passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,775 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: neeeds database_cremona_mini_ellcurve
|
|
3
|
+
r"""
|
|
4
|
+
Modular symbols attached to elliptic curves over `\QQ`
|
|
5
|
+
|
|
6
|
+
To an elliptic curve `E` over the rational numbers with conductor `N`,
|
|
7
|
+
one can associate a space of modular symbols of level `N`, because `E`
|
|
8
|
+
is known to be modular. The space is two-dimensional and contains a
|
|
9
|
+
subspace on which complex conjugation acts as multiplication by `+1`
|
|
10
|
+
and one on which it acts by `-1`.
|
|
11
|
+
|
|
12
|
+
There are three implementations of modular symbols, two within
|
|
13
|
+
``Sage`` and one in Cremona's ``eclib`` library.
|
|
14
|
+
One can choose here which one is used.
|
|
15
|
+
|
|
16
|
+
Associated to `E` there is a canonical generator in each space. They are maps
|
|
17
|
+
`[.]^+` and `[.]^{-}`, both `\QQ \to\QQ`. They are normalized such that
|
|
18
|
+
|
|
19
|
+
.. MATH::
|
|
20
|
+
|
|
21
|
+
[r]^{+} \Omega^{+} + [r]^{-}\Omega^{-} = \int_{\infty}^r 2\pi i f(z) dz
|
|
22
|
+
|
|
23
|
+
where `f` is the newform associated to the isogeny class of `E` and
|
|
24
|
+
`\Omega^{+}` is the smallest positive period of the Néron differential
|
|
25
|
+
of `E` and `\Omega^{-}` is the smallest positive purely imaginary
|
|
26
|
+
period. Note that it depends on `E` rather than on its isogeny class.
|
|
27
|
+
|
|
28
|
+
From ``eclib`` version v20161230, both plus and minus symbols are
|
|
29
|
+
available and are correctly normalized. In the ``Sage``
|
|
30
|
+
implementation, the computation of the space provides initial
|
|
31
|
+
generators which are not necessarily correctly normalized; here we
|
|
32
|
+
implement two methods that try to find the correct scaling factor.
|
|
33
|
+
|
|
34
|
+
Modular symbols are used to compute `p`-adic `L`-functions.
|
|
35
|
+
|
|
36
|
+
EXAMPLES::
|
|
37
|
+
|
|
38
|
+
sage: # needs eclib
|
|
39
|
+
sage: E = EllipticCurve("19a1")
|
|
40
|
+
sage: m = E.modular_symbol()
|
|
41
|
+
sage: m(0)
|
|
42
|
+
1/3
|
|
43
|
+
sage: m(1/17)
|
|
44
|
+
-2/3
|
|
45
|
+
|
|
46
|
+
sage: # needs eclib sage.graphs
|
|
47
|
+
sage: m2 = E.modular_symbol(-1, implementation='sage')
|
|
48
|
+
sage: m2(0)
|
|
49
|
+
0
|
|
50
|
+
sage: m2(1/5)
|
|
51
|
+
1/2
|
|
52
|
+
|
|
53
|
+
sage: # needs eclib
|
|
54
|
+
sage: V = E.modular_symbol_space(); V
|
|
55
|
+
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2
|
|
56
|
+
for Gamma_0(19) of weight 2 with sign 1 over Rational Field
|
|
57
|
+
sage: V.q_eigenform(30)
|
|
58
|
+
q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + 3*q^11 + 4*q^12 - 4*q^13 - 6*q^15 + 4*q^16
|
|
59
|
+
- 3*q^17 + q^19 - 6*q^20 + 2*q^21 + 4*q^25 + 4*q^27 + 2*q^28 + 6*q^29 + O(q^30)
|
|
60
|
+
|
|
61
|
+
For more details on modular symbols consult the following
|
|
62
|
+
|
|
63
|
+
REFERENCES:
|
|
64
|
+
|
|
65
|
+
- [MTT1986]_
|
|
66
|
+
|
|
67
|
+
- [Cre1997]_
|
|
68
|
+
|
|
69
|
+
- [SW2013]_
|
|
70
|
+
|
|
71
|
+
AUTHORS:
|
|
72
|
+
|
|
73
|
+
- William Stein (2007): first version
|
|
74
|
+
|
|
75
|
+
- Chris Wuthrich (2008): add scaling and reference to eclib
|
|
76
|
+
|
|
77
|
+
- John Cremona (2016): reworked eclib interface
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
#*****************************************************************************
|
|
81
|
+
# Copyright (C) 2007 William Stein <wstein@gmail.com>
|
|
82
|
+
#
|
|
83
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
84
|
+
#
|
|
85
|
+
# This code is distributed in the hope that it will be useful,
|
|
86
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
87
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
88
|
+
# General Public License for more details.
|
|
89
|
+
#
|
|
90
|
+
# The full text of the GPL is available at:
|
|
91
|
+
#
|
|
92
|
+
# http://www.gnu.org/licenses/
|
|
93
|
+
#*****************************************************************************
|
|
94
|
+
|
|
95
|
+
from sage.arith.misc import (kronecker as kronecker_symbol,
|
|
96
|
+
next_prime,
|
|
97
|
+
prime_divisors,
|
|
98
|
+
valuation)
|
|
99
|
+
from sage.databases.cremona import parse_cremona_label
|
|
100
|
+
from sage.misc.verbose import verbose
|
|
101
|
+
from sage.modular.cusps import Cusps
|
|
102
|
+
from sage.modular.modsym.all import ModularSymbols
|
|
103
|
+
from sage.rings.infinity import unsigned_infinity as infinity
|
|
104
|
+
from sage.rings.integer import Integer
|
|
105
|
+
from sage.rings.integer_ring import ZZ
|
|
106
|
+
from sage.rings.rational_field import QQ
|
|
107
|
+
from sage.structure.sage_object import SageObject
|
|
108
|
+
|
|
109
|
+
from .constructor import EllipticCurve
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
oo = Cusps(infinity)
|
|
113
|
+
zero = Integer(0)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def modular_symbol_space(E, sign, base_ring, bound=None):
|
|
117
|
+
r"""
|
|
118
|
+
Create the space of modular symbols of a given sign over a give base_ring,
|
|
119
|
+
attached to the isogeny class of the elliptic curve ``E``.
