passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (311) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
  7. passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
  8. passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
  9. passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +745 -0
  29. sage/lfunctions/pari.py +818 -0
  30. sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5135 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
  34. sage/modular/abvar/abvar_newform.py +244 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +186 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +720 -0
  40. sage/modular/abvar/homspace.py +998 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +740 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1402 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +363 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +653 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1469 -0
  57. sage/modular/arithgroup/congroup_generic.py +628 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +267 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1066 -0
  61. sage/modular/arithgroup/tests.py +418 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3753 -0
  64. sage/modular/btquotients/pautomorphicform.py +2570 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1109 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +569 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1065 -0
  77. sage/modular/hecke/algebra.py +746 -0
  78. sage/modular/hecke/all.py +20 -0
  79. sage/modular/hecke/ambient_module.py +1019 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +325 -0
  82. sage/modular/hecke/hecke_operator.py +780 -0
  83. sage/modular/hecke/homspace.py +206 -0
  84. sage/modular/hecke/module.py +1767 -0
  85. sage/modular/hecke/morphism.py +174 -0
  86. sage/modular/hecke/submodule.py +989 -0
  87. sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2017 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1071 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +815 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +124 -0
  101. sage/modular/modform/ambient_g1.py +204 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +505 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4131 -0
  108. sage/modular/modform/find_generators.py +59 -0
  109. sage/modular/modform/half_integral.py +154 -0
  110. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  111. sage/modular/modform/j_invariant.py +47 -0
  112. sage/modular/modform/l_series_gross_zagier.py +133 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
  114. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  115. sage/modular/modform/notes.py +45 -0
  116. sage/modular/modform/numerical.py +514 -0
  117. sage/modular/modform/periods.py +14 -0
  118. sage/modular/modform/ring.py +1257 -0
  119. sage/modular/modform/space.py +1860 -0
  120. sage/modular/modform/submodule.py +118 -0
  121. sage/modular/modform/tests.py +64 -0
  122. sage/modular/modform/theta.py +110 -0
  123. sage/modular/modform/vm_basis.py +381 -0
  124. sage/modular/modform/weight1.py +220 -0
  125. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  126. sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
  127. sage/modular/modform_hecketriangle/all.py +30 -0
  128. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  129. sage/modular/modform_hecketriangle/constructor.py +416 -0
  130. sage/modular/modform_hecketriangle/element.py +351 -0
  131. sage/modular/modform_hecketriangle/functors.py +752 -0
  132. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  133. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
  135. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
  136. sage/modular/modform_hecketriangle/readme.py +1214 -0
  137. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  138. sage/modular/modform_hecketriangle/space.py +1037 -0
  139. sage/modular/modform_hecketriangle/subspace.py +423 -0
  140. sage/modular/modsym/all.py +17 -0
  141. sage/modular/modsym/ambient.py +3846 -0
  142. sage/modular/modsym/boundary.py +1420 -0
  143. sage/modular/modsym/element.py +336 -0
  144. sage/modular/modsym/g1list.py +178 -0
  145. sage/modular/modsym/ghlist.py +182 -0
  146. sage/modular/modsym/hecke_operator.py +73 -0
  147. sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
  148. sage/modular/modsym/manin_symbol.pxd +5 -0
  149. sage/modular/modsym/manin_symbol.pyx +497 -0
  150. sage/modular/modsym/manin_symbol_list.py +1295 -0
  151. sage/modular/modsym/modsym.py +400 -0
  152. sage/modular/modsym/modular_symbols.py +384 -0
  153. sage/modular/modsym/p1list_nf.py +1241 -0
  154. sage/modular/modsym/relation_matrix.py +591 -0
  155. sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
  156. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  157. sage/modular/modsym/space.py +2468 -0
  158. sage/modular/modsym/subspace.py +455 -0
  159. sage/modular/modsym/tests.py +375 -0
  160. sage/modular/multiple_zeta.py +2632 -0
  161. sage/modular/multiple_zeta_F_algebra.py +786 -0
  162. sage/modular/overconvergent/all.py +6 -0
  163. sage/modular/overconvergent/genus0.py +1878 -0
  164. sage/modular/overconvergent/hecke_series.py +1187 -0
  165. sage/modular/overconvergent/weightspace.py +778 -0
  166. sage/modular/pollack_stevens/all.py +4 -0
  167. sage/modular/pollack_stevens/distributions.py +874 -0
  168. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  169. sage/modular/pollack_stevens/manin_map.py +859 -0
  170. sage/modular/pollack_stevens/modsym.py +1593 -0
  171. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  172. sage/modular/pollack_stevens/sigma0.py +534 -0
  173. sage/modular/pollack_stevens/space.py +1076 -0
  174. sage/modular/quasimodform/all.py +3 -0
  175. sage/modular/quasimodform/element.py +845 -0
  176. sage/modular/quasimodform/ring.py +828 -0
  177. sage/modular/quatalg/all.py +3 -0
  178. sage/modular/quatalg/brandt.py +1642 -0
  179. sage/modular/ssmod/all.py +8 -0
  180. sage/modular/ssmod/ssmod.py +827 -0
  181. sage/rings/all__sagemath_schemes.py +1 -0
  182. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  183. sage/rings/polynomial/binary_form_reduce.py +585 -0
  184. sage/schemes/all.py +41 -0
  185. sage/schemes/berkovich/all.py +6 -0
  186. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  187. sage/schemes/berkovich/berkovich_space.py +748 -0
  188. sage/schemes/curves/affine_curve.py +2928 -0
  189. sage/schemes/curves/all.py +33 -0
  190. sage/schemes/curves/closed_point.py +434 -0
  191. sage/schemes/curves/constructor.py +381 -0
  192. sage/schemes/curves/curve.py +542 -0
  193. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  194. sage/schemes/curves/point.py +463 -0
  195. sage/schemes/curves/projective_curve.py +3026 -0
  196. sage/schemes/curves/zariski_vankampen.py +1932 -0
  197. sage/schemes/cyclic_covers/all.py +2 -0
  198. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  199. sage/schemes/cyclic_covers/constructor.py +137 -0
  200. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  201. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  202. sage/schemes/elliptic_curves/BSD.py +1036 -0
  203. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  204. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  205. sage/schemes/elliptic_curves/all.py +49 -0
  206. sage/schemes/elliptic_curves/cardinality.py +609 -0
  207. sage/schemes/elliptic_curves/cm.py +1102 -0
  208. sage/schemes/elliptic_curves/constructor.py +1552 -0
  209. sage/schemes/elliptic_curves/ec_database.py +175 -0
  210. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
  211. sage/schemes/elliptic_curves/ell_egros.py +459 -0
  212. sage/schemes/elliptic_curves/ell_field.py +2836 -0
  213. sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
  214. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  215. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  216. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  217. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  218. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  219. sage/schemes/elliptic_curves/ell_point.py +4787 -0
  220. sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
  221. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  222. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  223. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  224. sage/schemes/elliptic_curves/formal_group.py +760 -0
  225. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  226. sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
  227. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  228. sage/schemes/elliptic_curves/heegner.py +7335 -0
  229. sage/schemes/elliptic_curves/height.py +2109 -0
  230. sage/schemes/elliptic_curves/hom.py +1406 -0
  231. sage/schemes/elliptic_curves/hom_composite.py +934 -0
  232. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  233. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  234. sage/schemes/elliptic_curves/hom_sum.py +682 -0
  235. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  236. sage/schemes/elliptic_curves/homset.py +271 -0
  237. sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
  238. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  239. sage/schemes/elliptic_curves/jacobian.py +237 -0
  240. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  241. sage/schemes/elliptic_curves/kraus.py +1014 -0
  242. sage/schemes/elliptic_curves/lseries_ell.py +943 -0
  243. sage/schemes/elliptic_curves/mod5family.py +105 -0
  244. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  245. sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
  246. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  247. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  248. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  249. sage/schemes/elliptic_curves/padics.py +1816 -0
  250. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  251. sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
  252. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  253. sage/schemes/elliptic_curves/saturation.py +715 -0
  254. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  255. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  256. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  257. sage/schemes/hyperelliptic_curves/all.py +6 -0
  258. sage/schemes/hyperelliptic_curves/constructor.py +291 -0
  259. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
  260. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  261. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  264. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  265. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
  266. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  267. sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
  270. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  271. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  272. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
  273. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  274. sage/schemes/jacobians/all.py +2 -0
  275. sage/schemes/overview.py +161 -0
  276. sage/schemes/plane_conics/all.py +22 -0
  277. sage/schemes/plane_conics/con_field.py +1296 -0
  278. sage/schemes/plane_conics/con_finite_field.py +158 -0
  279. sage/schemes/plane_conics/con_number_field.py +456 -0
  280. sage/schemes/plane_conics/con_rational_field.py +406 -0
  281. sage/schemes/plane_conics/con_rational_function_field.py +580 -0
  282. sage/schemes/plane_conics/constructor.py +249 -0
  283. sage/schemes/plane_quartics/all.py +2 -0
  284. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  285. sage/schemes/plane_quartics/quartic_generic.py +73 -0
  286. sage/schemes/riemann_surfaces/all.py +1 -0
  287. sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
  288. sage_wheels/share/cremona/cremona_mini.db +0 -0
  289. sage_wheels/share/ellcurves/rank0 +30427 -0
  290. sage_wheels/share/ellcurves/rank1 +31871 -0
  291. sage_wheels/share/ellcurves/rank10 +6 -0
  292. sage_wheels/share/ellcurves/rank11 +6 -0
  293. sage_wheels/share/ellcurves/rank12 +1 -0
  294. sage_wheels/share/ellcurves/rank14 +1 -0
  295. sage_wheels/share/ellcurves/rank15 +1 -0
  296. sage_wheels/share/ellcurves/rank17 +1 -0
  297. sage_wheels/share/ellcurves/rank19 +1 -0
  298. sage_wheels/share/ellcurves/rank2 +2388 -0
  299. sage_wheels/share/ellcurves/rank20 +1 -0
  300. sage_wheels/share/ellcurves/rank21 +1 -0
  301. sage_wheels/share/ellcurves/rank22 +1 -0
  302. sage_wheels/share/ellcurves/rank23 +1 -0
  303. sage_wheels/share/ellcurves/rank24 +1 -0
  304. sage_wheels/share/ellcurves/rank28 +1 -0
  305. sage_wheels/share/ellcurves/rank3 +836 -0
  306. sage_wheels/share/ellcurves/rank4 +10 -0
  307. sage_wheels/share/ellcurves/rank5 +5 -0
  308. sage_wheels/share/ellcurves/rank6 +5 -0
  309. sage_wheels/share/ellcurves/rank7 +5 -0
  310. sage_wheels/share/ellcurves/rank8 +6 -0
  311. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,3026 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.singular
3
+ r"""
4
+ Projective curves
5
+
6
+ Projective curves in Sage are curves in a projective space or a projective plane.
