passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1878 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.pari sage.rings.padics
|
|
3
|
+
r"""
|
|
4
|
+
Overconvergent `p`-adic modular forms for small primes
|
|
5
|
+
|
|
6
|
+
This module implements computations of Hecke operators and `U_p`-eigenfunctions
|
|
7
|
+
on `p`-adic overconvergent modular forms of tame level 1, where `p` is one of
|
|
8
|
+
the primes `\{2, 3, 5, 7, 13\}`, using the algorithms described in [Loe2007]_.
|
|
9
|
+
|
|
10
|
+
- [Loe2007]_
|
|
11
|
+
|
|
12
|
+
AUTHORS:
|
|
13
|
+
|
|
14
|
+
- David Loeffler (August 2008): initial version
|
|
15
|
+
- David Loeffler (March 2009): extensively reworked
|
|
16
|
+
- Lloyd Kilford (May 2009): add
|
|
17
|
+
:meth:`~sage.modular.overconvergent.genus0.OverconvergentModularFormsSpace.slopes`
|
|
18
|
+
method
|
|
19
|
+
- David Loeffler (June 2009): miscellaneous bug fixes and usability improvements
|
|
20
|
+
|
|
21
|
+
The Theory
|
|
22
|
+
~~~~~~~~~~
|
|
23
|
+
|
|
24
|
+
Let `p` be one of the above primes, so `X_0(p)` has genus 0, and let
|
|
25
|
+
|
|
26
|
+
.. MATH::
|
|
27
|
+
|
|
28
|
+
f_p = \sqrt[p-1]{\frac{\Delta(pz)}{\Delta(z)}}
|
|
29
|
+
|
|
30
|
+
(an `\eta`-product of level `p` -- see module :mod:`sage.modular.etaproducts`).
|
|
31
|
+
Then one can show that `f_p` gives an isomorphism `X_0(p) \to \mathbb{P}^1`.
|
|
32
|
+
Furthermore, if we work over `\CC_p`, the `r`-overconvergent locus on `X_0(p)`
|
|
33
|
+
(or of `X_0(1)`, via the canonical subgroup lifting), corresponds to the
|
|
34
|
+
`p`-adic disc
|
|
35
|
+
|
|
36
|
+
.. MATH::
|
|
37
|
+
|
|
38
|
+
|f_p|_p \le p^{\frac{12r}{p-1}}.
|
|
39
|
+
|
|
40
|
+
(This is Theorem 1 of [Loe2007]_.)
|
|
41
|
+
|
|
42
|
+
Hence if we fix an element `c` with `|c| = p^{-\frac{12r}{p-1}}`, the space
|
|
43
|
+
`S_k^\dagger(1, r)` of overconvergent `p`-adic modular forms has an orthonormal
|
|
44
|
+
basis given by the functions `(cf)^n`. So any element can be written in the
|
|
45
|
+
form `E_k \times \sum_{n \ge 0} a_n (cf)^n`, where `a_n \to 0` as `N \to
|
|
46
|
+
\infty`, and any such sequence `a_n` defines a unique overconvergent form.
|
|
47
|
+
|
|
48
|
+
One can now find the matrix of Hecke operators in this basis, either by
|
|
49
|
+
calculating `q`-expansions, or (for the special case of `U_p`) using a
|
|
50
|
+
recurrence formula due to Kolberg.
|
|
51
|
+
|
|
52
|
+
An Extended Example
|
|
53
|
+
~~~~~~~~~~~~~~~~~~~
|
|
54
|
+
|
|
55
|
+
We create a space of 3-adic modular forms::
|
|
56
|
+
|
|
57
|
+
sage: M = OverconvergentModularForms(3, 8, 1/6, prec=60)
|
|
58
|
+
|
|
59
|
+
Creating an element directly as a linear combination of basis vectors.
|
|
60
|
+
|
|
61
|
+
.. link
|
|
62
|
+
|
|
63
|
+
::
|
|
64
|
+
|
|
65
|
+
sage: f1 = M.3 + M.5; f1.q_expansion()
|
|
66
|
+
27*q^3 + 1055916/1093*q^4 + 19913121/1093*q^5 + 268430112/1093*q^6 + ...
|
|
67
|
+
sage: f1.coordinates(8)
|
|
68
|
+
[0, 0, 0, 1, 0, 1, 0, 0]
|
|
69
|
+
|
|
70
|
+
We can coerce from elements of classical spaces of modular forms:
|
|
71
|
+
|
|
72
|
+
.. link
|
|
73
|
+
|
|
74
|
+
::
|
|
75
|
+
|
|
76
|
+
sage: f2 = M(CuspForms(3, 8).0); f2
|
|
77
|
+
3-adic overconvergent modular form of weight-character 8 with q-expansion
|
|
78
|
+
q + 6*q^2 - 27*q^3 - 92*q^4 + 390*q^5 - 162*q^6 ...
|
|
79
|
+
|
|
80
|
+
We express this in a basis, and see that the coefficients go to zero very fast:
|
|
81
|
+
|
|
82
|
+
.. link
|
|
83
|
+
|
|
84
|
+
::
|
|
85
|
+
|
|
86
|
+
sage: [x.valuation(3) for x in f2.coordinates(60)]
|
|
87
|
+
[+Infinity, -1, 3, 6, 10, 13, 18, 20, 24, 27, 31, 34, 39, 41, 45, 48, 52, 55, 61,
|
|
88
|
+
62, 66, 69, 73, 76, 81, 83, 87, 90, 94, 97, 102, 104, 108, 111, 115, 118, 124, 125,
|
|
89
|
+
129, 132, 136, 139, 144, 146, 150, 153, 157, 160, 165, 167, 171, 174, 178, 181,
|
|
90
|
+
188, 188, 192, 195, 199, 202]
|
|
91
|
+
|
|
92
|
+
This form has more level at `p`, and hence is less overconvergent:
|
|
93
|
+
|
|
94
|
+
.. link
|
|
95
|
+
|
|
96
|
+
::
|
|
97
|
+
|
|
98
|
+
sage: f3 = M(CuspForms(9, 8).0); [x.valuation(3) for x in f3.coordinates(60)]
|
|
99
|
+
[+Infinity, -1, -1, 0, -4, -4, -2, -3, 0, 0, -1, -1, 1, 0, 3, 3, 3, 3, 5, 3, 7, 7,
|
|
100
|
+
6, 6, 8, 7, 10, 10, 8, 8, 10, 9, 12, 12, 12, 12, 14, 12, 17, 16, 15, 15, 17, 16,
|
|
101
|
+
19, 19, 18, 18, 20, 19, 22, 22, 22, 22, 24, 21, 25, 26, 24, 24]
|
|
102
|
+
|
|
103
|
+
An error will be raised for forms which are not sufficiently overconvergent:
|
|
104
|
+
|
|
105
|
+
.. link
|
|
106
|
+
|
|
107
|
+
::
|
|
108
|
+
|
|
109
|
+
sage: M(CuspForms(27, 8).0)
|
|
110
|
+
Traceback (most recent call last):
|
|
111
|
+
...
|
|
112
|
+
ValueError: Form is not overconvergent enough (form is only 1/12-overconvergent)
|
|
113
|
+
|
|
114
|
+
Let's compute some Hecke operators. Note that the coefficients of this matrix are `p`-adically tiny:
|
|
115
|
+
|
|
116
|
+
.. link
|
|
117
|
+
|
|
118
|
+
::
|
|
119
|
+
|
|
120
|
+
sage: M.hecke_matrix(3, 4).change_ring(Qp(3, prec=1))
|
|
121
|
+
[ 1 + O(3) 0 0 0]
|
|
122
|
+
[ 0 2*3^3 + O(3^4) 2*3^3 + O(3^4) 3^2 + O(3^3)]
|
|
123
|
+
[ 0 2*3^7 + O(3^8) 2*3^8 + O(3^9) 3^6 + O(3^7)]
|
|
124
|
+
[ 0 2*3^10 + O(3^11) 2*3^10 + O(3^11) 2*3^9 + O(3^10)]
|
|
125
|
+
|
|
126
|
+
We compute the eigenfunctions of a 4x4 truncation:
|
|
127
|
+
|
|
128
|
+
.. link
|
|
129
|
+
|
|
130
|
+
::
|
|
131
|
+
|
|
132
|
+
sage: efuncs = M.eigenfunctions(4)
|
|
133
|
+
sage: for i in [1..3]:
|
|
134
|
+
....: print(efuncs[i].q_expansion(prec=4).change_ring(Qp(3, prec=20)))
|
|
135
|
+
(1 + O(3^20))*q
|
|
136
|
+
+ (2*3 + 3^15 + 3^16 + 3^17 + 2*3^19 + 2*3^20 + O(3^21))*q^2
|
|
137
|
+
+ (2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9
|
|
138
|
+
+ 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15
|
|
139
|
+
+ 2*3^16 + 3^17 + 2*3^18 + 2*3^19 + 3^21 + 3^22 + O(3^23))*q^3
|
|
140
|
+
+ O(q^4)
|
|
141
|
+
(1 + O(3^20))*q
|
|
142
|
+
+ (3 + 2*3^2 + 3^3 + 3^4 + 3^12 + 3^13 + 2*3^14
|
|
143
|
+
+ 3^15 + 2*3^17 + 3^18 + 3^19 + 3^20 + O(3^21))*q^2
|
|
144
|
+
+ (3^7 + 3^13 + 2*3^14 + 2*3^15 + 3^16 + 3^17 + 2*3^18
|
|
145
|
+
+ 3^20 + 2*3^21 + 2*3^22 + 2*3^23 + 2*3^25 + O(3^27))*q^3
|
|
146
|
+
+ O(q^4)
|
|
147
|
+
(1 + O(3^20))*q
|
|
148
|
+
+ (2*3 + 3^3 + 2*3^4 + 3^6 + 2*3^8 + 3^9 + 3^10
|
|
149
|
+
+ 2*3^11 + 2*3^13 + 3^16 + 3^18 + 3^19 + 3^20 + O(3^21))*q^2
|
|
150
|
+
+ (3^9 + 2*3^12 + 3^15 + 3^17 + 3^18 + 3^19 + 3^20
|
|
151
|
+
+ 2*3^22 + 2*3^23 + 2*3^27 + 2*3^28 + O(3^29))*q^3
|
|
152
|
+
+ O(q^4)
|
|
153
|
+
|
|
154
|
+
The first eigenfunction is a classical cusp form of level 3:
|
|
155
|
+
|
|
156
|
+
.. link
|
|
157
|
+
|
|
158
|
+
::
|
|
159
|
+
|
|
160
|
+
sage: (efuncs[1] - M(CuspForms(3, 8).0)).valuation()
|
|
161
|
+
13
|
|
162
|
+
|
|
163
|
+
The second is an Eisenstein series!
|
|
164
|
+
|
|
165
|
+
.. link
|
|
166
|
+
|
|
167
|
+
::
|
|
168
|
+
|
|
169
|
+
sage: (efuncs[2] - M(EisensteinForms(3, 8).1)).valuation()
|
|
170
|
+
10
|
|
171
|
+
|
|
172
|
+
The third is a genuinely new thing (not a classical modular form at all); the
|
|
173
|
+
coefficients are almost certainly not algebraic over `\QQ`. Note that the slope
|
|
174
|
+
is 9, so Coleman's classicality criterion (forms of slope `< k-1` are
|
|
175
|
+
classical) does not apply.
|
|
176
|
+
|
|
177
|
+
.. link
|
|
178
|
+
|
|
179
|
+
::
|
|
180
|
+
|
|
181
|
+
sage: a3 = efuncs[3].q_expansion()[3]; a3
|
|
182
|
+
3^9 + 2*3^12 + 3^15 + 3^17 + 3^18 + 3^19 + 3^20 + 2*3^22 + 2*3^23 + 2*3^27
|
|
183
|
+
+ 2*3^28 + 3^32 + 3^33 + 2*3^34 + 3^38 + 2*3^39 + 3^40 + 2*3^41 + 3^44 + 3^45
|
|
184
|
+
+ 3^46 + 2*3^47 + 2*3^48 + 3^49 + 3^50 + 2*3^51 + 2*3^52 + 3^53 + 2*3^54 + 3^55
|
|
185
|
+
+ 3^56 + 3^57 + 2*3^58 + 2*3^59 + 3^60 + 2*3^61 + 2*3^63 + 2*3^64 + 3^65 + 2*3^67
|
|
186
|
+
+ 3^68 + 2*3^69 + 2*3^71 + 3^72 + 2*3^74 + 3^75 + 3^76 + 3^79 + 3^80 + 2*3^83
|
|
187
|
+
+ 2*3^84 + 3^85 + 2*3^87 + 3^88 + 2*3^89 + 2*3^90 + 2*3^91 + 3^92 + O(3^98)
|
|
188
|
+
sage: efuncs[3].slope()
|
|
189
|
+
9
|
|
190
|
+
"""
|
|
191
|
+
# ****************************************************************************
|
|
192
|
+
# Copyright (C) 2008 William Stein <wstein@gmail.com>
|
|
193
|
+
# 2008-9 David Loeffler <d.loeffler.01@cantab.net>
|
|
194
|
+
#
|
|
195
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
196
|
+
# https://www.gnu.org/licenses/
|
|
197
|
+
# ****************************************************************************
|
|
198
|
+
from typing import Iterator
|
|
199
|
+
|
|
200
|
+
import weakref
|
|
201
|
+
|
|
202
|
+
import sage.rings.abc
|
|
203
|
+
|
|
204
|
+
from sage.matrix.constructor import matrix
|
|
205
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
206
|
+
from sage.matrix.special import diagonal_matrix
|
|
207
|
+
from sage.misc.cachefunc import cached_method
|
|
208
|
+
from sage.misc.lazy_import import lazy_import
|
|
209
|
+
from sage.misc.verbose import verbose
|
|
210
|
+
from sage.modular.arithgroup.all import Gamma0_class, Gamma1_class
|
|
211
|
+
from sage.modular.dirichlet import trivial_character
|
|
212
|
+
from sage.modular.etaproducts import EtaProduct
|
|
213
|
+
from sage.modular.modform.element import ModularFormElement
|
|
214
|
+
from sage.modular.modform.hecke_operator_on_qexp import hecke_operator_on_qexp
|
|
215
|
+
from sage.modules.free_module_element import vector
|
|
216
|
+
from sage.modules.module import Module
|
|
217
|
+
from sage.rings.big_oh import O
|
|
218
|
+
from sage.rings.infinity import Infinity
|
|
219
|
+
from sage.rings.integer_ring import ZZ
|
|
220
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
221
|
+
from sage.rings.power_series_ring import PowerSeriesRing
|
|
222
|
+
from sage.rings.rational_field import QQ
|
|
223
|
+
from sage.structure.element import Vector, ModuleElement
|
|
224
|
+
from sage.structure.richcmp import richcmp
|
|
225
|
+
from .weightspace import WeightSpace_constructor as WeightSpace, WeightCharacter
|
|
226
|
+
|
|
227
|
+
lazy_import('sage.modular.modform.j_invariant', 'j_invariant_qexp')
|
|
228
|
+
lazy_import('sage.rings.padics.factory', 'Qp', as_='pAdicField')
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
__ocmfdict = {}
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
####################
|
|
235
|
+
# Factory function #
|
|
236
|
+
####################
|
|
237
|
+
|
|
238
|
+
def OverconvergentModularForms(prime, weight, radius, base_ring=QQ, prec=20, char=None):
|
|
239
|
+
r"""
|
|
240
|
+
Create a space of overconvergent `p`-adic modular forms of level
|
|
241
|
+
`\Gamma_0(p)`, over the given base ring. The base ring need not be a
|
|
242
|
+
`p`-adic ring (the spaces we compute with typically have bases over
|
|
243
|
+
`\QQ`).