|
|
120
|
+
|
|
121
|
+
INPUT:
|
|
122
|
+
|
|
123
|
+
- ``E`` -- an elliptic curve over `\QQ`
|
|
124
|
+
- ``sign`` -- integer; -1, 0, or 1
|
|
125
|
+
- ``base_ring`` -- ring
|
|
126
|
+
- ``bound`` -- (default: ``None``) maximum number of Hecke operators to
|
|
127
|
+
use to cut out modular symbols factor. If ``None``, use
|
|
128
|
+
enough to provably get the correct answer.
|
|
129
|
+
|
|
130
|
+
OUTPUT: a space of modular symbols
|
|
131
|
+
|
|
132
|
+
EXAMPLES::
|
|
133
|
+
|
|
134
|
+
sage: from sage.schemes.elliptic_curves.ell_modular_symbols import modular_symbol_space
|
|
135
|
+
sage: E = EllipticCurve('11a1')
|
|
136
|
+
sage: M = modular_symbol_space(E, -1, GF(37))
|
|
137
|
+
sage: M
|
|
138
|
+
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1
|
|
139
|
+
over Finite Field of size 37
|
|
140
|
+
"""
|
|
141
|
+
if sign not in [-1, 0, 1]:
|
|
142
|
+
raise TypeError('sign must -1, 0 or 1')
|
|
143
|
+
N = E.conductor()
|
|
144
|
+
M = ModularSymbols(N, sign=sign, base_ring=base_ring)
|
|
145
|
+
if bound is None:
|
|
146
|
+
bound = M.hecke_bound() + 10
|
|
147
|
+
V = M
|
|
148
|
+
p = 2
|
|
149
|
+
target_dim = 1 if sign else 2
|
|
150
|
+
while p <= bound and V.dimension() > target_dim:
|
|
151
|
+
t = V.T(p)
|
|
152
|
+
ap = E.ap(p)
|
|
153
|
+
V = (t - ap).kernel()
|
|
154
|
+
p = next_prime(p)
|
|
155
|
+
|
|
156
|
+
return V
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
class ModularSymbol(SageObject):
|
|
160
|
+
r"""
|
|
161
|
+
A modular symbol attached to an elliptic curve, which is the map
|
|
162
|
+
`\QQ\to \QQ` obtained by sending `r` to the normalized
|
|
163
|
+
symmetrized (or anti-symmetrized) integral `\infty` to `r`.
|
|
164
|
+
|
|
165
|
+
This is as defined in [MTT1986]_, but normalized to depend on the curve
|
|
166
|
+
and not only its isogeny class as in [SW2013]_.
|
|
167
|
+
|
|
168
|
+
See the documentation of ``E.modular_symbol()`` in elliptic curves
|
|
169
|
+
over the rational numbers for help.
|
|
170
|
+
"""
|
|
171
|
+
|
|
172
|
+
def sign(self):
|
|
173
|
+
r"""
|
|
174
|
+
Return the sign of this elliptic curve modular symbol.
|
|
175
|
+
|
|
176
|
+
EXAMPLES::
|
|
177
|
+
|
|
178
|
+
sage: m = EllipticCurve('11a1').modular_symbol() # needs eclib
|
|
179
|
+
sage: m.sign() # needs eclib
|
|
180
|
+
1
|
|
181
|
+
|
|
182
|
+
sage: # needs sage.graphs
|
|
183
|
+
sage: m = EllipticCurve('11a1').modular_symbol(sign=-1, implementation='sage')
|
|
184
|
+
sage: m.sign()
|
|
185
|
+
-1
|
|
186
|
+
"""
|
|
187
|
+
return self._sign
|
|
188
|
+
|
|
189
|
+
def elliptic_curve(self):
|
|
190
|
+
r"""
|
|
191
|
+
Return the elliptic curve of this modular symbol.
|
|
192
|
+
|
|
193
|
+
EXAMPLES::
|
|
194
|
+
|
|
195
|
+
sage: m = EllipticCurve('11a1').modular_symbol() # needs eclib
|
|
196
|
+
sage: m.elliptic_curve() # needs eclib
|
|
197
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
198
|
+
"""
|
|
199
|
+
return self._E
|
|
200
|
+
|
|
201
|
+
def base_ring(self):
|
|
202
|
+
r"""
|
|
203
|
+
Return the base ring for this modular symbol.
|
|
204
|
+
|
|
205
|
+
EXAMPLES::
|
|
206
|
+
|
|
207
|
+
sage: m = EllipticCurve('11a1').modular_symbol() # needs eclib
|
|
208
|
+
sage: m.base_ring() # needs eclib
|
|
209
|
+
Rational Field
|
|
210
|
+
"""
|
|
211
|
+
return self._base_ring
|
|
212
|
+
|
|
213
|
+
def _repr_(self):
|
|
214
|
+
r"""
|
|
215
|
+
String representation of modular symbols.
