passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1309 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.rings.finite_rings
|
|
3
|
+
r"""
|
|
4
|
+
|
|
5
|
+
Cyclic covers over a finite field
|
|
6
|
+
|
|
7
|
+
The most interesting feature is computation of Frobenius matrix on
|
|
8
|
+
Monsky-Washnitzer cohomology and the Frobenius polynomial.
|
|
9
|
+
|
|
10
|
+
REFERENCES:
|
|
11
|
+
|
|
12
|
+
- [ABCMT2019]_
|
|
13
|
+
|
|
14
|
+
EXAMPLES::
|
|
15
|
+
|
|
16
|
+
sage: p = 13
|
|
17
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
18
|
+
sage: C = CyclicCover(4, x^4 + 1)
|
|
19
|
+
sage: C.frobenius_polynomial()
|
|
20
|
+
x^6 - 6*x^5 + 3*x^4 + 60*x^3 + 39*x^2 - 1014*x + 2197
|
|
21
|
+
sage: R.<t> = PowerSeriesRing(Integers())
|
|
22
|
+
sage: C.projective_closure().zeta_series(2,t)
|
|
23
|
+
1 + 8*t + 102*t^2 + O(t^3)
|
|
24
|
+
sage: C.frobenius_polynomial().reverse()(t)/((1-t)*(1-p*t)) + O(t^5)
|
|
25
|
+
1 + 8*t + 102*t^2 + 1384*t^3 + 18089*t^4 + O(t^5)
|
|
26
|
+
|
|
27
|
+
sage: p = 49999
|
|
28
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
29
|
+
sage: CyclicCover(5, x^5 + x).frobenius_polynomial() # long time
|
|
30
|
+
x^12 + 299994*x^10 + 37498500015*x^8 + 2499850002999980*x^6 + 93742500224997000015*x^4
|
|
31
|
+
+ 1874812507499850001499994*x^2 + 15623125093747500037499700001
|
|
32
|
+
sage: CyclicCover(5, 2*x^5 + x).frobenius_polynomial() # long time
|
|
33
|
+
x^12 + 299994*x^10 + 37498500015*x^8 + 2499850002999980*x^6 + 93742500224997000015*x^4
|
|
34
|
+
+ 1874812507499850001499994*x^2 + 15623125093747500037499700001
|
|
35
|
+
|
|
36
|
+
sage: p = 107
|
|
37
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
38
|
+
sage: CyclicCover(2, x^5 + x).frobenius_matrix()
|
|
39
|
+
[ O(107^2) 89*107 + O(107^2) O(107^2) O(107^2)]
|
|
40
|
+
[ 89*107 + O(107^2) O(107^2) O(107^2) O(107^2)]
|
|
41
|
+
[ O(107^2) O(107^2) O(107^2) 105 + 5*107 + O(107^2)]
|
|
42
|
+
[ O(107^2) O(107^2) 89 + 53*107 + O(107^2) O(107^2)]
|
|
43
|
+
sage: CyclicCover(2, 3*x^5 + x).frobenius_matrix()
|
|
44
|
+
[ O(107^2) 14*107 + O(107^2) O(107^2) O(107^2)]
|
|
45
|
+
[ 69*107 + O(107^2) O(107^2) O(107^2) O(107^2)]
|
|
46
|
+
[ O(107^2) O(107^2) O(107^2) 61 + 58*107 + O(107^2)]
|
|
47
|
+
[ O(107^2) O(107^2) 69 + 53*107 + O(107^2) O(107^2)]
|
|
48
|
+
sage: CyclicCover(3, x^3 + x).frobenius_matrix()
|
|
49
|
+
[ 0 0 O(107) O(107)]
|
|
50
|
+
[ 0 0 52 + O(107) O(107)]
|
|
51
|
+
[ O(107) 35 + O(107) 0 0]
|
|
52
|
+
[44 + O(107) O(107) 0 0]
|
|
53
|
+
sage: CyclicCover(3, 3*x^3 + x).frobenius_matrix()
|
|
54
|
+
[ 0 0 O(107) O(107)]
|
|
55
|
+
[ 0 0 79 + O(107) O(107)]
|
|
56
|
+
[ O(107) 42 + O(107) 0 0]
|
|
57
|
+
[30 + O(107) O(107) 0 0]
|
|
58
|
+
"""
|
|
59
|
+
|
|
60
|
+
# *****************************************************************************
|
|
61
|
+
# Copyright (C) 2018 Vishal Arul <varul@mit.edu>,
|
|
62
|
+
# Alex Best <alex.j.best@gmail.com>,
|
|
63
|
+
# Edgar Costa <edgarc@mit.edu>,
|
|
64
|
+
# Richard Magner <rmagner@bu.edu>,
|
|
65
|
+
# Nicholas Triantafillou <ngtriant@mit.edu>
|
|
66
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
67
|
+
# https://www.gnu.org/licenses/
|
|
68
|
+
# *****************************************************************************
|
|
69
|
+
|
|
70
|
+
from sage.arith.misc import euler_phi
|
|
71
|
+
from sage.matrix.constructor import matrix, zero_matrix
|
|
72
|
+
from sage.misc.cachefunc import cached_method
|
|
73
|
+
from sage.misc.lazy_import import lazy_import
|
|
74
|
+
from sage.modules.free_module_element import vector
|
|
75
|
+
from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
|
|
76
|
+
from sage.rings.integer_ring import ZZ
|
|
77
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
78
|
+
from sage.rings.power_series_ring import PowerSeriesRing
|
|
79
|
+
|
|
80
|
+
lazy_import("sage.functions.log", "log")
|
|
81
|
+
lazy_import("sage.functions.other", ["ceil", "binomial", "floor"])
|
|
82
|
+
lazy_import('sage.rings.padics.factory', ['Zp', 'Zq', 'Qq'])
|
|
83
|
+
lazy_import('sage.schemes.hyperelliptic_curves.hypellfrob', 'interval_products')
|
|
84
|
+
|
|
85
|
+
from .charpoly_frobenius import charpoly_frobenius
|
|
86
|
+
from . import cycliccover_generic
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def _N0_nodenominators(p, g, n):
|
|
90
|
+
"""
|
|
91
|
+
Return the necessary `p`-adic precision for the Frobenius matrix to deduce
|
|
92
|
+
the characteristic polynomial of Frobenius using the Newton identities,
|
|
93
|
+
using :meth:`charpoly_frobenius`, which assumes that the Frobenius matrix
|
|
94
|
+
is integral, i.e., has no denominators.
|
|
95
|
+
|
|
96
|
+
INPUT:
|
|
97
|
+
|
|
98
|
+
- ``p`` -- prime
|
|
99
|
+
- ``g`` -- genus
|
|
100
|
+
- ``n`` -- degree of residue field
|
|
101
|
+
|
|
102
|
+
TESTS::
|
|
103
|
+
|
|
104
|
+
sage: sage.schemes.cyclic_covers.cycliccover_finite_field._N0_nodenominators(4999, 4, 5)
|
|
105
|
+
11
|
|
106
|
+
"""
|
|
107
|
+
return max(
|
|
108
|
+
ceil(log(2 * (2 * g) / ZZ(i), p) + (n * i) / ZZ(2)) for i in range(1, g + 1)
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
class CyclicCover_finite_field(cycliccover_generic.CyclicCover_generic):
|
|
113
|
+
def __init__(self, AA, r, f, names=None, verbose=0):
|
|
114
|
+
"""
|
|
115
|
+
EXAMPLES::
|
|
116
|
+
|
|
117
|
+
sage: p = 13
|
|
118
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
119
|
+
sage: C = CyclicCover(4, x^4 + 1)
|
|
120
|
+
sage: C.frobenius_polynomial()
|
|
121
|
+
x^6 - 6*x^5 + 3*x^4 + 60*x^3 + 39*x^2 - 1014*x + 2197
|
|
122
|
+
sage: R.<t> = PowerSeriesRing(Integers())
|
|
123
|
+
sage: C.projective_closure().zeta_series(2,t)
|
|
124
|
+
1 + 8*t + 102*t^2 + O(t^3)
|
|
125
|
+
sage: C.frobenius_polynomial().reverse()(t)/((1-t)*(1-p*t)) + O(t^5)
|
|
126
|
+
1 + 8*t + 102*t^2 + 1384*t^3 + 18089*t^4 + O(t^5)
|
|
127
|
+
"""
|
|
128
|
+
cycliccover_generic.CyclicCover_generic.__init__(self, AA, r, f, names=names)
|
|
129
|
+
self._verbose = verbose
|
|
130
|
+
self._init_frobQ = False
|
|
131
|
+
self._N0 = None
|
|
132
|
+
|
|
133
|
+
def _init_frob(self, desired_prec=None):
|
|
134
|
+
"""
|
|
135
|
+
Initialise everything for Frobenius polynomial computation.