7
+
8
+ EXAMPLES:
9
+
10
+ We can construct curves in either a projective plane::
11
+
12
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
13
+ sage: C = Curve([y*z^2 - x^3], P); C
14
+ Projective Plane Curve over Rational Field defined by -x^3 + y*z^2
15
+
16
+ or in higher dimensional projective spaces::
17
+
18
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
19
+ sage: C = Curve([y*w^3 - x^4, z*w^3 - x^4], P); C
20
+ Projective Curve over Rational Field defined by -x^4 + y*w^3, -x^4 + z*w^3
21
+
22
+ Integral projective curves over finite fields
23
+ ---------------------------------------------
24
+
25
+ If the curve is defined over a finite field and integral, that is reduced and
26
+ irreducible, its function field is tightly coupled with the curve so that
27
+ advanced computations based on Sage's global function field machinery are
28
+ available.
29
+
30
+ EXAMPLES::
31
+
32
+ sage: k = GF(2)
33
+ sage: P.<x,y,z> = ProjectiveSpace(k, 2)
34
+ sage: C = Curve(x^2*z - y^3, P)
35
+ sage: C.genus()
36
+ 0
37
+ sage: C.function_field()
38
+ Function field in z defined by z + y^3
39
+
40
+ Closed points of arbitrary degree can be computed::
41
+
42
+ sage: C.closed_points()
43
+ [Point (x, y), Point (y, z), Point (x + z, y + z)]
44
+ sage: C.closed_points(2)
45
+ [Point (y^2 + y*z + z^2, x + z)]
46
+ sage: C.closed_points(3)
47
+ [Point (y^3 + y^2*z + z^3, x + y + z),
48
+ Point (x^2 + y*z + z^2, x*y + x*z + y*z, y^2 + x*z + y*z + z^2)]
49
+
50
+ All singular closed points can be found::
51
+
52
+ sage: C.singular_closed_points()
53
+ [Point (x, y)]
54
+ sage: p = _[0]
55
+ sage: p.places() # a unibranch singularity, that is, a cusp
56
+ [Place (1/y)]
57
+ sage: pls = _[0]
58
+ sage: C.place_to_closed_point(pls)
59
+ Point (x, y)
60
+
61
+ It is easy to transit to and from the function field of the curve::
62
+
63
+ sage: fx = C(x/z)
64
+ sage: fy = C(y/z)
65
+ sage: fx^2 - fy^3
66
+ 0
67
+ sage: fx.divisor()
68
+ 3*Place (1/y)
69
+ - 3*Place (y)
70
+ sage: p, = fx.poles()
71
+ sage: p
72
+ Place (y)
73
+ sage: C.place_to_closed_point(p)
74
+ Point (y, z)
75
+ sage: _.rational_point()
76
+ (1 : 0 : 0)
77
+ sage: _.closed_point()
78
+ Point (y, z)
79
+ sage: _.place()
80
+ Place (y)
81
+
82
+ Integral projective curves over `\QQ`
83
+ -------------------------------------
84
+
85
+ An integral curve over `\QQ` is also equipped with the function field. Unlike
86
+ over finite fields, it is not possible to enumerate closed points.
87
+
88
+ EXAMPLES::
89
+
90
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
91
+ sage: C = Curve(x^2*z^2 - x^4 - y^4, P)
92
+ sage: C.singular_closed_points()
93
+ [Point (x, y)]
94
+ sage: p, = _
95
+ sage: p.places()
96
+ [Place (1/y, 1/y^2*z - 1), Place (1/y, 1/y^2*z + 1)]
97
+ sage: fy = C.function(y/z)
98
+ sage: fy.divisor()
99
+ Place (1/y, 1/y^2*z - 1)
100
+ + Place (1/y, 1/y^2*z + 1)
101
+ + Place (y, z - 1)
102
+ + Place (y, z + 1)
103
+ - Place (y^4 + 1, z)
104
+ sage: supp = _.support()
105
+ sage: pl = supp[0]
106
+ sage: C.place_to_closed_point(pl)
107
+ Point (x, y)
108
+ sage: pl = supp[1]
109
+ sage: C.place_to_closed_point(pl)
110
+ Point (x, y)
111
+ sage: _.rational_point()
112
+ (0 : 0 : 1)
113
+ sage: _ in C
114
+ True
115
+
116
+ AUTHORS:
117
+
118
+ - William Stein (2005-11-13)
119
+
120
+ - David Joyner (2005-11-13)
121
+
122
+ - David Kohel (2006-01)
123
+
124
+ - Moritz Minzlaff (2010-11)
125
+
126
+ - Grayson Jorgenson (2016-08)
127
+
128
+ - Kwankyu Lee (2019-05): added integral projective curves
129
+ """
130
+ # ****************************************************************************
131
+ # Copyright (C) 2005 William Stein <wstein@gmail.com>
132
+ #
133
+ # Distributed under the terms of the GNU General Public License (GPL)
134
+ #
135
+ # The full text of the GPL is available at:
136
+ #
137
+ # https://www.gnu.org/licenses/
138
+ # ****************************************************************************
139
+
140
+ from builtins import sum as add
141
+
142
+ from sage.categories.fields import Fields
143
+ from sage.categories.homset import hom, Hom, End
144
+ from sage.categories.number_fields import NumberFields
145
+ from sage.libs.singular.function import singular_function, lib as singular_lib, get_printlevel, set_printlevel
146
+ from sage.matrix.constructor import matrix
147
+ from sage.misc.cachefunc import cached_method
148
+ from sage.misc.lazy_attribute import lazy_attribute
149
+ from sage.misc.lazy_import import lazy_import
150
+ from sage.misc.persist import register_unpickle_override
151
+ from sage.rings.integer import Integer
152
+ from sage.rings.integer_ring import IntegerRing
153
+ from sage.rings.polynomial.multi_polynomial_element import degree_lowest_rational_function
154
+ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
155
+ from sage.rings.rational_field import RationalField
156
+ from sage.schemes.projective.projective_space import ProjectiveSpace, ProjectiveSpace_ring
157
+ from sage.schemes.projective.projective_subscheme import (AlgebraicScheme_subscheme_projective,
158
+ AlgebraicScheme_subscheme_projective_field)
159
+
160
+ lazy_import('sage.interfaces.singular', 'singular')
161
+ lazy_import('sage.misc.sage_eval', 'sage_eval')
162
+ lazy_import('sage.rings.number_field.number_field', 'NumberField')
163
+ lazy_import('sage.rings.qqbar', ['number_field_elements_from_algebraics', 'QQbar'])
164
+
165
+ from .curve import Curve_generic
166
+
167
+ from .point import (ProjectiveCurvePoint_field,
168
+ ProjectivePlaneCurvePoint_field,
169
+ ProjectivePlaneCurvePoint_finite_field,
170
+ IntegralProjectiveCurvePoint,
171
+ IntegralProjectiveCurvePoint_finite_field,
172
+ IntegralProjectivePlaneCurvePoint,
173
+ IntegralProjectivePlaneCurvePoint_finite_field)
174
+
175
+ from .closed_point import IntegralProjectiveCurveClosedPoint
176
+
177
+
178
+ class ProjectiveCurve(Curve_generic, AlgebraicScheme_subscheme_projective):
179
+ """
180
+ Curves in projective spaces.
181
+
182
+ INPUT:
183
+
184
+ - ``A`` -- ambient projective space
185
+
186
+ - ``X`` -- list of multivariate polynomials; defining equations of the curve
187
+
188
+ EXAMPLES::
189
+
190
+ sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
191
+ sage: C = Curve([y*u^2 - x^3, z*u^2 - x^3, w*u^2 - x^3, y^3 - x^3], P); C
192
+ Projective Curve over Finite Field of size 7 defined
193
+ by -x^3 + y*u^2, -x^3 + z*u^2, -x^3 + w*u^2, -x^3 + y^3
194
+
195
+ ::
196
+
197
+ sage: # needs sage.rings.number_field
198
+ sage: K.<u> = CyclotomicField(11)
199
+ sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
200
+ sage: C = Curve([y*w - u*z^2 - x^2, x*w - 3*u^2*z*w], P); C
201
+ Projective Curve over Cyclotomic Field of order 11 and degree 10 defined
202
+ by -x^2 + (-u)*z^2 + y*w, x*w + (-3*u^2)*z*w
203
+ """
204
+
205
+ def __init__(self, A, X, category=None):
206
+ """
207
+ Initialize.
208
+
209
+ EXAMPLES::
210
+
211
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
212
+ sage: C = Curve(x*y^2*z^7 - x^10 - x^2*z^8)
213
+ sage: loads(dumps(C)) == C
214
+ True
215
+ """
216
+ if not isinstance(A, ProjectiveSpace_ring):
217
+ raise TypeError("A (=%s) must be a projective space" % A)
218
+
219
+ Curve_generic.__init__(self, A, X, category=category)
220
+
221
+ def _repr_type(self):
222
+ r"""
223
+ Return a string representation of the type of this curve.
224
+
225
+ EXAMPLES::
226
+
227
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
228
+ sage: C = Curve([y^3 - z^3 - w^3, z*x^3 - y^4])
229
+ sage: C._repr_type()
230
+ 'Projective'
231
+ """
232
+ return "Projective"
233
+
234
+ def affine_patch(self, i, AA=None):
235
+ r"""
236
+ Return the `i`-th affine patch of this projective curve.
237
+
238
+ INPUT:
239
+
240
+ - ``i`` -- affine coordinate chart of the projective ambient space of
241
+ this curve to compute affine patch with respect to
242
+
243
+ - ``AA`` -- (default: ``None``) ambient affine space, this is constructed
244
+ if it is not given
245
+
246
+ OUTPUT: a curve in affine space
247
+
248
+ EXAMPLES::
249
+
250
+ sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
251
+ sage: C = Curve([y*z - x^2, w^2 - x*y], P)
252
+ sage: C.affine_patch(0)
253
+ Affine Curve over Complex Field with 53 bits of precision defined
254
+ by y*z - 1.00000000000000, w^2 - y
255
+
256
+ ::
257
+
258
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
259
+ sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
260
+ sage: C.affine_patch(1)
261
+ Affine Plane Curve over Rational Field defined by x^3 - x^2*z - x^2 + 1
262
+
263
+ ::
264
+
265
+ sage: A.<x,y> = AffineSpace(QQ, 2)
266
+ sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
267
+ sage: C = Curve([u^2 - v^2], P)
268
+ sage: C.affine_patch(1, A).ambient_space() == A
269
+ True
270
+ """
271
+ from .constructor import Curve
272
+ return Curve(AlgebraicScheme_subscheme_projective.affine_patch(self, i, AA))
273
+
274
+ def projection(self, P=None, PS=None):
275
+ r"""
276
+ Return a projection of this curve into projective space of dimension
277
+ one less than the dimension of the ambient space of this curve.