|
|
244
|
+
|
|
245
|
+
INPUT:
|
|
246
|
+
|
|
247
|
+
- ``prime`` -- a prime number `p`, which must be one of the primes `\{2, 3,
|
|
248
|
+
5, 7, 13\}`, or the congruence subgroup `\Gamma_0(p)` where `p` is one of
|
|
249
|
+
these primes
|
|
250
|
+
|
|
251
|
+
- ``weight`` -- integer (which at present must be 0 or `\ge 2`), the
|
|
252
|
+
weight
|
|
253
|
+
|
|
254
|
+
- ``radius`` -- a rational number in the interval `\left( 0, \frac{p}{p+1}
|
|
255
|
+
\right)`, the radius of overconvergence
|
|
256
|
+
|
|
257
|
+
- ``base_ring`` -- (default: `\QQ`), a ring over which to compute; this
|
|
258
|
+
need not be a `p`-adic ring
|
|
259
|
+
|
|
260
|
+
- ``prec`` -- integer (default: 20); the number of `q`-expansion terms to
|
|
261
|
+
compute
|
|
262
|
+
|
|
263
|
+
- ``char`` -- a Dirichlet character modulo `p` or ``None`` (the default);
|
|
264
|
+
here ``None`` is interpreted as the trivial character modulo `p`
|
|
265
|
+
|
|
266
|
+
The character `\chi` and weight `k` must satisfy `(-1)^k = \chi(-1)`, and
|
|
267
|
+
the base ring must contain an element `v` such that
|
|
268
|
+
`{\rm ord}_p(v) = \frac{12 r}{p-1}` where `r` is the radius of
|
|
269
|
+
overconvergence (and `{\rm ord}_p` is normalised so `{\rm ord}_p(p) = 1`).
|
|
270
|
+
|
|
271
|
+
EXAMPLES::
|
|
272
|
+
|
|
273
|
+
sage: OverconvergentModularForms(3, 0, 1/2)
|
|
274
|
+
Space of 3-adic 1/2-overconvergent modular forms
|
|
275
|
+
of weight-character 0 over Rational Field
|
|
276
|
+
sage: OverconvergentModularForms(3, 16, 1/2)
|
|
277
|
+
Space of 3-adic 1/2-overconvergent modular forms
|
|
278
|
+
of weight-character 16 over Rational Field
|
|
279
|
+
sage: OverconvergentModularForms(3, 3, 1/2, char=DirichletGroup(3,QQ).0)
|
|
280
|
+
Space of 3-adic 1/2-overconvergent modular forms
|
|
281
|
+
of weight-character (3, 3, [-1]) over Rational Field
|
|
282
|
+
"""
|
|
283
|
+
if isinstance(prime, (Gamma0_class, Gamma1_class)):
|
|
284
|
+
prime = prime.level()
|
|
285
|
+
else:
|
|
286
|
+
prime = ZZ(prime)
|
|
287
|
+
if char is None:
|
|
288
|
+
char = trivial_character(prime, base_ring=QQ)
|
|
289
|
+
if int(prime) not in [2, 3, 5, 7, 13]:
|
|
290
|
+
raise ValueError("p must be one of {2, 3, 5, 7, 13}")
|
|
291
|
+
key = (prime, weight, radius, base_ring, prec, char)
|
|
292
|
+
if key in __ocmfdict:
|
|
293
|
+
w = __ocmfdict[key]
|
|
294
|
+
M = w()
|
|
295
|
+
if M is not None:
|
|
296
|
+
return M
|
|
297
|
+
M = OverconvergentModularFormsSpace(*key)
|
|
298
|
+
__ocmfdict[key] = weakref.ref(M)
|
|
299
|
+
return M
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
#########################
|
|
303
|
+
# Main class definition #
|
|
304
|
+
#########################
|
|
305
|
+
|
|
306
|
+
class OverconvergentModularFormsSpace(Module):
|
|
307
|
+
r"""
|
|
308
|
+
A space of overconvergent modular forms of level `\Gamma_0(p)`,
|
|
309
|
+
where `p` is a prime such that `X_0(p)` has genus 0.
|
|
310
|
+
|
|
311
|
+
Elements are represented as power series, with a formal power series `F`
|
|
312
|
+
corresponding to the modular form `E_k^\ast \times F(g)` where `E_k^\ast`
|
|
313
|
+
is the `p`-deprived Eisenstein series of weight-character `k`, and `g` is a
|
|
314
|
+
uniformiser of `X_0(p)` normalised so that the `r`-overconvergent region
|
|
315
|
+
`X_0(p)_{\ge r}` corresponds to `|g| \le 1`.
|
|
316
|
+
|
|
317
|
+
TESTS::
|
|
318
|
+
|
|
319
|
+
sage: x = polygen(ZZ, 'x')
|
|
320
|
+
sage: K.<w> = Qp(13).extension(x^2 - 13); M = OverconvergentModularForms(13, 20, radius=1/2, base_ring=K)
|
|
321
|
+
sage: M is loads(dumps(M))
|
|
322
|
+
True
|
|
323
|
+
"""
|
|
324
|
+
|
|
325
|
+
###############
|
|
326
|
+
# Init script #
|
|
327
|
+
###############
|
|
328
|
+
|
|
329
|
+
def __init__(self, prime, weight, radius, base_ring, prec, char):
|
|
330
|
+
r"""
|
|
331
|
+
Create a space of overconvergent `p`-adic modular forms of level
|
|
332
|
+
`\Gamma_0(p)`, over the given base ring.
|
|
333
|
+
|
|
334
|
+
The base ring need not be a
|
|
335
|
+
`p`-adic ring (the spaces we compute with typically have bases over
|
|
336
|
+
`\QQ`).
|
|
337
|
+
|
|
338
|
+
EXAMPLES::
|
|
339
|
+
|
|
340
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2); M
|
|
341
|
+
Space of 3-adic 1/2-overconvergent modular forms of weight-character 0 over Rational Field
|
|
342
|
+
sage: TestSuite(M).run()
|
|
343
|
+
"""
|
|
344
|
+
self._p = prime
|
|
345
|
+
|
|
346
|
+
if not (base_ring == QQ or isinstance(base_ring, sage.rings.abc.pAdicField)):
|
|
347
|
+
raise TypeError("Base ring must be QQ or a p-adic field")
|
|
348
|
+
|
|
349
|
+
if base_ring != QQ and base_ring.prime() != self._p:
|
|
350
|
+
raise TypeError("Residue characteristic of base ring (=%s) must be %s" % (base_ring, self._p))
|
|
351
|
+
|
|
352
|
+
if isinstance(weight, WeightCharacter):
|
|
353
|
+
self._wtchar = weight
|
|
354
|
+
else:
|
|
355
|
+
self._wtchar = WeightSpace(prime, base_ring=char.base_ring())(weight, char, algebraic=True)
|
|
356
|
+
|
|
357
|
+
if not self._wtchar.is_even():
|
|
358
|
+
raise ValueError("Weight-character must be even")
|
|
359
|
+
|
|
360
|
+
Module.__init__(self, base_ring)
|
|
361
|
+
|
|
362
|
+
self._prec = prec
|
|
363
|
+
|
|
364
|
+
self._qsr = PowerSeriesRing(base_ring, 'q', prec) # q-series ring
|
|
365
|
+
self._gsr = PowerSeriesRing(base_ring, 'g', prec) # g-adic expansions, g = c*f
|
|
366
|
+
|
|
367
|
+
self._cached_recurrence_matrix = None
|
|
368
|
+
self._set_radius(radius)
|
|
369
|
+
self._basis_cache = [self._wtchar.pAdicEisensteinSeries(self._qsr, self.prec())]
|
|
370
|
+
self._uniformiser = self._qsr(EtaProduct(prime, {prime: 24/ZZ(prime-1), ZZ(1): -24/ZZ(prime-1)}).qexp(self.prec()))
|
|
371
|
+
|
|
372
|
+
for i in range(1, self.prec()):
|
|
373
|
+
self._basis_cache.append(self._basis_cache[-1] * self._uniformiser * self._const)
|
|
374
|
+
|
|
375
|
+
#####################################
|
|
376
|
+
# Methods called by the init script #
|
|
377
|
+
#####################################
|
|
378
|
+
|
|
379
|
+
def _set_radius(self, radius):
|
|
380
|
+
r"""
|
|
381
|
+
Set the radius of overconvergence to be `r`, where `r` is a rational
|
|
382
|
+
number in the interval `0 < r < \frac{p}{p+1}`.
|
|
383
|
+
|
|
384
|
+
This only makes sense if the base ring contains an element of
|
|
385
|
+
normalised valuation `\frac{12r}{p-1}`. If this valuation is an
|
|
386
|
+
integer, we use the appropriate power of `p`. Otherwise, we assume the
|
|
387
|
+
base ring has a ``uniformiser`` method and take an appropriate power of
|
|
388
|
+
the uniformiser, raising an error if no such element exists.
|
|
389
|
+
|
|
390
|
+
EXAMPLES::
|
|
391
|
+
|
|
392
|
+
sage: M = OverconvergentModularForms(3, 2, 1/2) # indirect doctest
|
|
393
|
+
sage: M._set_radius(1/3); M
|
|
394
|
+
Space of 3-adic 1/3-overconvergent modular forms of weight-character 2
|
|
395
|
+
over Rational Field
|
|
396
|
+
|
|
397
|
+
sage: x = polygen(ZZ, 'x')
|
|
398
|
+
sage: L.<w> = Qp(3).extension(x^5 - 3)
|
|
399
|
+
sage: OverconvergentModularForms(3, 2, 1/30, base_ring=L).normalising_factor() # indirect doctest
|
|
400
|
+
w + O(w^101)
|
|
401
|
+
|
|
402
|
+
sage: OverconvergentModularForms(3, 2, 1/40, base_ring=L)
|
|
403
|
+
Traceback (most recent call last):
|
|
404
|
+
...
|
|
405
|
+
ValueError: no element of base ring (=3-adic Eisenstein Extension ...)
|
|
406
|
+
has normalised valuation 3/20
|
|
407
|
+
"""
|
|
408
|
+
|
|
409
|
+
p = ZZ(self.prime())
|
|
410
|
+
|
|
411
|
+
if (radius < 0 or radius > p/(p+1)):
|
|
412
|
+
raise ValueError("radius (=%s) must be between 0 and p/(p+1)" % radius)
|
|
413
|
+
d = 12/(p-1)*radius
|
|
414
|
+
if d.is_integral():
|
|
415
|
+
self._const = p ** ZZ(d)
|
|
416
|
+
self._radius = radius
|
|
417
|
+
else:
|
|
418
|
+
try:
|
|
419
|
+
pi = self.base_ring().uniformiser()
|
|
420
|
+
e = d / pi.normalized_valuation()
|
|
421
|
+
except AttributeError: # base ring isn't a p-adic ring
|
|
422
|
+
pi = p
|
|
423
|
+
e = d
|
|
424
|
+
if not e.is_integral():
|
|
425
|
+
raise ValueError("no element of base ring (=%s) has normalised valuation %s" % (self.base_ring(), radius * 12 / (p-1)))
|
|
426
|
+
self._radius = radius
|
|
427
|
+
self._const = pi ** ZZ(e)
|
|
428
|
+
|
|
429
|
+
##############################################
|
|
430
|
+
# Boring functions that access internal data #
|
|
431
|
+
##############################################
|
|
432
|
+
|
|
433
|
+
def is_exact(self) -> bool:
|
|
434
|
+
r"""
|
|
435
|
+
Return ``True`` if elements of this space are represented exactly.
|
|
436
|
+
|
|
437
|
+
This would mean that there is no precision loss when doing arithmetic.
|
|
438
|
+
As this is never true for overconvergent modular forms spaces,
|
|
439
|
+
this method returns ``False``.
|
|
440
|
+
|
|
441
|
+
EXAMPLES::
|
|
442
|
+
|
|
443
|
+
sage: OverconvergentModularForms(13, 12, 0).is_exact()
|
|
444
|
+
False
|
|
445
|
+
"""
|
|
446
|
+
return False
|
|
447
|
+
|
|
448
|
+
def change_ring(self, ring):
|
|
449
|
+
r"""
|
|
450
|
+
Return the space corresponding to ``self`` but over the given base ring.
|
|
451
|
+
|
|
452
|
+
EXAMPLES::
|
|
453
|
+
|
|
454
|
+
sage: M = OverconvergentModularForms(2, 0, 1/2)
|
|
455
|
+
sage: M.change_ring(Qp(2))
|
|
456
|
+
Space of 2-adic 1/2-overconvergent modular forms of weight-character 0
|
|
457
|
+
over 2-adic Field with ...
|
|
458
|
+
"""
|
|
459
|
+
return OverconvergentModularForms(self.prime(), self.weight(), self.radius(), ring, self.prec(), self.character())
|
|
460
|
+
|
|
461
|
+
def base_extend(self, ring):
|
|
462
|
+
r"""
|
|
463
|
+
Return the base extension of ``self`` to the given base ring.
|
|
464
|
+
|
|
465
|
+
There must be a canonical map to this ring from the current
|
|
466
|
+
base ring, otherwise a :exc:`TypeError` will be raised.
|
|
467
|
+
|
|
468
|
+
EXAMPLES::
|
|
469
|
+
|
|
470
|
+
sage: M = OverconvergentModularForms(2, 0, 1/2, base_ring=Qp(2))
|
|
471
|
+
sage: x = polygen(ZZ, 'x')
|
|
472
|
+
sage: M.base_extend(Qp(2).extension(x^2 - 2, names='w'))
|
|
473
|
+
Space of 2-adic 1/2-overconvergent modular forms of weight-character 0
|
|
474
|
+
over 2-adic Eisenstein Extension ...
|
|
475
|
+
sage: M.base_extend(QQ)
|
|
476
|
+
Traceback (most recent call last):
|
|
477
|
+
...
|
|
478
|
+
TypeError: Base extension of self (over '2-adic Field with capped
|
|
479
|
+
relative precision 20') to ring 'Rational Field' not defined.