|
|
216
|
+
|
|
217
|
+
EXAMPLES::
|
|
218
|
+
|
|
219
|
+
sage: m = EllipticCurve('11a1').modular_symbol() # needs eclib
|
|
220
|
+
sage: m # needs eclib
|
|
221
|
+
Modular symbol with sign 1 over Rational Field attached to
|
|
222
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
223
|
+
|
|
224
|
+
sage: # needs sage.graphs
|
|
225
|
+
sage: m = EllipticCurve('43a1').modular_symbol(sign=-1, implementation='sage')
|
|
226
|
+
sage: m
|
|
227
|
+
Modular symbol with sign -1 over Rational Field attached to
|
|
228
|
+
Elliptic Curve defined by y^2 + y = x^3 + x^2 over Rational Field
|
|
229
|
+
"""
|
|
230
|
+
return "Modular symbol with sign %s over %s attached to %s" % (
|
|
231
|
+
self._sign, self._base_ring, self._E)
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
class ModularSymbolECLIB(ModularSymbol):
|
|
235
|
+
def __init__(self, E, sign, nap=1000):
|
|
236
|
+
r"""Modular symbols attached to `E` using ``eclib``.
|
|
237
|
+
|
|
238
|
+
Note that the normalization used within ``eclib`` differs from the
|
|
239
|
+
normalization chosen here by a factor of 2 in the case of elliptic
|
|
240
|
+
curves with negative discriminant (with one real component) since
|
|
241
|
+
the convention there is to write the above integral as
|
|
242
|
+
`[r]^{+}x+[r]^{-}yi`, where the lattice is `\left<2x,x+yi\right>`,
|
|
243
|
+
so that `\Omega^{+}=2x` and `\Omega^{-}=2yi`. We
|
|
244
|
+
allow for this below.
|
|
245
|
+
|
|
246
|
+
INPUT:
|
|
247
|
+
|
|
248
|
+
- ``E`` -- an elliptic curve
|
|
249
|
+
|
|
250
|
+
- ``sign`` -- integer; -1 or 1
|
|
251
|
+
|
|
252
|
+
- ``nap`` -- integer (default: 1000); the number of ap of E to use
|
|
253
|
+
in determining the normalisation of the modular symbols
|
|
254
|
+
|
|
255
|
+
EXAMPLES::
|
|
256
|
+
|
|
257
|
+
sage: # needs eclib
|
|
258
|
+
sage: from sage.schemes.elliptic_curves.ell_modular_symbols import ModularSymbolECLIB
|
|
259
|
+
sage: E = EllipticCurve('11a1')
|
|
260
|
+
sage: M = ModularSymbolECLIB(E,+1)
|
|
261
|
+
sage: M
|
|
262
|
+
Modular symbol with sign 1 over Rational Field attached to
|
|
263
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
264
|
+
sage: M(0)
|
|
265
|
+
1/5
|
|
266
|
+
sage: E = EllipticCurve('11a2')
|
|
267
|
+
sage: M = ModularSymbolECLIB(E,+1)
|
|
268
|
+
sage: M(0)
|
|
269
|
+
1
|
|
270
|
+
|
|
271
|
+
This is a rank 1 case with vanishing positive twists::
|
|
272
|
+
|
|
273
|
+
sage: # needs eclib
|
|
274
|
+
sage: E = EllipticCurve('121b1')
|
|
275
|
+
sage: M = ModularSymbolECLIB(E,+1)
|
|
276
|
+
sage: M(0)
|
|
277
|
+
0
|
|
278
|
+
sage: M(1/7)
|
|
279
|
+
1/2
|
|
280
|
+
|
|
281
|
+
sage: M = EllipticCurve('121d1').modular_symbol(implementation='eclib') # needs eclib
|
|
282
|
+
sage: M(0) # needs eclib
|
|
283
|
+
2
|
|
284
|
+
|
|
285
|
+
sage: E = EllipticCurve('15a1') # needs eclib
|
|
286
|
+
sage: [C.modular_symbol(implementation='eclib')(0) for C in E.isogeny_class()] # needs eclib
|
|
287
|
+
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]
|
|
288
|
+
|
|
289
|
+
Since :issue:`10256`, the interface for negative modular symbols in eclib is available::
|
|
290
|
+
|
|
291
|
+
sage: # needs eclib
|
|
292
|
+
sage: E = EllipticCurve('11a1')
|
|
293
|
+
sage: Mplus = E.modular_symbol(+1); Mplus
|
|
294
|
+
Modular symbol with sign 1 over Rational Field attached to
|
|
295
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
296
|
+
sage: [Mplus(1/i) for i in [1..11]]
|
|
297
|
+
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
|
|
298
|
+
sage: Mminus = E.modular_symbol(-1); Mminus
|
|
299
|
+
Modular symbol with sign -1 over Rational Field attached to
|
|
300
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
301
|
+
sage: [Mminus(1/i) for i in [1..11]]
|
|
302
|
+
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]
|
|
303
|
+
|
|
304
|
+
The scaling factor relative to eclib's normalization is 1/2 for curves of negative discriminant::
|
|
305
|
+
|
|
306
|
+
sage: [E.discriminant() for E in cremona_curves([14])] # needs eclib
|
|
307
|
+
[-21952, 941192, -1835008, -28, 25088, 98]
|
|
308
|
+
sage: [E.modular_symbol()._scaling for E in cremona_curves([14])] # needs eclib
|
|
309
|
+
[1/2, 1, 1/2, 1/2, 1, 1]
|
|
310
|
+
|
|
311
|
+
TESTS (for :issue:`10236`)::
|
|
312
|
+
|
|
313
|
+
sage: # needs eclib
|
|
314
|
+
sage: E = EllipticCurve('11a1')
|
|
315