|
|
136
|
+
|
|
137
|
+
TESTS::
|
|
138
|
+
|
|
139
|
+
sage: p = 4999
|
|
140
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
141
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
142
|
+
sage: C._init_frob()
|
|
143
|
+
sage: C._init_frobQ
|
|
144
|
+
True
|
|
145
|
+
sage: C._plarge
|
|
146
|
+
True
|
|
147
|
+
sage: C._sqrtp
|
|
148
|
+
True
|
|
149
|
+
"""
|
|
150
|
+
|
|
151
|
+
def _N0_RH():
|
|
152
|
+
return ceil(
|
|
153
|
+
log(2 * binomial(2 * self._genus, self._genus), self._p)
|
|
154
|
+
+ self._genus * self._n / ZZ(2)
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
def _find_N0():
|
|
158
|
+
if self._nodenominators:
|
|
159
|
+
return _N0_nodenominators(self._p, self._genus, self._n)
|
|
160
|
+
else:
|
|
161
|
+
return _N0_RH() + self._extraprec
|
|
162
|
+
|
|
163
|
+
def _find_N_43():
|
|
164
|
+
"""
|
|
165
|
+
Find the precision used for thm 4.3 in Goncalves
|
|
166
|
+
for p >> 0, N = N0 + 2
|
|
167
|
+
"""
|
|
168
|
+
p = self._p
|
|
169
|
+
r = self._r
|
|
170
|
+
d = self._d
|
|
171
|
+
delta = self._delta
|
|
172
|
+
N0 = self._N0
|
|
173
|
+
left_side = N0 + floor(log((d * p * (r - 1) + r) / delta) / log(p))
|
|
174
|
+
|
|
175
|
+
def right_side_log(n):
|
|
176
|
+
return floor(log(p * (r * n - 1) - r) / log(p))
|
|
177
|
+
|
|
178
|
+
n = left_side
|
|
179
|
+
while n <= left_side + right_side_log(n):
|
|
180
|
+
n += 1
|
|
181
|
+
return n
|
|
182
|
+
|
|
183
|
+
if not self._init_frobQ or self._N0 != desired_prec:
|
|
184
|
+
if self._r < 2 or self._d < 2:
|
|
185
|
+
raise NotImplementedError("Only implemented for r, f.degree() >= 2")
|
|
186
|
+
|
|
187
|
+
self._init_frobQ = True
|
|
188
|
+
|
|
189
|
+
self._Fq = self._f.base_ring()
|
|
190
|
+
self._p = self._Fq.characteristic()
|
|
191
|
+
self._q = self._Fq.cardinality()
|
|
192
|
+
self._n = self._Fq.degree()
|
|
193
|
+
self._epsilon = 0 if self._delta == 1 else 1
|
|
194
|
+
|
|
195
|
+
# our basis choice doesn't always give an integral matrix
|
|
196
|
+
if self._epsilon == 0:
|
|
197
|
+
self._extraprec = floor(
|
|
198
|
+
log(self._r, self._p)
|
|
199
|
+
+ log((2 * self._genus + (self._delta - 2)) / self._delta, self._p)
|
|
200
|
+
)
|
|
201
|
+
else:
|
|
202
|
+
self._extraprec = floor(log(self._r * 2 - 1, self._p))
|
|
203
|
+
|
|
204
|
+
self._nodenominators = self._extraprec == 0
|
|
205
|
+
|
|
206
|
+
if desired_prec is None:
|
|
207
|
+
self._N0 = _find_N0()
|
|
208
|
+
else:
|
|
209
|
+
self._N0 = desired_prec
|
|
210
|
+
|
|
211
|
+
self._plarge = self._p > self._d * self._r * (self._N0 + self._epsilon)
|
|
212
|
+
|
|
213
|
+
# working prec
|
|
214
|
+
if self._plarge:
|
|
215
|
+
self._N = self._N0 + 1
|
|
216
|
+
else:
|
|
217
|
+
self._N = _find_N_43()
|
|
218
|
+
|
|
219
|
+
# we will use the sqrt(p) version?
|
|
220
|
+
self._sqrtp = self._plarge and self._p == self._q
|
|
221
|
+
self._extraworkingprec = self._extraprec
|
|
222
|
+
if not self._plarge:
|
|
223
|
+
# we might have some denominators showing up during horizontal
|
|
224
|
+
# and vertical reductions
|
|
225
|
+
self._extraworkingprec += 2 * ceil(
|
|
226
|
+
log(self._d * self._r * (self._N0 + self._epsilon), self._p)
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
# Rings
|
|
230
|
+
if self._plarge and self._nodenominators:
|
|
231
|
+
if self._n == 1:
|
|
232
|
+
# IntegerModRing is significantly faster than Zq
|
|
233
|
+
self._Zq = IntegerModRing(self._p**self._N)
|
|
234
|
+
if self._sqrtp:
|
|
235
|
+
self._Zq0 = IntegerModRing(self._p**(self._N - 1))
|
|
236
|
+
self._Qq = Qq(self._p, prec=self._N, type='capped-rel')
|
|
237
|
+
self._w = 1
|
|
238
|
+
else:
|
|
239
|
+
self._Zq = Zq(
|
|
240
|
+
self._q,
|
|
241
|
+
names='w',
|
|
242
|
+
modulus=self._Fq.polynomial(),
|
|
243
|
+
prec=self._N,
|
|
244
|
+
type='capped-abs',
|
|
245
|
+
)
|
|
246
|
+
self._w = self._Zq.gen()
|
|
247
|
+
self._Qq = self._Zq.fraction_field()
|
|
248
|
+
else:
|
|
249
|
+
self._Zq = Qq(
|
|
250
|
+
self._q,
|
|
251
|
+
names='w',
|
|
252
|
+
modulus=self._Fq.polynomial(),
|
|
253
|
+
prec=self._N + self._extraworkingprec,
|
|
254
|
+
)
|
|
255
|
+
self._w = self._Zq.gen()
|
|
256
|
+
self._Qq = self._Zq
|
|
257
|
+
self._Zp = Zp(self._p, prec=self._N + self._extraworkingprec)
|
|
258
|
+
|
|
259
|
+
self._Zqx = PolynomialRing(self._Zq, "x")
|
|
260
|
+
|
|
261
|
+
# Want to take a lift of f from Fq to Zq
|
|
262
|
+
if self._n == 1:
|
|
263
|
+
# When n = 1, can lift from Fp[x] to Z[x] and then to Zp[x]
|
|
264
|
+
self._flift = self._Zqx([elt.lift() for elt in self._f.list()])
|
|
265
|
+
self._frobf = self._Zqx(self._flift.list())
|
|
266
|
+
else: # When n > 1, need to be more careful with the lift
|
|
267
|
+
self._flift = self._Zqx(
|
|
268
|
+
[
|
|
269
|
+
elt.polynomial().change_ring(ZZ)(self._Zq.gen())
|
|
270
|
+
for elt in self._f.list()
|
|
271
|
+
]
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
self._frobf = self._Zqx([elt.frobenius() for elt in self._flift.list()])
|
|
275
|
+
|
|
276
|
+
self._dflift = self._flift.derivative()
|
|
277
|
+
|
|
278
|
+
# Set up local cache for Frob(f)^s
|
|
279
|
+
|
|
280
|
+
# This variable will store the powers of frob(f)
|
|
281
|
+
frobpow = [None] * (self._N0 + 2)
|
|
282
|
+
frobpow[0] = self._Zqx(1)
|
|
283
|
+
for k in range(self._N0 + 1):
|
|
284
|
+
frobpow[k + 1] = self._frobf * frobpow[k]
|
|
285
|
+
# We don't make it a polynomials as we need to keep track that the
|
|
286
|
+
# ith coefficient represents (i*p)-th
|
|
287
|
+
self._frobpow_list = [elt.list() for elt in frobpow]
|
|
288
|
+
|
|
289
|
+
if self._sqrtp:
|
|
290
|
+
# precision of self._Zq0
|
|
291
|
+
N = self._N - 1
|
|
292
|
+
vandermonde = matrix(self._Zq0, N, N)
|
|
293
|
+
for i in range(N):
|
|
294
|
+
vandermonde[i, 0] = 1
|
|
295
|
+
for j in range(1, N):
|
|
296
|
+
vandermonde[i, j] = vandermonde[i, j - 1] * (i + 1)
|
|
297
|
+
self._vandermonde = vandermonde.inverse()
|
|
298
|
+
|
|
299
|
+
self._horizontal_fat_s = {}
|
|
300
|
+
self._vertical_fat_s = {}
|
|
301
|
+
|
|
302
|
+
def _divide_vector(self, D, vect, R):
|
|
303
|
+
"""
|
|
304
|
+
Divide the vector `vect` by `D` as a vector over `R`.
|
|
305
|
+
|
|
306
|
+
TESTS::
|
|
307
|
+
|
|
308
|
+
sage: p = 4999
|
|
309
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
310
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
311
|
+
sage: C._init_frob()
|
|
312
|
+
sage: C._divide_vector(p, vector(C._Qq, [p, p^2, p^3]), C._Qq)
|
|
313
|
+
(1 + O(4999^3), 4999 + O(4999^4), 4999^2 + O(4999^5))
|
|
314
|
+
"""
|
|
315
|
+
DQq = self._Qq(D).lift_to_precision(self._Qq.precision_cap())
|
|
316
|
+
m = 1 / DQq
|
|
317
|
+
if not R.is_field():
|
|
318
|
+
vectQq = vector(
|
|
319
|
+
self._Qq,
|
|
320
|
+
[
|
|
321
|
+
m * self._Qq(elt).lift_to_precision(self._Qq.precision_cap())
|
|
322
|
+
for elt in vect
|
|
323
|
+
],
|
|
324
|
+
)
|
|
325
|
+
return vector(R, [R(elt) for elt in vectQq])
|
|
326
|
+
else:
|
|
327
|
+
return vector(R, [(m * elt).lift_to_precision() for elt in vect])
|
|
328
|
+
|
|
329
|
+
def _frob_sparse(self, i, j, N0):
|
|
330
|
+
r"""
|
|
331
|
+
Compute `Frob(x^i y^(-j) dx ) / dx` for y^r = f(x) with N0 terms.