278
+
279
+ This curve must not already be a plane curve. Over finite fields, if
280
+ this curve contains all points in its ambient space, then an error will
281
+ be returned.
282
+
283
+ INPUT:
284
+
285
+ - ``P`` -- (default: ``None``) a point not on this curve that will be used
286
+ to define the projection map; this is constructed if not specified
287
+
288
+ - ``PS`` -- (default: ``None``) the projective space the projected curve
289
+ will be defined in. This space must be defined over the same base ring
290
+ as this curve, and must have dimension one less than that of the
291
+ ambient space of this curve. This space will be constructed if not
292
+ specified.
293
+
294
+ OUTPUT: a tuple of
295
+
296
+ - a scheme morphism from this curve into a projective space of
297
+ dimension one less than that of the ambient space of this curve
298
+
299
+ - the projective curve that is the image of that morphism
300
+
301
+ EXAMPLES::
302
+
303
+ sage: # needs sage.rings.number_field
304
+ sage: K.<a> = CyclotomicField(3)
305
+ sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
306
+ sage: C = Curve([y*w - x^2, z*w^2 - a*x^3], P)
307
+ sage: L.<a,b,c> = ProjectiveSpace(K, 2)
308
+ sage: proj1 = C.projection(PS=L)
309
+ sage: proj1
310
+ (Scheme morphism:
311
+ From: Projective Curve over Cyclotomic Field of order 3 and degree 2
312
+ defined by -x^2 + y*w, (-a)*x^3 + z*w^2
313
+ To: Projective Space of dimension 2
314
+ over Cyclotomic Field of order 3 and degree 2
315
+ Defn: Defined on coordinates by sending (x : y : z : w) to
316
+ (x : y : -z + w),
317
+ Projective Plane Curve over Cyclotomic Field of order 3 and degree 2
318
+ defined by a^6 + (-a)*a^3*b^3 - a^4*b*c)
319
+ sage: proj1[1].ambient_space() is L
320
+ True
321
+ sage: proj2 = C.projection()
322
+ sage: proj2[1].ambient_space() is L
323
+ False
324
+
325
+ ::
326
+
327
+ sage: P.<x,y,z,w,a,b,c> = ProjectiveSpace(QQ, 6)
328
+ sage: C = Curve([y - x, z - a - b, w^2 - c^2, z - x - a, x^2 - w*z], P)
329
+ sage: C.projection()
330
+ (Scheme morphism:
331
+ From: Projective Curve over Rational Field
332
+ defined by -x + y, z - a - b, w^2 - c^2, -x + z - a, x^2 - z*w
333
+ To: Projective Space of dimension 5 over Rational Field
334
+ Defn: Defined on coordinates by sending (x : y : z : w : a : b : c)
335
+ to (x : y : -z + w : a : b : c),
336
+ Projective Curve over Rational Field defined by x1 - x4, x0 - x4, x2*x3
337
+ + x3^2 + x2*x4 + 2*x3*x4, x2^2 - x3^2 - 2*x3*x4 + x4^2 - x5^2, x2*x4^2 +
338
+ x3*x4^2 + x4^3 - x3*x5^2 - x4*x5^2, x4^4 - x3^2*x5^2 - 2*x3*x4*x5^2 -
339
+ x4^2*x5^2)
340
+
341
+ ::
342
+
343
+ sage: P.<x,y,z,w> = ProjectiveSpace(GF(2), 3)
344
+ sage: C = P.curve([(x - y)*(x - z)*(x - w)*(y - z)*(y - w),
345
+ ....: x*y*z*w*(x + y + z + w)])
346
+ sage: C.projection()
347
+ Traceback (most recent call last):
348
+ ...
349
+ NotImplementedError: this curve contains all points of its ambient space
350
+
351
+ ::
352
+
353
+ sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
354
+ sage: C = P.curve([x^3 - y*z*u, w^2 - u^2 + 2*x*z, 3*x*w - y^2])
355
+ sage: L.<a,b,c,d> = ProjectiveSpace(GF(7), 3)
356
+ sage: C.projection(PS=L)
357
+ (Scheme morphism:
358
+ From: Projective Curve over Finite Field of size 7
359
+ defined by x^3 - y*z*u, 2*x*z + w^2 - u^2, -y^2 + 3*x*w
360
+ To: Projective Space of dimension 3 over Finite Field of size 7
361
+ Defn: Defined on coordinates by sending (x : y : z : w : u) to
362
+ (x : y : z : w),
363
+ Projective Curve over Finite Field of size 7 defined by b^2 - 3*a*d,
364
+ a^5*b + a*b*c^3*d - 3*b*c^2*d^3, a^6 + a^2*c^3*d - 3*a*c^2*d^3)
365
+ sage: Q.<a,b,c> = ProjectiveSpace(GF(7), 2)
366
+ sage: C.projection(PS=Q)
367
+ Traceback (most recent call last):
368
+ ...
369
+ TypeError: (=Projective Space of dimension 2 over Finite Field of
370
+ size 7) must have dimension (=3)
371
+
372
+
373
+ ::
374
+
375
+ sage: PP.<x,y,z,w> = ProjectiveSpace(QQ, 3)
376
+ sage: C = PP.curve([x^3 - z^2*y, w^2 - z*x])
377
+ sage: Q = PP([1,0,1,1])
378
+ sage: C.projection(P=Q)
379
+ (Scheme morphism:
380
+ From: Projective Curve over Rational Field
381
+ defined by x^3 - y*z^2, -x*z + w^2
382
+ To: Projective Space of dimension 2 over Rational Field
383
+ Defn: Defined on coordinates by sending (x : y : z : w) to
384
+ (y : -x + z : -x + w),
385
+ Projective Plane Curve over Rational Field defined by x0*x1^5 -
386
+ 6*x0*x1^4*x2 + 14*x0*x1^3*x2^2 - 16*x0*x1^2*x2^3 + 9*x0*x1*x2^4 -
387
+ 2*x0*x2^5 - x2^6)
388
+ sage: LL.<a,b,c> = ProjectiveSpace(QQ, 2)
389
+ sage: Q = PP([0,0,0,1])
390
+ sage: C.projection(PS=LL, P=Q)
391
+ (Scheme morphism:
392
+ From: Projective Curve over Rational Field
393
+ defined by x^3 - y*z^2, -x*z + w^2
394
+ To: Projective Space of dimension 2 over Rational Field
395
+ Defn: Defined on coordinates by sending (x : y : z : w) to
396
+ (x : y : z),
397
+ Projective Plane Curve over Rational Field defined by a^3 - b*c^2)
398
+ sage: Q = PP([0,0,1,0])
399
+ sage: C.projection(P=Q)
400
+ Traceback (most recent call last):
401
+ ...
402
+ TypeError: (=(0 : 0 : 1 : 0)) must be a point not on this curve
403
+
404
+ ::
405
+
406
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
407
+ sage: C = P.curve(y^2 - x^2 + z^2)
408
+ sage: C.projection()
409
+ Traceback (most recent call last):
410
+ ...
411
+ TypeError: this curve is already a plane curve
412
+ """
413
+ PP = self.ambient_space()
414
+ n = PP.dimension_relative()
415
+ if n == 2:
416
+ raise TypeError("this curve is already a plane curve")
417
+ if self.base_ring() not in Fields():
418
+ raise TypeError("this curve must be defined over a field")
419
+ if PS is not None:
420
+ if not isinstance(PS, ProjectiveSpace_ring):
421
+ raise TypeError("(=%s) must be a projective space" % PS)
422
+ if PS.dimension_relative() != n - 1:
423
+ raise TypeError("(=%s) must have dimension (=%s)" % (PS, n - 1))
424
+ if PS.base_ring() != PP.base_ring():
425
+ raise TypeError("(=%s) must be defined over the same base field as this curve" % PS)
426
+ if P is None:
427
+ # find a point not on the curve if not given
428
+ if self.base_ring().characteristic() == 0:
429
+ # when working over a characteristic 0 field, we can construct a point not on the curve.
430
+ # we do this by constructing a point on which at least one nonzero element of the defining ideal of
431
+ # this curve does not vanish
432
+ F = 0
433
+ # find a nonzero element
434
+ for i in range(len(self.defining_polynomials())):
435
+ if self.defining_polynomials()[i] != 0:
436
+ F = self.defining_polynomials()[i]
437
+ # find a point on which it doesn't vanish
438
+ l = list(PP.gens())
439
+ for i in range(n + 1):
440
+ l[i] = 0
441
+ while F(l) == 0:
442
+ l[i] += 1
443
+ Q = PP(l) # will be a point not on the curve
444
+ else:
445
+ # if the base ring is a finite field, iterate over all points in the ambient space and check which
446
+ # are on this curve
447
+ Q = None
448
+ for P in PP.rational_points():
449
+ try:
450
+ self(P)
451
+ except TypeError:
452
+ Q = P
453
+ break
454
+ if Q is None:
455
+ raise NotImplementedError("this curve contains all points of its ambient space")
456
+ else:
457
+ # make sure the given point is in the ambient space of the curve, but not on the curve
458
+ Q = None
459
+ try:
460
+ Q = self(P)
461
+ except TypeError:
462
+ pass
463
+ if Q is not None:
464
+ raise TypeError("(=%s) must be a point not on this curve" % P)
465
+ try:
466
+ Q = self.ambient_space()(P)
467
+ except TypeError:
468
+ raise TypeError("(=%s) must be a point in the ambient space of this curve" % P)
469
+ # in order to create the change of coordinates map, need to find a coordinate of Q that is nonzero
470
+ j = 0
471
+ while Q[j] == 0:
472
+ j = j + 1
473
+ # use this Q to project. Apply a change of coordinates to move Q to (0:...:0:1:0:...:0)
474
+ # where 1 is in the jth coordinate
475
+ if PS is None:
476
+ PP2 = ProjectiveSpace(self.base_ring(), n - 1)
477
+ else:
478
+ PP2 = PS
479
+ H = Hom(self, PP2)
480
+ coords = [PP.gens()[i] - Q[i]/Q[j]*PP.gens()[j] for i in range(n + 1)]
481
+ coords.pop(j)
482
+ psi = H(coords)
483
+ # compute image of psi via elimination
484
+ # first construct the image of this curve by the change of coordinates. This can be found by composing the
485
+ # defining polynomials of this curve with the polynomials defining the inverse of the change of coordinates
486
+ invcoords = [Q[i]*PP.gens()[j] + PP.gens()[i] for i in range(n + 1)]
487
+ invcoords[j] = Q[j]*PP.gens()[j]
488
+ id = PP.coordinate_ring().ideal([f(invcoords) for f in self.defining_polynomials()])
489
+ J = id.elimination_ideal(PP.gens()[j])
490
+ K = Hom(PP.coordinate_ring(), PP2.coordinate_ring())
491
+ ll = list(PP2.gens())
492
+ ll.insert(j, 0)
493
+ phi = K(ll)
494
+ G = [phi(f) for f in J.gens()]
495
+ C = PP2.curve(G)
496
+ return (psi, C)
497
+
498
+ def plane_projection(self, PP=None):
499
+ r"""
500
+ Return a projection of this curve into a projective plane.