|
+
sage: m = E.modular_symbol(implementation='eclib')
|
|
316
|
+
sage: m(1/7)
|
|
317
|
+
7/10
|
|
318
|
+
sage: m(0)
|
|
319
|
+
1/5
|
|
320
|
+
|
|
321
|
+
If ``nap`` is too small, the normalization in eclib used to be
|
|
322
|
+
incorrect (see :issue:`31317`), but since ``eclib`` version
|
|
323
|
+
v20210310 the value of ``nap`` is increased automatically by
|
|
324
|
+
``eclib``::
|
|
325
|
+
|
|
326
|
+
sage: # needs eclib
|
|
327
|
+
sage: from sage.schemes.elliptic_curves.ell_modular_symbols import ModularSymbolECLIB
|
|
328
|
+
sage: E = EllipticCurve('1590g1')
|
|
329
|
+
sage: m = ModularSymbolECLIB(E, sign=+1, nap=300)
|
|
330
|
+
sage: [m(a/5) for a in [1..4]]
|
|
331
|
+
[13/2, -13/2, -13/2, 13/2]
|
|
332
|
+
|
|
333
|
+
These values are correct, and increasing ``nap`` has no
|
|
334
|
+
effect. The correct values may verified by the numerical
|
|
335
|
+
implementation::
|
|
336
|
+
|
|
337
|
+
sage: # needs eclib
|
|
338
|
+
sage: m = ModularSymbolECLIB(E, sign=+1, nap=400)
|
|
339
|
+
sage: [m(a/5) for a in [1..4]]
|
|
340
|
+
[13/2, -13/2, -13/2, 13/2]
|
|
341
|
+
sage: m = E.modular_symbol(implementation='num')
|
|
342
|
+
sage: [m(a/5) for a in [1..4]]
|
|
343
|
+
[13/2, -13/2, -13/2, 13/2]
|
|
344
|
+
"""
|
|
345
|
+
from sage.libs.eclib.newforms import ECModularSymbol
|
|
346
|
+
|
|
347
|
+
if sign not in [-1, 1]:
|
|
348
|
+
raise TypeError('sign must -1 or 1')
|
|
349
|
+
self._sign = ZZ(sign)
|
|
350
|
+
self._E = E
|
|
351
|
+
self._scaling = 1 if E.discriminant() > 0 else ZZ(1)/2
|
|
352
|
+
self._implementation = "eclib"
|
|
353
|
+
self._base_ring = QQ
|
|
354
|
+
# The ECModularSymbol class must be initialized with sign=0 to compute minus symbols
|
|
355
|
+
self._modsym = ECModularSymbol(E, int(sign == 1), nap)
|
|
356
|
+
self.cache = {True: {}, False: {}}
|
|
357
|
+
|
|
358
|
+
def _call_with_caching(self, r, base_at_infinity=True):
|
|
359
|
+
r"""
|
|
360
|
+
Evaluates the modular symbol at {0,`r`} or {oo,`r`}, caching the computed value.
|
|
361
|
+
|
|
362
|
+
EXAMPLES::
|
|
363
|
+
|
|
364
|
+
sage: m = EllipticCurve('11a1').modular_symbol(implementation='eclib') # needs eclib
|
|
365
|
+
sage: m._call_with_caching(0) # needs eclib
|
|
366
|
+
1/5
|
|
367
|
+
"""
|
|
368
|
+
cache = self.cache[base_at_infinity]
|
|
369
|
+
try:
|
|
370
|
+
return cache[r]
|
|
371
|
+
except KeyError:
|
|
372
|
+
pass
|
|
373
|
+
c = self._modsym(r, sign=self._sign, base_at_infinity=base_at_infinity) * self._scaling
|
|
374
|
+
cache[r] = c
|
|
375
|
+
return c
|
|
376
|
+
|
|
377
|
+
def __call__(self, r, base_at_infinity=True):
|
|
378
|
+
r"""
|
|
379
|
+
Evaluates the modular symbol at {0,`r`} or {oo,`r`}.
|
|
380
|
+
|
|
381
|
+
EXAMPLES::
|
|
382
|
+
|
|
383
|
+
sage: m = EllipticCurve('11a1').modular_symbol(implementation='eclib') # needs eclib
|
|
384
|
+
sage: m(0) # needs eclib
|
|
385
|
+
1/5
|
|
386
|
+
"""
|
|
387
|
+
from sage.rings.rational import Rational
|
|
388
|
+
if r != oo:
|
|
389
|
+
r = Rational(r)
|
|
390
|
+
r = r.numer() % r.denom() / r.denom()
|
|
391
|
+
return self._modsym(r, sign=self._sign, base_at_infinity=base_at_infinity) * self._scaling
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
class ModularSymbolSage(ModularSymbol):
|
|
395
|
+
def __init__(self, E, sign, normalize='L_ratio'):
|
|
396
|
+
"""Modular symbols attached to `E` using ``sage``.
|
|
397
|
+
|
|
398
|
+
INPUT:
|
|
399
|
+
|
|
400
|
+
- ``E`` -- an elliptic curve
|
|
401
|
+
- ``sign`` -- integer; -1 or 1
|
|
402
|
+
- ``normalize`` -- either ``'L_ratio'`` (default), ``'period'``, or
|
|
403
|
+
``'none'``; For ``'L_ratio'``, the modular symbol is correctly
|
|
404
|
+
normalized by comparing it to the quotient of `L(E,1)` by
|
|
405
|
+
the least positive period for the curve and some small
|
|
406
|
+
twists. The normalization ``'period'`` uses the
|
|
407
|
+
integral_period_map for modular symbols and is known to be
|
|
408
|
+
equal to the above normalization up to the sign and a
|
|
409
|
+
possible power of 2. For ``'none'``, the modular symbol is
|
|
410
|
+
almost certainly not correctly normalized, i.e. all values
|
|
411
|
+
will be a fixed scalar multiple of what they should be. But
|
|
412
|
+
the initial computation of the modular symbol is much
|
|
413
|
+
faster, though evaluation of it after computing it won't be
|
|
414
|
+
any faster.