|
|
480
|
+
"""
|
|
481
|
+
if ring.has_coerce_map_from(self.base_ring()):
|
|
482
|
+
return self.change_ring(ring)
|
|
483
|
+
else:
|
|
484
|
+
raise TypeError("Base extension of self (over '%s') to ring '%s' not defined." % (self.base_ring(), ring))
|
|
485
|
+
|
|
486
|
+
def _an_element_(self):
|
|
487
|
+
r"""
|
|
488
|
+
Return an element of this space (used by the coercion machinery).
|
|
489
|
+
|
|
490
|
+
EXAMPLES::
|
|
491
|
+
|
|
492
|
+
sage: OverconvergentModularForms(3, 2, 1/3, prec=4).an_element() # indirect doctest
|
|
493
|
+
3-adic overconvergent modular form of weight-character 2
|
|
494
|
+
with q-expansion 9*q + 216*q^2 + 2430*q^3 + O(q^4)
|
|
495
|
+
"""
|
|
496
|
+
return self.element_class(self, self._gsr.an_element())
|
|
497
|
+
|
|
498
|
+
def character(self):
|
|
499
|
+
r"""
|
|
500
|
+
Return the character of ``self``.
|
|
501
|
+
|
|
502
|
+
For overconvergent forms, the weight and the character are unified into
|
|
503
|
+
the concept of a weight-character, so this returns exactly the same
|
|
504
|
+
thing as :meth:`weight`.
|
|
505
|
+
|
|
506
|
+
EXAMPLES::
|
|
507
|
+
|
|
508
|
+
sage: OverconvergentModularForms(3, 0, 1/2).character()
|
|
509
|
+
0
|
|
510
|
+
sage: type(OverconvergentModularForms(3, 0, 1/2).character())
|
|
511
|
+
<class '...weightspace.AlgebraicWeight'>
|
|
512
|
+
sage: OverconvergentModularForms(3, 3, 1/2, char=DirichletGroup(3,QQ).0).character()
|
|
513
|
+
(3, 3, [-1])
|
|
514
|
+
"""
|
|
515
|
+
return self._wtchar
|
|
516
|
+
|
|
517
|
+
def weight(self):
|
|
518
|
+
r"""
|
|
519
|
+
Return the weight of ``self``.
|
|
520
|
+
|
|
521
|
+
For overconvergent forms, the weight and the character are unified into
|
|
522
|
+
the concept of a weight-character, so this returns exactly the same
|
|
523
|
+
thing as :meth:`character`.
|
|
524
|
+
|
|
525
|
+
EXAMPLES::
|
|
526
|
+
|
|
527
|
+
sage: OverconvergentModularForms(3, 0, 1/2).weight()
|
|
528
|
+
0
|
|
529
|
+
sage: type(OverconvergentModularForms(3, 0, 1/2).weight())
|
|
530
|
+
<class '...weightspace.AlgebraicWeight'>
|
|
531
|
+
sage: OverconvergentModularForms(3, 3, 1/2, char=DirichletGroup(3,QQ).0).weight()
|
|
532
|
+
(3, 3, [-1])
|
|
533
|
+
"""
|
|
534
|
+
return self._wtchar
|
|
535
|
+
|
|
536
|
+
def normalising_factor(self):
|
|
537
|
+
r"""
|
|
538
|
+
Return the normalising factor of ``self``.
|
|
539
|
+
|
|
540
|
+
The normalising factor `c` such that `g = c f` is a parameter for the
|
|
541
|
+
`r`-overconvergent disc in `X_0(p)`, where `f` is the standard
|
|
542
|
+
uniformiser.
|
|
543
|
+
|
|
544
|
+
EXAMPLES::
|
|
545
|
+
|
|
546
|
+
sage: x = polygen(ZZ, 'x')
|
|
547
|
+
sage: L.<w> = Qp(7).extension(x^2 - 7)
|
|
548
|
+
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L).normalising_factor()
|
|
549
|
+
w + O(w^41)
|
|
550
|
+
"""
|
|
551
|
+
return self._const
|
|
552
|
+
|
|
553
|
+
def __eq__(self, other):
|
|
554
|
+
r"""
|
|
555
|
+
Check whether ``self`` is equal to ``other``.
|
|
556
|
+
|
|
557
|
+
EXAMPLES::
|
|
558
|
+
|
|
559
|
+
sage: OverconvergentModularForms(3, 12, 1/2) == ModularForms(3, 12)
|
|
560
|
+
False
|
|
561
|
+
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/3)
|
|
562
|
+
False
|
|
563
|
+
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/2, base_ring=Qp(3))
|
|
564
|
+
False
|
|
565
|
+
sage: OverconvergentModularForms(3, 0, 1/2) == OverconvergentModularForms(3, 0, 1/2)
|
|
566
|
+
True
|
|
567
|
+
"""
|
|
568
|
+
if not isinstance(other, OverconvergentModularFormsSpace):
|
|
569
|
+
return False
|
|
570
|
+
else:
|
|
571
|
+
return self._params() == other._params()
|
|
572
|
+
|
|
573
|
+
def __ne__(self, other):
|
|
574
|
+
"""
|
|
575
|
+
Check whether ``self`` is not equal to ``other``.
|
|
576
|
+
|
|
577
|
+
EXAMPLES::
|
|
578
|
+
|
|
579
|
+
sage: OverconvergentModularForms(3, 12, 1/2) != ModularForms(3, 12)
|
|
580
|
+
True
|
|
581
|
+
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/3)
|
|
582
|
+
True
|
|
583
|
+
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/2, base_ring=Qp(3))
|
|
584
|
+
True
|
|
585
|
+
sage: OverconvergentModularForms(3, 0, 1/2) != OverconvergentModularForms(3, 0, 1/2)
|
|
586
|
+
False
|
|
587
|
+
"""
|
|
588
|
+
return not (self == other)
|
|
589
|
+
|
|
590
|
+
def __hash__(self):
|
|
591
|
+
"""
|
|
592
|
+
Return the hash of ``self``.
|
|
593
|
+
|
|
594
|
+
EXAMPLES::
|
|
595
|
+
|
|
596
|
+
sage: h1 = hash(OverconvergentModularForms(3, 12, 1/2))
|
|
597
|
+
sage: h2 = hash(OverconvergentModularForms(3, 12, 1/2))
|
|
598
|
+
sage: h3 = hash(OverconvergentModularForms(3, 0, 1/2))
|
|
599
|
+
sage: h1 == h2 and h1 != h3
|
|
600
|
+
True
|
|
601
|
+
"""
|
|
602
|
+
return hash(self._params())
|
|
603
|
+
|
|
604
|
+
def _params(self):
|
|
605
|
+
r"""
|
|
606
|
+
Return the parameters that define this module uniquely: prime, weight,
|
|
607
|
+
character, radius of overconvergence and base ring. Mostly used for
|
|
608
|
+
pickling.
|
|
609
|
+
|
|
610
|
+
EXAMPLES::
|
|
611
|
+
|
|
612
|
+
sage: x = polygen(ZZ, 'x')
|
|
613
|
+
sage: L.<w> = Qp(7).extension(x^2 - 7)
|
|
614
|
+
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L)._params()
|
|
615
|
+
(7,
|
|
616
|
+
0,
|
|
617
|
+
1/4,
|
|
618
|
+
7-adic Eisenstein Extension Field in w defined by x^2 - 7,
|
|
619
|
+
20,
|
|
620
|
+
Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1)
|
|
621
|
+
"""
|
|
622
|
+
return (self.prime(), self.weight().k(), self.radius(), self.base_ring(), self.prec(), self.weight().chi())
|
|
623
|
+
|
|
624
|
+
def __reduce__(self):
|
|
625
|
+
r"""
|
|
626
|
+
Return the function and arguments used to construct ``self``. Used for pickling.
|
|
627
|
+
|
|
628
|
+
EXAMPLES::
|
|
629
|
+
|
|
630
|
+
sage: x = polygen(ZZ, 'x')
|
|
631
|
+
sage: L.<w> = Qp(7).extension(x^2 - 7)
|
|
632
|
+
sage: OverconvergentModularForms(7, 0, 1/4, base_ring=L).__reduce__()
|
|
633
|
+
(<function OverconvergentModularForms at ...>,
|
|
634
|
+
(7,
|
|
635
|
+
0,
|
|
636
|
+
1/4,
|
|
637
|
+
7-adic Eisenstein Extension Field in w defined by x^2 - 7,
|
|
638
|
+
20,
|
|
639
|
+
Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1))
|
|
640
|
+
"""
|
|
641
|
+
return (OverconvergentModularForms, self._params())
|
|
642
|
+
|
|
643
|
+
def gen(self, i):
|
|
644
|
+
r"""
|
|
645
|
+
Return the `i`-th module generator of ``self``.
|
|
646
|
+
|
|
647
|
+
EXAMPLES::
|
|
648
|
+
|
|
649
|
+
sage: M = OverconvergentModularForms(3, 2, 1/2, prec=4)
|
|
650
|
+
sage: M.gen(0)
|
|
651
|
+
3-adic overconvergent modular form of weight-character 2
|
|
652
|
+
with q-expansion 1 + 12*q + 36*q^2 + 12*q^3 + O(q^4)
|
|
653
|
+
sage: M.gen(1)
|
|
654
|
+
3-adic overconvergent modular form of weight-character 2
|
|
655
|
+
with q-expansion 27*q + 648*q^2 + 7290*q^3 + O(q^4)
|
|
656
|
+
sage: M.gen(30)
|
|
657
|
+
3-adic overconvergent modular form of weight-character 2
|
|
658
|
+
with q-expansion O(q^4)
|
|
659
|
+
"""
|
|
660
|
+
|
|
661
|
+
return OverconvergentModularFormElement(self, gexp=self._gsr.gen()**i)
|
|
662
|
+
|
|
663
|
+
def _repr_(self):
|
|
664
|
+
r"""
|
|
665
|
+
Return a string representation of ``self``.
|
|
666
|
+
|
|
667
|
+
EXAMPLES::
|
|
668
|
+
|
|
669
|
+
sage: OverconvergentModularForms(3, 0, 1/2)._repr_()
|
|
670
|
+
'Space of 3-adic 1/2-overconvergent modular forms of weight-character 0 over Rational Field'
|
|
671
|
+
"""
|
|
672
|
+
return "Space of %s-adic %s-overconvergent modular forms of weight-character %s over %s" % (self.prime(), self.radius(), self.weight(), self.base_ring())
|
|
673
|
+
|
|
674
|
+
def prime(self):
|
|
675
|
+
r"""
|
|
676
|
+
Return the residue characteristic of ``self``.
|
|
677
|
+
|
|
678
|
+
This is the prime `p` such that this is a `p`-adic space.
|
|
679
|
+
|
|
680
|
+
EXAMPLES::
|
|
681
|
+
|
|
682
|
+
sage: OverconvergentModularForms(5, 12, 1/3).prime()
|
|
683
|
+
5
|
|
684
|
+
"""
|
|
685
|
+
return self._p
|
|
686
|
+
|
|
687
|
+
def radius(self):
|
|
688
|
+
r"""
|
|
689
|
+
The radius of overconvergence of this space.
|
|
690
|
+
|
|
691
|
+
EXAMPLES::
|
|
692
|
+
|
|
693
|
+
sage: OverconvergentModularForms(3, 0, 1/3).radius()
|
|
694
|
+
1/3
|
|
695
|
+
"""
|
|
696
|
+
return self._radius
|
|
697
|
+
|
|
698
|
+
def gens(self) -> Iterator:
|
|
699
|
+
r"""
|
|
700
|
+
Return a generator object that iterates over the (infinite) set of
|
|
701
|
+
basis vectors of ``self``.
|
|
702
|
+
|
|
703
|
+
EXAMPLES::
|
|
704
|
+
|
|
705
|
+
sage: o = OverconvergentModularForms(3, 12, 1/2)
|
|
706
|
+
sage: t = o.gens()
|
|
707
|
+
sage: next(t)
|
|
708
|
+
3-adic overconvergent modular form of weight-character 12 with q-expansion
|
|
709
|
+
1 - 32760/61203943*q - 67125240/61203943*q^2 - ...
|
|
710
|
+
sage: next(t)
|
|
711
|
+
3-adic overconvergent modular form of weight-character 12 with q-expansion
|
|
712
|
+
27*q + 19829193012/61203943*q^2 + 146902585770/61203943*q^3 + ...
|
|
713
|
+
"""
|
|
714
|
+
i = 0
|
|
715
|
+
while True:
|
|
716
|
+
yield self.gen(i)
|
|
717
|
+
i += 1
|
|
718
|
+
|
|
719
|
+
def prec(self):
|
|
720
|
+
r"""
|
|
721
|
+
Return the series precision of ``self``.
|
|
722
|
+
|
|
723
|
+
Note that this is different from the `p`-adic precision of the base ring.
|
|
724
|
+
|
|
725
|
+
EXAMPLES::
|
|
726
|
+
|
|
727
|
+
sage: OverconvergentModularForms(3, 0, 1/2).prec()
|
|
728
|
+
20
|
|
729
|
+
sage: OverconvergentModularForms(3, 0, 1/2, prec=40).prec()
|
|
730
|
+
40
|
|
731
|
+
"""
|
|
732
|
+
return self._prec
|
|
733
|
+
|
|
734
|
+
#####################################
|
|
735
|
+
# Element construction and coercion #
|
|
736
|
+
#####################################
|
|
737
|
+
|
|
738
|
+
def _element_constructor_(self, input):
|
|
739
|
+
r"""
|
|
740
|
+
Create an element of this space. Allowable inputs are:
|
|
741
|
+
|
|
742
|
+
- elements of compatible spaces of modular forms or overconvergent
|
|
743
|
+
modular forms
|
|
744
|
+
|
|
745
|
+
- arbitrary power series in `q`
|
|
746
|
+
|
|
747
|
+
- lists of elements of the base ring (interpreted as vectors in the
|
|
748
|
+
basis given by :meth:`gens`).
|
|
749
|
+
|
|
750
|
+
Precision may be specified by padding lists at the end with zeros;
|
|
751
|
+
inputs with a higher precision than the set precision of this space
|
|
752
|
+
will be rounded.