501
+
502
+ INPUT:
503
+
504
+ - ``PP`` -- (default: ``None``) the projective plane the projected curve
505
+ will be defined in. This space must be defined over the same base field
506
+ as this curve, and must have dimension two. This space is constructed
507
+ if not specified.
508
+
509
+ OUTPUT: a tuple of
510
+
511
+ - a scheme morphism from this curve into a projective plane
512
+
513
+ - the projective curve that is the image of that morphism
514
+
515
+ EXAMPLES::
516
+
517
+ sage: P.<x,y,z,w,u,v> = ProjectiveSpace(QQ, 5)
518
+ sage: C = P.curve([x*u - z*v, w - y, w*y - x^2, y^3*u*2*z - w^4*w])
519
+ sage: L.<a,b,c> = ProjectiveSpace(QQ, 2)
520
+ sage: proj1 = C.plane_projection(PP=L)
521
+ sage: proj1
522
+ (Scheme morphism:
523
+ From: Projective Curve over Rational Field
524
+ defined by x*u - z*v, -y + w, -x^2 + y*w, -w^5 + 2*y^3*z*u
525
+ To: Projective Space of dimension 2 over Rational Field
526
+ Defn: Defined on coordinates by sending (x : y : z : w : u : v) to
527
+ (x : -z + u : -z + v),
528
+ Projective Plane Curve over Rational Field defined by a^8 + 6*a^7*b +
529
+ 4*a^5*b^3 - 4*a^7*c - 2*a^6*b*c - 4*a^5*b^2*c + 2*a^6*c^2)
530
+ sage: proj1[1].ambient_space() is L
531
+ True
532
+ sage: proj2 = C.projection()
533
+ sage: proj2[1].ambient_space() is L
534
+ False
535
+
536
+ ::
537
+
538
+ sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
539
+ sage: C = P.curve([x^2 - 6*y^2, w*z*u - y^3 + 4*y^2*z, u^2 - x^2])
540
+ sage: C.plane_projection()
541
+ (Scheme morphism:
542
+ From: Projective Curve over Finite Field of size 7
543
+ defined by x^2 + y^2, -y^3 - 3*y^2*z + z*w*u, -x^2 + u^2
544
+ To: Projective Space of dimension 2 over Finite Field of size 7
545
+ Defn: Defined on coordinates by sending (x : y : z : w : u) to
546
+ (x : z : -y + w),
547
+ Projective Plane Curve over Finite Field of size 7
548
+ defined by x0^10 + 2*x0^8*x1^2 + 2*x0^6*x1^4 - 3*x0^6*x1^3*x2
549
+ + 2*x0^6*x1^2*x2^2 - 2*x0^4*x1^4*x2^2 + x0^2*x1^4*x2^4)
550
+
551
+ ::
552
+
553
+ sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
554
+ sage: C = P.curve(x^2 - y*z - z^2)
555
+ sage: C.plane_projection()
556
+ Traceback (most recent call last):
557
+ ...
558
+ TypeError: this curve is already a plane curve
559
+ """
560
+ PS = self.ambient_space()
561
+ n = PS.dimension_relative()
562
+ if n == 2:
563
+ raise TypeError("this curve is already a plane curve")
564
+ C = self
565
+ H = Hom(PS, PS)
566
+ phi = H([PS.gens()[i] for i in range(n + 1)])
567
+ for i in range(n - 2):
568
+ if i == n - 3:
569
+ L = C.projection(PS=PP)
570
+ else:
571
+ L = C.projection()
572
+ C = L[1]
573
+ # compose the scheme morphisms that are created
574
+ K = Hom(phi.codomain().coordinate_ring(), PS.coordinate_ring())
575
+ psi = K(phi.defining_polynomials())
576
+ H = Hom(self, L[1].ambient_space())
577
+ phi = H([psi(L[0].defining_polynomials()[i]) for i in range(len(L[0].defining_polynomials()))])
578
+ return (phi, C)
579
+
580
+
581
+ class ProjectivePlaneCurve(ProjectiveCurve):
582
+ r"""
583
+ Curves in projective planes.
584
+
585
+ INPUT:
586
+
587
+ - ``A`` -- projective plane
588
+
589
+ - ``f`` -- homogeneous polynomial in the homogeneous coordinate ring of the plane
590
+
591
+ EXAMPLES:
592
+
593
+ A projective plane curve defined over an algebraic closure of `\QQ`::
594
+
595
+ sage: # needs sage.rings.number_field
596
+ sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
597
+ sage: set_verbose(-1) # suppress warnings for slow computation
598
+ sage: C = Curve([y*z - x^2 - QQbar.gen()*z^2], P); C
599
+ Projective Plane Curve over Algebraic Field
600
+ defined by -x^2 + y*z + (-I)*z^2
601
+
602
+ A projective plane curve defined over a finite field::
603
+
604
+ sage: # needs sage.rings.finite_rings
605
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5^2, 'v'), 2)
606
+ sage: C = Curve([y^2*z - x*z^2 - z^3], P); C
607
+ Projective Plane Curve over Finite Field in v of size 5^2
608
+ defined by y^2*z - x*z^2 - z^3
609
+ """
610
+
611
+ def __init__(self, A, f, category=None):
612
+ """
613
+ Initialize.
614
+
615
+ EXAMPLES::
616
+
617
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
618
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
619
+ sage: loads(dumps(C)) == C
620
+ True
621
+ """
622
+ if not (isinstance(A, ProjectiveSpace_ring) and A.dimension != 2):
623
+ raise TypeError("the ambient space is not a projective plane")
624
+
625
+ super().__init__(A, [f], category=category)
626
+
627
+ def _repr_type(self):
628
+ r"""
629
+ Return a string representation of the type of this curve.
630
+
631
+ EXAMPLES::
632
+
633
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
634
+ sage: C = Curve([y*z^3 - 5/7*x^4 + 4*x^3*z - 9*z^4], P)
635
+ sage: C._repr_type()
636
+ 'Projective Plane'
637
+ """
638
+ return "Projective Plane"
639
+
640
+ def divisor_of_function(self, r):
641
+ """
642
+ Return the divisor of a function on a curve.
643
+
644
+ INPUT:
645
+
646
+ - ``r`` is a rational function on X
647
+
648
+ OUTPUT: list; the divisor of r represented as a list of coefficients
649
+ and points. (TODO: This will change to a more structural output in the
650
+ future.)
651
+
652
+ EXAMPLES::
653
+
654
+ sage: FF = FiniteField(5)
655
+ sage: P2 = ProjectiveSpace(2, FF, names=['x','y','z'])
656
+ sage: R = P2.coordinate_ring()
657
+ sage: x, y, z = R.gens()
658
+ sage: f = y^2*z^7 - x^9 - x*z^8
659
+ sage: C = Curve(f)
660
+ sage: K = FractionField(R)
661
+ sage: r = 1/x
662
+ sage: C.divisor_of_function(r) # todo: not implemented !!!!
663
+ [[-1, (0, 0, 1)]]
664
+ sage: r = 1/x^3
665
+ sage: C.divisor_of_function(r) # todo: not implemented !!!!
666
+ [[-3, (0, 0, 1)]]
667
+ """
668
+ F = self.base_ring()
669
+ f = self.defining_polynomial()
670
+ x, y, z = f.parent().gens()
671
+ pnts = self.rational_points()
672
+ divf = []
673
+ for P in pnts:
674
+ if P[2] != F(0):
675
+ # What is the '5' in this line and the 'r()' in the next???
676
+ lcs = self.local_coordinates(P, 5)
677
+ ldg = degree_lowest_rational_function(r(lcs[0], lcs[1]), z)
678
+ if ldg != 0:
679
+ divf.append([ldg, P])
680
+ return divf
681
+
682
+ def local_coordinates(self, pt, n):
683
+ r"""
684
+ Return local coordinates to precision n at the given point.
685
+
686
+ Behaviour is flaky - some choices of `n` are worse than
687
+ others.
688
+
689
+ INPUT:
690
+
691
+ - ``pt`` -- a rational point on X which is not a point of ramification
692
+ for the projection `(x,y) \to x`
693
+
694
+ - ``n`` -- the number of terms desired
695
+
696
+ OUTPUT: `x = x0 + t`, `y = y0` + power series in `t`
697
+
698
+ EXAMPLES::
699
+
700
+ sage: FF = FiniteField(5)
701
+ sage: P2 = ProjectiveSpace(2, FF, names=['x','y','z'])
702
+ sage: x, y, z = P2.coordinate_ring().gens()
703
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
704
+ sage: pt = C([2,3,1])
705
+ sage: C.local_coordinates(pt,9) # todo: not implemented !!!!
706
+ [2 + t,
707
+ 3 + 3*t^2 + t^3 + 3*t^4 + 3*t^6 + 3*t^7 + t^8 + 2*t^9 + 3*t^11 + 3*t^12]
708
+ """
709
+
710
+ f = self.defining_polynomial()
711
+ R = f.parent()
712
+ F = self.base_ring()
713
+ p = F.characteristic()
714
+ x0 = F(pt[0])
715
+ y0 = F(pt[1])
716
+ astr = ["a"+str(i) for i in range(1, 2*n)]
717
+ x, y = R.gens()
718
+ R0 = PolynomialRing(F, 2 * n + 2, names=[str(x), str(y), "t"] + astr)
719
+ vars0 = R0.gens()
720
+ t = vars0[2]
721
+ yt = y0*t**0 + add([vars0[i]*t**(i-2) for i in range(3, 2*n+2)])
722
+ xt = x0+t
723
+ ft = f(xt, yt)
724
+ S = singular
725
+ S.eval('ring s = '+str(p)+','+str(R0.gens())+',lp;')
726
+ S.eval('poly f = '+str(ft))
727
+ cmd = 'matrix c = coeffs ('+str(ft)+',t)'
728
+ S.eval(cmd)
729
+ N = int(S.eval('size(c)'))
730
+ b = ','.join("c[{},1]".format(i) for i in range(2, N//2 - 4))
731
+ cmd = 'ideal I = ' + b
732
+ S.eval(cmd)
733
+ c = S.eval('slimgb(I)')
734
+ d = c.split("=")
735
+ d = d[1:]
736
+ d[len(d)-1] += "\n"
737
+ e = [xx[:xx.index("\n")] for xx in d]
738
+ vals = []
739
+ for x in e:
740
+ for y in vars0:
741
+ if str(y) in x:
742
+ if x.replace(str(y), ""):
743
+ i = x.find("-")
744
+ if i > 0:
745
+ vals.append([eval(x[1:i]), x[:i], F(eval(x[i+1:]))])
746
+ i = x.find("+")
747
+ if i > 0:
748
+ vals.append([eval(x[1:i]), x[:i], -F(eval(x[i+1:]))])
749
+ else:
750
+ vals.append([eval(str(y)[1:]), str(y), F(0)])
751
+ vals.sort()
752
+ return [x0 + t, y0 + add(v[2] * t**(j + 1) for j, v in enumerate(vals))]
753
+
754
+ def plot(self, *args, **kwds):
755
+ """
756
+ Plot the real points of an affine patch of this projective
757
+ plane curve.