|
|
332
|
+
|
|
333
|
+
INPUT:
|
|
334
|
+
|
|
335
|
+
- ``i`` -- the power of x in the expression `Frob(x^i dx/y^j) / dx`
|
|
336
|
+
|
|
337
|
+
- ``j`` -- the (negative) power of y in the expression
|
|
338
|
+
`Frob(x^i dx/y^j) / dx`
|
|
339
|
+
|
|
340
|
+
OUTPUT:
|
|
341
|
+
|
|
342
|
+
``frobij`` -- a Matrix of size (d * (N0 - 1) + ) x (N0)
|
|
343
|
+
that represents the Frobenius expansion of
|
|
344
|
+
x^i dx/y^j modulo p^(N0 + 1)
|
|
345
|
+
|
|
346
|
+
the entry (l, s) corresponds to the coefficient associated
|
|
347
|
+
to the monomial x**(p * (i + 1 + l) -1) * y**(p * -(j + r*s))
|
|
348
|
+
(l, s) --> (p * (i + 1 + l) -1, p * -(j + r*s))
|
|
349
|
+
|
|
350
|
+
ALGORITHM:
|
|
351
|
+
|
|
352
|
+
Compute:
|
|
353
|
+
|
|
354
|
+
Frob(x^i dx/y^j) / dx = p * x ** (p * (i+1) - 1) * y ** (-j*p) * Sigma
|
|
355
|
+
|
|
356
|
+
where:
|
|
357
|
+
|
|
358
|
+
.. MATH::
|
|
359
|
+
|
|
360
|
+
Sigma = \sum_{k = 0} ^{N0-1}
|
|
361
|
+
\sum_{s = 0} ^k
|
|
362
|
+
(-1) ** (k-s) * binomial(k, s)
|
|
363
|
+
* binomial(-j/r, k)
|
|
364
|
+
* self._frobpow[s]
|
|
365
|
+
* self._y ** (-self._r * self._p * s)
|
|
366
|
+
= \sum_{s = 0} ^{N0 - 1}
|
|
367
|
+
\sum_{k = s} ^N0
|
|
368
|
+
(-1) ** (k-s) * binomial(k, s)
|
|
369
|
+
* binomial(-j/self._r, k)
|
|
370
|
+
* self._frobpow[s]
|
|
371
|
+
* self._y ** (-self._r*self._p*s)
|
|
372
|
+
= \sum_{s = 0} ^{N0-1}
|
|
373
|
+
D_{j, s}
|
|
374
|
+
* self._frobpow[s]
|
|
375
|
+
* self._y ** (-self._r * self._p * s)
|
|
376
|
+
= \sum_{s = 0} ^N0
|
|
377
|
+
\sum_{l = 0} ^(d*s)
|
|
378
|
+
D_{j, s} * self._frobpow[s][l]
|
|
379
|
+
* x ** (self._p ** l)
|
|
380
|
+
* y ** (-self._r * self._p ** s)
|
|
381
|
+
|
|
382
|
+
and:
|
|
383
|
+
|
|
384
|
+
.. MATH::
|
|
385
|
+
|
|
386
|
+
D_{j, s} = \sum_{k = s} ^N0 (-1) ** (k-s) * binomial(k, s) * binomial(-j/self._r, k) )
|
|
387
|
+
|
|
388
|
+
TESTS::
|
|
389
|
+
|
|
390
|
+
sage: p = 499
|
|
391
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
392
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
393
|
+
sage: C._init_frob()
|
|
394
|
+
sage: C._frob_sparse(2, 0, 1)
|
|
395
|
+
[499]
|
|
396
|
+
sage: C._frob_sparse(2, 0, 2)
|
|
397
|
+
[499 0]
|
|
398
|
+
[ 0 0]
|
|
399
|
+
[ 0 0]
|
|
400
|
+
[ 0 0]
|
|
401
|
+
[ 0 0]
|
|
402
|
+
sage: C._frob_sparse(2, 1, 1)
|
|
403
|
+
[499]
|
|
404
|
+
sage: C._frob_sparse(2, 1, 2)
|
|
405
|
+
[ 82834998 41417000]
|
|
406
|
+
[ 0 124251000]
|
|
407
|
+
[ 0 124250002]
|
|
408
|
+
[ 0 41416501]
|
|
409
|
+
[ 0 41417000]
|
|
410
|
+
sage: C._frob_sparse(2, 2, 1)
|
|
411
|
+
[499]
|
|
412
|
+
"""
|
|
413
|
+
|
|
414
|
+
def _extend_frobpow(power):
|
|
415
|
+
if power < len(self._frobpow_list):
|
|
416
|
+
pass
|
|
417
|
+
else:
|
|
418
|
+
frobpow = self._Zqx(self._frobpow_list[-1])
|
|
419
|
+
for k in range(len(self._frobpow_list), power + 1):
|
|
420
|
+
frobpow *= self._frobf
|
|
421
|
+
self._frobpow_list.extend([frobpow.list()])
|
|
422
|
+
assert power < len(self._frobpow_list)
|
|
423
|
+
|
|
424
|
+
_extend_frobpow(N0)
|
|
425
|
+
r = self._r
|
|
426
|
+
Dj = [
|
|
427
|
+
self._Zq(
|
|
428
|
+
sum(
|
|
429
|
+
[
|
|
430
|
+
(-1) ** (k - l) * binomial(k, l) * binomial(-ZZ(j) / r, k)
|
|
431
|
+
for k in range(l, N0)
|
|
432
|
+
]
|
|
433
|
+
)
|
|
434
|
+
)
|
|
435
|
+
for l in range(N0)
|
|
436
|
+
]
|
|
437
|
+
frobij = matrix(self._Zq, self._d * (N0 - 1) + 1, N0)
|
|
438
|
+
for s in range(N0):
|
|
439
|
+
for l in range(self._d * s + 1):
|
|
440
|
+
frobij[l, s] = self._p * Dj[s] * self._frobpow_list[s][l]
|
|
441
|
+
return frobij
|
|
442
|
+
|
|
443
|
+
def _horizontal_matrix_reduction(self, s):
|
|
444
|
+
r"""
|
|
445
|
+
Return the tuple of tuples that represents the horizontal matrix
|
|
446
|
+
reduction at pole order ``s``.
|
|
447
|
+
|
|
448
|
+
INPUT:
|
|
449
|
+
|
|
450
|
+
- ``s`` -- integer
|
|
451
|
+
|
|
452
|
+
OUTPUT:
|
|
453
|
+
|
|
454
|
+
A tuple of tuples ``( (D0, D1), (M0, M1) )``
|
|
455
|
+
where `MH_{e, s} = M0 + e * M1` and `DH_{e,s} = D0 + e * D1`
|
|
456
|
+
|
|
457
|
+
ALGORITHM:
|
|
458
|
+
|
|
459
|
+
Let `W_{e, s}` to be the Qq-vector space of differential forms
|
|
460
|
+
of the form:
|
|
461
|
+
|
|
462
|
+
.. MATH:: G x^e y^{-s} dx
|
|
463
|
+
|
|
464
|
+
where `\deg G \leq d - 1`.
|
|
465
|
+
|
|
466
|
+
Let `v = [G_0, ..., G_{d-1}]` represent G
|
|
467
|
+
|
|
468
|
+
There is a map:
|
|
469
|
+
|
|
470
|
+
`MH_{e, s} : W_{e, s} \to W_{e-1, s}`
|
|
471
|
+
|
|
472
|
+
and a function to:
|
|
473
|
+
|
|
474
|
+
`DH: \NN \times \NN \to Qq`
|
|
475
|
+
|
|
476
|
+
such that:
|
|
477
|
+
|
|
478
|
+
`G x^e y^{-s} dx \cong H x^{e - 1} y^{-s} dx`
|
|
479
|
+
|
|
480
|
+
where `H = DH(e, s)^{-1} * MH_{e,s} ( G )`
|
|
481
|
+
|
|
482
|
+
The matrix `MH_{e, s}` can be written as:
|
|
483
|
+
|
|
484
|
+
`MH_{e, s} = M0_{s} + e * M1_{s}`
|
|
485
|
+
|
|
486
|
+
similarly:
|
|
487
|
+
|
|
488
|
+
`DH_{e,s} = D0_{s} + e * D1_{s}`
|
|
489
|
+
|
|
490
|
+
TESTS::
|
|
491
|
+
|
|
492
|
+
sage: p = 4999
|
|
493
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
494
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
495
|
+
sage: C._init_frob()
|
|
496
|
+
sage: C._horizontal_matrix_reduction(24995)
|
|
497
|
+
((99968, 124925014996),
|
|
498
|
+
(
|
|
499
|
+
[ 0 0 0 0]
|
|
500
|
+
[ 99968 0 0 124924940023]
|
|
501
|
+
[ 0 99968 0 124924565143]
|
|
502
|
+
[ 0 0 99968 124924715095],
|
|
503
|
+
<BLANKLINE>
|
|
504
|
+
[ 0 0 0 3]
|
|
505
|
+
[124925014996 0 0 9]
|
|
506
|
+
[ 0 124925014996 0 27]
|
|
507
|
+
[ 0 0 124925014996 12]
|
|
508
|
+
))
|
|
509
|
+
sage: C._horizontal_matrix_reduction(4999)
|
|
510
|
+
((19984, 124925014996),
|
|
511
|
+
(
|
|
512
|
+
[ 0 0 0 0]
|
|
513
|
+
[ 19984 0 0 124925000011]
|
|
514
|
+
[ 0 19984 0 124924925071]
|
|
515
|
+
[ 0 0 19984 124924955047],
|
|
516
|
+
<BLANKLINE>
|
|
517
|
+
[ 0 0 0 3]
|
|
518
|
+
[124925014996 0 0 9]
|
|
519
|
+
[ 0 124925014996 0 27]
|
|
520
|
+
[ 0 0 124925014996 12]
|
|
521
|
+
))
|
|
522
|
+
"""
|
|
523
|
+
|
|
524
|
+
f_co = self._flift.list()
|
|
525
|
+
# DH_{e,s} = ((s -r)*d - e * r) * f_d
|
|
526
|
+
m1 = -1 * self._r * f_co[-1] # r is a, g_co[-1] is lambda
|
|
527
|
+
m0 = (s - self._r) * self._d * f_co[-1] # j is a*t + beta
|
|
528
|
+
|
|
529
|
+
M1 = matrix(
|
|
530
|
+
self._Zq,
|
|
531
|
+
self._d,
|
|
532
|
+
lambda m, n: m1
|
|
533
|
+
if m == n + 1
|
|
534
|
+
else self._r * f_co[m]
|
|
535
|
+
if n == self._d - 1
|
|
536
|
+
else 0,
|
|
537
|
+
)
|
|
538
|
+
M0 = matrix(
|
|
539
|
+
self._Zq,
|
|
540
|
+
self._d,
|
|
541
|
+
lambda m, n: m0
|
|
542
|
+
if m == n + 1
|
|
543
|
+
else (self._r - s) * m * f_co[m]
|
|
544
|
+
if n == self._d - 1
|
|
545
|
+
else 0,
|
|
546
|
+
)
|
|
547
|
+
|
|
548
|
+
return ((m0, m1), (M0, M1))
|
|
549
|
+
|
|
550
|
+
def _vertical_matrix_reduction(self, s0):
|
|
551
|
+
r"""
|
|
552
|
+
Return the tuple of tuples that represents the vertical matrix reduction.