|
|
753
|
+
|
|
754
|
+
EXAMPLES:
|
|
755
|
+
|
|
756
|
+
From a `q`-expansion::
|
|
757
|
+
|
|
758
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2, prec=5)
|
|
759
|
+
sage: R.<q> = QQ[[]]
|
|
760
|
+
sage: f = M(q + q^2 - q^3 + O(q^16)); f
|
|
761
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion q + q^2 - q^3 + O(q^5)
|
|
762
|
+
sage: M.coordinate_vector(f)
|
|
763
|
+
(0, 1/27, -11/729, 173/19683, -3172/531441)
|
|
764
|
+
|
|
765
|
+
From a list or a vector::
|
|
766
|
+
|
|
767
|
+
sage: M([1,0,1])
|
|
768
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + O(q^3)
|
|
769
|
+
sage: M([1,0,1,0,0])
|
|
770
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + 17496*q^3 + 236196*q^4 + O(q^5)
|
|
771
|
+
sage: f = M([1,0,1,0,0]); v = M.coordinate_vector(f); v
|
|
772
|
+
(1, 0, 1, 0, 0)
|
|
773
|
+
sage: M(v) == f
|
|
774
|
+
True
|
|
775
|
+
|
|
776
|
+
From a classical modular form::
|
|
777
|
+
|
|
778
|
+
sage: f = CuspForms(Gamma0(3), 12).0; f
|
|
779
|
+
q - 176*q^4 + 2430*q^5 + O(q^6)
|
|
780
|
+
sage: fdag = OverconvergentModularForms(3, 12, 1/3, prec=8)(f); fdag
|
|
781
|
+
3-adic overconvergent modular form of weight-character 12 with q-expansion q - 176*q^4 + 2430*q^5 - 5832*q^6 - 19336*q^7 + O(q^8)
|
|
782
|
+
sage: fdag.parent().coordinate_vector(f)*(1 + O(3^2))
|
|
783
|
+
(0, 3^-2 + O(3^0), 2*3^-3 + 2*3^-2 + O(3^-1), 3^-4 + 3^-3 + O(3^-2), 2 + 3 + O(3^2), 2*3 + 3^2 + O(3^3), 2*3^4 + 2*3^5 + O(3^6), 3^5 + 3^6 + O(3^7))
|
|
784
|
+
sage: OverconvergentModularForms(3, 6, 1/3)(f)
|
|
785
|
+
Traceback (most recent call last):
|
|
786
|
+
...
|
|
787
|
+
TypeError: Cannot create an element of 'Space of 3-adic ...' from element of incompatible space 'Cuspidal subspace ...'
|
|
788
|
+
|
|
789
|
+
We test that zero elements are handled properly::
|
|
790
|
+
|
|
791
|
+
sage: M(0)
|
|
792
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion O(q^5)
|
|
793
|
+
sage: M(O(q^3))
|
|
794
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion O(q^3)
|
|
795
|
+
|
|
796
|
+
We test coercion between spaces of different precision::
|
|
797
|
+
|
|
798
|
+
sage: M10 = OverconvergentModularForms(3, 0, 1/2, prec=10)
|
|
799
|
+
sage: f = M10.1
|
|
800
|
+
sage: M(f)
|
|
801
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion 27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + O(q^5)
|
|
802
|
+
sage: M10(M(f))
|
|
803
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion 27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + O(q^5)
|
|
804
|
+
"""
|
|
805
|
+
if isinstance(input, int):
|
|
806
|
+
input = ZZ(input)
|
|
807
|
+
|
|
808
|
+
if isinstance(input, OverconvergentModularFormElement):
|
|
809
|
+
return self._coerce_from_ocmf(input)
|
|
810
|
+
|
|
811
|
+
elif isinstance(input, ModularFormElement):
|
|
812
|
+
if ((input.level() == 1 or input.level().prime_factors() == [self.prime()])
|
|
813
|
+
and input.weight() == self.weight().k()
|
|
814
|
+
and input.character().primitive_character() == self.weight().chi().primitive_character()):
|
|
815
|
+
p = ZZ(self.prime())
|
|
816
|
+
nu = (input.level() == 1 and p/(p+1)) or (1 / (p + 1) * p**(2 - input.level().valuation(p)))
|
|
817
|
+
if self.radius() > nu:
|
|
818
|
+
raise ValueError("Form is not overconvergent enough (form is only %s-overconvergent)" % nu)
|
|
819
|
+
else:
|
|
820
|
+
return self(self._qsr(input.q_expansion(self.prec())))
|
|
821
|
+
else:
|
|
822
|
+
raise TypeError("Cannot create an element of '%s' from element of incompatible space '%s'" % (self, input.parent()))
|
|
823
|
+
|
|
824
|
+
elif isinstance(input, (list, tuple, Vector)):
|
|
825
|
+
v = list(input)
|
|
826
|
+
n = len(v)
|
|
827
|
+
return OverconvergentModularFormElement(self, gexp=self._gsr(v).add_bigoh(n), qexp=None)
|
|
828
|
+
|
|
829
|
+
elif self._qsr.has_coerce_map_from(input.parent()):
|
|
830
|
+
return OverconvergentModularFormElement(self, gexp=None, qexp=self._qsr(input))
|
|
831
|
+
|
|
832
|
+
else:
|
|
833
|
+
raise TypeError("Don't know how to create an overconvergent modular form from %s" % input)
|
|
834
|
+
|
|
835
|
+
@cached_method
|
|
836
|
+
def zero(self):
|
|
837
|
+
"""
|
|
838
|
+
Return the zero of this space.
|
|
839
|
+
|
|
840
|
+
EXAMPLES::
|
|
841
|
+
|
|
842
|
+
sage: x = polygen(ZZ, 'x')
|
|
843
|
+
sage: K.<w> = Qp(13).extension(x^2 - 13)
|
|
844
|
+
sage: M = OverconvergentModularForms(13, 20, radius=1/2, base_ring=K)
|
|
845
|
+
sage: K.zero()
|
|
846
|
+
0
|
|
847
|
+
"""
|
|
848
|
+
return self(0)
|
|
849
|
+
|
|
850
|
+
def _coerce_from_ocmf(self, f):
|
|
851
|
+
r"""
|
|
852
|
+
Try to convert the overconvergent modular form `f` into an element of ``self``.
|
|
853
|
+
|
|
854
|
+
An error will be raised if this is obviously nonsense.
|
|
855
|
+
|
|
856
|
+
EXAMPLES::
|
|
857
|
+
|
|
858
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
859
|
+
sage: MM = M.base_extend(Qp(3))
|
|
860
|
+
sage: R.<q> = Qp(3)[[]]; f = MM(q + O(q^2)); f
|
|
861
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion (1 + O(3^20))*q + O(q^2)
|
|
862
|
+
sage: M._coerce_from_ocmf(f)
|
|
863
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion q + O(q^2)
|
|
864
|
+
sage: f in M # indirect doctest
|
|
865
|
+
True
|
|
866
|
+
"""
|
|
867
|
+
prime, weight, radius, base_ring, prec, char = f.parent()._params()
|
|
868
|
+
if (prime, weight, char) != (self.prime(), self.weight().k(), self.weight().chi()):
|
|
869
|
+
raise TypeError("Cannot create an element of '%s' from element of incompatible space '%s'" % (self, input.parent()))
|
|
870
|
+
return self(self._qsr(f.q_expansion()))
|
|
871
|
+
|
|
872
|
+
def _coerce_map_from_(self, other):
|
|
873
|
+
r"""
|
|
874
|
+
Canonical coercion of ``x`` into ``self``.
|
|
875
|
+
|
|
876
|
+
Here the possibilities for ``x`` are more restricted.
|
|
877
|
+
|
|
878
|
+
TESTS::
|
|
879
|
+
|
|
880
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
881
|
+
sage: MM = M.base_extend(Qp(3))
|
|
882
|
+
sage: MM.has_coerce_map_from(M) # indirect doctest
|
|
883
|
+
True
|
|
884
|
+
sage: MM.coerce(M.1)
|
|
885
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion (3^3 + O(3^23))*q + (3^4 + 3^5 + O(3^24))*q^2 ...
|
|
886
|
+
sage: M.has_coerce_map_from(MM)
|
|
887
|
+
False
|
|
888
|
+
sage: M.coerce(1)
|
|
889
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + O(q^20)
|
|
890
|
+
"""
|
|
891
|
+
if (isinstance(other, OverconvergentModularFormsSpace) and
|
|
892
|
+
self.base_ring().has_coerce_map_from(other.base_ring())):
|
|
893
|
+
return True
|
|
894
|
+
return self.base_ring().has_coerce_map_from(other)
|
|
895
|
+
|
|
896
|
+
def coordinate_vector(self, x):
|
|
897
|
+
r"""
|
|
898
|
+
Write ``x`` as a vector with respect to the basis given by ``self.basis()``.
|
|
899
|
+
|
|
900
|
+
Here ``x`` must be an element of this space or something that can be
|
|
901
|
+
converted into one. If ``x`` has precision less than the default precision
|
|
902
|
+
of ``self``, then the returned vector will be shorter.
|
|
903
|
+
|
|
904
|
+
EXAMPLES::
|
|
905
|
+
|
|
906
|
+
sage: M = OverconvergentModularForms(Gamma0(3), 0, 1/3, prec=4)
|
|
907
|
+
sage: M.coordinate_vector(M.gen(2))
|
|
908
|
+
(0, 0, 1, 0)
|
|
909
|
+
sage: q = QQ[['q']].gen(); M.coordinate_vector(q - q^2 + O(q^4))
|
|
910
|
+
(0, 1/9, -13/81, 74/243)
|
|
911
|
+
sage: M.coordinate_vector(q - q^2 + O(q^3))
|
|
912
|
+
(0, 1/9, -13/81)
|
|
913
|
+
"""
|
|
914
|
+
if hasattr(x, 'base_ring') and x.base_ring() != self.base_ring():
|
|
915
|
+
return self.base_extend(x.base_ring()).coordinate_vector(x)
|
|
916
|
+
|
|
917
|
+
if x.parent() != self:
|
|
918
|
+
x = self(x)
|
|
919
|
+
|
|
920
|
+
return vector(self.base_ring(), x.gexp().padded_list(x.gexp().prec()))
|
|
921
|
+
|
|
922
|
+
##########################################################
|
|
923
|
+
# Pointless routines required by parent class definition #
|
|
924
|
+
##########################################################
|
|
925
|
+
|
|
926
|
+
def ngens(self):
|
|
927
|
+
r"""
|
|
928
|
+
The number of generators of ``self`` (as a module over its base ring), i.e. infinity.
|
|
929
|
+
|
|
930
|
+
EXAMPLES::
|
|
931
|
+
|
|
932
|
+
sage: M = OverconvergentModularForms(2, 4, 1/6)
|
|
933
|
+
sage: M.ngens()
|
|
934
|
+
+Infinity
|
|
935
|
+
"""
|
|
936
|
+
return Infinity
|
|
937
|
+
|
|
938
|
+
#####################################
|
|
939
|
+
# Routines with some actual content #
|
|
940
|
+
#####################################
|
|
941
|
+
|
|
942
|
+
def hecke_operator(self, f, m):
|
|
943
|
+
r"""
|
|
944
|
+
Given an element `f` and an integer `m`, calculates the Hecke operator
|
|
945
|
+
`T_m` acting on `f`.
|
|
946
|
+
|
|
947
|
+
The input may be either a "bare" power series, or an
|
|
948
|
+
:class:`OverconvergentModularFormElement` object; the return value will be of
|
|
949
|
+
the same type.
|
|
950
|
+
|
|
951
|
+
EXAMPLES::
|
|
952
|
+
|
|
953
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
954
|
+
sage: f = M.1
|
|
955
|
+
sage: M.hecke_operator(f, 3)
|
|
956
|
+
3-adic overconvergent modular form of weight-character 0 with q-expansion
|
|
957
|
+
2430*q + 265356*q^2 + 10670373*q^3 + 249948828*q^4 + 4113612864*q^5
|
|
958
|
+
+ 52494114852*q^6 + O(q^7)
|
|
959
|
+
sage: M.hecke_operator(f.q_expansion(), 3)
|
|
960
|
+
2430*q + 265356*q^2 + 10670373*q^3 + 249948828*q^4 + 4113612864*q^5
|
|
961
|
+
+ 52494114852*q^6 + O(q^7)
|
|
962
|
+
"""
|
|
963
|
+
|
|
964
|
+
# This should just be an instance of hecke_operator_on_qexp but that
|
|
965
|
+
# won't accept arbitrary power series as input, although it's clearly
|
|
966
|
+
# supposed to, which seems rather to defy the point but never mind...
|
|
967
|
+
|
|
968
|
+
if f.parent() is self:
|
|
969
|
+
return self(self.hecke_operator(f.q_expansion(), m))
|
|
970
|
+
elif isinstance(f, OverconvergentModularFormElement):
|
|
971
|
+
if f.parent() is self.base_extend(f.parent().base_ring()):
|
|
972
|
+
return f.parent().hecke_operator(f, m)
|
|
973
|
+
else:
|
|
974
|
+
raise TypeError("Not an element of this space")
|
|
975
|
+
else:
|
|
976
|
+
return hecke_operator_on_qexp(f, m, self.weight().k(), eps=self.weight().chi())
|
|
977
|
+
|
|
978
|
+
def _convert_to_basis(self, qexp):
|
|
979
|
+
r"""
|
|
980
|
+
Given a `q`-expansion, converts it to a vector in the basis of this
|
|
981
|
+
space, to the maximum possible precision (which is the minimum of the
|
|
982
|
+
`q`-adic precision of the `q`-expansion and the precision of ``self``).
|
|
983
|
+
|
|
984
|
+
EXAMPLES::
|
|
985
|
+
|
|
986
|
+
sage: M = OverconvergentModularForms(2, 0, 1/2)
|
|
987
|
+
sage: R.<q> = QQ[[]]
|
|
988
|
+
sage: M._convert_to_basis(q + q^2 + O(q^4))
|
|
989
|
+
1/64*g - 23/4096*g^2 + 201/65536*g^3 + O(g^4)
|
|
990
|
+
"""
|
|
991
|
+
n = min(qexp.prec(), self.prec())
|
|
992
|
+
x = qexp
|
|
993
|
+
g = self._gsr.gen()
|
|
994
|
+
answer = self._gsr(0)
|
|
995
|
+
for i in range(n):
|
|
996
|
+
assert x.valuation() >= i
|
|
997
|
+
answer += (x[i] / self._basis_cache[i][i]) * g**i
|
|
998
|
+
x = x - self._basis_cache[i] * answer[i]
|
|
999
|
+
return answer + O(g**n)
|
|
1000
|
+
|
|
1001
|
+
def hecke_matrix(self, m, n, use_recurrence=False, exact_arith=False, side='left'):
|
|
1002
|
+
r"""
|
|
1003
|
+
Calculate the matrix of the `T_m` operator, truncated to `n \times n`.
|
|
1004
|
+
|
|
1005
|
+
INPUT:
|
|
1006
|
+
|
|
1007
|
+
- ``m`` -- integer; determines the operator `T_m`
|
|
1008
|
+
|
|
1009
|
+
- ``n`` -- integer; truncate the matrix in the basis of this space
|
|
1010
|
+
to an `n \times n` matrix
|
|
1011
|
+
|
|
1012
|
+
- ``use_recurrence`` -- boolean (default: ``False``); whether to use
|
|
1013
|
+
Kolberg style recurrences. If ``False``, use naive `q`-expansion
|
|
1014
|
+
arguments.
|
|
1015
|
+
|
|
1016
|
+
- ``exact_arith`` -- boolean (default: ``True``); whether to do the
|
|
1017
|
+
computation to be done with rational arithmetic, even if the base ring
|
|
1018
|
+
is an inexact `p`-adic ring.
|
|
1019
|
+
|
|
1020
|
+
This is useful as there can be precision loss issues (particularly
|
|
1021
|
+
with ``use_recurrence=False``).