758
+
759
+ INPUT:
760
+
761
+ - ``self`` -- an affine plane curve
762
+
763
+ - ``patch`` -- (optional) the affine patch to be plotted; if not
764
+ specified, the patch corresponding to the last projective
765
+ coordinate being nonzero
766
+
767
+ - ``*args`` -- (optional) tuples (variable, minimum, maximum) for
768
+ plotting dimensions
769
+
770
+ - ``**kwds`` -- optional keyword arguments passed on to ``implicit_plot``
771
+
772
+ EXAMPLES:
773
+
774
+ A cuspidal curve::
775
+
776
+ sage: R.<x, y, z> = QQ[]
777
+ sage: C = Curve(x^3 - y^2*z)
778
+ sage: C.plot() # needs sage.plot
779
+ Graphics object consisting of 1 graphics primitive
780
+
781
+ The other affine patches of the same curve::
782
+
783
+ sage: # needs sage.plot
784
+ sage: C.plot(patch=0)
785
+ Graphics object consisting of 1 graphics primitive
786
+ sage: C.plot(patch=1)
787
+ Graphics object consisting of 1 graphics primitive
788
+
789
+ An elliptic curve::
790
+
791
+ sage: # needs sage.plot
792
+ sage: E = EllipticCurve('101a')
793
+ sage: C = Curve(E)
794
+ sage: C.plot()
795
+ Graphics object consisting of 1 graphics primitive
796
+ sage: C.plot(patch=0)
797
+ Graphics object consisting of 1 graphics primitive
798
+ sage: C.plot(patch=1)
799
+ Graphics object consisting of 1 graphics primitive
800
+
801
+ A hyperelliptic curve::
802
+
803
+ sage: # needs sage.plot
804
+ sage: P.<x> = QQ[]
805
+ sage: f = 4*x^5 - 30*x^3 + 45*x - 22
806
+ sage: C = HyperellipticCurve(f)
807
+ sage: C.plot()
808
+ Graphics object consisting of 1 graphics primitive
809
+ sage: C.plot(patch=0)
810
+ Graphics object consisting of 1 graphics primitive
811
+ sage: C.plot(patch=1)
812
+ Graphics object consisting of 1 graphics primitive
813
+ """
814
+ # if user has not specified a favorite affine patch, take the
815
+ # one avoiding "infinity", i.e. the one corresponding to the
816
+ # last projective coordinate being nonzero
817
+ patch = kwds.pop('patch', self.ngens() - 1)
818
+ from .constructor import Curve
819
+ C = Curve(self.affine_patch(patch))
820
+ return C.plot(*args, **kwds)
821
+
822
+ def is_singular(self, P=None):
823
+ r"""
824
+ Return whether this curve is singular or not, or if a point ``P`` is
825
+ provided, whether ``P`` is a singular point of this curve.
826
+
827
+ INPUT:
828
+
829
+ - ``P`` -- (default: ``None``) a point on this curve
830
+
831
+ OUTPUT:
832
+
833
+ If no point ``P`` is provided, return ``True`` or ``False`` depending
834
+ on whether this curve is singular or not. If a point ``P`` is provided,
835
+ return ``True`` or ``False`` depending on whether ``P`` is or is not a
836
+ singular point of this curve.
837
+
838
+ EXAMPLES:
839
+
840
+ Over `\QQ`::
841
+
842
+ sage: F = QQ
843
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
844
+ sage: C = Curve(X^3 - Y^2*Z)
845
+ sage: C.is_singular()
846
+ True
847
+
848
+ Over a finite field::
849
+
850
+ sage: F = GF(19)
851
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
852
+ sage: C = Curve(X^3 + Y^3 + Z^3)
853
+ sage: C.is_singular()
854
+ False
855
+ sage: D = Curve(X^4 - X*Z^3)
856
+ sage: D.is_singular()
857
+ True
858
+ sage: E = Curve(X^5 + 19*Y^5 + Z^5)
859
+ sage: E.is_singular()
860
+ True
861
+ sage: E = Curve(X^5 + 9*Y^5 + Z^5)
862
+ sage: E.is_singular()
863
+ False
864
+
865
+ Over `\CC`::
866
+
867
+ sage: # needs sage.rings.function_field
868
+ sage: F = CC
869
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
870
+ sage: C = Curve(X)
871
+ sage: C.is_singular()
872
+ False
873
+ sage: D = Curve(Y^2*Z - X^3)
874
+ sage: D.is_singular()
875
+ True
876
+ sage: E = Curve(Y^2*Z - X^3 + Z^3)
877
+ sage: E.is_singular()
878
+ False
879
+
880
+ Showing that :issue:`12187` is fixed::
881
+
882
+ sage: F.<X,Y,Z> = GF(2)[]
883
+ sage: G = Curve(X^2 + Y*Z)
884
+ sage: G.is_singular()
885
+ False
886
+
887
+ ::
888
+
889
+ sage: # needs sage.fings.function_field
890
+ sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
891
+ sage: C = Curve([y^4 - x^3*z], P)
892
+ sage: Q = P([0,0,1])
893
+ sage: C.is_singular()
894
+ True
895
+ """
896
+ if P is None:
897
+ poly = self.defining_polynomial()
898
+ return poly.parent().ideal(poly.gradient()+[poly]).dimension() > 0
899
+ else:
900
+ return not self.is_smooth(P)
901
+
902
+ def degree(self):
903
+ r"""
904
+ Return the degree of this projective curve.
905
+
906
+ For a plane curve, this is just the degree of its defining polynomial.
907
+
908
+ OUTPUT: integer
909
+
910
+ EXAMPLES::
911
+
912
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
913
+ sage: C = P.curve([y^7 - x^2*z^5 + 7*z^7])
914
+ sage: C.degree()
915
+ 7
916
+ """
917
+ return self.defining_polynomial().degree()
918
+
919
+ def tangents(self, P, factor=True):
920
+ r"""
921
+ Return the tangents of this projective plane curve at the point ``P``.
922
+
923
+ These are found by homogenizing the tangents of an affine patch of this
924
+ curve containing ``P``. The point ``P`` must be a point on this curve.
925
+
926
+ INPUT:
927
+
928
+ - ``P`` -- a point on this curve
929
+
930
+ - ``factor`` -- boolean (default: ``True``); whether to attempt computing the
931
+ polynomials of the individual tangent lines over the base field of this
932
+ curve, or to just return the polynomial corresponding to the union of
933
+ the tangent lines (which requires fewer computations)
934
+
935
+ OUTPUT:
936
+
937
+ A list of polynomials in the coordinate ring of the ambient space of
938
+ this curve.
939
+
940
+ EXAMPLES::
941
+
942
+ sage: # needs sage.rings.number_field
943
+ sage: set_verbose(-1)
944
+ sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
945
+ sage: C = Curve([x^3*y + 2*x^2*y^2 + x*y^3 + x^3*z
946
+ ....: + 7*x^2*y*z + 14*x*y^2*z + 9*y^3*z], P)
947
+ sage: Q = P([0,0,1])
948
+ sage: C.tangents(Q)
949
+ [x + 4.147899035704788?*y,
950
+ x + (1.426050482147607? + 0.3689894074818041?*I)*y,
951
+ x + (1.426050482147607? - 0.3689894074818041?*I)*y]
952
+ sage: C.tangents(Q, factor=False)
953
+ [6*x^3 + 42*x^2*y + 84*x*y^2 + 54*y^3]
954
+
955
+ ::
956
+
957
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
958
+ sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3
959
+ ....: + 3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 + 5*x^6*y*z^2
960
+ ....: - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^2*z
961
+ ....: - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
962
+ sage: Q = P([0,1,1])
963
+ sage: C.tangents(Q)
964
+ [-y + z, 3*x^2 - y^2 + 2*y*z - z^2]
965
+
966
+ ::
967
+
968
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
969
+ sage: C = P.curve([z^3*x + y^4 - x^2*z^2])
970
+ sage: Q = P([1,1,1])
971
+ sage: C.tangents(Q)
972
+ Traceback (most recent call last):
973
+ ...
974
+ TypeError: (=(1 : 1 : 1)) is not a point on (=Projective Plane Curve
975
+ over Rational Field defined by y^4 - x^2*z^2 + x*z^3)
976
+ """
977
+ PP = self.ambient_space()
978
+ # Check whether P is a point on this curve
979
+ try:
980
+ P = self(P)
981
+ except TypeError:
982
+ raise TypeError("(=%s) is not a point on (=%s)" % (P, self))
983
+
984
+ # Find an affine chart of the ambient space of self that contains P
985
+ i = 0
986
+ while P[i] == 0:
987
+ i += 1
988
+ C = self.affine_patch(i)
989
+ L = C.tangents(C(P.dehomogenize(i)), factor)
990
+ R = PP.coordinate_ring()
991
+ H = Hom(C.ambient_space().coordinate_ring(), R)
992
+ G = list(R.gens())
993
+ x = G.pop(i)
994
+ phi = H(G)
995
+ return [phi(g).homogenize(x) for g in L]
996
+
997
+ def is_ordinary_singularity(self, P):
998
+ r"""
999
+ Return whether the singular point ``P`` of this projective plane curve is an ordinary singularity.
1000
+
1001
+ The point ``P`` is an ordinary singularity of this curve if it is a singular point, and
1002
+ if the tangents of this curve at ``P`` are distinct.
1003
+
1004
+ INPUT:
1005
+
1006
+ - ``P`` -- a point on this curve
1007
+
1008
+ OUTPUT:
1009
+
1010
+ boolean; ``True`` or ``False`` depending on whether ``P`` is or is not
1011
+ an ordinary singularity of this curve, respectively. An error is raised
1012
+ if ``P`` is not a singular point of this curve.
1013
+
1014
+ EXAMPLES::
1015
+
1016
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1017
+ sage: C = Curve([y^2*z^3 - x^5], P)
1018
+ sage: Q = P([0,0,1])
1019
+ sage: C.is_ordinary_singularity(Q)
1020
+ False
1021
+
1022
+ ::
1023
+
1024
+ sage: # needs sage.rings.number_field
1025
+ sage: R.<a> = QQ[]
1026
+ sage: K.<b> = NumberField(a^2 - 3)
1027
+ sage: P.<x,y,z> = ProjectiveSpace(K, 2)
1028
+ sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3
1029
+ ....: + 3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2
1030
+ ....: + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z
1031
+ ....: - 7*x^6*y^2*z - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5
1032
+ ....: + 4*x^6*y^3 + 2*x^8*y])
1033
+ sage: Q = P([0,1,1])
1034
+ sage: C.is_ordinary_singularity(Q)
1035
+ True
1036
+
1037
+ ::
1038
+
1039
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1040
+ sage: C = P.curve([z^5 - y^5 + x^5 + x*y^2*z^2])
1041
+ sage: Q = P([0,1,1])
1042
+ sage: C.is_ordinary_singularity(Q)
1043
+ Traceback (most recent call last):
1044
+ ...