|
|
415
|
+
|
|
416
|
+
EXAMPLES::
|
|
417
|
+
|
|
418
|
+
sage: # needs sage.graphs
|
|
419
|
+
sage: E = EllipticCurve('11a1')
|
|
420
|
+
sage: from sage.schemes.elliptic_curves.ell_modular_symbols import ModularSymbolSage
|
|
421
|
+
sage: M = ModularSymbolSage(E, +1)
|
|
422
|
+
sage: M
|
|
423
|
+
Modular symbol with sign 1 over Rational Field attached to
|
|
424
|
+
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
|
|
425
|
+
sage: M(0)
|
|
426
|
+
1/5
|
|
427
|
+
sage: E = EllipticCurve('11a2')
|
|
428
|
+
sage: M = ModularSymbolSage(E, +1)
|
|
429
|
+
sage: M(0)
|
|
430
|
+
1
|
|
431
|
+
sage: M = ModularSymbolSage(E, -1)
|
|
432
|
+
sage: M(1/3)
|
|
433
|
+
1/2
|
|
434
|
+
|
|
435
|
+
This is a rank 1 case with vanishing positive twists.
|
|
436
|
+
The modular symbol is adjusted by -2::
|
|
437
|
+
|
|
438
|
+
sage: # needs sage.graphs
|
|
439
|
+
sage: E = EllipticCurve('121b1')
|
|
440
|
+
sage: M = ModularSymbolSage(E, -1, normalize='L_ratio')
|
|
441
|
+
sage: M(1/3)
|
|
442
|
+
1
|
|
443
|
+
sage: M._scaling
|
|
444
|
+
1
|
|
445
|
+
|
|
446
|
+
sage: # needs sage.graphs
|
|
447
|
+
sage: M = EllipticCurve('121d1').modular_symbol(implementation='sage')
|
|
448
|
+
sage: M(0)
|
|
449
|
+
2
|
|
450
|
+
sage: M = EllipticCurve('121d1').modular_symbol(implementation='sage',
|
|
451
|
+
....: normalize='none')
|
|
452
|
+
sage: M(0)
|
|
453
|
+
1
|
|
454
|
+
|
|
455
|
+
sage: # needs sage.graphs
|
|
456
|
+
sage: E = EllipticCurve('15a1')
|
|
457
|
+
sage: [C.modular_symbol(implementation='sage', normalize='L_ratio')(0)
|
|
458
|
+
....: for C in E.isogeny_class()]
|
|
459
|
+
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]
|
|
460
|
+
sage: [C.modular_symbol(implementation='sage', normalize='period')(0)
|
|
461
|
+
....: for C in E.isogeny_class()]
|
|
462
|
+
[1/8, 1/16, 1/8, 1/4, 1/16, 1/32, 1/4, 1/2]
|
|
463
|
+
sage: [C.modular_symbol(implementation='sage', normalize='none')(0)
|
|
464
|
+
....: for C in E.isogeny_class()]
|
|
465
|
+
[1, 1, 1, 1, 1, 1, 1, 1]
|
|
466
|
+
"""
|
|
467
|
+
if sign not in [-1, 1]:
|
|
468
|
+
raise TypeError('sign must -1 or 1')
|
|
469
|
+
self._sign = ZZ(sign)
|
|
470
|
+
self._E = E
|
|
471
|
+
self._implementation = "sage"
|
|
472
|
+
self._normalize = normalize
|
|
473
|
+
self._modsym = E.modular_symbol_space(sign=self._sign)
|
|
474
|
+
self._base_ring = self._modsym.base_ring()
|
|
475
|
+
self._ambient_modsym = self._modsym.ambient_module()
|
|
476
|
+
|
|
477
|
+
if normalize == "L_ratio":
|
|
478
|
+
self._e = self._modsym.dual_eigenvector()
|
|
479
|
+
self._find_scaling_L_ratio()
|
|
480
|
+
if self._failed_to_scale:
|
|
481
|
+
self._find_scaling_period() # will reset _e and _scaling
|
|
482
|
+
else:
|
|
483
|
+
self._e *= self._scaling
|
|
484
|
+
elif normalize == "period" :
|
|
485
|
+
self._find_scaling_period() # this will set _e and _scaling
|
|
486
|
+
elif normalize == "none":
|
|
487
|
+
self._scaling = 1
|
|
488
|
+
self._e = self._modsym.dual_eigenvector()
|
|
489
|
+
else :
|
|
490
|
+
raise ValueError("no normalization %s known for modular symbols" % normalize)
|
|
491
|
+
|
|
492
|
+
def _find_scaling_L_ratio(self):
|
|
493
|
+
r"""
|
|
494
|
+
This function is use to set ``_scaling``, the factor used to adjust the
|
|
495
|
+
scalar multiple of the modular symbol.
|
|
496
|
+
If `[0]`, the modular symbol evaluated at 0, is nonzero, we can just scale
|
|
497
|
+
it with respect to the approximation of the L-value. It is known that
|
|
498
|
+
the quotient is a rational number with small denominator.
|
|
499
|
+
Otherwise we try to scale using quadratic twists.
|
|
500
|
+
|
|
501
|
+
``_scaling`` will be set to a rational nonzero multiple if we succeed and to 1 otherwise.
|
|
502
|
+
Even if we fail we scale at least to make up the difference between the periods
|
|
503
|
+
of the `X_0`-optimal curve and our given curve `E` in the isogeny class.