|
|
1022
|
+
|
|
1023
|
+
- ``side`` -- ``'left'`` (default) or ``'right'``; if ``'left'``, the
|
|
1024
|
+
operator acts on the left on column vectors
|
|
1025
|
+
|
|
1026
|
+
EXAMPLES::
|
|
1027
|
+
|
|
1028
|
+
sage: OverconvergentModularForms(2, 0, 1/2).hecke_matrix(2, 4)
|
|
1029
|
+
[ 1 0 0 0]
|
|
1030
|
+
[ 0 24 64 0]
|
|
1031
|
+
[ 0 32 1152 4608]
|
|
1032
|
+
[ 0 0 3072 61440]
|
|
1033
|
+
sage: o = OverconvergentModularForms(2, 12, 1/2, base_ring=pAdicField(2))
|
|
1034
|
+
sage: o.hecke_matrix(2, 3) * (1 + O(2^2))
|
|
1035
|
+
[ 1 + O(2^2) 0 0]
|
|
1036
|
+
[ 0 2^3 + O(2^5) 2^6 + O(2^8)]
|
|
1037
|
+
[ 0 2^4 + O(2^6) 2^7 + 2^8 + O(2^9)]
|
|
1038
|
+
sage: o = OverconvergentModularForms(2, 12, 1/2, base_ring=pAdicField(2))
|
|
1039
|
+
sage: o.hecke_matrix(2, 3, exact_arith=True)
|
|
1040
|
+
[ 1 0 0]
|
|
1041
|
+
[ 0 33881928/1414477 64]
|
|
1042
|
+
[ 0 -192898739923312/2000745183529 1626332544/1414477]
|
|
1043
|
+
|
|
1044
|
+
Side switch::
|
|
1045
|
+
|
|
1046
|
+
sage: OverconvergentModularForms(2, 0, 1/2).hecke_matrix(2, 4, side='right')
|
|
1047
|
+
[ 1 0 0 0]
|
|
1048
|
+
[ 0 24 32 0]
|
|
1049
|
+
[ 0 64 1152 3072]
|
|
1050
|
+
[ 0 0 4608 61440]
|
|
1051
|
+
"""
|
|
1052
|
+
if exact_arith and not self.base_ring().is_exact():
|
|
1053
|
+
return self.change_ring(QQ).hecke_matrix(m, n, use_recurrence, side=side)
|
|
1054
|
+
|
|
1055
|
+
M = MatrixSpace(self.base_ring(), n)
|
|
1056
|
+
mat = M(0)
|
|
1057
|
+
for j in range(min(n, self.prime())):
|
|
1058
|
+
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
|
|
1059
|
+
for i in range(n):
|
|
1060
|
+
try:
|
|
1061
|
+
mat[i, j] = l[i]
|
|
1062
|
+
except IndexError:
|
|
1063
|
+
if not self.weight().is_zero():
|
|
1064
|
+
raise ValueError("n is too large for current precision")
|
|
1065
|
+
else:
|
|
1066
|
+
if i <= self.prime() * j:
|
|
1067
|
+
raise ValueError("n is too large computing initial conds: can't work out u[%s, %s]" % (i, j))
|
|
1068
|
+
else:
|
|
1069
|
+
mat[i, j] = 0 # computations are exact for weight 0, and we know these terms are zero
|
|
1070
|
+
if use_recurrence:
|
|
1071
|
+
if m != self.prime():
|
|
1072
|
+
raise ValueError("Recurrence method not valid when m != p")
|
|
1073
|
+
for j in range(self.prime(), n):
|
|
1074
|
+
# can only apply recurrence if have i,j both >= p.
|
|
1075
|
+
if j >= self.prec():
|
|
1076
|
+
for i in range(self.prime()):
|
|
1077
|
+
if self.weight() != 0:
|
|
1078
|
+
raise ValueError("n is too large for current precision")
|
|
1079
|
+
else:
|
|
1080
|
+
if j <= self.prime() * i:
|
|
1081
|
+
raise ValueError("n is too large computing initial conds: can't work out u[%s,%s]" % (i, j))
|
|
1082
|
+
mat[i, j] = 0
|
|
1083
|
+
|
|
1084
|
+
else:
|
|
1085
|
+
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
|
|
1086
|
+
for i in range(self.prime()):
|
|
1087
|
+
mat[i, j] = l[i]
|
|
1088
|
+
for i in range(self.prime(), n):
|
|
1089
|
+
for u in range(self.prime()):
|
|
1090
|
+
for v in range(self.prime()):
|
|
1091
|
+
mat[i, j] = mat[i, j] + mat[i-u-1, j-v-1]*self.recurrence_matrix()[u, v]
|
|
1092
|
+
|
|
1093
|
+
else:
|
|
1094
|
+
if n * self.prime() > self.prec():
|
|
1095
|
+
raise ValueError("n is too large")
|
|
1096
|
+
for j in range(self.prime(), n):
|
|
1097
|
+
l = self._convert_to_basis(self.hecke_operator(self._basis_cache[j], m))
|
|
1098
|
+
for i in range(n):
|
|
1099
|
+
mat[i, j] = l[i]
|
|
1100
|
+
|
|
1101
|
+
if side == 'right':
|
|
1102
|
+
return mat.transpose()
|
|
1103
|
+
|
|
1104
|
+
return mat
|
|
1105
|
+
|
|
1106
|
+
def slopes(self, n, use_recurrence=False):
|
|
1107
|
+
r"""
|
|
1108
|
+
Compute the slopes of the `U_p` operator acting on ``self``, using an `n\times n` matrix.
|
|
1109
|
+
|
|
1110
|
+
EXAMPLES::
|
|
1111
|
+
|
|
1112
|
+
sage: OverconvergentModularForms(5, 2, 1/3, base_ring=Qp(5), prec=100).slopes(5)
|
|
1113
|
+
[0, 2, 5, 6, 9]
|
|
1114
|
+
sage: OverconvergentModularForms(2, 1, 1/3, char=DirichletGroup(4,QQ).0).slopes(5)
|
|
1115
|
+
[0, 2, 4, 6, 8]
|
|
1116
|
+
"""
|
|
1117
|
+
if self.base_ring() == QQ:
|
|
1118
|
+
slopelist = self.cps_u(n).truncate().newton_slopes(self.prime())
|
|
1119
|
+
elif isinstance(self.base_ring(), sage.rings.abc.pAdicField):
|
|
1120
|
+
slopelist = self.cps_u(n).truncate().newton_slopes()
|
|
1121
|
+
else:
|
|
1122
|
+
print("slopes are only defined for base field QQ or a p-adic field")
|
|
1123
|
+
return [-i for i in slopelist]
|
|
1124
|
+
|
|
1125
|
+
def eigenfunctions(self, n, F=None, exact_arith=True):
|
|
1126
|
+
"""
|
|
1127
|
+
Calculate approximations to eigenfunctions of ``self``.
|
|
1128
|
+
|
|
1129
|
+
These are the eigenfunctions of ``self.hecke_matrix(p, n)``, which
|
|
1130
|
+
are approximations to the true eigenfunctions. Returns a list
|
|
1131
|
+
of :class:`OverconvergentModularFormElement` objects, in increasing
|
|
1132
|
+
order of slope.
|
|
1133
|
+
|
|
1134
|
+
INPUT:
|
|
1135
|
+
|
|
1136
|
+
- ``n`` -- integer; the size of the matrix to use
|
|
1137
|
+
|
|
1138
|
+
- ``F`` -- either ``None`` or a field over which to calculate eigenvalues. If the
|
|
1139
|
+
field is ``None``, the current base ring is used. If the base ring is not
|
|
1140
|
+
a `p`-adic ring, an error will be raised.
|
|
1141
|
+
|
|
1142
|
+
- ``exact_arith`` -- boolean (default: ``True``); if ``True``, use exact
|
|
1143
|
+
rational arithmetic to calculate the matrix of the `U` operator and its
|
|
1144
|
+
characteristic power series, even when the base ring is an inexact
|
|
1145
|
+
`p`-adic ring. This is typically slower, but more numerically stable.
|
|
1146
|
+
|
|
1147
|
+
NOTE: Try using ``set_verbose(1, 'sage/modular/overconvergent')`` to
|
|
1148
|
+
get more feedback on what is going on in this algorithm. For even more
|
|
1149
|
+
feedback, use 2 instead of 1.
|
|
1150
|
+
|
|
1151
|
+
EXAMPLES::
|
|
1152
|
+
|
|
1153
|
+
sage: X = OverconvergentModularForms(2, 2, 1/6).eigenfunctions(8, Qp(2, 100))
|
|
1154
|
+
sage: X[1]
|
|
1155
|
+
2-adic overconvergent modular form of weight-character 2 with q-expansion
|
|
1156
|
+
(1 + O(2^74))*q
|
|
1157
|
+
+ (2^4 + 2^5 + 2^9 + 2^10 + 2^12 + 2^13 + 2^15 + 2^17 + 2^19 + 2^20
|
|
1158
|
+
+ 2^21 + 2^23 + 2^28 + 2^30 + 2^31 + 2^32 + 2^34 + 2^36 + 2^37
|
|
1159
|
+
+ 2^39 + 2^40 + 2^43 + 2^44 + 2^45 + 2^47 + 2^48 + 2^52 + 2^53
|
|
1160
|
+
+ 2^54 + 2^55 + 2^56 + 2^58 + 2^59 + 2^60 + 2^61 + 2^67 + 2^68
|
|
1161
|
+
+ 2^70 + 2^71 + 2^72 + 2^74 + 2^76 + O(2^78))*q^2
|
|
1162
|
+
+ (2^2 + 2^7 + 2^8 + 2^9 + 2^12 + 2^13 + 2^16 + 2^17 + 2^21 + 2^23
|
|
1163
|
+
+ 2^25 + 2^28 + 2^33 + 2^34 + 2^36 + 2^37 + 2^42 + 2^45 + 2^47
|
|
1164
|
+
+ 2^49 + 2^50 + 2^51 + 2^54 + 2^55 + 2^58 + 2^60 + 2^61 + 2^67
|
|
1165
|
+
+ 2^71 + 2^72 + O(2^76))*q^3
|
|
1166
|
+
+ (2^8 + 2^11 + 2^14 + 2^19 + 2^21 + 2^22 + 2^24 + 2^25 + 2^26
|
|
1167
|
+
+ 2^27 + 2^28 + 2^29 + 2^32 + 2^33 + 2^35 + 2^36 + 2^44 + 2^45
|
|
1168
|
+
+ 2^46 + 2^47 + 2^49 + 2^50 + 2^53 + 2^54 + 2^55 + 2^56 + 2^57
|
|
1169
|
+
+ 2^60 + 2^63 + 2^66 + 2^67 + 2^69 + 2^74 + 2^76 + 2^79 + 2^80
|
|
1170
|
+
+ 2^81 + O(2^82))*q^4
|
|
1171
|
+
+ (2 + 2^2 + 2^9 + 2^13 + 2^15 + 2^17 + 2^19 + 2^21 + 2^23 + 2^26
|
|
1172
|
+
+ 2^27 + 2^28 + 2^30 + 2^33 + 2^34 + 2^35 + 2^36 + 2^37 + 2^38
|
|
1173
|
+
+ 2^39 + 2^41 + 2^42 + 2^43 + 2^45 + 2^58 + 2^59 + 2^60 + 2^61
|
|
1174
|
+
+ 2^62 + 2^63 + 2^65 + 2^66 + 2^68 + 2^69 + 2^71 + 2^72 + O(2^75))*q^5
|
|
1175
|
+
+ (2^6 + 2^7 + 2^15 + 2^16 + 2^21 + 2^24 + 2^25 + 2^28 + 2^29 + 2^33
|
|
1176
|
+
+ 2^34 + 2^37 + 2^44 + 2^45 + 2^48 + 2^50 + 2^51 + 2^54 + 2^55
|
|
1177
|
+
+ 2^57 + 2^58 + 2^59 + 2^60 + 2^64 + 2^69 + 2^71 + 2^73 + 2^75
|
|
1178
|
+
+ 2^78 + O(2^80))*q^6 + (2^3 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12
|
|
1179
|
+
+ 2^14 + 2^15 + 2^17 + 2^19 + 2^20 + 2^21 + 2^23 + 2^25 + 2^26
|
|
1180
|
+
+ 2^34 + 2^37 + 2^38 + 2^39 + 2^40 + 2^41 + 2^45 + 2^47 + 2^49
|
|
1181
|
+
+ 2^51 + 2^53 + 2^54 + 2^55 + 2^57 + 2^58 + 2^59 + 2^60 + 2^61
|
|
1182
|
+
+ 2^66 + 2^69 + 2^70 + 2^71 + 2^74 + 2^76 + O(2^77))*q^7
|
|
1183
|
+
+ O(q^8)
|
|
1184
|
+
sage: [x.slope() for x in X]
|
|
1185
|
+
[0, 4, 8, 14, 16, 18, 26, 30]
|
|
1186
|
+
"""
|
|
1187
|
+
|
|
1188
|
+
if F is None:
|
|
1189
|
+
F = self.base_ring()
|
|
1190
|
+
|
|
1191
|
+
if F.is_exact():
|
|
1192
|
+
# raise TypeError("cannot calculate eigenfunctions over exact base fields")
|
|
1193
|
+
F = pAdicField(self.prime(), 100) # noqa:F821
|
|
1194
|
+
|
|
1195
|
+
m = self.hecke_matrix(self.prime(), n, use_recurrence=True, exact_arith=exact_arith)
|
|
1196
|
+
cp = m.charpoly()
|
|
1197
|
+
eigenvalues = cp.roots(F)
|
|
1198
|
+
eigenfunctions = []
|
|
1199
|
+
verbose("Expected %s eigenvalues, got %s" % (n, len(eigenvalues)))
|
|
1200
|
+
for (r, d) in eigenvalues:
|
|
1201
|
+
if d != 1:
|
|
1202
|
+
continue
|
|
1203
|
+
|
|
1204
|
+
mr = m.__pari__() - r.__pari__()
|
|
1205
|
+
# Annoying thing: r isn't quite as precise as it claims to be
|
|
1206
|
+
# (bug reported to sage-support list)
|
|
1207
|
+
while F(mr.matdet()) != 0:
|
|
1208
|
+
verbose("p-adic solver returned wrong result in slope %s; refining" % r.valuation(), level=2)
|
|
1209
|
+
r = r - cp(r)/cp.derivative()(r)
|
|
1210
|
+
mr2 = m.__pari__() - r.__pari__()
|
|
1211
|
+
if mr2.matdet().valuation(self.prime()) > mr.matdet().valuation(self.prime()):
|
|
1212
|
+
mr = mr2
|
|
1213
|
+
else:
|
|
1214
|
+
mr = None
|
|
1215
|
+
break
|
|
1216
|
+
|
|
1217
|
+
if mr is None:
|
|
1218
|
+
verbose("Unable to calculate exact root in slope %s" % r.valuation())
|
|
1219
|
+
continue
|
|
1220
|
+
|
|
1221
|
+
# now calculate the kernel using PARI
|
|
1222
|
+
|
|
1223
|
+
v = mr.matker()
|
|
1224
|
+
|
|
1225
|
+
if repr(v) == "[;]":
|
|
1226
|
+
verbose("PARI returned empty eigenspace in slope %s" % r.valuation())
|
|
1227
|
+
continue
|
|
1228
|
+
# Can't happen? Does PARI always return a
|
|
1229
|
+
# nonempty kernel for matrices that have det
|
|
1230
|
+
# indistinguishable from 0?
|
|
1231
|
+
|
|
1232
|
+
if v.ncols() != 1:
|
|
1233
|
+
verbose("PARI returned non-simple eigenspace in slope %s" % r.valuation())
|
|
1234
|
+
continue
|
|
1235
|
+
|
|
1236
|
+
gexp = self._gsr(0)
|
|
1237
|
+
for i in range(v.nrows()):
|
|
1238
|
+
gexp += self._gsr.gen()**i * F(v[i, 0])
|
|
1239
|
+
gexp = gexp + O(self._gsr.gen()**int(v.nrows()))
|
|
1240
|
+
|
|
1241
|
+
if gexp[0] != 0:
|
|
1242
|
+
gexp = gexp/gexp[0]
|
|
1243
|
+
elif gexp[1] != 0:
|
|
1244
|
+
gexp = gexp/gexp[1]/self._const
|
|
1245
|
+
# This is slightly subtle. We want all eigenfunctions to have q-exps in Z_p.
|
|
1246
|
+
# Normalising the q-term to be 1 doesn't work for the Eisenstein series if
|
|
1247
|
+
# we're in the 0 component of weight-character space. But normalising the const term
|
|
1248
|
+
# to 1 works as *none of the small primes we deal with are irregular*! :-)
|
|
1249
|
+
else:
|
|
1250
|
+
raise ValueError("Constant and linear terms both zero!")