1045
+ TypeError: (=(0 : 1 : 1)) is not a singular point of (=Projective Plane
1046
+ Curve over Rational Field defined by x^5 - y^5 + x*y^2*z^2 + z^5)
1047
+ """
1048
+ r = self.multiplicity(P)
1049
+ if r < 2:
1050
+ raise TypeError("(=%s) is not a singular point of (=%s)" % (P, self))
1051
+
1052
+ # Find an affine chart of the ambient space of self that contains P
1053
+ i = 0
1054
+ while P[i] == 0:
1055
+ i += 1
1056
+ C = self.affine_patch(i)
1057
+ return C.is_ordinary_singularity(C(P.dehomogenize(i)))
1058
+
1059
+ def quadratic_transform(self):
1060
+ r"""
1061
+ Return a birational map from this curve to the proper transform of this curve with respect to the standard
1062
+ Cremona transformation.
1063
+
1064
+ The standard Cremona transformation is the birational automorphism of `\mathbb{P}^{2}` defined
1065
+ `(x : y : z)\mapsto (yz : xz : xy)`.
1066
+
1067
+ OUTPUT:
1068
+
1069
+ - a scheme morphism representing the restriction of the standard Cremona transformation from this curve
1070
+ to the proper transform.
1071
+
1072
+ EXAMPLES::
1073
+
1074
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1075
+ sage: C = Curve(x^3*y - z^4 - z^2*x^2, P)
1076
+ sage: C.quadratic_transform()
1077
+ Scheme morphism:
1078
+ From: Projective Plane Curve over Rational Field
1079
+ defined by x^3*y - x^2*z^2 - z^4
1080
+ To: Projective Plane Curve over Rational Field
1081
+ defined by -x^3*y - x*y*z^2 + z^4
1082
+ Defn: Defined on coordinates by sending (x : y : z) to
1083
+ (y*z : x*z : x*y)
1084
+
1085
+ ::
1086
+
1087
+ sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
1088
+ sage: C = P.curve([y^7*z^2 - 16*x^9 + x*y*z^7 + 2*z^9])
1089
+ sage: C.quadratic_transform()
1090
+ Scheme morphism:
1091
+ From: Projective Plane Curve over Finite Field of size 17
1092
+ defined by x^9 + y^7*z^2 + x*y*z^7 + 2*z^9
1093
+ To: Projective Plane Curve over Finite Field of size 17
1094
+ defined by 2*x^9*y^7 + x^8*y^6*z^2 + x^9*z^7 + y^7*z^9
1095
+ Defn: Defined on coordinates by sending (x : y : z) to
1096
+ (y*z : x*z : x*y)
1097
+ """
1098
+ PP = self.ambient_space()
1099
+ R = PP.coordinate_ring()
1100
+ L = R.gens()
1101
+ coords = [L[1]*L[2], L[0]*L[2], L[0]*L[1]]
1102
+ G = self.defining_polynomial()(coords)
1103
+ # remove the component of the curve corresponding to the exceptional divisor
1104
+ degs = [G.degree()]*len(L)
1105
+ for F in G.monomials():
1106
+ for i in range(len(L)):
1107
+ degs[i] = min(F.degree(L[i]), degs[i])
1108
+ T = []
1109
+ for item in G.monomial_coefficients().items():
1110
+ tup = tuple([item[0][i] - degs[i] for i in range(len(L))])
1111
+ T.append((tup, item[1]))
1112
+ G = R(dict(T))
1113
+ H = Hom(self, PP.curve(G))
1114
+ phi = H(coords)
1115
+ return phi
1116
+
1117
+ def excellent_position(self, Q):
1118
+ r"""
1119
+ Return a transformation of this curve into one in excellent position with respect to the point ``Q``.
1120
+
1121
+ Here excellent position is defined as in [Ful1989]_. A curve `C` of degree `d` containing the point
1122
+ `(0 : 0 : 1)` with multiplicity `r` is said to be in excellent position if none of the coordinate lines
1123
+ are tangent to `C` at any of the fundamental points `(1 : 0 : 0)`, `(0 : 1 : 0)`, and `(0 : 0 : 1)`, and
1124
+ if the two coordinate lines containing `(0 : 0 : 1)` intersect `C` transversally in `d - r` distinct
1125
+ non-fundamental points, and if the other coordinate line intersects `C` transversally at `d` distinct,
1126
+ non-fundamental points.
1127
+
1128
+ INPUT:
1129
+
1130
+ - ``Q`` -- a point on this curve
1131
+
1132
+ OUTPUT:
1133
+
1134
+ A scheme morphism from this curve to a curve in excellent position that
1135
+ is a restriction of a change of coordinates map of the projective plane.
1136
+
1137
+ EXAMPLES::
1138
+
1139
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1140
+ sage: C = Curve([x*y - z^2], P)
1141
+ sage: Q = P([1,1,1])
1142
+ sage: C.excellent_position(Q)
1143
+ Scheme morphism:
1144
+ From: Projective Plane Curve over Rational Field defined by x*y - z^2
1145
+ To: Projective Plane Curve over Rational Field
1146
+ defined by -x^2 - 3*x*y - 4*y^2 - x*z - 3*y*z
1147
+ Defn: Defined on coordinates by sending (x : y : z) to
1148
+ (-x + 1/2*y + 1/2*z : -1/2*y + 1/2*z : x + 1/2*y - 1/2*z)
1149
+
1150
+ ::
1151
+
1152
+ sage: # needs sage.rings.number_field
1153
+ sage: R.<a> = QQ[]
1154
+ sage: K.<b> = NumberField(a^2 - 3)
1155
+ sage: P.<x,y,z> = ProjectiveSpace(K, 2)
1156
+ sage: C = P.curve([z^2*y^3*x^4 - y^6*x^3 - 4*z^2*y^4*x^3 - 4*z^4*y^2*x^3
1157
+ ....: + 3*y^7*x^2 + 10*z^2*y^5*x^2 + 9*z^4*y^3*x^2
1158
+ ....: + 5*z^6*y*x^2 - 3*y^8*x - 9*z^2*y^6*x - 11*z^4*y^4*x
1159
+ ....: - 7*z^6*y^2*x - 2*z^8*x + y^9 + 2*z^2*y^7 + 3*z^4*y^5
1160
+ ....: + 4*z^6*y^3 + 2*z^8*y])
1161
+ sage: Q = P([1,0,0])
1162
+ sage: C.excellent_position(Q)
1163
+ Scheme morphism:
1164
+ From: Projective Plane Curve over Number Field in b
1165
+ with defining polynomial a^2 - 3
1166
+ defined by -x^3*y^6 + 3*x^2*y^7 - 3*x*y^8 + y^9 + x^4*y^3*z^2
1167
+ - 4*x^3*y^4*z^2 + 10*x^2*y^5*z^2 - 9*x*y^6*z^2
1168
+ + 2*y^7*z^2 - 4*x^3*y^2*z^4 + 9*x^2*y^3*z^4
1169
+ - 11*x*y^4*z^4 + 3*y^5*z^4 + 5*x^2*y*z^6
1170
+ - 7*x*y^2*z^6 + 4*y^3*z^6 - 2*x*z^8 + 2*y*z^8
1171
+ To: Projective Plane Curve over Number Field in b
1172
+ with defining polynomial a^2 - 3
1173
+ defined by 900*x^9 - 7410*x^8*y + 29282*x^7*y^2 - 69710*x^6*y^3
1174
+ + 110818*x^5*y^4 - 123178*x^4*y^5 + 96550*x^3*y^6
1175
+ - 52570*x^2*y^7 + 18194*x*y^8 - 3388*y^9 - 1550*x^8*z
1176
+ + 9892*x^7*y*z - 30756*x^6*y^2*z + 58692*x^5*y^3*z
1177
+ - 75600*x^4*y^4*z + 67916*x^3*y^5*z - 42364*x^2*y^6*z
1178
+ + 16844*x*y^7*z - 3586*y^8*z + 786*x^7*z^2
1179
+ - 3958*x^6*y*z^2 + 9746*x^5*y^2*z^2 - 14694*x^4*y^3*z^2
1180
+ + 15174*x^3*y^4*z^2 - 10802*x^2*y^5*z^2
1181
+ + 5014*x*y^6*z^2 - 1266*y^7*z^2 - 144*x^6*z^3
1182
+ + 512*x^5*y*z^3 - 912*x^4*y^2*z^3 + 1024*x^3*y^3*z^3
1183
+ - 816*x^2*y^4*z^3 + 512*x*y^5*z^3 - 176*y^6*z^3
1184
+ + 8*x^5*z^4 - 8*x^4*y*z^4 - 16*x^3*y^2*z^4
1185
+ + 16*x^2*y^3*z^4 + 8*x*y^4*z^4 - 8*y^5*z^4
1186
+ Defn: Defined on coordinates by sending (x : y : z) to
1187
+ (1/4*y + 1/2*z : -1/4*y + 1/2*z : x + 1/4*y - 1/2*z)
1188
+
1189
+ ::
1190
+
1191
+ sage: # needs sage.rings.number_field sage.symbolic
1192
+ sage: set_verbose(-1)
1193
+ sage: a = QQbar(sqrt(2))
1194
+ sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
1195
+ sage: C = Curve([(-1/4*a)*x^3 + (-3/4*a)*x^2*y
1196
+ ....: + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 - 2*x*y*z], P)
1197
+ sage: Q = P([0,0,1])
1198
+ sage: C.excellent_position(Q)
1199
+ Scheme morphism:
1200
+ From: Projective Plane Curve over Algebraic Field defined
1201
+ by (-0.3535533905932738?)*x^3 + (-1.060660171779822?)*x^2*y
1202
+ + (-1.060660171779822?)*x*y^2 + (-0.3535533905932738?)*y^3
1203
+ + (-2)*x*y*z
1204
+ To: Projective Plane Curve over Algebraic Field defined
1205
+ by (-2.828427124746190?)*x^3 + (-2)*x^2*y + 2*y^3
1206
+ + (-2)*x^2*z + 2*y^2*z
1207
+ Defn: Defined on coordinates by sending (x : y : z) to
1208
+ (1/2*x + 1/2*y : (-1/2)*x + 1/2*y : 1/2*x + (-1/2)*y + z)
1209
+ """
1210
+ PP = self.ambient_space()
1211
+ # check that Q is on this curve
1212
+ try:
1213
+ Q = self(Q)
1214
+ except TypeError:
1215
+ raise TypeError("(=%s) must be a point on this curve" % Q)
1216
+ r = self.multiplicity(Q)
1217
+ d = self.degree()
1218
+ # first move Q to (0 : 0 : 1), (1 : 0 : 0), or (0 : 1 : 0)
1219
+ # this makes it easier to construct the main transformation
1220
+ i = 0
1221
+ while Q[i] == 0:
1222
+ i += 1
1223
+ coords = [PP.gens()[j] + Q[j]/Q[i]*PP.gens()[i] for j in range(3)]
1224
+ coords[i] = PP.gens()[i]
1225
+ accoords = [PP.gens()[j] - Q[j]/Q[i]*PP.gens()[i] for j in range(3)] # coords used in map construction
1226
+ accoords[i] = PP.gens()[i]
1227
+ baseC = PP.curve(self.defining_polynomial()(coords))
1228
+ P = [0]*3
1229
+ P[i] = 1
1230
+ P = PP(P)
1231
+ l = [0, 1, 2]
1232
+ l.pop(i)
1233
+ # choose points forming a triangle with one vertex at P to map to the coordinate triangle
1234
+ good = False
1235
+ a = 0
1236
+ while not good:
1237
+ a = a + 1
1238
+ # find points to map to (1 : 0 : 0) and (0 : 1 : 0), not on the curve
1239
+ Px = [0]*3
1240
+ Px[l[0]] = a
1241
+ Px[l[1]] = 1
1242
+ Py = [0]*3
1243
+ Py[l[0]] = -a
1244
+ Py[l[1]] = 1
1245
+ Py[i] = 1
1246
+ try:
1247
+ Px = baseC(Px)
1248
+ Py = baseC(Py)
1249
+ continue
1250
+ except TypeError:
1251
+ pass
1252
+ # by construction, P, Px, Py are linearly independent so the following matrix is invertible
1253
+ M = matrix([[Px[j], Py[j], P[j]] for j in range(3)])
1254
+ # M defines a change of coordinates sending (1 : 0 : 0) to Py, (0 : 1 : 0) to Px, (0 : 0 : 1) to P; the
1255
+ # inverse of the transformation we want, used to create the new defining polynomial
1256
+ coords = [sum([M.row(j)[k]*PP.gens()[k] for k in range(3)]) for j in range(3)]
1257
+ C = PP.curve(baseC.defining_polynomial()(coords))
1258
+ # check tangents at (0 : 0 : 1)
1259
+ T = C.tangents(PP([0, 0, 1]), factor=False)[0]
1260
+ if all(e[0] > 0 for e in T.exponents()) or all(e[1] > 0 for e in T.exponents()):
1261
+ continue
1262
+ # check that the other intersections of C with the exceptional lines are correct
1263
+ need_continue = False
1264
+ for j in range(3):
1265
+ poly = C.defining_polynomial().subs({PP.gens()[j]: 0})
1266
+ # this is a homogeneous polynomial in the other two variables
1267
+ # and so should factor completely into homogeneous linear factors
1268
+ # each corresponding to an intersection point where the jth coord is 0.