|
|
553
|
+
|
|
554
|
+
OUTPUT:
|
|
555
|
+
|
|
556
|
+
A tuple of tuples ``( (D0, D1), (M0, M1) )``
|
|
557
|
+
where MV_t = M0 + t * M1 and DV_t = D0 + t * D1
|
|
558
|
+
|
|
559
|
+
TESTS::
|
|
560
|
+
|
|
561
|
+
sage: p = 4999
|
|
562
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
563
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
564
|
+
sage: C._init_frob()
|
|
565
|
+
sage: C._vertical_matrix_reduction(1)
|
|
566
|
+
((-2, 3),
|
|
567
|
+
(
|
|
568
|
+
[117410728377 65750007895 58235721278]
|
|
569
|
+
[ 67628579544 59175007105 15028573234]
|
|
570
|
+
[ 86414296088 0 27239288985],
|
|
571
|
+
<BLANKLINE>
|
|
572
|
+
[ 51660720493 75142866164 0]
|
|
573
|
+
[ 74203580341 2817857481 75142866164]
|
|
574
|
+
[108017870113 0 2817857481]
|
|
575
|
+
))
|
|
576
|
+
sage: C._vertical_matrix_reduction(2)
|
|
577
|
+
((-1, 3),
|
|
578
|
+
(
|
|
579
|
+
[92989296875 7514286617 58235721278]
|
|
580
|
+
[50721434658 60114292932 81717866955]
|
|
581
|
+
[80778581126 0 28178574812],
|
|
582
|
+
<BLANKLINE>
|
|
583
|
+
[ 51660720493 75142866164 0]
|
|
584
|
+
[ 74203580341 2817857481 75142866164]
|
|
585
|
+
[108017870113 0 2817857481]
|
|
586
|
+
))
|
|
587
|
+
"""
|
|
588
|
+
|
|
589
|
+
d = self._d
|
|
590
|
+
f_co = (
|
|
591
|
+
[0 for i in range(d - 2)] + self._flift.list() + [0 for i in range(d - 1)]
|
|
592
|
+
)
|
|
593
|
+
fd_co = (
|
|
594
|
+
[0 for i in range(d - 1)] + self._dflift.list() + [0 for i in range(d)]
|
|
595
|
+
)
|
|
596
|
+
|
|
597
|
+
rows = [f_co[d - 2 - i:-i - 1] for i in range(d - 1)]
|
|
598
|
+
rows += [fd_co[d - 1 - i:-i - 1] for i in range(d)]
|
|
599
|
+
|
|
600
|
+
m = matrix(rows).transpose().inverse()
|
|
601
|
+
|
|
602
|
+
a_foo = m[0:d, 0:d]
|
|
603
|
+
b_foo = m[d - 1:2 * d - 1, 0:d]
|
|
604
|
+
a_foo = matrix(d, d, lambda i, j: 1 if i == j and i != d - 1 else 0) * a_foo
|
|
605
|
+
foo = matrix(d, d, lambda i, j: j if i == j - 1 else 0)
|
|
606
|
+
bp_foo = foo * b_foo
|
|
607
|
+
A_vert = a_foo.submatrix(0, 0, d - 1, d - 1)
|
|
608
|
+
Bd_vert = bp_foo.submatrix(0, 0, d - 1, d - 1)
|
|
609
|
+
M1 = (s0 - self._r) * A_vert + self._r * Bd_vert
|
|
610
|
+
M2 = self._r * A_vert
|
|
611
|
+
m1 = s0 - self._r
|
|
612
|
+
m2 = self._r
|
|
613
|
+
return ((m1, m2), (M1, M2))
|
|
614
|
+
|
|
615
|
+
def _reduce_vector_horizontal(self, G, e, s, k=1):
|
|
616
|
+
r"""
|
|
617
|
+
INPUT:
|
|
618
|
+
|
|
619
|
+
- a vector -- `G \in W_{e, s}`
|
|
620
|
+
|
|
621
|
+
OUTPUT:
|
|
622
|
+
|
|
623
|
+
- a vector -- `H \in W_{e - k, s}` such that
|
|
624
|
+
`G x^e y^{-s} dx \cong H x^{e - k} y^{-s} dx`
|
|
625
|
+
|
|
626
|
+
TESTS::
|
|
627
|
+
|
|
628
|
+
sage: p = 4999
|
|
629
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
630
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
631
|
+
sage: C._init_frob()
|
|
632
|
+
sage: C._initialize_fat_horizontal(p, 3)
|
|
633
|
+
sage: C._reduce_vector_horizontal((83283349998, 0, 0, 0), 2*p - 1, p, p)
|
|
634
|
+
(23734897071, 84632332850, 44254975407, 23684517017)
|
|
635
|
+
sage: C._reduce_vector_horizontal((98582524551, 3200841460, 6361495378, 98571346457), 2*p - 1, p, p)
|
|
636
|
+
(96813533420, 61680190736, 123292559950, 96786566978)
|
|
637
|
+
"""
|
|
638
|
+
if self._sqrtp and k == self._p:
|
|
639
|
+
vect = self._reduce_vector_horizontal_BSGS(G, e, s)
|
|
640
|
+
else:
|
|
641
|
+
vect = self._reduce_vector_horizontal_plain(G, e, s, k)
|
|
642
|
+
return vect
|
|
643
|
+
|
|
644
|
+
def _reduce_vector_horizontal_BSGS(self, G, e, s):
|
|
645
|
+
r"""
|
|
646
|
+
INPUT:
|
|
647
|
+
|
|
648
|
+
- a vector -- `G \in W_{e, s}`
|
|
649
|
+
|
|
650
|
+
OUTPUT:
|
|
651
|
+
|
|
652
|
+
- a vector -- `H \in W_{e - p, s}` such that
|
|
653
|
+
`G x^e y^{-s} dx \cong H x^{e - p} y^{-s} dx`
|
|
654
|
+
|
|
655
|
+
TESTS::
|
|
656
|
+
|
|
657
|
+
sage: p = 4999
|
|
658
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
659
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
660
|
+
sage: C._init_frob()
|
|
661
|
+
sage: C._initialize_fat_horizontal(p, 3)
|
|
662
|
+
sage: C._reduce_vector_horizontal_BSGS((0, 0, 0, 0), 2*p - 1, p)
|
|
663
|
+
(0, 0, 0, 0)
|
|
664
|
+
sage: C._reduce_vector_horizontal_BSGS((83283349998, 0, 0, 0), 2*p - 1, p)
|
|
665
|
+
(23734897071, 84632332850, 44254975407, 23684517017)
|
|
666
|
+
sage: C._reduce_vector_horizontal_BSGS((98582524551, 3200841460, 6361495378, 98571346457), 2*p - 1, p)
|
|
667
|
+
(96813533420, 61680190736, 123292559950, 96786566978)
|
|
668
|
+
"""
|
|
669
|
+
if G == 0:
|
|
670
|
+
return G
|
|
671
|
+
if self._verbose > 2:
|
|
672
|
+
print(
|
|
673
|
+
"_reduce_vector_horizontal_BSGS(self, %s, %s, %s)"
|
|
674
|
+
% (vector(self._Qq, G), e, s)
|
|
675
|
+
)
|
|
676
|
+
assert (e + 1) % self._p == 0
|
|
677
|
+
(m0, m1), (M0, M1) = self._horizontal_matrix_reduction(s)
|
|
678
|
+
vect = vector(self._Zq, G)
|
|
679
|
+
# we do the first d reductions carefully
|
|
680
|
+
D = 1
|
|
681
|
+
for i in reversed(range(e - self._d + 1, e + 1)):
|
|
682
|
+
Mi = M0 + i * M1
|
|
683
|
+
Di = m0 + i * m1
|
|
684
|
+
|
|
685
|
+
vect = Mi * vect
|
|
686
|
+
D *= Di
|
|
687
|
+
assert Di % self._p == 0
|
|
688
|
+
iD = 1 / self._Zq0(D.lift() / self._p)
|
|
689
|
+
vect = vector(self._Zq0, [iD * ZZ(elt.lift() / self._p) for elt in vect])
|
|
690
|
+
# use BSGS
|
|
691
|
+
|
|
692
|
+
iDH, MH = self._horizontal_fat_s[s][(e + 1) / self._p - 1]
|
|
693
|
+
vect = iDH * (MH * vect.change_ring(self._Zq0))
|
|
694
|
+
|
|
695
|
+
# last reduction
|
|
696
|
+
i = e - self._p + 1
|
|
697
|
+
Mi = M0 + i * M1
|
|
698
|
+
Di = 1 / (m0 + i * m1)
|
|
699
|
+
|
|
700
|
+
vect = Di * (Mi * vect.change_ring(self._Zq))
|
|
701
|
+
|
|
702
|
+
if self._verbose > 2:
|
|
703
|
+
print(
|
|
704
|
+
"done _reduce_vector_horizontal_BSGS(self, %s, %s, %s)"
|
|
705
|
+
% (vector(self._Qq, G), e, s)
|
|
706
|
+
)
|
|
707
|
+
print("return %s\n" % (vector(self._Qq, vect),))
|
|
708
|
+
return vect
|
|
709
|
+
|
|
710
|
+
def _initialize_fat_horizontal(self, s, L):
|
|
711
|
+
"""
|
|
712
|
+
Initialise reduction matrices for horizontal reductions for blocks from `s` to `L`.
