7 + 85*q^8 + 62*q^9 + O(q^10)],
|
|
911
|
+
1 + 115*q + 35*q^2 + 95*q^3 + 20*q^4 + 115*q^5 + 105*q^6 + 60*q^7 + 25*q^8 + 55*q^9 + O(q^10))
|
|
912
|
+
"""
|
|
913
|
+
S = Zmod(p ** mdash)
|
|
914
|
+
|
|
915
|
+
Ep1 = eisenstein_series_qexp(p - 1, ellp, K=S, normalization='constant')
|
|
916
|
+
E4 = eisenstein_series_qexp(4, ellp, K=S, normalization='constant')
|
|
917
|
+
E6 = eisenstein_series_qexp(6, ellp, K=S, normalization='constant')
|
|
918
|
+
|
|
919
|
+
delta = delta_qexp(ellp, K=S)
|
|
920
|
+
h = delta / E6 ** 2
|
|
921
|
+
hj = delta.parent()(1)
|
|
922
|
+
e = []
|
|
923
|
+
|
|
924
|
+
# We compute negative powers of E_(p-1) successively (this saves a great
|
|
925
|
+
# deal of time). The effect is that Ep1mi = Ep1 ** (-i).
|
|
926
|
+
Ep1m1 = ~Ep1
|
|
927
|
+
Ep1mi = 1
|
|
928
|
+
for i in range(0,n + 1):
|
|
929
|
+
Wi,hj = compute_Wi(k0 + i * (p - 1), p, h, hj, E4, E6)
|
|
930
|
+
for bis in Wi:
|
|
931
|
+
eis = p ** floor(i / (p + 1)) * Ep1mi * bis
|
|
932
|
+
e.append(eis)
|
|
933
|
+
Ep1mi = Ep1mi * Ep1m1
|
|
934
|
+
|
|
935
|
+
return e, Ep1
|
|
936
|
+
|
|
937
|
+
# *** MAIN FUNCTION FOR LEVEL 1 ***
|
|
938
|
+
|
|
939
|
+
|
|
940
|
+
def level1_UpGj(p, klist, m, extra_data=False):
|
|
941
|
+
r"""
|
|
942
|
+
Return a list `[A_k]` of square matrices over ``IntegerRing(p^m)``
|
|
943
|
+
parameterised by the weights `k` in ``klist``.
|
|
944
|
+
|
|
945
|
+
The matrix `A_k` is the finite square matrix which occurs on input
|
|
946
|
+
`p, k` and `m` in Step 6 of Algorithm 1 in [Lau2011]_.
|
|
947
|
+
|
|
948
|
+
Notational change from paper: In Step 1 following Wan we defined
|
|
949
|
+
`j` by `k = k_0 + j(p-1)` with `0 \le k_0 < p-1`. Here we replace `j` by
|
|
950
|
+
``kdiv`` so that we may use `j` as a column index for matrices.
|
|
951
|
+
|
|
952
|
+
INPUT:
|
|
953
|
+
|
|
954
|
+
- ``p`` -- prime at least 5
|
|
955
|
+
- ``klist`` -- list of integers congruent modulo `(p-1)` (the weights)
|
|
956
|
+
- ``m`` -- positive integer
|
|
957
|
+
- ``extra_data`` -- boolean (default: ``False``)
|
|
958
|
+
|
|
959
|
+
OUTPUT:
|
|
960
|
+
|
|
961
|
+
- list of square matrices. If ``extra_data`` is ``True``, return also
|
|
962
|
+
extra intermediate data, namely the matrix `E` in [Lau2011]_ and
|
|
963
|
+
the integers ``elldash`` and ``mdash``.