1269
+ # check if there are enough roots, up to multiplicity (that is, that PP.gens()[j]
1270
+ # doesn't divide the defining polynomial of C)
1271
+ if poly.degree() != d:
1272
+ need_continue = True
1273
+ break
1274
+ # if j != 2, then there should be d - r multiplicity 1 roots,
1275
+ # besides the root corresponding to (0 : 0 : 1)
1276
+ # if j == 2, then all roots should have multiplicity 1
1277
+ npoly = poly
1278
+ if j != 2:
1279
+ # since (0 : 0 : 1) has multiplicity r, divide out by the highest
1280
+ # shared power of the corresponding variable before doing the resultant computations
1281
+ if j == 0:
1282
+ div_pow = min(e[1] for e in npoly.exponents())
1283
+ npoly = PP.coordinate_ring()({(v0, v1 - div_pow, v2): g
1284
+ for (v0, v1, v2), g in npoly.monomial_coefficients().items()})
1285
+ else:
1286
+ div_pow = min(e[0] for e in npoly.exponents())
1287
+ npoly = PP.coordinate_ring()({(v0 - div_pow, v1, v2): g
1288
+ for (v0, v1, v2), g in npoly.monomial_coefficients().items()})
1289
+ # check the degree again
1290
+ if npoly.degree() != d - r:
1291
+ need_continue = True
1292
+ break
1293
+ # check that npoly isn't a constant now
1294
+ if npoly.degree() > 0:
1295
+ t = 0
1296
+ while npoly.degree(PP.gens()[t]) == 0:
1297
+ t = t + 1
1298
+ if npoly.resultant(npoly.derivative(PP.gens()[t]), PP.gens()[t]) == 0:
1299
+ need_continue = True
1300
+ break
1301
+ else:
1302
+ t = 0
1303
+ while npoly.degree(PP.gens()[t]) == 0:
1304
+ t = t + 1
1305
+ if poly.resultant(poly.derivative(PP.gens()[t]), PP.gens()[t]) == 0:
1306
+ need_continue = True
1307
+ break
1308
+ # check that intersections with the line PP.gens()[j] are transverse.
1309
+ # at a simple point P of the curve, the tangent at that point is
1310
+ # given by F_x(P)*x + F_y(P)*y + F_z(P)*z where F is the defining polynomial
1311
+ # of the curve
1312
+ tmp_l = [0, 1, 2]
1313
+ tmp_l.pop(j)
1314
+ poly1 = npoly.derivative(PP.gens()[tmp_l[0]])
1315
+ poly2 = npoly.derivative(PP.gens()[tmp_l[1]])
1316
+ if poly1.degree() > 0 or poly2.degree() > 0:
1317
+ t = 0
1318
+ while poly1.degree(PP.gens()[t]) == 0 and poly2.degree(PP.gens()[t]) == 0:
1319
+ t = t + 1
1320
+ # maybe a stricter check than necessary
1321
+ if poly1.resultant(poly2, PP.gens()[t]) == 0:
1322
+ need_continue = True
1323
+ break
1324
+ if need_continue:
1325
+ continue
1326
+ good = True
1327
+ # coords for map
1328
+ M = M.inverse()
1329
+ accoords2 = [sum([M.row(j)[k]*PP.gens()[k] for k in range(3)]) for j in range(3)]
1330
+ H = Hom(self, C)
1331
+ phi = H([f(accoords) for f in accoords2])
1332
+ return phi
1333
+
1334
+ def ordinary_model(self):
1335
+ r"""
1336
+ Return a birational map from this curve to a plane curve with only ordinary singularities.
1337
+
1338
+ Currently only implemented over number fields. If not all of the coordinates of the non-ordinary
1339
+ singularities of this curve are contained in its base field, then the domain and codomain of the
1340
+ map returned will be defined over an extension. This curve must be irreducible.
1341
+
1342
+ OUTPUT:
1343
+
1344
+ - a scheme morphism from this curve to a curve with only ordinary singularities that defines a
1345
+ birational map between the two curves.
1346
+
1347
+ EXAMPLES::
1348
+
1349
+ sage: # needs sage.rings.number_field
1350
+ sage: set_verbose(-1)
1351
+ sage: K = QuadraticField(3)
1352
+ sage: P.<x,y,z> = ProjectiveSpace(K, 2)
1353
+ sage: C = Curve([x^5 - K.0*y*z^4], P)
1354
+ sage: C.ordinary_model()
1355
+ Scheme morphism:
1356
+ From: Projective Plane Curve over Number Field in a
1357
+ with defining polynomial x^2 - 3 with a = 1.732050807568878?
1358
+ defined by x^5 + (-a)*y*z^4
1359
+ To: Projective Plane Curve over Number Field in a
1360
+ with defining polynomial x^2 - 3 with a = 1.732050807568878?