|
|
713
|
+
|
|
714
|
+
TESTS::
|
|
715
|
+
|
|
716
|
+
sage: p = 4999
|
|
717
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
718
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
719
|
+
sage: C._init_frob()
|
|
720
|
+
sage: C._initialize_fat_horizontal(p, 3)
|
|
721
|
+
sage: len(C._horizontal_fat_s[p])
|
|
722
|
+
3
|
|
723
|
+
"""
|
|
724
|
+
assert self._sqrtp
|
|
725
|
+
if s not in self._horizontal_fat_s:
|
|
726
|
+
N = self._N - 1 # padic precision of self._Zq0
|
|
727
|
+
d = self._d
|
|
728
|
+
L0 = min(L, N)
|
|
729
|
+
targets = [0] * (2 * L0)
|
|
730
|
+
for l in range(L0):
|
|
731
|
+
targets[2 * l] = self._p * l
|
|
732
|
+
targets[2 * l + 1] = self._p * (l + 1) - d - 1
|
|
733
|
+
(m0, m1), (M0, M1) = self._horizontal_matrix_reduction(s)
|
|
734
|
+
M0, M1 = (elt.change_ring(self._Zq0) for elt in [M0, M1])
|
|
735
|
+
D0, D1 = (matrix(self._Zq0, [elt]) for elt in [m0, m1])
|
|
736
|
+
MH = interval_products(M0, M1, targets)
|
|
737
|
+
DH = [elt[0, 0] for elt in interval_products(D0, D1, targets)]
|
|
738
|
+
if L > N: # Vandermonde interpolation
|
|
739
|
+
# f^{(r)}(0) p^r / r! for r = 0, ..., N-1,
|
|
740
|
+
MT = [None] * N
|
|
741
|
+
DT = [0] * N
|
|
742
|
+
for r in range(N):
|
|
743
|
+
MT[r] = matrix(self._Zq0, d, d)
|
|
744
|
+
for h in range(N):
|
|
745
|
+
v = self._vandermonde[r, h]
|
|
746
|
+
for i in range(d):
|
|
747
|
+
for j in range(d):
|
|
748
|
+
MT[r][i, j] += v * MH[h][i, j]
|
|
749
|
+
DT[r] += v * DH[h]
|
|
750
|
+
for k in range(N, L):
|
|
751
|
+
M = matrix(self._Zq0, d, d)
|
|
752
|
+
D = 0
|
|
753
|
+
k1pow = self._Zq0(1) # power of k + 1
|
|
754
|
+
for h in range(N):
|
|
755
|
+
for i in range(d):
|
|
756
|
+
for j in range(d):
|
|
757
|
+
M[i, j] += k1pow * MT[h][i, j]
|
|
758
|
+
D += k1pow * DT[h]
|
|
759
|
+
k1pow *= k + 1
|
|
760
|
+
MH.append(M)
|
|
761
|
+
DH.append(D)
|
|
762
|
+
|
|
763
|
+
iDH = [1 / elt for elt in DH]
|
|
764
|
+
self._horizontal_fat_s[s] = [(iDH[i], MH[i]) for i in range(L)]
|
|
765
|
+
assert len(self._horizontal_fat_s[s]) >= L
|
|
766
|
+
|
|
767
|
+
def _reduce_vector_horizontal_plain(self, G, e, s, k=1):
|
|
768
|
+
r"""
|
|
769
|
+
INPUT:
|
|
770
|
+
|
|
771
|
+
- a vector -- `G \in W_{e, s}`
|
|
772
|
+
|
|
773
|
+
OUTPUT:
|
|
774
|
+
|
|
775
|
+
- a vector -- `H \in W_{e - k, s}` such that
|
|
776
|
+
`G x^e y^{-s} dx \cong H x^{e - k} y^{-s} dx`
|
|
777
|
+
|
|
778
|
+
TESTS::
|
|
779
|
+
|
|
780
|
+
sage: p = 4999
|
|
781
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
782
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
783
|
+
sage: C._init_frob()
|
|
784
|
+
sage: C._initialize_fat_horizontal(p, 3)
|
|
785
|
+
sage: C._reduce_vector_horizontal_plain((83283349998, 0, 0, 0), 2*p - 1, p, p)
|
|
786
|
+
(23734897071, 110671913892, 91161207284, 49524178051)
|
|
787
|
+
sage: C._reduce_vector_horizontal_plain((98582524551, 3200841460, 6361495378, 98571346457), 2*p - 1, p, p)
|
|
788
|
+
(96813533420, 65678590896, 12037075498, 66773575777)
|
|
789
|
+
sage: (C._reduce_vector_horizontal_plain((98582524551, 3200841460, 6361495378, 98571346457), 2*p - 1, p, p) - C._reduce_vector_horizontal_plain((98582524551, 3200841460, 6361495378, 98571346457), 2*p - 1, p, p)) % p^C._N0 == 0
|
|
790
|
+
True
|
|
791
|
+
"""
|
|
792
|
+
if self._verbose > 2:
|
|
793
|
+
print(
|
|
794
|
+
"_reduce_vector_horizontal_plain(self, G = %s, e = %s, s = %s, k = %s)"
|
|
795
|
+
% (vector(self._Qq, G), e, s, k)
|
|
796
|
+
)
|
|
797
|
+
if G == 0:
|
|
798
|
+
return G
|
|
799
|
+
(m0, m1), (M0, M1) = self._horizontal_matrix_reduction(s)
|
|
800
|
+
vect = vector(self._Zq, G)
|
|
801
|
+
D = self._Zq(1)
|
|
802
|
+
assert k <= self._p, "more than p reductions at a time should be avoided!"
|
|
803
|
+
assert e - k + 1 >= 0
|
|
804
|
+
for i in reversed(range(e - k + 1, e + 1)):
|
|
805
|
+
Mi = M0 + i * M1
|
|
806
|
+
Di = m0 + i * m1
|
|
807
|
+
|
|
808
|
+
vect = Mi * vect
|
|
809
|
+
D *= Di
|
|
810
|
+
if self._plarge and Di % self._p == 0:
|
|
811
|
+
assert (i + self._d) % self._p == 0
|
|
812
|
+
vect = self._divide_vector(D, vect, self._Zq)
|
|
813
|
+
D = self._Zq(1)
|
|
814
|
+
|
|
815
|
+
vect = self._divide_vector(D, vect, self._Zq)
|
|
816
|
+
|
|
817
|
+
if self._verbose > 2:
|
|
818
|
+
print(
|
|
819
|
+
"done _reduce_vector_horizontal_plain(self, %s, %s, %s, %s)"
|
|
820
|
+
% (vector(self._Qq, G), e, s, k)
|
|
821
|
+
)
|
|
822
|
+
print("return %s\n" % (vector(self._Qq, vect),))
|
|
823
|
+
return vect
|
|
824
|
+
|
|
825
|
+
def _reduce_vector_vertical(self, G, s0, s, k=1):
|
|
826
|
+
r"""
|
|
827
|
+
Reduce the vector `G` representing an element of `W_{-1,rs + s0}` by `r k` steps.
|
|
828
|
+
|
|
829
|
+
INPUT:
|
|
830
|
+
|
|
831
|
+
- a vector -- `G \in W_{-1, r*s + s0}`
|
|
832
|
+
|
|
833
|
+
OUTPUT:
|
|
834
|
+
|
|
835
|
+
- a vector -- `H \in W_{-1, r*(s - k) + s0}` such that
|
|
836
|
+
`G y^{-(r*s + s0)} dx \cong H y^{-(r*(s -k) + s0)} dx`
|
|
837
|
+
|
|
838
|
+
TESTS::
|
|
839
|
+
|
|
840
|
+
sage: p = 4999
|
|
841
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
842
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
843
|
+
sage: C._init_frob()
|
|
844
|
+
sage: C._reduce_vector_vertical((96683034459, 33074345103, 43132216686), 1, p // 3, p // 3)
|
|
845
|
+
(4364634303, 124117911400, 26239932330)
|
|
846
|
+
"""
|
|
847
|
+
|
|
848
|
+
def _reduce_vector_vertical_plain(G, s0, s, k=1):
|
|
849
|
+
r"""
|
|
850
|
+
INPUT:
|
|
851
|
+
|
|
852
|
+
- a vector -- `G \in W_{-1, r*s + s0}`
|
|
853
|
+
|
|
854
|
+
OUTPUT:
|
|
855
|
+
|
|
856
|
+
- a vector -- `H \in W_{-1, r*(s - k) + s0}` such that
|
|
857
|
+
`G y^{-(r*s + s0)} dx \cong H y^{-(r*(s -k) + s0)} dx`
|
|
858
|
+
"""
|
|
859
|
+
if self._verbose > 2:
|
|
860
|
+
print(
|
|
861
|
+
"_reduce_vector_vertical(self, G = %s, s0 = %s, s = %s, k = %s)"
|
|
862
|
+
% (vector(self._Qq, G), s0, s, k)
|
|
863
|
+
)
|
|
864
|
+
|
|
865
|
+
(m0, m1), (M0, M1) = self._vertical_matrix_reduction(s0)
|
|
866
|
+
vect = vector(self._Zq, G)
|
|
867
|
+
D = 1
|
|
868
|
+
assert k <= self._p, "more than p reductions at a time should be avoided!"