|
|
964
|
+
|
|
965
|
+
EXAMPLES::
|
|
966
|
+
|
|
967
|
+
sage: from sage.modular.overconvergent.hecke_series import level1_UpGj
|
|
968
|
+
sage: level1_UpGj(7, [100], 5)
|
|
969
|
+
[
|
|
970
|
+
[ 1 980 4802 0 0]
|
|
971
|
+
[ 0 13727 14406 0 0]
|
|
972
|
+
[ 0 13440 7203 0 0]
|
|
973
|
+
[ 0 1995 4802 0 0]
|
|
974
|
+
[ 0 9212 14406 0 0]
|
|
975
|
+
]
|
|
976
|
+
sage: len(level1_UpGj(7, [100], 5, extra_data=True))
|
|
977
|
+
4
|
|
978
|
+
"""
|
|
979
|
+
# Step 1
|
|
980
|
+
t = cputime()
|
|
981
|
+
|
|
982
|
+
k0 = klist[0] % (p - 1)
|
|
983
|
+
n = floor(((p + 1) / (p - 1)) * (m + 1))
|
|
984
|
+
ell = dimension_modular_forms(1, k0 + n * (p - 1))
|
|
985
|
+
ellp = ell * p
|
|
986
|
+
mdash = m + ceil(n / (p + 1))
|
|
987
|
+
|
|
988
|
+
verbose("done step 1", t)
|
|
989
|
+
t = cputime()
|
|
990
|
+
# Steps 2 and 3
|
|
991
|
+
|
|
992
|
+
e, Ep1 = katz_expansions(k0, p, ellp, mdash, n)
|
|
993
|
+
|
|
994
|
+
verbose("done steps 2+3", t)
|
|
995
|
+
t = cputime()
|
|
996
|
+
# Step 4
|
|
997
|
+
|
|
998
|
+
G = compute_G(p, Ep1)
|
|
999
|
+
Alist = []
|
|
1000
|
+
|
|
1001
|
+
verbose("done step 4a", t)
|
|
1002
|
+
t = cputime()
|
|
1003
|
+
for k in klist:
|
|
1004
|
+
k = ZZ(k) # convert to sage integer
|
|
1005
|
+
kdiv = k // (p - 1)
|
|
1006
|
+
Gkdiv = G ** kdiv
|
|
1007
|
+
u = []
|
|
1008
|
+
for i in range(0, ell):
|
|
1009
|
+
ei = e[i]
|
|
1010
|
+
ui = Gkdiv * ei
|
|
1011
|
+
u.append(ui)
|
|
1012
|
+
|
|
1013
|
+
verbose("done step 4b", t)
|
|
1014
|
+
t = cputime()
|
|
1015
|
+
# Step 5 and computation of T in Step 6
|
|
1016
|
+
|
|
1017
|
+
S = e[0][0].parent()
|
|
1018
|
+
T = matrix(S, ell, ell)
|
|
1019
|
+
|
|
1020
|
+
for i in range(0, ell):
|
|
1021
|
+
for j in range(0, ell):
|
|
1022
|
+
T[i, j] = u[i][p * j]
|
|
1023
|
+
|
|
1024
|
+
verbose("done step 5", t)
|
|
1025
|
+
t = cputime()
|
|
1026
|
+
# Step 6: solve T = AE using fact E is upper triangular.
|
|
1027
|
+
# Warning: assumes that T = AE (rather than pT = AE) has
|
|
1028
|
+
# a solution over Z/(p^mdash). This has always been the case in
|
|
1029
|
+
# examples computed by the author, see Note 3.1.
|
|
1030
|
+
|
|
1031
|
+
A = matrix(S, ell, ell)
|
|
1032
|
+
verbose("solving a square matrix problem of dimension %s" % ell, t)
|
|
1033
|
+
|
|
1034
|
+
for i in range(0, ell):
|
|
1035
|
+
Ti = T[i]
|
|
1036
|
+
for j in range(0,ell):
|
|
1037
|
+
ej = Ti.parent()([e[j][l] for l in range(0, ell)])
|
|
1038
|
+
lj = ZZ(ej[j])
|
|
1039
|
+
A[i, j] = S(ZZ(Ti[j]) / lj)
|
|
1040
|
+
Ti = Ti - A[i, j] * ej
|
|
1041
|
+
|
|
1042
|
+
Alist.append(MatrixSpace(Zmod(p ** m), ell, ell)(A))
|
|
1043
|
+
verbose("done step 6", t)
|
|
1044
|
+
|
|
1045
|
+
if extra_data:
|
|
1046
|
+
return Alist, e, ell, mdash
|
|
1047
|
+
else:
|
|
1048
|
+
return Alist
|
|
1049
|
+
|
|
1050
|
+
# *** CODE FOR GENERAL LEVEL ***
|
|
1051
|
+
|
|
1052
|
+
|
|
1053
|
+
def is_valid_weight_list(klist, p) -> None:
|
|
1054
|
+
r"""
|
|
1055
|
+
This function checks that ``klist`` is a nonempty list of integers all of
|
|
1056
|
+
which are congruent modulo `(p-1)`. Otherwise, it will raise a
|
|
1057
|
+
:exc:`ValueError`.