|
|
1251
|
+
# if this gets called something is very wrong.
|
|
1252
|
+
|
|
1253
|
+
efunc = OverconvergentModularFormElement(self.base_extend(F), gexp=gexp)
|
|
1254
|
+
efunc._notify_eigen(r)
|
|
1255
|
+
assert efunc.is_integral()
|
|
1256
|
+
# This sometimes fails if n is too large -- last row of matrix fills
|
|
1257
|
+
# up with garbage. I don't know why. XXX FIX THIS XXX
|
|
1258
|
+
eigenfunctions.append((r.valuation(), efunc))
|
|
1259
|
+
|
|
1260
|
+
eigenfunctions.sort() # sort by slope
|
|
1261
|
+
return [f for _, f in eigenfunctions]
|
|
1262
|
+
|
|
1263
|
+
def recurrence_matrix(self, use_smithline=True):
|
|
1264
|
+
r"""
|
|
1265
|
+
Return the recurrence matrix satisfied by the coefficients of `U`.
|
|
1266
|
+
|
|
1267
|
+
This is a matrix `R =(r_{rs})_{r,s=1,\dots,p}` such that `u_{ij} =
|
|
1268
|
+
\sum_{r,s=1}^p r_{rs} u_{i-r, j-s}`.
|
|
1269
|
+
|
|
1270
|
+
Uses an elegant construction which the author believes to be due
|
|
1271
|
+
to Smithline. See [Loe2007]_.
|
|
1272
|
+
|
|
1273
|
+
EXAMPLES::
|
|
1274
|
+
|
|
1275
|
+
sage: OverconvergentModularForms(2, 0, 0).recurrence_matrix()
|
|
1276
|
+
[ 48 1]
|
|
1277
|
+
[4096 0]
|
|
1278
|
+
sage: OverconvergentModularForms(2, 0, 1/2).recurrence_matrix()
|
|
1279
|
+
[48 64]
|
|
1280
|
+
[64 0]
|
|
1281
|
+
sage: OverconvergentModularForms(3, 0, 0).recurrence_matrix()
|
|
1282
|
+
[ 270 36 1]
|
|
1283
|
+
[ 26244 729 0]
|
|
1284
|
+
[531441 0 0]
|
|
1285
|
+
sage: OverconvergentModularForms(5, 0, 0).recurrence_matrix()
|
|
1286
|
+
[ 1575 1300 315 30 1]
|
|
1287
|
+
[ 162500 39375 3750 125 0]
|
|
1288
|
+
[ 4921875 468750 15625 0 0]
|
|
1289
|
+
[ 58593750 1953125 0 0 0]
|
|
1290
|
+
[244140625 0 0 0 0]
|
|
1291
|
+
sage: OverconvergentModularForms(7, 0, 0).recurrence_matrix()
|
|
1292
|
+
[ 4018 8624 5915 1904 322 28 1]
|
|
1293
|
+
[ 422576 289835 93296 15778 1372 49 0]
|
|
1294
|
+
[ 14201915 4571504 773122 67228 2401 0 0]
|
|
1295
|
+
[ 224003696 37882978 3294172 117649 0 0 0]
|
|
1296
|
+
[ 1856265922 161414428 5764801 0 0 0 0]
|
|
1297
|
+
[ 7909306972 282475249 0 0 0 0 0]
|
|
1298
|
+
[13841287201 0 0 0 0 0 0]
|
|
1299
|
+
sage: OverconvergentModularForms(13, 0, 0).recurrence_matrix()
|
|
1300
|
+
[ 15145 124852 354536 ...
|
|
1301
|
+
"""
|
|
1302
|
+
|
|
1303
|
+
if self._cached_recurrence_matrix is not None:
|
|
1304
|
+
return self._cached_recurrence_matrix
|
|
1305
|
+
|
|
1306
|
+
MM = OverconvergentModularForms(self.prime(), 0, 0, base_ring=QQ)
|
|
1307
|
+
m = MM._discover_recurrence_matrix(use_smithline=True).base_extend(self.base_ring())
|
|
1308
|
+
|
|
1309
|
+
r = diagonal_matrix([self._const**i for i in range(self.prime())])
|
|
1310
|
+
self._cached_recurrence_matrix = (r**(-1)) * m * r
|
|
1311
|
+
self._cached_recurrence_matrix.set_immutable()
|
|
1312
|
+
return self._cached_recurrence_matrix
|
|
1313
|
+
|
|
1314
|
+
def _discover_recurrence_matrix(self, use_smithline=True):
|
|
1315
|
+
r"""
|
|
1316
|
+
Do the hard work of calculating the recurrence matrix, which is cached
|
|
1317
|
+
to avoid doing this every time.
|
|
1318
|
+
|
|
1319
|
+
EXAMPLES::
|
|
1320
|
+
|
|
1321
|
+
sage: o = OverconvergentModularForms(3,12,0)
|
|
1322
|
+
sage: o._discover_recurrence_matrix() == o.recurrence_matrix()
|
|
1323
|
+
True
|
|
1324
|
+
"""
|
|
1325
|
+
|
|
1326
|
+
(f_ring, f) = PolynomialRing(self.base_ring(), "f").objgen()
|
|
1327
|
+
|
|
1328
|
+
if use_smithline:
|
|
1329
|
+
# Compute Smithline's polynomial H_p
|
|
1330
|
+
jq = self._qsr(j_invariant_qexp(1 + self.prime()).shift(1).power_series()) # noqa:F821
|
|
1331
|
+
|
|
1332
|
+
# avoid dividing by q so as not to instantiate a Laurent series
|
|
1333
|
+
h = self._uniformiser.shift(-1) * jq
|
|
1334
|
+
fi = self._qsr(1)
|
|
1335
|
+
coeffs = []
|
|
1336
|
+
for i in range(self.prime() + 2):
|
|
1337
|
+
if not h.valuation() >= i:
|
|
1338
|
+
raise ValueError("Something strange is happening here")
|
|
1339
|
+
|
|
1340
|
+
coeffs.append(h[i] / fi[i])
|
|
1341
|
+
h = h - coeffs[-1] * fi
|
|
1342
|
+
fi = fi*self._uniformiser
|
|
1343
|
+
SmiH = f_ring(coeffs)
|
|
1344
|
+
assert SmiH.degree() == self.prime() + 1
|
|
1345
|
+
xyring = PolynomialRing(self.base_ring(), ["x", "y"], 2)
|
|
1346
|
+
x, y = xyring.gens()
|
|
1347
|
+
cc = self.prime() ** (-12/(self.prime() - 1))
|
|
1348
|
+
bigI = x*SmiH(y*cc) - y*cc*SmiH(x)
|
|
1349
|
+
smallI = xyring(bigI / (x - cc*y))
|
|
1350
|
+
r = matrix(ZZ, self.prime(), self.prime())
|
|
1351
|
+
for i in range(self.prime()):
|
|
1352
|
+
for j in range(self.prime()):
|
|
1353
|
+
r[i, j] = -smallI[i+1, j+1]
|
|
1354
|
+
return r
|
|
1355
|
+
else:
|
|
1356
|
+
# compute from U(f^j) for small j via Newton's identities
|
|
1357
|
+
# to be implemented when I can remember Newton's identities!
|
|
1358
|
+
raise NotImplementedError
|
|
1359
|
+
|
|
1360
|
+
def cps_u(self, n, use_recurrence=False):
|
|
1361
|
+
r"""
|
|
1362
|
+
Compute the characteristic power series of `U_p` acting on ``self``, using
|
|
1363
|
+
an `n\times n` matrix.
|
|
1364
|
+
|
|
1365
|
+
EXAMPLES::
|
|
1366
|
+
|
|
1367
|
+
sage: OverconvergentModularForms(3, 16, 1/2, base_ring=Qp(3)).cps_u(4)
|
|
1368
|
+
1 + O(3^20)
|
|
1369
|
+
+ (2 + 2*3 + 2*3^2 + 2*3^4 + 3^5 + 3^6 + 3^7
|
|
1370
|
+
+ 3^11 + 3^12 + 2*3^14 + 3^16 + 3^18 + O(3^19))*T
|
|
1371
|
+
+ (2*3^3 + 3^5 + 3^6 + 3^7 + 2*3^8 + 2*3^9 + 2*3^10
|
|
1372
|
+
+ 3^11 + 3^12 + 2*3^13 + 2*3^16 + 2*3^18 + O(3^19))*T^2
|
|
1373
|
+
+ (2*3^15 + 2*3^16 + 2*3^19 + 2*3^20 + 2*3^21 + O(3^22))*T^3
|
|
1374
|
+
+ (3^17 + 2*3^18 + 3^19 + 3^20 + 3^22 + 2*3^23 + 2*3^25 + 3^26 + O(3^27))*T^4
|
|
1375
|
+
sage: OverconvergentModularForms(3, 16, 1/2, base_ring=Qp(3), prec=30).cps_u(10)
|
|
1376
|
+
1 + O(3^20)
|
|
1377
|
+
+ (2 + 2*3 + 2*3^2 + 2*3^4 + 3^5 + 3^6 + 3^7 + 2*3^15 + O(3^16))*T
|
|
1378
|
+
+ (2*3^3 + 3^5 + 3^6 + 3^7 + 2*3^8 + 2*3^9 + 2*3^10
|
|
1379
|
+
+ 2*3^11 + 2*3^12 + 2*3^13 + 3^14 + 3^15 + O(3^16))*T^2
|
|
1380
|
+
+ (3^14 + 2*3^15 + 2*3^16 + 3^17 + 3^18 + O(3^19))*T^3
|
|
1381
|
+
+ (3^17 + 2*3^18 + 3^19 + 3^20 + 3^21 + O(3^24))*T^4
|
|
1382
|
+
+ (3^29 + 2*3^32 + O(3^33))*T^5
|
|
1383
|
+
+ (2*3^44 + O(3^45))*T^6
|
|
1384
|
+
+ (2*3^59 + O(3^60))*T^7
|
|
1385
|
+
+ (2*3^78 + O(3^79))*T^8
|
|
1386
|
+
|
|
1387
|
+
.. NOTE::
|
|
1388
|
+
|
|
1389
|
+
Uses the Hessenberg form of the Hecke matrix to compute
|
|
1390
|
+
the characteristic polynomial. Because of the use of
|
|
1391
|
+
relative precision here this tends to give better
|
|
1392
|
+
precision in the `p`-adic coefficients.
|
|
1393
|
+
"""
|
|
1394
|
+
m = self.hecke_matrix(self.prime(), n, use_recurrence)
|
|
1395
|
+
A = PowerSeriesRing(self.base_ring(), 'T')
|
|
1396
|
+
|
|
1397
|
+
# From a conversation with David Loeffler, apparently self.base_ring()
|
|
1398
|
+
# is either the field of rational numbers or some p-adic field. In the
|
|
1399
|
+
# first case we want to use the linbox algorithm, and in the second
|
|
1400
|
+
# case the Hessenberg form algorithm.
|
|
1401
|
+
#
|
|
1402
|
+
if self.base_ring().is_exact():
|
|
1403
|
+
g = A(m.charpoly('T').reverse())
|
|
1404
|
+
else:
|
|
1405
|
+
g = A(m.charpoly('T', "hessenberg").reverse())
|
|
1406
|
+
|
|
1407
|
+
return g
|
|
1408
|
+
|
|
1409
|
+
|
|
1410
|
+
class OverconvergentModularFormElement(ModuleElement):
|
|
1411
|
+
r"""
|
|
1412
|
+
A class representing an element of a space of overconvergent modular forms.
|
|
1413
|
+
|
|
1414
|
+
EXAMPLES::
|
|
1415
|
+
|
|
1416
|
+
sage: x = polygen(ZZ, 'x')
|
|
1417
|
+
sage: K.<w> = Qp(5).extension(x^7 - 5)
|
|
1418
|
+
sage: s = OverconvergentModularForms(5, 6, 1/21, base_ring=K).0
|
|
1419
|
+
sage: s == loads(dumps(s))
|
|
1420
|
+
True
|
|
1421
|
+
"""
|
|
1422
|
+
|
|
1423
|
+
def __init__(self, parent, gexp=None, qexp=None):
|
|
1424
|
+
r"""
|
|
1425
|
+
Create an element of this space.