|
|
869
|
+
assert s - k >= 0
|
|
870
|
+
for i in reversed(range(s - k + 1, s + 1)):
|
|
871
|
+
Mi = M0 + i * M1
|
|
872
|
+
Di = m0 + i * m1
|
|
873
|
+
vect = Mi * vect
|
|
874
|
+
if self._plarge and Di % self._p != 0:
|
|
875
|
+
D *= Di
|
|
876
|
+
else:
|
|
877
|
+
vect = self._divide_vector(Di, vect, self._Zq)
|
|
878
|
+
|
|
879
|
+
vect = self._divide_vector(D, vect, self._Zq)
|
|
880
|
+
|
|
881
|
+
if self._verbose > 2:
|
|
882
|
+
print(
|
|
883
|
+
"done _reduce_vector_vertical(self, %s, %s, %s)"
|
|
884
|
+
% (vector(self._Qq, G), s, k)
|
|
885
|
+
)
|
|
886
|
+
print("return %s\n" % (vector(self._Qq, vect),))
|
|
887
|
+
|
|
888
|
+
return vect
|
|
889
|
+
|
|
890
|
+
G = vector(self._Zq, G)
|
|
891
|
+
|
|
892
|
+
if self._sqrtp:
|
|
893
|
+
self._initialize_fat_vertical(s0, s)
|
|
894
|
+
if k < self._p:
|
|
895
|
+
assert s - k == self._epsilon
|
|
896
|
+
MV = self._vertical_fat_s[s0][0]
|
|
897
|
+
elif k == self._p:
|
|
898
|
+
MV = self._vertical_fat_s[s0][s // self._p]
|
|
899
|
+
|
|
900
|
+
return MV * G
|
|
901
|
+
else:
|
|
902
|
+
return _reduce_vector_vertical_plain(G, s0, s, k)
|
|
903
|
+
|
|
904
|
+
def _initialize_fat_vertical(self, s0, max_upper_target):
|
|
905
|
+
"""
|
|
906
|
+
Initialise reduction matrices for vertical reductions for blocks from `s0` to `s0 + max_upper_target`.
|
|
907
|
+
|
|
908
|
+
TESTS::
|
|
909
|
+
|
|
910
|
+
sage: p = 4999
|
|
911
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
912
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
913
|
+
sage: C._init_frob()
|
|
914
|
+
sage: C._initialize_fat_vertical(1, p + p // 3)
|
|
915
|
+
sage: len(C._vertical_fat_s[1])
|
|
916
|
+
2
|
|
917
|
+
"""
|
|
918
|
+
L = floor((max_upper_target - self._epsilon) / self._p) + 1
|
|
919
|
+
if s0 not in self._vertical_fat_s:
|
|
920
|
+
(m0, m1), (M0, M1) = self._vertical_matrix_reduction(s0)
|
|
921
|
+
D0, D1 = (matrix(self._Zq, [y]) for y in [m0, m1])
|
|
922
|
+
targets = [0] * (2 * L)
|
|
923
|
+
for l in reversed(range(L)):
|
|
924
|
+
targets[2 * l] = max_upper_target - self._p * (L - l)
|
|
925
|
+
targets[2 * l + 1] = max_upper_target - self._p * (L - 1 - l)
|
|
926
|
+
if targets[0] < 0:
|
|
927
|
+
targets[0] = self._epsilon
|
|
928
|
+
MV = interval_products(M0, M1, targets)
|
|
929
|
+
DV = interval_products(D0, D1, targets)
|
|
930
|
+
for l in range(L):
|
|
931
|
+
D = DV[l][0, 0]
|
|
932
|
+
if D % self._p == 0:
|
|
933
|
+
iD = 1 / self._Zq(D.lift() / self._p)
|
|
934
|
+
MV[l] = matrix(
|
|
935
|
+
self._Zq,
|
|
936
|
+
[
|
|
937
|
+
[iD * ZZ(elt.lift() / self._p) for elt in row]
|
|
938
|
+
for row in MV[l].rows()
|
|
939
|
+
],
|
|
940
|
+
)
|
|
941
|
+
else:
|
|
942
|
+
MV[l] *= 1 / D
|
|
943
|
+
self._vertical_fat_s[s0] = MV
|
|
944
|
+
|
|
945
|
+
assert len(self._vertical_fat_s[s0]) >= L
|
|
946
|
+
|
|
947
|
+
def _frob(self, i, j, N0):
|
|
948
|
+
r"""
|
|
949
|
+
Compute `Frob(x^i dx/y^j) / dx` in terms of the cohomology basis,
|
|
950
|
+
whose `x` and `y` exponents are constrained to be in a particular range.
|
|
951
|
+
|
|
952
|
+
INPUT:
|
|
953
|
+
|
|
954
|
+
- ``i``, ``j`` -- exponents of the basis differential
|
|
955
|
+
- ``N0`` -- desired `p`-adic precision for the Frobenius expansion
|
|
956
|
+
|
|
957
|
+
TESTS::
|
|
958
|
+
|
|
959
|
+
sage: p = 4999
|
|
960
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
961
|
+
sage: C = CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1)
|
|
962
|
+
sage: C._init_frob()
|
|
963
|
+
sage: C._frob(2, 0, 1)
|
|
964
|
+
[3174 + O(4999)]
|
|
965
|
+
[1844 + O(4999)]
|
|
966
|
+
[4722 + O(4999)]
|
|
967
|
+
"""
|
|
968
|
+
# a Matrix that represents the Frobenius expansion of
|
|
969
|
+
# x^i dx/y^j modulo p^(N0 + 1)
|
|
970
|
+
# the entry (l, s) corresponds to the coefficient associated to the monomial x ** (p * (i + 1 + l) -1) * y ** (p * (j + r*s))
|
|
971
|
+
assert N0 <= self._N0
|
|
972
|
+
frobij = self._frob_sparse(i, j, N0)
|
|
973
|
+
# recall
|
|
974
|
+
# Frob(x^i dx/y^j) / dx
|
|
975
|
+
# = p * x ** (p * (i+1) - 1) * y ** (j*p)
|
|
976
|
+
# * = \sum_{s = 0} ^{N0-1}
|
|
977
|
+
# \sum_{l = 0} ^(d*s)
|
|
978
|
+
# D_{j, s} * Frobpow[s][l] * x ** (p ** l) y ** (r * p ** s)
|
|
979
|
+
# H represents H(x) * y^(-p**s) s /dx
|
|
980
|
+
# the entry (l, s) of frobij
|
|
981
|
+
# corresponds to the monomial (p * (i + 1 + l) -1, p * -(j + r*s))
|
|
982
|
+
d = self._d
|
|
983
|
+
r = self._r
|
|
984
|
+
p = self._p
|
|
985
|
+
H = vector(self._Zq, d - 1)
|
|
986
|
+
k = (p * j) // r
|
|
987
|
+
s0 = (p * j) % r
|
|
988
|
+
|
|
989
|
+
for s in reversed(range(N0)):
|
|
990
|
+
if self._sqrtp:
|
|
991
|
+
# (i + 1) <= d
|
|
992
|
+
self._initialize_fat_horizontal(
|
|
993
|
+
p * j + p * r * s, d * s + (d - 2) + 1
|
|
994
|
+
) # d * (s + 1) )
|
|
995
|
+
# G represents G(x) * x^(p ** l - 1) y^(-p(j + r*s)) /dx
|
|
996
|
+
G = vector(self._Zq, d)
|
|
997
|
+
for ell in reversed(range(1, d * s + (i + 1) + 1)):
|
|
998
|
+
if ell >= (i + 1):
|
|
999
|
+
G[0] += frobij[ell - (i + 1), s]
|
|
1000
|
+
G = self._reduce_vector_horizontal(G, p * ell - 1, p * j + p * r * s, p)
|
|
1001
|
+
assert G[0] == 0
|
|
1002
|
+
H += vector(G.list()[1:])
|
|
1003
|
+
if s > 0:
|
|
1004
|
+
# y^(-p(j + r*s)) --- > y^(-p(j + r*(s-1)))
|
|
1005
|
+
H = self._reduce_vector_vertical(H, s0, k + p * s, p)
|
|
1006
|
+
# H represents
|
|
1007
|
+
# H(x) y^-p*j = H(x) y^-(k*r + s0)
|
|
1008
|
+
# now we reduce the pole order to s0 + r*epsilon, where s0 = p *j % r
|
|
1009
|
+
while k > self._epsilon:
|
|
1010
|
+
steps = p if k - self._epsilon > p else k - self._epsilon
|
|
1011
|
+
H = self._reduce_vector_vertical(H, s0, k, steps)
|
|
1012
|
+
k -= steps
|
|
1013
|
+
assert k == self._epsilon
|
|
1014
|
+
H = [self._Qq(elt).add_bigoh(N0) for elt in H]
|
|
1015
|
+
return matrix(H).transpose()
|
|
1016
|
+
|
|
1017
|
+
@cached_method
|
|
1018
|
+
def frobenius_matrix(self, N=None):
|
|
1019
|
+
"""
|
|
1020
|
+
Compute `p`-adic Frobenius matrix to precision `p^N`.
|
|
1021
|
+
|
|
1022
|
+
If `N` not supplied, a default value is selected, which is the minimum
|
|
1023
|
+
needed to recover the charpoly unambiguously.