|
|
504
|
+
|
|
505
|
+
EXAMPLES::
|
|
506
|
+
|
|
507
|
+
sage: # needs sage.graphs
|
|
508
|
+
sage: m = EllipticCurve('11a1').modular_symbol(implementation='sage')
|
|
509
|
+
sage: m._scaling
|
|
510
|
+
1/5
|
|
511
|
+
sage: m = EllipticCurve('11a2').modular_symbol(implementation='sage')
|
|
512
|
+
sage: m._scaling
|
|
513
|
+
1
|
|
514
|
+
sage: m = EllipticCurve('11a3').modular_symbol(implementation='sage')
|
|
515
|
+
sage: m._scaling
|
|
516
|
+
1/25
|
|
517
|
+
sage: m = EllipticCurve('37a1').modular_symbol(implementation='sage')
|
|
518
|
+
sage: m._scaling
|
|
519
|
+
-1
|
|
520
|
+
sage: m = EllipticCurve('37a1').modular_symbol()
|
|
521
|
+
sage: m._scaling
|
|
522
|
+
1
|
|
523
|
+
sage: m = EllipticCurve('389a1').modular_symbol()
|
|
524
|
+
sage: m._scaling
|
|
525
|
+
1
|
|
526
|
+
sage: m = EllipticCurve('389a1').modular_symbol(implementation='sage')
|
|
527
|
+
sage: m._scaling
|
|
528
|
+
1
|
|
529
|
+
sage: m = EllipticCurve('196a1').modular_symbol(implementation='sage')
|
|
530
|
+
sage: m._scaling
|
|
531
|
+
1
|
|
532
|
+
|
|
533
|
+
Some harder cases fail::
|
|
534
|
+
|
|
535
|
+
sage: # needs sage.graphs
|
|
536
|
+
sage: m = EllipticCurve('121b1').modular_symbol(implementation='sage')
|
|
537
|
+
Warning : Could not normalize the modular symbols, maybe all further results will be multiplied by -1 and a power of 2
|
|
538
|
+
sage: m._scaling
|
|
539
|
+
1
|
|
540
|
+
|
|
541
|
+
TESTS::
|
|
542
|
+
|
|
543
|
+
sage: # needs sage.graphs
|
|
544
|
+
sage: rk0 = ['11a1', '11a2', '15a1', '27a1', '37b1']
|
|
545
|
+
sage: for la in rk0: # long time (3s on sage.math, 2011)
|
|
546
|
+
....: E = EllipticCurve(la)
|
|
547
|
+
....: me = E.modular_symbol(implementation='eclib')
|
|
548
|
+
....: ms = E.modular_symbol(implementation='sage')
|
|
549
|
+
....: print("{} {} {}".format(E.lseries().L_ratio()*E.real_components(), me(0), ms(0)))
|
|
550
|
+
1/5 1/5 1/5
|
|
551
|
+
1 1 1
|
|
552
|
+
1/4 1/4 1/4
|
|
553
|
+
1/3 1/3 1/3
|
|
554
|
+
2/3 2/3 2/3
|
|
555
|
+
|
|
556
|
+
sage: # needs sage.graphs
|
|
557
|
+
sage: rk1 = ['37a1','43a1','53a1', '91b1','91b2','91b3']
|
|
558
|
+
sage: [EllipticCurve(la).modular_symbol()(0) for la in rk1] # long time (1s on sage.math, 2011)
|
|
559
|
+
[0, 0, 0, 0, 0, 0]
|
|
560
|
+
sage: for la in rk1: # long time (8s on sage.math, 2011)
|
|
561
|
+
....: E = EllipticCurve(la)
|
|
562
|
+
....: m = E.modular_symbol()
|
|
563
|
+
....: lp = E.padic_lseries(5)
|
|
564
|
+
....: for D in [5,17,12,8]:
|
|
565
|
+
....: ED = E.quadratic_twist(D)
|
|
566
|
+
....: md = sum([kronecker(D,u)*m(ZZ(u)/D) for u in range(D)])
|
|
567
|
+
....: etaD = lp._quotient_of_periods_to_twist(D)
|
|
568
|
+
....: assert ED.lseries().L_ratio()*ED.real_components() * etaD == md
|
|
569
|
+
"""
|
|
570
|
+
E = self._E
|
|
571
|
+
self._scaling = 1 # initial value, may be changed later.