|
|
1058
|
+
|
|
1059
|
+
INPUT:
|
|
1060
|
+
|
|
1061
|
+
- ``klist`` -- list of integers
|
|
1062
|
+
- ``p`` -- prime
|
|
1063
|
+
|
|
1064
|
+
EXAMPLES::
|
|
1065
|
+
|
|
1066
|
+
sage: from sage.modular.overconvergent.hecke_series import is_valid_weight_list
|
|
1067
|
+
sage: is_valid_weight_list([10, 20, 30],11)
|
|
1068
|
+
sage: is_valid_weight_list([-3, 1], 5)
|
|
1069
|
+
sage: is_valid_weight_list([], 3)
|
|
1070
|
+
Traceback (most recent call last):
|
|
1071
|
+
...
|
|
1072
|
+
ValueError: List of weights must be non-empty
|
|
1073
|
+
sage: is_valid_weight_list([-3, 2], 5)
|
|
1074
|
+
Traceback (most recent call last):
|
|
1075
|
+
...
|
|
1076
|
+
ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains -3 and 2 which are not congruent
|
|
1077
|
+
"""
|
|
1078
|
+
if len(klist) == 0:
|
|
1079
|
+
raise ValueError("List of weights must be non-empty")
|
|
1080
|
+
k0 = klist[0] % (p - 1)
|
|
1081
|
+
for i in range(1, len(klist)):
|
|
1082
|
+
if (klist[i] % (p-1)) != k0:
|
|
1083
|
+
raise ValueError("List of weights must be all congruent modulo p-1 = %s, but given list contains %s and %s which are not congruent" % (p - 1, klist[0], klist[i]))
|
|
1084
|
+
|
|
1085
|
+
|
|
1086
|
+
def hecke_series(p, N, klist, m, modformsring=False, weightbound=6):
|
|
1087
|
+
r"""
|
|
1088
|
+
Return the characteristic series modulo `p^m` of the Atkin operator `U_p`
|
|
1089
|
+
acting upon the space of `p`-adic overconvergent modular forms of level
|
|
1090
|
+
`\Gamma_0(N)` and weight ``klist``.
|
|
1091
|
+
|
|
1092
|
+
The input ``klist`` may also be a list of weights congruent modulo `(p-1)`,
|
|
1093
|
+
in which case the output is the corresponding list of characteristic series
|
|
1094
|
+
for each `k` in ``klist``; this is faster than performing the computation
|
|
1095
|
+
separately for each `k`, since intermediate steps in the computation may be
|
|
1096
|
+
reused.
|
|
1097
|
+
|
|
1098
|
+
If ``modformsring`` is ``True``, then for `N > 1` the algorithm computes at one
|
|
1099
|
+
step ``ModularFormsRing(N).generators()``. This will often be faster but
|
|
1100
|
+
the algorithm will default to ``modformsring=False`` if the generators
|
|
1101
|
+
found are not `p`-adically integral. Note that ``modformsring`` is ignored
|
|
1102
|
+
for `N = 1` and the ring structure of modular forms is *always* used in
|
|
1103
|
+
this case.
|
|
1104
|
+
|
|
1105
|
+
When ``modformsring`` is ``False`` and `N > 1`, ``weightbound`` is a bound set on
|
|
1106
|
+
the weight of generators for a certain subspace of modular forms. The
|
|
1107
|
+
algorithm will often be faster if ``weightbound=4``, but it may fail to
|
|
1108
|
+
terminate for certain exceptional small values of `N`, when this bound is
|
|
1109
|
+
too small.
|
|
1110
|
+
|
|
1111
|
+
The algorithm is based upon that described in [Lau2011]_.