|
|
1024
|
+
|
|
1025
|
+
EXAMPLES::
|
|
1026
|
+
|
|
1027
|
+
sage: p = 107
|
|
1028
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1029
|
+
sage: CyclicCover(2, x^5 + x).frobenius_matrix()
|
|
1030
|
+
[ O(107^2) 89*107 + O(107^2) O(107^2) O(107^2)]
|
|
1031
|
+
[ 89*107 + O(107^2) O(107^2) O(107^2) O(107^2)]
|
|
1032
|
+
[ O(107^2) O(107^2) O(107^2) 105 + 5*107 + O(107^2)]
|
|
1033
|
+
[ O(107^2) O(107^2) 89 + 53*107 + O(107^2) O(107^2)]
|
|
1034
|
+
sage: CyclicCover(2, 3*x^5 + x).frobenius_matrix()
|
|
1035
|
+
[ O(107^2) 14*107 + O(107^2) O(107^2) O(107^2)]
|
|
1036
|
+
[ 69*107 + O(107^2) O(107^2) O(107^2) O(107^2)]
|
|
1037
|
+
[ O(107^2) O(107^2) O(107^2) 61 + 58*107 + O(107^2)]
|
|
1038
|
+
[ O(107^2) O(107^2) 69 + 53*107 + O(107^2) O(107^2)]
|
|
1039
|
+
sage: CyclicCover(3, x^3 + x).frobenius_matrix()
|
|
1040
|
+
[ 0 0 O(107) O(107)]
|
|
1041
|
+
[ 0 0 52 + O(107) O(107)]
|
|
1042
|
+
[ O(107) 35 + O(107) 0 0]
|
|
1043
|
+
[44 + O(107) O(107) 0 0]
|
|
1044
|
+
sage: CyclicCover(3, 3*x^3 + x).frobenius_matrix()
|
|
1045
|
+
[ 0 0 O(107) O(107)]
|
|
1046
|
+
[ 0 0 79 + O(107) O(107)]
|
|
1047
|
+
[ O(107) 42 + O(107) 0 0]
|
|
1048
|
+
[30 + O(107) O(107) 0 0]
|
|
1049
|
+
"""
|
|
1050
|
+
|
|
1051
|
+
def _frobenius_matrix_p(N0):
|
|
1052
|
+
r"""
|
|
1053
|
+
Compute the matrix that represents the p-power Frobenius
|
|
1054
|
+
"""
|
|
1055
|
+
assert self._init_frobQ
|
|
1056
|
+
|
|
1057
|
+
m = matrix(self._Qq, (self._d - 1) * (self._r - 1))
|
|
1058
|
+
|
|
1059
|
+
# Want to build m, "slice by slice" using the output of _frob
|
|
1060
|
+
for j in range(1, self._r):
|
|
1061
|
+
s0 = (j * self._p) % self._r
|
|
1062
|
+
for i in range(self._d - 1):
|
|
1063
|
+
m[(s0 - 1) * (self._d - 1):s0 * (self._d - 1),
|
|
1064
|
+
i + (j - 1) * (self._d - 1),
|
|
1065
|
+
] = self._frob(i, j + self._epsilon * self._r, N0)
|
|
1066
|
+
return m
|
|
1067
|
+
|
|
1068
|
+
self._init_frob(N)
|
|
1069
|
+
FrobP = _frobenius_matrix_p(self._N0)
|
|
1070
|
+
assert N == self._N0 or N is None
|
|
1071
|
+
if self._n == 1:
|
|
1072
|
+
return FrobP
|
|
1073
|
+
else:
|
|
1074
|
+
current = FrobP
|
|
1075
|
+
total = FrobP
|
|
1076
|
+
for i in range(self._n - 1):
|
|
1077
|
+
current = matrix(
|
|
1078
|
+
[[entry.frobenius() for entry in row] for row in current]
|
|
1079
|
+
)
|
|
1080
|
+
total = total * current
|
|
1081
|
+
total = matrix([[elt.add_bigoh(self._N0) for elt in row] for row in total])
|
|
1082
|
+
return total
|
|
1083
|
+
|
|
1084
|
+
@cached_method
|
|
1085
|
+
def frobenius_polynomial(self):
|
|
1086
|
+
r"""
|
|
1087
|
+
Return the characteristic polynomial of Frobenius.
|
|
1088
|
+
|
|
1089
|
+
EXAMPLES:
|
|
1090
|
+
|
|
1091
|
+
Hyperelliptic curves::
|
|
1092
|
+
|
|
1093
|
+
sage: p = 11
|
|
1094
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1095
|
+
sage: f = x^7 + 4*x^2 + 10*x + 4
|
|
1096
|
+
sage: CyclicCover(2, f).frobenius_polynomial() == \
|
|
1097
|
+
....: HyperellipticCurve(f).frobenius_polynomial()
|
|
1098
|
+
True
|
|
1099
|
+
sage: f = 2*x^5 + 4*x^3 + x^2 + 2*x + 1
|
|
1100
|
+
sage: CyclicCover(2, f).frobenius_polynomial() == \
|
|
1101
|
+
....: HyperellipticCurve(f).frobenius_polynomial()
|
|
1102
|
+
True
|
|
1103
|
+
sage: f = 2*x^6 + 4*x^4 + x^3 + 2*x^2 + x
|
|
1104
|
+
sage: CyclicCover(2, f).frobenius_polynomial() == \
|
|
1105
|
+
....: HyperellipticCurve(f).frobenius_polynomial()
|
|
1106
|
+
True
|
|
1107
|
+
sage: p = 1117
|
|
1108
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1109
|
+
sage: f = x^9 + 4*x^2 + 10*x + 4
|
|
1110
|
+
sage: P1 = CyclicCover(2, f).frobenius_polynomial()
|
|
1111
|
+
sage: P2 = HyperellipticCurve(f).frobenius_polynomial()
|
|
1112
|
+
sage: P1 == P2 # long time
|
|
1113
|
+
True
|
|
1114
|
+
sage: f = 2*x^5 + 4*x^3 + x^2 + 2*x + 1
|
|
1115
|
+
sage: CyclicCover(2, f).frobenius_polynomial() == \
|
|
1116
|
+
....: HyperellipticCurve(f).frobenius_polynomial()
|
|
1117
|
+
True
|
|
1118
|
+
|
|
1119
|
+
Superelliptic curves::
|
|
1120
|
+
|
|
1121
|
+
sage: p = 11
|
|
1122
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1123
|
+
sage: CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1).frobenius_polynomial()
|
|
1124
|
+
x^6 + 21*x^4 + 231*x^2 + 1331
|
|
1125
|
+
sage: CyclicCover(4, x^3 + x + 1).frobenius_polynomial()
|
|
1126
|
+
x^6 + 2*x^5 + 11*x^4 + 121*x^2 + 242*x + 1331
|
|
1127
|
+
sage: p = 4999
|
|
1128
|
+
sage: x = PolynomialRing(GF(p),"x").gen()
|
|
1129
|
+
sage: CyclicCover(4, x^3 - 1).frobenius_polynomial() == \
|
|
1130
|
+
....: CyclicCover(3, x^4 + 1).frobenius_polynomial()
|
|
1131
|
+
True
|
|
1132
|
+
sage: CyclicCover(3, x^4 + 4*x^3 + 9*x^2 + 3*x + 1).frobenius_polynomial()
|
|
1133
|
+
x^6 + 180*x^5 + 20988*x^4 + 1854349*x^3 + 104919012*x^2 + 4498200180*x + 124925014999
|
|
1134
|
+
sage: CyclicCover(4, x^5 + x + 1).frobenius_polynomial()
|
|
1135
|
+
x^12 - 64*x^11 + 5018*x^10 - 488640*x^9 + 28119583*x^8 - 641791616*x^7
|
|
1136
|
+
+ 124245485932*x^6 - 3208316288384*x^5 + 702708407289583*x^4 - 61043359329111360*x^3
|
|
1137
|
+
+ 3133741752599645018*x^2 - 199800079984001599936*x + 15606259372500374970001
|
|
1138
|
+
|
|
1139
|
+
sage: h = PolynomialRing(GF(1129), 'x')([-1] + [0]*(5-1) + [1])
|
|
1140
|
+
sage: CyclicCover(11, h).frobenius_polynomial() # long time
|
|
1141
|
+
x^40 + 7337188909826596*x^30 + 20187877911930897108199045855206*x^20
|
|
1142
|
+
+ 24687045654725446027864774006541463602997309796*x^10
|
|
1143
|
+
+ 11320844849639649951608809973589776933203136765026963553258401
|
|
1144
|
+
|
|
1145
|
+
sage: h = PolynomialRing(GF(1009^2), 'x')([-1] + [0]*(5-1) + [1])
|
|
1146
|
+
sage: CyclicCover(3, h).frobenius_polynomial() # long time
|
|
1147
|
+
x^8 + 532*x^7 - 2877542*x^6 - 242628176*x^5 + 4390163797795*x^4 - 247015136050256*x^3
|
|
1148
|
+
- 2982540407204025062*x^2 + 561382189105547134612*x + 1074309286591662654798721
|
|
1149
|
+
|
|
1150
|
+
A non-monic example checking that :issue:`29015` is fixed::
|
|
1151
|
+
|
|
1152
|
+
sage: a = 3
|
|
1153
|
+
sage: K.<s> = GF(83^3);
|
|
1154
|
+
sage: R.<x> = PolynomialRing(K)
|
|
1155
|
+
sage: h = s*x^4 + x*3 + 8
|
|
1156
|
+
sage: C = CyclicCover(a, h)
|
|
1157
|
+
sage: C.frobenius_polynomial()
|
|
1158
|
+
x^6 + 1563486*x^4 + 893980969482*x^2 + 186940255267540403
|
|
1159
|
+
|
|
1160
|
+
Non-superelliptic curves::
|
|
1161
|
+
|
|
1162
|
+
sage: p = 13
|
|
1163
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1164
|
+
sage: C = CyclicCover(4, x^4 + 1)
|
|
1165
|
+
sage: C.frobenius_polynomial()
|
|
1166
|
+
x^6 - 6*x^5 + 3*x^4 + 60*x^3 + 39*x^2 - 1014*x + 2197
|
|
1167
|
+
sage: R.<t> = PowerSeriesRing(Integers())
|
|
1168
|
+
sage: C.projective_closure().zeta_series(2, t)