|
|
572
|
+
self._failed_to_scale = False
|
|
573
|
+
|
|
574
|
+
if self._sign == 1 :
|
|
575
|
+
at0 = self(0)
|
|
576
|
+
if at0 != 0 :
|
|
577
|
+
l1 = self.__lalg__(1)
|
|
578
|
+
if at0 != l1:
|
|
579
|
+
verbose('scale modular symbols by %s' % (l1/at0))
|
|
580
|
+
self._scaling = l1/at0
|
|
581
|
+
else :
|
|
582
|
+
# if [0] = 0, we can still hope to scale it correctly by considering twists of E
|
|
583
|
+
Dlist = [5,8,12,13,17,21,24,28,29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97] # a list of positive fundamental discriminants
|
|
584
|
+
j = 0
|
|
585
|
+
at0 = 0
|
|
586
|
+
# computes [0]+ for the twist of E by D until one value is nonzero
|
|
587
|
+
while j < 30 and at0 == 0 :
|
|
588
|
+
D = Dlist[j]
|
|
589
|
+
# the following line checks if the twist of the newform of E by D is a newform
|
|
590
|
+
# this is to avoid that we 'twist back'
|
|
591
|
+
if all( valuation(E.conductor(),ell) <= valuation(D,ell) for ell in prime_divisors(D) ) :
|
|
592
|
+
at0 = sum([kronecker_symbol(D,u) * self(ZZ(u)/D) for u in range(1,abs(D))])
|
|
593
|
+
j += 1
|
|
594
|
+
if j == 30 and at0 == 0: # curves like "121b1", "225a1", "225e1", "256a1", "256b1", "289a1", "361a1", "400a1", "400c1", "400h1", "441b1", "441c1", "441d1", "441f1 .. will arrive here
|
|
595
|
+
print("Warning : Could not normalize the modular symbols, maybe all further results will be multiplied by -1 and a power of 2")
|
|
596
|
+
self._failed_to_scale = True
|
|
597
|
+
else :
|
|
598
|
+
l1 = self.__lalg__(D)
|
|
599
|
+
if at0 != l1:
|
|
600
|
+
verbose('scale modular symbols by %s found at D=%s ' % (l1/at0,D), level=2)
|
|
601
|
+
self._scaling = l1/at0
|
|
602
|
+
|
|
603
|
+
else : # that is when sign = -1
|
|
604
|
+
Dlist = [-3,-4,-7,-8,-11,-15,-19,-20,-23,-24, -31, -35, -39, -40, -43, -47, -51, -52, -55, -56, -59, -67, -68, -71, -79, -83, -84, -87, -88, -91] # a list of negative fundamental discriminants
|
|
605
|
+
j = 0
|
|
606
|
+
at0 = 0
|
|
607
|
+
while j < 30 and at0 == 0 :
|
|
608
|
+
# computes [0]+ for the twist of E by D until one value is nonzero
|
|
609
|
+
D = Dlist[j]
|
|
610
|
+
if all( valuation(E.conductor(),ell) <= valuation(D,ell) for ell in prime_divisors(D) ) :
|
|
611
|
+
at0 = - sum([kronecker_symbol(D,u) * self(ZZ(u)/D) for u in range(1,abs(D))])
|
|
612
|
+
j += 1
|
|
613
|
+
if j == 30 and at0 == 0: # no more hope for a normalization
|
|
614
|
+
print("Warning : Could not normalize the modular symbols, maybe all further results will be multiplied by -1 and a power of 2")
|
|
615
|
+
self._failed_to_scale = True
|
|
616
|
+
else :
|
|
617
|
+
l1 = self.__lalg__(D)
|
|
618
|
+
if at0 != l1:
|
|
619
|
+
verbose('scale modular symbols by %s' % (l1/at0))
|
|
620
|
+
self._scaling = l1/at0
|
|
621
|
+
|
|
622
|
+
def __lalg__(self, D):
|
|
623
|
+
r"""
|
|
624
|
+
For positive `D`, this function evaluates the quotient
|
|
625
|
+
`L(E_D,1)\cdot \sqrt(D)/\Omega_E` where `E_D` is the twist of
|
|
626
|
+
`E` by `D`, `\Omega_E` is the least positive period of `E`.
|
|
627
|
+
|
|
628
|
+
For negative `E`, it is the quotient
|
|
629
|
+
`L(E_D,1)\cdot \sqrt(-D)/\Omega^{-}_E`
|
|
630
|
+
where `\Omega^{-}_E` is the least positive imaginary part of a
|
|
631
|
+
non-real period of `E`.
|
|
632
|
+
|
|
633
|
+
EXAMPLES::
|
|
634
|
+
|
|
635
|
+
sage: # needs sage.graphs
|
|
636
|
+
sage: E = EllipticCurve('11a1')
|
|
637
|
+
sage: m = E.modular_symbol(sign=+1, implementation='sage')
|
|
638
|
+
sage: m.__lalg__(1)
|
|
639
|
+
1/5
|
|
640
|
+
sage: m.__lalg__(3)
|
|
641
|
+
5/2
|
|
642
|
+
"""
|
|
643
|
+
from sage.misc.functional import sqrt
|
|
644
|
+
# the computation of the L-value could take a lot of time,
|
|
645
|
+
# but then the conductor is so large
|
|
646
|
+
# that the computation of modular symbols for E took even longer
|
|
647
|
+
|
|
648
|
+
E = self._E
|
|
649
|
+
ED = E.quadratic_twist(D)
|
|
650
|
+
lv = ED.lseries().L_ratio() # this is L(ED,1) divided by the Néron period omD of ED
|
|
651
|
+
lv *= ED.real_components() # now it is by the least positive period
|
|
652
|
+
omD = ED.period_lattice().basis()[0]
|
|
653
|
+
if D > 0 :
|
|
654
|
+
om = E.period_lattice().basis()[0]
|
|
655
|
+
q = sqrt(D) * omD / om * 8
|
|
656
|
+
else :
|
|
657
|
+
om = E.period_lattice().basis()[1].imag()
|
|
658
|
+
if E.real_components() == 1:
|
|
659
|
+
om *= 2
|
|
660
|
+
q = sqrt(-D) * omD / om * 8
|
|
661
|
+
|
|
662
|
+
# see padic_lseries.pAdicLeries._quotient_of_periods_to_twist
|
|
663
|
+
# for the explanation of the second factor
|
|
664
|
+
verbose('real approximation is %s' % q)
|
|
665
|
+
return lv / 8 * QQ(q.round())
|
|
666
|
+
|
|
667
|
+
def _find_scaling_period(self):
|
|
668
|
+
r"""
|
|
669
|
+
Uses the integral period map of the modular symbol implementation in sage
|
|
670
|
+
in order to determine the scaling. The resulting modular symbol is correct
|
|
671
|
+
only for the `X_0`-optimal curve, at least up to a possible factor +- a
|
|
672
|
+
power of 2.