|
|
1112
|
+
|
|
1113
|
+
INPUT:
|
|
1114
|
+
|
|
1115
|
+
- ``p`` -- a prime greater than or equal to 5
|
|
1116
|
+
- ``N`` -- positive integer not divisible by `p`
|
|
1117
|
+
- ``klist`` -- either a list of integers congruent modulo `(p-1)`, or a single integer
|
|
1118
|
+
- ``m`` -- positive integer
|
|
1119
|
+
- ``modformsring`` -- boolean (default: ``False``); ignored if `N = 1`
|
|
1120
|
+
- ``weightbound`` -- a positive even integer (default: 6). Ignored
|
|
1121
|
+
if `N = 1` or ``modformsring`` is ``True``
|
|
1122
|
+
|
|
1123
|
+
OUTPUT: either a list of polynomials or a single polynomial over the integers modulo `p^m`
|
|
1124
|
+
|
|
1125
|
+
EXAMPLES::
|
|
1126
|
+
|
|
1127
|
+
sage: hecke_series(5, 7, 10000, 5, modformsring=True) # long time (3.4s)
|
|
1128
|
+
250*x^6 + 1825*x^5 + 2500*x^4 + 2184*x^3 + 1458*x^2 + 1157*x + 1
|
|
1129
|
+
sage: hecke_series(7, 3, 10000, 3, weightbound=4)
|
|
1130
|
+
196*x^4 + 294*x^3 + 197*x^2 + 341*x + 1
|
|
1131
|
+
sage: hecke_series(19, 1, [10000, 10018], 5)
|
|
1132
|
+
[1694173*x^4 + 2442526*x^3 + 1367943*x^2 + 1923654*x + 1,
|
|
1133
|
+
130321*x^4 + 958816*x^3 + 2278233*x^2 + 1584827*x + 1]
|
|
1134
|
+
|
|
1135
|
+
Check that silly weights are handled correctly::
|
|
1136
|
+
|
|
1137
|
+
sage: hecke_series(5, 7, [2, 3], 5)
|
|
1138
|
+
Traceback (most recent call last):
|
|
1139
|
+
...
|
|
1140
|
+
ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains 2 and 3 which are not congruent
|
|
1141
|
+
sage: hecke_series(5, 7, [3], 5)
|
|
1142
|
+
[1]
|
|
1143
|
+
sage: hecke_series(5, 7, 3, 5)
|
|
1144
|
+
1
|
|
1145
|
+
"""
|
|
1146
|
+
# convert to sage integers
|
|
1147
|
+
p = ZZ(p)
|
|
1148
|
+
N = ZZ(N)
|
|
1149
|
+
m = ZZ(m)
|
|
1150
|
+
weightbound = ZZ(weightbound)
|
|
1151
|
+
|
|
1152
|
+
oneweight = False
|
|
1153
|
+
# convert single weight to list
|
|
1154
|
+
if isinstance(klist, (int, Integer)):
|
|
1155
|
+
klist = [klist]
|
|
1156
|
+
oneweight = True # input is single weight
|
|
1157
|
+
|
|
1158
|
+
# algorithm may finish with false output unless:
|
|
1159
|
+
is_valid_weight_list(klist, p)
|
|
1160
|
+
if not p.is_prime():
|
|
1161
|
+
raise ValueError("p (=%s) is not prime" % p)
|
|
1162
|
+
if p < 5:
|
|
1163
|
+
raise ValueError("p = 2 and p = 3 not supported")
|
|
1164
|
+
if not N % p:
|
|
1165
|
+
raise ValueError("Level (=%s) should be prime to p (=%s)" % (N, p))
|
|
1166
|
+
|
|
1167
|
+
# return all 1 list for odd weights
|
|
1168
|
+
if klist[0] % 2 == 1:
|
|
1169
|
+
if oneweight:
|
|
1170
|
+
return 1
|
|
1171
|
+
else:
|
|
1172
|
+
return [1 for i in range(len(klist))]
|
|
1173
|
+
|
|
1174
|
+
if N == 1:
|
|
1175
|
+
Alist = level1_UpGj(p, klist, m)
|
|
1176
|
+
else:
|
|
1177
|
+
Alist = higher_level_UpGj(p, N, klist, m, modformsring, weightbound)
|
|
1178
|
+
|
|
1179
|
+
Plist = []
|
|
1180
|
+
for A in Alist:
|
|
1181
|
+
P = charpoly(A).reverse()
|
|
1182
|
+
Plist.append(P)
|
|
1183
|
+
|
|
1184
|
+
if oneweight:
|
|
1185
|
+
return Plist[0]
|
|
1186
|
+
else:
|
|
1187
|
+
return Plist
|