|
|
1169
|
+
1 + 8*t + 102*t^2 + O(t^3)
|
|
1170
|
+
sage: C.frobenius_polynomial().reverse()(t)/((1-t)*(1-p*t)) + O(t^5)
|
|
1171
|
+
1 + 8*t + 102*t^2 + 1384*t^3 + 18089*t^4 + O(t^5)
|
|
1172
|
+
|
|
1173
|
+
sage: x = PolynomialRing(GF(11), "x").gen()
|
|
1174
|
+
sage: CyclicCover(4, x^6 - 11*x^3 + 70*x^2 - x + 961).frobenius_polynomial() # long time
|
|
1175
|
+
x^14 + 14*x^12 + 287*x^10 + 3025*x^8 + 33275*x^6 + 381997*x^4 + 2254714*x^2 + 19487171
|
|
1176
|
+
sage: x = PolynomialRing(GF(4999), "x").gen()
|
|
1177
|
+
sage: CyclicCover(4, x^6 - 11*x^3 + 70*x^2 - x + 961).frobenius_polynomial() # long time
|
|
1178
|
+
x^14 - 4*x^13 - 2822*x^12 - 30032*x^11 + 37164411*x^10 - 152369520*x^9
|
|
1179
|
+
+ 54217349361*x^8 - 1021791160888*x^7 + 271032529455639*x^6 - 3807714457169520*x^5
|
|
1180
|
+
+ 4642764601604000589*x^4 - 18754988504199390032*x^3 - 8809934776794570547178*x^2
|
|
1181
|
+
- 62425037490001499880004*x + 78015690603129374475034999
|
|
1182
|
+
|
|
1183
|
+
sage: p = 11
|
|
1184
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1185
|
+
sage: CyclicCover(3, 5*x^3 - 5*x + 13).frobenius_polynomial()
|
|
1186
|
+
x^2 + 11
|
|
1187
|
+
sage: CyclicCover(3, x^6 + x^4 - x^3 + 2*x^2 - x - 1).frobenius_polynomial()
|
|
1188
|
+
x^8 + 32*x^6 + 462*x^4 + 3872*x^2 + 14641
|
|
1189
|
+
sage: p = 4999
|
|
1190
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1191
|
+
sage: CyclicCover(3, 5*x^3 - 5*x + 13).frobenius_polynomial()
|
|
1192
|
+
x^2 - 47*x + 4999
|
|
1193
|
+
sage: CyclicCover(3, x^6 + x^4 - x^3 + 2*x^2 - x - 1).frobenius_polynomial()
|
|
1194
|
+
x^8 + 122*x^7 + 4594*x^6 - 639110*x^5 - 82959649*x^4 - 3194910890*x^3
|
|
1195
|
+
+ 114804064594*x^2 + 15240851829878*x + 624500149980001
|
|
1196
|
+
|
|
1197
|
+
sage: p = 11
|
|
1198
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1199
|
+
sage: CyclicCover(5, x^5 + x).frobenius_polynomial() # long time
|
|
1200
|
+
x^12 + 4*x^11 + 22*x^10 + 108*x^9 + 503*x^8 + 1848*x^7 + 5588*x^6 + 20328*x^5
|
|
1201
|
+
+ 60863*x^4 + 143748*x^3 + 322102*x^2 + 644204*x + 1771561
|
|
1202
|
+
sage: CyclicCover(5, 2*x^5 + x).frobenius_polynomial() # long time
|
|
1203
|
+
x^12 - 9*x^11 + 42*x^10 - 108*x^9 - 47*x^8 + 1782*x^7 - 8327*x^6 + 19602*x^5
|
|
1204
|
+
- 5687*x^4 - 143748*x^3 + 614922*x^2 - 1449459*x + 1771561
|
|
1205
|
+
sage: p = 49999
|
|
1206
|
+
sage: x = PolynomialRing(GF(p), "x").gen()
|
|
1207
|
+
sage: CyclicCover(5, x^5 + x).frobenius_polynomial() # long time
|
|
1208
|
+
x^12 + 299994*x^10 + 37498500015*x^8 + 2499850002999980*x^6
|
|
1209
|
+
+ 93742500224997000015*x^4 + 1874812507499850001499994*x^2
|
|
1210
|
+
+ 15623125093747500037499700001
|
|
1211
|
+
sage: CyclicCover(5, 2*x^5 + x).frobenius_polynomial() # long time
|
|
1212
|
+
x^12 + 299994*x^10 + 37498500015*x^8 + 2499850002999980*x^6
|
|
1213
|
+
+ 93742500224997000015*x^4 + 1874812507499850001499994*x^2
|
|
1214
|
+
+ 15623125093747500037499700001
|
|
1215
|
+
|
|
1216
|
+
|
|
1217
|
+
TESTS::
|
|
1218
|
+
|
|
1219
|
+
sage: for _ in range(5): # long time
|
|
1220
|
+
....: fail = False
|
|
1221
|
+
....: p = random_prime(500, lbound=5)
|
|
1222
|
+
....: for i in range(1, 4):
|
|
1223
|
+
....: F = GF((p, i))
|
|
1224
|
+
....: Fx = PolynomialRing(F, 'x')
|
|
1225
|
+
....: b = F.random_element()
|
|
1226
|
+
....: while b == 0:
|
|
1227
|
+
....: b = F.random_element()
|
|
1228
|
+
....: E = EllipticCurve(F, [0, b])
|
|
1229
|
+
....: C1 = CyclicCover(3, Fx([-b, 0, 1]))
|
|
1230
|
+
....: C2 = CyclicCover(2, Fx([b, 0, 0, 1]))
|
|
1231
|
+
....: frob = [elt.frobenius_polynomial() for elt in [E, C1, C2]]
|
|
1232
|
+
....: if len(set(frob)) != 1:
|
|
1233
|
+
....: E
|
|
1234
|
+
....: C1
|
|
1235
|
+
....: C2
|
|
1236
|
+
....: frob
|
|
1237
|
+
....: fail = True
|
|
1238
|
+
....: break
|
|
1239
|
+
....: if fail:
|
|
1240
|
+
....: break
|
|
1241
|
+
....: else:
|
|
1242
|
+
....: True
|
|
1243
|
+
True
|
|
1244
|
+
"""
|
|
1245
|
+
self._init_frob()
|
|
1246
|
+
F = self.frobenius_matrix(self._N0)
|
|
1247
|
+
|
|
1248
|
+
def _denominator():
|
|
1249
|
+
R = PolynomialRing(ZZ, "T")
|
|
1250
|
+
T = R.gen()
|
|
1251
|
+
denom = R(1)
|
|
1252
|
+
lc = self._f.list()[-1]
|
|
1253
|
+
if lc == 1: # MONIC
|
|
1254
|
+
for i in range(2, self._delta + 1):
|
|
1255
|
+
if self._delta % i == 0:
|
|
1256
|
+
phi = euler_phi(i)
|
|
1257
|
+
G = IntegerModRing(i)
|
|
1258
|
+
ki = G(self._q).multiplicative_order()
|
|
1259
|
+
denom = denom * (T ** ki - 1) ** (phi // ki)
|
|
1260
|
+
return denom
|
|
1261
|
+
else: # Non-monic
|
|
1262
|
+
x = PolynomialRing(self._Fq, "x").gen()
|
|
1263
|
+
f = x ** self._delta - lc
|
|
1264
|
+
L = f.splitting_field("a")
|
|
1265
|
+
roots = [r for r, _ in f.change_ring(L).roots()]
|
|
1266
|
+
roots_dict = {r: i for i, r in enumerate(roots)}
|
|
1267
|
+
rootsfrob = [L.frobenius_endomorphism(self._Fq.degree())(r) for r in roots]
|
|
1268
|
+
m = zero_matrix(len(roots))
|
|
1269
|
+
for i, r in enumerate(roots):
|
|
1270
|
+
m[i, roots_dict[rootsfrob[i]]] = 1
|
|
1271
|
+
return R(R(m.characteristic_polynomial()) // (T - 1))
|
|
1272
|
+
|
|
1273
|
+
denom = _denominator()
|
|
1274
|
+
R = PolynomialRing(ZZ, "x")
|
|
1275
|
+
|
|
1276
|
+
if self._nodenominators:
|
|
1277
|
+
min_val = 0
|
|
1278
|
+
else:
|
|
1279
|
+
# are there any denominators in F?
|
|
1280
|
+
min_val = min(self._Qq(elt).valuation() for row in F.rows() for elt in row)
|
|
1281
|
+
|
|
1282
|
+
if min_val >= 0:
|
|
1283
|
+
prec = _N0_nodenominators(self._p, self._genus, self._n)
|
|
1284
|
+
charpoly_prec = [prec + i for i in reversed(range(1, self._genus + 1))] + [
|
|
1285
|
+
prec
|
|
1286
|
+
] * (self._genus + 1)
|
|
1287
|
+
cp = charpoly_frobenius(F, charpoly_prec, self._p, 1, self._n, denom.list())
|
|
1288
|
+
return R(cp)
|
|
1289
|
+
else:
|
|
1290
|
+
cp = F.charpoly().reverse()
|
|
1291
|
+
denom = denom.reverse()
|
|
1292
|
+
PS = PowerSeriesRing(self._Zp, "T")
|
|
1293
|
+
cp = PS(cp) / PS(denom)
|
|
1294
|
+
cp = cp.padded_list(self._genus + 1)
|
|
1295
|
+
cpZZ = [None for _ in range(2 * self._genus + 1)]
|
|
1296
|
+
cpZZ[0] = 1
|
|
1297
|
+
cpZZ[-1] = self._p ** self._genus
|
|
1298
|
+
for i in range(1, self._genus + 1):
|
|
1299
|
+
cmod = cp[i]
|
|
1300
|
+
bound = binomial(2 * self._genus, i) * self._p ** (i * self._n * 0.5)
|
|
1301
|
+
localmod = self._p ** (ceil(log(bound, self._p)))
|
|
1302
|
+
c = cmod.lift() % localmod
|
|
1303
|
+
if c > bound:
|
|
1304
|
+
c = -(-cmod.lift() % localmod)
|
|
1305
|
+
cpZZ[i] = c
|
|
1306
|
+
if i != self._genus + 1:
|
|
1307
|
+
cpZZ[2 * self._genus - i] = c * self._p ** (self._genus - i)
|
|
1308
|
+
cpZZ.reverse()
|
|
1309
|
+
return R(cpZZ)
|