|
|
673
|
+
|
|
674
|
+
EXAMPLES::
|
|
675
|
+
|
|
676
|
+
sage: E = EllipticCurve('11a1')
|
|
677
|
+
sage: m = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1,normalize='period')
|
|
678
|
+
sage: m._e
|
|
679
|
+
(1/5, 1/2)
|
|
680
|
+
sage: E = EllipticCurve('11a2')
|
|
681
|
+
sage: m = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1,normalize='period')
|
|
682
|
+
sage: m._e
|
|
683
|
+
(1, 5/2)
|
|
684
|
+
sage: E = EllipticCurve('121b2')
|
|
685
|
+
sage: m = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1,normalize='period')
|
|
686
|
+
sage: m._e
|
|
687
|
+
(0, 0, 0, 11/2, 11/2, 11/2, 11/2, -3, 3/2, 1/2, -1, 2)
|
|
688
|
+
|
|
689
|
+
TESTS::
|
|
690
|
+
|
|
691
|
+
sage: E = EllipticCurve('19a1')
|
|
692
|
+
sage: m = E.modular_symbol(sign=+1, implementation='sage', normalize='none')
|
|
693
|
+
sage: m._find_scaling_period()
|
|
694
|
+
sage: m._scaling
|
|
695
|
+
1
|
|
696
|
+
|
|
697
|
+
sage: E = EllipticCurve('19a2')
|
|
698
|
+
sage: m = E.modular_symbol(sign=+1, implementation='sage', normalize='none')
|
|
699
|
+
sage: m._scaling
|
|
700
|
+
1
|
|
701
|
+
sage: m._find_scaling_period()
|
|
702
|
+
sage: m._scaling
|
|
703
|
+
3
|
|
704
|
+
"""
|
|
705
|
+
P = self._modsym.integral_period_mapping()
|
|
706
|
+
self._e = P.matrix().transpose().row(0)
|
|
707
|
+
self._e /= 2
|
|
708
|
+
E = self._E
|
|
709
|
+
try :
|
|
710
|
+
crla = parse_cremona_label(E.label())
|
|
711
|
+
except RuntimeError: # raised when curve is outside of the table
|
|
712
|
+
print("Warning : Could not normalize the modular symbols, maybe all further results will be multiplied by a rational number.")
|
|
713
|
+
self._scaling = 1
|
|
714
|
+
else :
|
|
715
|
+
cr0 = Integer(crla[0]).str() + crla[1] + '1'
|
|
716
|
+
E0 = EllipticCurve(cr0)
|
|
717
|
+
if self._sign == 1:
|
|
718
|
+
q = E0.period_lattice().basis()[0]/E.period_lattice().basis()[0]
|
|
719
|
+
else:
|
|
720
|
+
q = E0.period_lattice().basis()[1].imag()/E.period_lattice().basis()[1].imag()
|
|
721
|
+
if E0.real_components() == 1:
|
|
722
|
+
q *= 2
|
|
723
|
+
if E.real_components() == 1:
|
|
724
|
+
q /= 2
|
|
725
|
+
q = QQ((q * 200).round()) / 200
|
|
726
|
+
verbose('scale modular symbols by %s' % q)
|
|
727
|
+
self._scaling = q
|
|
728
|
+
c = self(0) # required, to change base point from oo to 0
|
|
729
|
+
if c < 0:
|
|
730
|
+
c *= -1
|
|
731
|
+
self._scaling *= -1
|
|
732
|
+
self._at_zero = c
|
|
733
|
+
self._e *= self._scaling
|
|
734
|
+
|
|
735
|
+
def _call_with_caching(self, r):
|
|
736
|
+
r"""
|
|
737
|
+
Evaluates the modular symbol at `r`, caching the computed value.
|
|
738
|
+
|
|
739
|
+
EXAMPLES::
|
|
740
|
+
|
|
741
|
+
sage: # needs sage.graphs
|
|
742
|
+
sage: m = EllipticCurve('11a1').modular_symbol(implementation='sage')
|
|
743
|
+
sage: m._call_with_caching(0)
|
|
744
|
+
1/5
|
|
745
|
+
"""
|
|
746
|
+
try:
|
|
747
|
+
return self.__cache[r]
|
|
748
|
+
except AttributeError:
|
|
749
|
+
self.__cache = {}
|
|
750
|
+
except KeyError:
|
|
751
|
+
pass
|
|
752
|
+
w = self._ambient_modsym([oo,r]).element()
|
|
753
|
+
c = (self._e).dot_product(w)
|
|
754
|
+
self.__cache[r] = c
|
|
755
|
+
return c
|
|
756
|
+
|
|
757
|
+
def __call__(self, r, base_at_infinity=True):
|
|
758
|
+
r"""
|
|
759
|
+
Evaluates the modular symbol at {0,`r`} or {oo,`r`}.
|
|
760
|
+
|
|
761
|
+
EXAMPLES::
|
|
762
|
+
|
|
763
|
+
sage: # needs sage.graphs
|
|
764
|
+
sage: m = EllipticCurve('11a1').modular_symbol(implementation='sage')
|
|
765
|
+
sage: m(0)
|
|
766
|
+
1/5
|
|
767
|
+
"""
|
|
768
|
+
# this next line takes most of the time # zero = weight-2
|
|
769
|
+
w = self._ambient_modsym.modular_symbol([zero, oo, Cusps(r)], check=False)
|
|
770
|
+
c = (self._e).dot_product(w.element())
|
|
771
|
+
if not base_at_infinity:
|
|
772
|
+
if self._at_zero is None:
|
|
773
|
+
self._at_zero = self(0)
|
|
774
|
+
c -= self._at_zero
|
|
775
|
+
return c
|