|
|
1426
|
+
|
|
1427
|
+
EXAMPLES::
|
|
1428
|
+
|
|
1429
|
+
sage: OverconvergentModularForms(3, 2, 1/6,prec=5).an_element() # indirect doctest
|
|
1430
|
+
3-adic overconvergent modular form of weight-character 2
|
|
1431
|
+
with q-expansion 3*q + 72*q^2 + 810*q^3 + 6096*q^4 + O(q^5)
|
|
1432
|
+
"""
|
|
1433
|
+
ModuleElement.__init__(self, parent)
|
|
1434
|
+
|
|
1435
|
+
self._p = self.parent().prime()
|
|
1436
|
+
# self.weight = self.parent().weight
|
|
1437
|
+
if (gexp is None and qexp is None) or (gexp is not None and qexp is not None):
|
|
1438
|
+
raise ValueError("Must supply exactly one of a q-expansion and a g-expansion")
|
|
1439
|
+
if gexp is not None:
|
|
1440
|
+
self._gexp = gexp.add_bigoh(self.parent().prec())
|
|
1441
|
+
self._qexp = sum([self.parent()._basis_cache[i] * gexp[i] for i in range(min(gexp.prec(), self.parent().prec()))])
|
|
1442
|
+
self._qexp = self._qexp.add_bigoh(self._gexp.prec())
|
|
1443
|
+
else: # qexp is not None
|
|
1444
|
+
self._qexp = qexp.add_bigoh(self.parent().prec())
|
|
1445
|
+
self._gexp = self.parent()._convert_to_basis(self._qexp)
|
|
1446
|
+
|
|
1447
|
+
self._is_eigen = False
|
|
1448
|
+
self._eigenvalue = None
|
|
1449
|
+
self._slope = None
|
|
1450
|
+
|
|
1451
|
+
def _add_(self, other):
|
|
1452
|
+
r"""
|
|
1453
|
+
Add ``self`` to ``other``.
|
|
1454
|
+
|
|
1455
|
+
Here ``other`` has the same parent as ``self``.
|
|
1456
|
+
|
|
1457
|
+
EXAMPLES::
|
|
1458
|
+
|
|
1459
|
+
sage: M = OverconvergentModularForms(2, 12, 1/6)
|
|
1460
|
+
sage: f = M.0
|
|
1461
|
+
sage: f + f # indirect doctest
|
|
1462
|
+
2-adic overconvergent modular form of weight-character 12 with q-expansion 2 - 131040/1414477*q ...
|
|
1463
|
+
"""
|
|
1464
|
+
return OverconvergentModularFormElement(self.parent(), gexp=self.gexp() + other.gexp())
|
|
1465
|
+
|
|
1466
|
+
def _lmul_(self, x):
|
|
1467
|
+
r"""
|
|
1468
|
+
Left multiplication by other.
|
|
1469
|
+
|
|
1470
|
+
EXAMPLES::
|
|
1471
|
+
|
|
1472
|
+
sage: M = OverconvergentModularForms(2, 12, 1/6)
|
|
1473
|
+
sage: f = M.0
|
|
1474
|
+
sage: 2*f # indirect doctest
|
|
1475
|
+
2-adic overconvergent modular form of weight-character 12 with q-expansion 2 - 131040/1414477*q ...
|
|
1476
|
+
"""
|
|
1477
|
+
return OverconvergentModularFormElement(self.parent(), gexp=x * self.gexp())
|
|
1478
|
+
|
|
1479
|
+
def _rmul_(self, x):
|
|
1480
|
+
r"""
|
|
1481
|
+
Right multiplication by other.
|
|
1482
|
+
|
|
1483
|
+
EXAMPLES::
|
|
1484
|
+
|
|
1485
|
+
sage: M = OverconvergentModularForms(2, 12, 1/6)
|
|
1486
|
+
sage: f = M.0
|
|
1487
|
+
sage: f * 3 # indirect doctest
|
|
1488
|
+
2-adic overconvergent modular form of weight-character 12 with q-expansion 3 - 196560/1414477*q ...
|
|
1489
|
+
"""
|
|
1490
|
+
return OverconvergentModularFormElement(self.parent(), gexp=x * self.gexp())
|
|
1491
|
+
|
|
1492
|
+
def prec(self):
|
|
1493
|
+
r"""
|
|
1494
|
+
Return the series expansion precision of this overconvergent modular form.
|
|
1495
|
+
|
|
1496
|
+
This is not the same as the `p`-adic precision of the coefficients.
|
|
1497
|
+
|
|
1498
|
+
EXAMPLES::
|
|
1499
|
+
|
|
1500
|
+
sage: OverconvergentModularForms(5, 6, 1/3, prec=15).gen(1).prec()
|
|
1501
|
+
15
|
|
1502
|
+
"""
|
|
1503
|
+
return self.gexp().prec()
|
|
1504
|
+
|
|
1505
|
+
def is_eigenform(self) -> bool:
|
|
1506
|
+
r"""
|
|
1507
|
+
Return ``True`` if this is an eigenform.
|
|
1508
|
+
|
|
1509
|
+
At present this returns ``False`` unless this element was explicitly
|
|
1510
|
+
flagged as an eigenform, using the method :meth:`_notify_eigen`.
|
|
1511
|
+
|
|
1512
|
+
EXAMPLES::
|
|
1513
|
+
|
|
1514
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
1515
|
+
sage: f = M.eigenfunctions(3)[1]
|
|
1516
|
+
sage: f.is_eigenform()
|
|
1517
|
+
True
|
|
1518
|
+
sage: M.gen(4).is_eigenform()
|
|
1519
|
+
False
|
|
1520
|
+
"""
|
|
1521
|
+
return self._is_eigen
|
|
1522
|
+
|
|
1523
|
+
def slope(self):
|
|
1524
|
+
r"""
|
|
1525
|
+
Return the slope of this eigenform.
|
|
1526
|
+
|
|
1527
|
+
This is the valuation of its `U_p`-eigenvalue.
|
|
1528
|
+
|
|
1529
|
+
Raises an error unless this element was explicitly
|
|
1530
|
+
flagged as an eigenform, using the method :meth:`_notify_eigen`.
|
|
1531
|
+
|
|
1532
|
+
EXAMPLES::
|
|
1533
|
+
|
|
1534
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
1535
|
+
sage: f = M.eigenfunctions(3)[1]
|
|
1536
|
+
sage: f.slope()
|
|
1537
|
+
2
|
|
1538
|
+
sage: M.gen(4).slope()
|
|
1539
|
+
Traceback (most recent call last):
|
|
1540
|
+
...
|
|
1541
|
+
TypeError: slope only defined for eigenfunctions
|
|
1542
|
+
"""
|
|
1543
|
+
if not self.is_eigenform():
|
|
1544
|
+
raise TypeError("slope only defined for eigenfunctions")
|
|
1545
|
+
return self._slope
|
|
1546
|
+
|
|
1547
|
+
def eigenvalue(self):
|
|
1548
|
+
r"""
|
|
1549
|
+
Return the `U_p`-eigenvalue of this eigenform.
|
|
1550
|
+
|
|
1551
|
+
This raises an error unless this element was explicitly flagged
|
|
1552
|
+
as an eigenform, using the method :meth:`_notify_eigen`.
|
|
1553
|
+
|
|
1554
|
+
EXAMPLES::
|
|
1555
|
+
|
|
1556
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
1557
|
+
sage: f = M.eigenfunctions(3)[1]
|
|
1558
|
+
sage: f.eigenvalue()
|
|
1559
|
+
3^2 + 3^4 + 2*3^6 + 3^7 + 3^8 + 2*3^9 + 2*3^10 + 3^12 + 3^16 + 2*3^17
|
|
1560
|
+
+ 3^18 + 3^20 + 2*3^21 + 3^22 + 2*3^23 + 3^25 + 3^26 + 2*3^27 + 2*3^29
|
|
1561
|
+
+ 3^30 + 3^31 + 3^32 + 3^33 + 3^34 + 3^36 + 3^40 + 2*3^41 + 3^43 + 3^44
|
|
1562
|
+
+ 3^45 + 3^46 + 3^48 + 3^49 + 3^50 + 2*3^51 + 3^52 + 3^54 + 2*3^57
|
|
1563
|
+
+ 2*3^59 + 3^60 + 3^61 + 2*3^63 + 2*3^66 + 2*3^67 + 3^69 + 2*3^72
|
|
1564
|
+
+ 3^74 + 2*3^75 + 3^76 + 2*3^77 + 2*3^78 + 2*3^80 + 3^81 + 2*3^82
|
|
1565
|
+
+ 3^84 + 2*3^85 + 2*3^86 + 3^87 + 3^88 + 2*3^89 + 2*3^91 + 3^93 + 3^94
|
|
1566
|
+
+ 3^95 + 3^96 + 3^98 + 2*3^99 + O(3^100)
|
|
1567
|
+
sage: M.gen(4).eigenvalue()
|
|
1568
|
+
Traceback (most recent call last):
|
|
1569
|
+
...
|
|
1570
|
+
TypeError: eigenvalue only defined for eigenfunctions
|
|
1571
|
+
"""
|
|
1572
|
+
if not self.is_eigenform():
|
|
1573
|
+
raise TypeError("eigenvalue only defined for eigenfunctions")
|
|
1574
|
+
return self._eigenvalue
|
|
1575
|
+
|
|
1576
|
+
def q_expansion(self, prec=None):
|
|
1577
|
+
r"""
|
|
1578
|
+
Return the `q`-expansion of ``self``, to as high precision as it is known.
|
|
1579
|
+
|
|
1580
|
+
EXAMPLES::
|
|
1581
|
+
|
|
1582
|
+
sage: OverconvergentModularForms(3, 4, 1/2).gen(0).q_expansion()
|
|
1583
|
+
1 - 120/13*q - 1080/13*q^2 - 120/13*q^3 - 8760/13*q^4 - 15120/13*q^5
|
|
1584
|
+
- 1080/13*q^6 - 41280/13*q^7 - 5400*q^8 - 120/13*q^9 - 136080/13*q^10
|
|
1585
|
+
- 159840/13*q^11 - 8760/13*q^12 - 263760/13*q^13 - 371520/13*q^14
|
|
1586
|
+
- 15120/13*q^15 - 561720/13*q^16 - 45360*q^17 - 1080/13*q^18
|
|
1587
|
+
- 823200/13*q^19 + O(q^20)
|
|
1588
|
+
"""
|
|
1589
|
+
if prec is None:
|
|
1590
|
+
return self._qexp
|
|
1591
|
+
elif prec > self.prec():
|
|
1592
|
+
raise ValueError
|
|
1593
|
+
else:
|
|
1594
|
+
return self._qexp.add_bigoh(prec)
|
|
1595
|
+
|
|
1596
|
+
def gexp(self):
|
|
1597
|
+
r"""
|
|
1598
|
+
Return the formal power series in `g` corresponding to ``self``.
|
|
1599
|
+
|
|
1600
|
+
If this overconvergent modular form is `E_k^\ast \times F(g)`
|
|
1601
|
+
where `g` is the appropriately normalised parameter of `X_0(p)`,
|
|
1602
|
+
the result is `F`.
|
|
1603
|
+
|
|
1604
|
+
EXAMPLES::
|
|
1605
|
+
|
|
1606
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
1607
|
+
sage: f = M.eigenfunctions(3)[1]
|
|
1608
|
+
sage: f.gexp()
|
|
1609
|
+
(3^-3 + O(3^95))*g
|
|
1610
|
+
+ (3^-1 + 1 + 2*3 + 3^2 + 2*3^3 + 3^5 + 3^7 + 3^10 + 3^11 + 3^14 + 3^15
|
|
1611
|
+
+ 3^16 + 2*3^19 + 3^21 + 3^22 + 2*3^23 + 2*3^24 + 3^26 + 2*3^27
|
|
1612
|
+
+ 3^29 + 3^31 + 3^34 + 2*3^35 + 2*3^36 + 3^38 + 2*3^39 + 3^41 + 2*3^42
|
|
1613
|
+
+ 2*3^43 + 2*3^44 + 2*3^46 + 2*3^47 + 3^48 + 2*3^49 + 2*3^50 + 3^51
|
|
1614
|
+
+ 2*3^54 + 2*3^55 + 2*3^56 + 3^57 + 2*3^58 + 2*3^59 + 2*3^60 + 3^61
|
|
1615
|
+
+ 3^62 + 3^63 + 3^64 + 2*3^65 + 3^67 + 3^68 + 2*3^69 + 3^70 + 2*3^71
|
|
1616
|
+
+ 2*3^74 + 3^76 + 2*3^77 + 3^78 + 2*3^79 + 2*3^80 + 3^84 + 2*3^85
|
|
1617
|
+
+ 2*3^86 + 3^88 + 2*3^89 + 3^91 + 3^92 + 2*3^94 + 3^95 + O(3^97))*g^2
|
|
1618
|
+
+ O(g^3)
|
|
1619
|
+
"""
|
|
1620
|
+
return self._gexp
|
|
1621
|
+
|
|
1622
|
+
def coordinates(self, prec=None):
|
|
1623
|
+
r"""
|
|
1624
|
+
Return the coordinates of this modular form in terms of the basis of this space.
|
|
1625
|
+
|
|
1626
|
+
EXAMPLES::
|
|
1627
|
+
|
|
1628
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2, prec=15)
|
|
1629
|
+
sage: f = (M.0 + M.3); f.coordinates()
|
|
1630
|
+
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
1631
|
+
sage: f.coordinates(6)
|
|
1632
|
+
[1, 0, 0, 1, 0, 0]
|
|
1633
|
+
sage: OverconvergentModularForms(3, 0, 1/6)(f).coordinates(6)
|
|
1634
|
+
[1, 0, 0, 729, 0, 0]
|
|
1635
|
+
sage: f.coordinates(100)
|
|
1636
|
+
Traceback (most recent call last):
|
|
1637
|
+
...
|
|
1638
|
+
ValueError: Precision too large for space
|
|
1639
|
+
"""
|
|
1640
|
+
if prec > self.prec():
|
|
1641
|
+
raise ValueError("Precision too large for space")
|
|
1642
|
+
if prec is None:
|
|
1643
|
+
prec = self.prec()
|
|
1644
|
+
return self._gexp.padded_list(prec)
|
|
1645
|
+
|
|
1646
|
+
def prime(self):
|
|
1647
|
+
r"""
|
|
1648
|
+
If this is a `p`-adic modular form, return `p`.
|
|
1649
|
+
|
|
1650
|
+
EXAMPLES::
|
|
1651
|
+
|
|
1652
|
+
sage: OverconvergentModularForms(2, 0, 1/2).an_element().prime()
|
|
1653
|
+
2
|
|
1654
|
+
"""
|
|
1655
|
+
return self._p
|
|
1656
|
+
|
|
1657
|
+
def _notify_eigen(self, eigenvalue):
|
|
1658
|
+
"""
|
|
1659
|
+
Flag this element as an eigenform.
|
|
1660
|
+
|
|
1661
|
+
It then remembers some extra data.
|
|
1662
|
+
|
|
1663
|
+
EXAMPLES::
|
|
1664
|
+
|
|
1665
|
+
sage: OverconvergentModularForms(3, 16, 1/3).eigenfunctions(4) # indirect doctest
|
|
1666
|
+
[...]
|
|
1667
|
+
"""
|
|
1668
|
+
self._is_eigen = True
|
|
1669
|
+
self._eigenvalue = eigenvalue
|
|
1670
|
+
self._slope = eigenvalue.normalized_valuation()
|
|
1671
|
+
|
|
1672
|
+
def is_integral(self) -> bool:
|
|
1673
|
+
r"""
|
|
1674
|
+
Test whether this element has `q`-expansion coefficients that are `p`-adically integral.
|
|
1675
|
+
|
|
1676
|
+
This should always be the case with eigenfunctions, but sometimes
|
|
1677
|
+
if `n` is very large this breaks down for unknown reasons!
|
|
1678
|
+
|
|
1679
|
+
EXAMPLES::
|
|
1680
|
+
|
|
1681
|
+
sage: M = OverconvergentModularForms(2, 0, 1/3)
|
|
1682
|
+
sage: q = QQ[['q']].gen()
|
|
1683
|
+
sage: M(q - 17*q^2 + O(q^3)).is_integral()
|
|
1684
|
+
True
|
|
1685
|
+
sage: M(q - q^2/2 + 6*q^7 + O(q^9)).is_integral()
|
|
1686
|
+
False
|
|
1687
|
+
"""
|
|
1688
|
+
for co in self.q_expansion().list():
|
|
1689
|
+
if (co * (1 + O(self.prime()))).valuation() < 0: # have to force it into ZZ_p
|
|
1690
|
+
return False
|
|
1691
|
+
return True
|
|
1692
|
+
|
|
1693
|
+
def _repr_(self) -> str:
|
|
1694
|
+
r"""
|
|
1695
|
+
String representation of ``self``.
|
|
1696
|
+
|
|
1697
|
+
EXAMPLES::
|
|
1698
|
+
|
|
1699
|
+
sage: o = OverconvergentModularForms(3, 0, 1/2)
|
|
1700
|
+
sage: o([1, 0, 1, 3])._repr_()
|
|
1701
|
+
'3-adic overconvergent modular form of weight-character 0 with q-expansion 1 + 729*q^2 + 76545*q^3 + O(q^4)'
|
|
1702
|
+
"""
|
|
1703
|
+
return "%s-adic overconvergent modular form of weight-character %s with q-expansion %s" % (self.prime(), self.weight(), self.q_expansion())
|
|
1704
|
+
|
|
1705
|
+
def _richcmp_(self, other, op):
|
|
1706
|
+
r"""
|
|
1707
|
+
Compare ``self`` to ``other``.
|
|
1708
|
+
|
|
1709
|
+
EXAMPLES::
|
|
1710
|
+
|
|
1711
|
+
sage: o = OverconvergentModularForms(3, 0, 1/2)
|
|
1712
|
+
sage: o([1, 1, 1, 0, 0, 0, 0]) == o([2, 1, 0])
|
|
1713
|
+
False
|
|
1714
|
+
sage: o([1, 1, 1, 0, 0, 0, 0]) == o([1,1])
|
|
1715
|
+
True
|
|
1716
|
+
"""
|
|
1717
|
+
return richcmp(self.gexp(), other.gexp(), op)
|
|
1718
|
+
|
|
1719
|
+
def r_ord(self, r):
|
|
1720
|
+
r"""
|
|
1721
|
+
The `p`-adic valuation of the norm of ``self`` on the `r`-overconvergent region.
|
|
1722
|
+
|
|
1723
|
+
EXAMPLES::
|
|
1724
|
+
|
|
1725
|
+
sage: o = OverconvergentModularForms(3, 0, 1/2)
|
|
1726
|
+
sage: t = o([1, 1, 1/3])
|
|
1727
|
+
sage: t.r_ord(1/2)
|
|
1728
|
+
1
|
|
1729
|
+
sage: t.r_ord(2/3)
|
|
1730
|
+
3
|
|
1731
|
+
"""
|
|
1732
|
+
ord = -Infinity
|
|
1733
|
+
p = self.prime()
|
|
1734
|
+
s = self.parent().radius()
|
|
1735
|
+
|
|
1736
|
+
F = self.parent().base_ring()
|
|
1737
|
+
if not isinstance(F, sage.rings.abc.pAdicField):
|
|
1738
|
+
F = pAdicField(p) # noqa:F821
|
|
1739
|
+
|
|
1740
|
+
for i in range(self.prec()):
|
|
1741
|
+
ord = max(ord, 12/ZZ(p - 1)*i*(r - s) - F(self.gexp()[i]).normalized_valuation())
|
|
1742
|
+
|
|
1743
|
+
return ord
|
|
1744
|
+
|
|
1745
|
+
def valuation(self):
|
|
1746
|
+
r"""
|
|
1747
|
+
Return the `p`-adic valuation of this form.
|
|
1748
|
+
|
|
1749
|
+
This is the minimum of the `p`-adic valuations of its coordinates.
|
|
1750
|
+
|
|
1751
|
+
EXAMPLES::
|
|
1752
|
+
|
|
1753
|
+
sage: M = OverconvergentModularForms(3, 0, 1/2)
|
|
1754
|
+
sage: (M.7).valuation()
|
|
1755
|
+
0
|
|
1756
|
+
sage: (3^18 * (M.2)).valuation()
|
|
1757
|
+
18
|
|
1758
|
+
"""
|
|
1759
|
+
if isinstance(self.parent().base_ring(), sage.rings.abc.pAdicField):
|
|
1760
|
+
v = lambda u: u.normalized_valuation()
|
|
1761
|
+
else:
|
|
1762
|
+
v = lambda u: u.valuation(self.parent().prime())
|
|
1763
|
+
return min([v(x) for x in self.gexp().list()])
|
|
1764
|
+
|
|
1765
|
+
def governing_term(self, r):
|
|
1766
|
+
r"""
|
|
1767
|
+
The degree of the series term with largest norm on the `r`-overconvergent region.
|
|
1768
|
+
|
|
1769
|
+
EXAMPLES::
|
|
1770
|
+
|
|
1771
|
+
sage: o = OverconvergentModularForms(3, 0, 1/2)
|
|
1772
|
+
sage: f = o.eigenfunctions(10)[1]
|
|
1773
|
+
sage: f.governing_term(1/2)
|
|
1774
|
+
1
|
|
1775
|
+
"""
|
|
1776
|
+
p = self.prime()
|
|
1777
|
+
F = self.parent().base_ring()
|
|
1778
|
+
if not isinstance(F, sage.rings.abc.pAdicField):
|
|
1779
|
+
F = pAdicField(p) # noqa:F821
|
|
1780
|
+
s = self.parent().radius()
|
|
1781
|
+
p = self.prime()
|
|
1782
|
+
|
|
1783
|
+
for i in range(self.gexp().prec()):
|
|
1784
|
+
if 12/ZZ(p - 1)*i*(r - s) - F(self.gexp()[i]).normalized_valuation() == self.r_ord(r):
|
|
1785
|
+
return i
|
|
1786
|
+
raise RuntimeError("Can't get here")
|
|
1787
|
+
|
|
1788
|
+
def valuation_plot(self, rmax=None):
|
|
1789
|
+
r"""
|
|
1790
|
+
Draw a graph depicting the growth of the norm of this overconvergent
|
|
1791
|
+
modular form as it approaches the boundary of the overconvergent
|
|
1792
|
+
region.
|
|
1793
|
+
|
|
1794
|
+
EXAMPLES::
|
|
1795
|
+
|
|
1796
|
+
sage: o = OverconvergentModularForms(3, 0, 1/2)
|
|
1797
|
+
sage: f = o.eigenfunctions(4)[1]
|
|
1798
|
+
sage: f.valuation_plot() # needs sage.plot
|
|
1799
|
+
Graphics object consisting of 1 graphics primitive
|
|
1800
|
+
"""
|
|
1801
|
+
from sage.plot.plot import plot
|
|
1802
|
+
|
|
1803
|
+
if rmax is None:
|
|
1804
|
+
rmax = ZZ(self.prime()) / ZZ(1 + self.prime())
|
|
1805
|
+
return plot(self.r_ord, (0, rmax))
|
|
1806
|
+
|
|
1807
|
+
def weight(self):
|
|
1808
|
+
r"""
|
|
1809
|
+
Return the weight of this overconvergent modular form.
|
|
1810
|
+
|
|
1811
|
+
EXAMPLES::
|
|
1812
|
+
|
|
1813
|
+
sage: x = polygen(ZZ, 'x')
|
|
1814
|
+
sage: R = Qp(13).extension(x^2 - 13, names='a')
|
|
1815
|
+
sage: M = OverconvergentModularForms(13, 10, 1/2, base_ring=R)
|
|
1816
|
+
sage: M.gen(0).weight()
|
|
1817
|
+
10
|
|
1818
|
+
"""
|
|
1819
|
+
return self.parent().weight()
|
|
1820
|
+
|
|
1821
|
+
def additive_order(self):
|
|
1822
|
+
r"""
|
|
1823
|
+
Return the additive order of this element.
|
|
1824
|
+
|
|
1825
|
+
This implements a required method for all
|
|
1826
|
+
elements deriving from :class:`sage.modules.ModuleElement`.
|
|
1827
|
+
|
|
1828
|
+
EXAMPLES::
|
|
1829
|
+
|
|
1830
|
+
sage: x = polygen(ZZ, 'x')
|
|
1831
|
+
sage: R = Qp(13).extension(x^2 - 13, names='a')
|
|
1832
|
+
sage: M = OverconvergentModularForms(13, 10, 1/2, base_ring=R)
|
|
1833
|
+
sage: M.gen(0).additive_order()
|
|
1834
|
+
+Infinity
|
|
1835
|
+
sage: M(0).additive_order()
|
|
1836
|
+
1
|
|
1837
|
+
"""
|
|
1838
|
+
from sage.rings.infinity import Infinity
|
|
1839
|
+
if self.is_zero():
|
|
1840
|
+
return ZZ(1)
|
|
1841
|
+
else:
|
|
1842
|
+
return Infinity
|
|
1843
|
+
|
|
1844
|
+
def base_extend(self, R):
|
|
1845
|
+
r"""
|
|
1846
|
+
Return a copy of ``self`` but with coefficients in the given ring.
|
|
1847
|
+
|
|
1848
|
+
EXAMPLES::
|
|
1849
|
+
|
|
1850
|
+
sage: M = OverconvergentModularForms(7, 10, 1/2, prec=5)
|
|
1851
|
+
sage: f = M.1
|
|
1852
|
+
sage: f.base_extend(Qp(7, 4))
|
|
1853
|
+
7-adic overconvergent modular form of weight-character 10 with q-expansion
|
|
1854
|
+
(7 + O(7^5))*q + (6*7 + 4*7^2 + 7^3 + 6*7^4 + O(7^5))*q^2
|
|
1855
|
+
+ (5*7 + 5*7^2 + 7^4 + O(7^5))*q^3 + (7^2 + 4*7^3 + 3*7^4 + 2*7^5
|
|
1856
|
+
+ O(7^6))*q^4 + O(q^5)
|
|
1857
|
+
"""
|
|
1858
|
+
S = self.parent().base_extend(R)
|
|
1859
|
+
return S(self)
|
|
1860
|
+
|
|
1861
|
+
def __pari__(self):
|
|
1862
|
+
r"""
|
|
1863
|
+
Return the Pari object corresponding to ``self``.
|
|
1864
|
+
|
|
1865
|
+
This is just the `q`-expansion of ``self`` as a formal power series.
|
|
1866
|
+
|
|
1867
|
+
EXAMPLES::
|
|
1868
|
+
|
|
1869
|
+
sage: f = OverconvergentModularForms(3, 0, 1/2).1
|
|
1870
|
+
sage: pari(f) # indirect doctest
|
|
1871
|
+
27*q + 324*q^2 + 2430*q^3 + 13716*q^4 + 64557*q^5 + 265356*q^6 + 983556*q^7 + 3353076*q^8 + 10670373*q^9 + 32031288*q^10 + 91455804*q^11 + 249948828*q^12 + 657261999*q^13 + 1669898592*q^14 + 4113612864*q^15 + 9853898292*q^16 + 23010586596*q^17 + 52494114852*q^18 + 117209543940*q^19 + O(q^20)
|
|
1872
|
+
sage: pari(f.base_extend(Qp(3))) # indirect doctest
|
|
1873
|
+
(3^3 + O(3^23))*q + (3^4 + 3^5 + O(3^24))*q^2 + (3^5 + 3^7 + O(3^25))*q^3 + (3^3 + 3^4 + 2*3^5 + 2*3^8 + O(3^23))*q^4 + (2*3^4 + 3^5 + 3^6 + 2*3^7 + 3^10 + O(3^24))*q^5 + (3^6 + 3^7 + 3^8 + 3^9 + 3^10 + 3^11 + O(3^26))*q^6 + (2*3^3 + 3^4 + 2*3^6 + 2*3^7 + 2*3^8 + 3^9 + 3^10 + 2*3^11 + 3^12 + O(3^23))*q^7 + (2*3^4 + 3^5 + 3^8 + 2*3^9 + 2*3^10 + 2*3^13 + O(3^24))*q^8 + (3^7 + 2*3^9 + 2*3^12 + 2*3^14 + O(3^27))*q^9 + (2*3^5 + 3^8 + 3^9 + 2*3^10 + 2*3^13 + 2*3^15 + O(3^25))*q^10 + (3^4 + 2*3^5 + 2*3^6 + 3^8 + 2*3^9 + 3^12 + 3^14 + 2*3^16 + O(3^24))*q^11 + (3^5 + 3^6 + 2*3^8 + 2*3^9 + 2*3^10 + 2*3^12 + 3^14 + 2*3^15 + 2*3^16 + 3^17 + O(3^25))*q^12 + (2*3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 2*3^11 + 3^13 + 2*3^14 + 2*3^17 + 3^18 + O(3^23))*q^13 + (2*3^4 + 2*3^6 + 2*3^7 + 3^8 + 2*3^9 + 3^10 + 3^12 + 3^14 + 2*3^15 + 2*3^16 + 3^18 + 3^19 + O(3^24))*q^14 + (2*3^6 + 3^7 + 3^9 + 3^10 + 3^11 + 2*3^14 + 3^15 + 2*3^16 + 3^17 + 3^18 + 3^20 + O(3^26))*q^15 + (3^3 + 2*3^4 + 2*3^7 + 2*3^8 + 3^9 + 3^10 + 2*3^11 + 3^12 + 2*3^14 + 2*3^15 + 3^17 + 3^18 + 2*3^19 + 2*3^20 + O(3^23))*q^16 + (2*3^5 + 2*3^7 + 2*3^8 + 3^10 + 3^11 + 2*3^12 + 2*3^13 + 3^14 + 3^15 + 3^17 + 2*3^18 + 3^19 + 2*3^21 + O(3^25))*q^17 + (3^8 + 3^9 + 2*3^10 + 2*3^11 + 3^12 + 3^14 + 3^15 + 3^16 + 3^17 + 2*3^21 + 3^22 + O(3^28))*q^18 + (2*3^3 + 3^5 + 2*3^6 + 2*3^8 + 2*3^9 + 3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^15 + 3^16 + 3^17 + 2*3^18 + 3^19 + 2*3^21 + O(3^23))*q^19 + O(q^20)
|
|
1874
|
+
"""
|
|
1875
|
+
return self.q_expansion().__pari__()
|
|
1876
|
+
|
|
1877
|
+
|
|
1878
|
+
OverconvergentModularFormsSpace.Element = OverconvergentModularFormElement
|