1361
+ defined by (-a)*x^5*y + (-4*a)*x^4*y^2 + (-6*a)*x^3*y^3
1362
+ + (-4*a)*x^2*y^4 + (-a)*x*y^5 + (-a - 1)*x^5*z
1363
+ + (-4*a + 5)*x^4*y*z + (-6*a - 10)*x^3*y^2*z
1364
+ + (-4*a + 10)*x^2*y^3*z + (-a - 5)*x*y^4*z + y^5*z
1365
+ Defn: Defined on coordinates by sending (x : y : z) to
1366
+ (-1/4*x^2 - 1/2*x*y + 1/2*x*z + 1/2*y*z - 1/4*z^2 :
1367
+ 1/4*x^2 + 1/2*x*y + 1/2*y*z - 1/4*z^2 :
1368
+ -1/4*x^2 + 1/4*z^2)
1369
+
1370
+ ::
1371
+
1372
+ sage: set_verbose(-1)
1373
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1374
+ sage: C = Curve([y^2*z^2 - x^4 - x^3*z], P)
1375
+ sage: D = C.ordinary_model(); D # long time (2 seconds)
1376
+ Scheme morphism:
1377
+ From: Projective Plane Curve over Rational Field defined
1378
+ by -x^4 - x^3*z + y^2*z^2
1379
+ To: Projective Plane Curve over Rational Field defined
1380
+ by 4*x^6*y^3 - 24*x^5*y^4 + 36*x^4*y^5 + 8*x^6*y^2*z
1381
+ - 40*x^5*y^3*z + 24*x^4*y^4*z + 72*x^3*y^5*z - 4*x^6*y*z^2
1382
+ + 8*x^5*y^2*z^2 - 56*x^4*y^3*z^2 + 104*x^3*y^4*z^2
1383
+ + 44*x^2*y^5*z^2 + 8*x^6*z^3 - 16*x^5*y*z^3
1384
+ - 24*x^4*y^2*z^3 + 40*x^3*y^3*z^3 + 48*x^2*y^4*z^3
1385
+ + 8*x*y^5*z^3 - 8*x^5*z^4 + 36*x^4*y*z^4 - 56*x^3*y^2*z^4
1386
+ + 20*x^2*y^3*z^4 + 40*x*y^4*z^4 - 16*y^5*z^4
1387
+ Defn: Defined on coordinates by sending (x : y : z) to
1388
+ (-3/64*x^4 + 9/64*x^2*y^2 - 3/32*x*y^3 - 1/16*x^3*z
1389
+ - 1/8*x^2*y*z + 1/4*x*y^2*z - 1/16*y^3*z - 1/8*x*y*z^2
1390
+ + 1/16*y^2*z^2 :
1391
+ -1/64*x^4 + 3/64*x^2*y^2 - 1/32*x*y^3 + 1/16*x*y^2*z
1392
+ - 1/16*y^3*z + 1/16*y^2*z^2 :
1393
+ 3/64*x^4 - 3/32*x^3*y + 3/64*x^2*y^2 + 1/16*x^3*z
1394
+ - 3/16*x^2*y*z + 1/8*x*y^2*z - 1/8*x*y*z^2 + 1/16*y^2*z^2)
1395
+ sage: all(D.codomain().is_ordinary_singularity(Q) # long time
1396
+ ....: for Q in D.codomain().singular_points())
1397
+ True
1398
+
1399
+ ::
1400
+
1401
+ sage: set_verbose(-1)
1402
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1403
+ sage: C = Curve([(x^2 + y^2 - y*z - 2*z^2)*(y*z - x^2 + 2*z^2)*z + y^5], P)
1404
+ sage: C.ordinary_model() # long time (5 seconds)
1405
+ Scheme morphism:
1406
+ From: Projective Plane Curve over Number Field in a
1407
+ with defining polynomial y^2 - 2 defined
1408
+ by y^5 - x^4*z - x^2*y^2*z + 2*x^2*y*z^2 + y^3*z^2
1409
+ + 4*x^2*z^3 + y^2*z^3 - 4*y*z^4 - 4*z^5
1410
+ To: Projective Plane Curve over Number Field in a
1411
+ with defining polynomial y^2 - 2 defined
1412
+ by (-29*a + 1)*x^8*y^6 + (10*a + 158)*x^7*y^7
1413
+ + (-109*a - 31)*x^6*y^8 + (-80*a - 198)*x^8*y^5*z
1414
+ + (531*a + 272)*x^7*y^6*z + (170*a - 718)*x^6*y^7*z
1415
+ + (19*a - 636)*x^5*y^8*z + (-200*a - 628)*x^8*y^4*z^2
1416
+ + (1557*a - 114)*x^7*y^5*z^2 + (2197*a - 2449)*x^6*y^6*z^2
1417
+ + (1223*a - 3800)*x^5*y^7*z^2 + (343*a - 1329)*x^4*y^8*z^2
1418
+ + (-323*a - 809)*x^8*y^3*z^3 + (1630*a - 631)*x^7*y^4*z^3
1419
+ + (4190*a - 3126)*x^6*y^5*z^3 + (3904*a - 7110)*x^5*y^6*z^3
1420
+ + (1789*a - 5161)*x^4*y^7*z^3 + (330*a - 1083)*x^3*y^8*z^3
1421
+ + (-259*a - 524)*x^8*y^2*z^4 + (720*a - 605)*x^7*y^3*z^4
1422
+ + (3082*a - 2011)*x^6*y^4*z^4 + (4548*a - 5462)*x^5*y^5*z^4
1423
+ + (2958*a - 6611)*x^4*y^6*z^4 + (994*a - 2931)*x^3*y^7*z^4
1424
+ + (117*a - 416)*x^2*y^8*z^4 + (-108*a - 184)*x^8*y*z^5
1425
+ + (169*a - 168)*x^7*y^2*z^5 + (831*a - 835)*x^6*y^3*z^5
1426
+ + (2225*a - 1725)*x^5*y^4*z^5 + (1970*a - 3316)*x^4*y^5*z^5
1427
+ + (952*a - 2442)*x^3*y^6*z^5 + (217*a - 725)*x^2*y^7*z^5
1428
+ + (16*a - 77)*x*y^8*z^5 + (-23*a - 35)*x^8*z^6
1429
+ + (43*a + 24)*x^7*y*z^6 + (21*a - 198)*x^6*y^2*z^6
1430
+ + (377*a - 179)*x^5*y^3*z^6 + (458*a - 537)*x^4*y^4*z^6
1431
+ + (288*a - 624)*x^3*y^5*z^6 + (100*a - 299)*x^2*y^6*z^6
1432
+ + (16*a - 67)*x*y^7*z^6 - 5*y^8*z^6
1433
+ Defn: Defined on coordinates by sending (x : y : z) to
1434
+ ((-5/128*a - 5/128)*x^4 + (-5/32*a + 5/32)*x^3*y
1435
+ + (-1/16*a + 3/32)*x^2*y^2 + (1/16*a - 1/16)*x*y^3
1436
+ + (1/32*a - 1/32)*y^4 - 1/32*x^3*z + (3/16*a - 5/8)*x^2*y*z
1437
+ + (1/8*a - 5/16)*x*y^2*z + (1/8*a + 5/32)*x^2*z^2
1438
+ + (-3/16*a + 5/16)*x*y*z^2 + (-3/16*a - 1/16)*y^2*z^2
1439
+ + 1/16*x*z^3 + (1/4*a + 1/4)*y*z^3 + (-3/32*a - 5/32)*z^4 :
1440
+ (-5/128*a - 5/128)*x^4 + (5/32*a)*x^3*y
1441
+ + (3/32*a + 3/32)*x^2*y^2 + (-1/16*a)*x*y^3
1442
+ + (-1/32*a - 1/32)*y^4 - 1/32*x^3*z + (-11/32*a)*x^2*y*z
1443
+ + (1/8*a + 5/16)*x*y^2*z + (3/16*a + 1/4)*y^3*z
1444
+ + (1/8*a + 5/32)*x^2*z^2 + (-1/16*a - 3/8)*x*y*z^2
1445
+ + (-3/8*a - 9/16)*y^2*z^2 + 1/16*x*z^3 + (5/16*a + 1/2)*y*z^3
1446
+ + (-3/32*a - 5/32)*z^4 :
1447
+ (1/64*a + 3/128)*x^4 + (-1/32*a - 1/32)*x^3*y
1448
+ + (3/32*a - 9/32)*x^2*y^2 + (1/16*a - 3/16)*x*y^3 - 1/32*y^4
1449
+ + (3/32*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x*y^2*z
1450
+ + (-1/16*a)*y^3*z + (-1/16*a - 3/32)*x^2*z^2
1451
+ + (1/16*a + 1/16)*x*y*z^2 + (3/16*a + 3/16)*y^2*z^2
1452
+ + (-3/16*a - 1/4)*y*z^3 + (1/16*a + 3/32)*z^4)
1453
+ """
1454
+ # helper function for extending the base field
1455
+
1456
+ def extension(self):
1457
+ F = self.base_ring()
1458
+ pts = self.change_ring(F.embeddings(QQbar)[0]).rational_points()
1459
+ L = [t for pt in pts for t in pt]
1460
+ K = number_field_elements_from_algebraics(L)[0]
1461
+ if isinstance(K, RationalField):
1462
+ return F.embeddings(F)[0]
1463
+ else:
1464
+ if isinstance(F, RationalField):
1465
+ return F.embeddings(K)[0]
1466
+ else:
1467
+ # make sure the defining polynomial variable names are the same for K, N
1468
+ N = NumberField(K.defining_polynomial().parent()(F.defining_polynomial()), str(K.gen()))
1469
+ return N.composite_fields(K, both_maps=True)[0][1]*F.embeddings(N)[0]
1470
+ if self.base_ring() not in NumberFields():
1471
+ raise NotImplementedError("the base ring of this curve must be a number field")
1472
+ if not self.is_irreducible():
1473
+ raise TypeError("this curve must be irreducible")
1474
+ C_orig = self
1475
+ C = self
1476
+ PP = C.ambient_space()
1477
+ # extend the base field if necessary to find all singular points
1478
+ emb = extension(C.singular_subscheme())
1479
+ PP = PP.change_ring(emb)
1480
+ C = C.change_ring(emb)
1481
+ C_orig = C_orig.change_ring(emb)
1482
+ pts = C.singular_points()
1483
+ H = End(C)
1484
+ phi = H(list(C.ambient_space().gens()))
1485
+ while pts:
1486
+ for i in range(len(pts) - 1, -1, -1):
1487
+ try:
1488
+ if C.is_ordinary_singularity(pts[i]):
1489
+ pts.pop(i)
1490
+ except TypeError:
1491
+ pts.pop(i)
1492
+ if pts:
1493
+ temp_exc = C.excellent_position(pts[0])
1494
+ temp_qua = temp_exc.codomain().quadratic_transform()
1495
+ C = temp_qua.codomain()
1496
+ phi = temp_qua*temp_exc*phi
1497
+ # transform the old points
1498
+ for i in range(len(pts) - 1, -1, -1):
1499
+ # find image if it is a point the composition map is defined on
1500
+ try:
1501
+ temp_pt = (temp_qua*temp_exc)(temp_exc.domain()(pts[i]))
1502
+ pts.pop(i)
1503
+ if PP(list(temp_pt)) not in [PP(list(tpt)) for tpt in pts]:
1504
+ pts.append(temp_pt)
1505
+ except (TypeError, ValueError):
1506
+ pass
1507
+ # add points from the intersection of C and the line z
1508
+ PPline = ProjectiveSpace(PP.base_ring(), 1)
1509
+ # make sure the conversion happens in the right order
1510
+ ringH = Hom(PP.coordinate_ring(), PPline.coordinate_ring())
1511
+ psi = ringH(list(PPline.gens()) + [0])
1512
+ X = PPline.subscheme([psi(f) for f in C.singular_subscheme().defining_polynomials()])
1513
+ emb = extension(X)
1514
+ PP = PP.change_ring(emb)
1515
+ phi = phi.change_ring(emb)
1516
+ C = C.change_ring(emb)
1517
+ C_orig = C_orig.change_ring(emb)
1518
+ X = X.change_ring(emb)
1519
+ pts = [PP(pt.change_ring(emb)) for pt in pts]
1520
+ newpts = [PP(list(pt) + [0]) for pt in X.rational_points()]
1521
+ # avoid duplicates
1522
+ for pt in newpts:
1523
+ if PP(list(pt)) not in [PP(list(tpt)) for tpt in pts]:
1524
+ pts.append(pt)
1525
+ return phi
1526
+
1527
+ def is_transverse(self, C, P):
1528
+ r"""
1529
+ Return whether the intersection of this curve with the curve ``C`` at the point ``P`` is transverse.
1530
+
1531
+ The intersection at ``P`` is transverse if ``P`` is a nonsingular point of both curves, and if the
1532
+ tangents of the curves at ``P`` are distinct.
1533
+
1534
+ INPUT:
1535
+
1536
+ - ``C`` -- a curve in the ambient space of this curve
1537
+
1538
+ - ``P`` -- a point in the intersection of both curves
1539
+
1540
+ OUTPUT: boolean
1541
+
1542
+ EXAMPLES::
1543
+
1544
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1545
+ sage: C = Curve([x^2 - y^2], P)
1546
+ sage: D = Curve([x - y], P)
1547
+ sage: Q = P([1,1,0])
1548
+ sage: C.is_transverse(D, Q)
1549
+ False
1550
+
1551
+ ::
1552
+
1553
+ sage: # needs sage.rings.number_field
1554
+ sage: K = QuadraticField(-1)
1555
+ sage: P.<x,y,z> = ProjectiveSpace(K, 2)
1556
+ sage: C = Curve([y^2*z - K.0*x^3], P)
1557
+ sage: D = Curve([z*x + y^2], P)
1558
+ sage: Q = P([0,0,1])
1559
+ sage: C.is_transverse(D, Q)
1560
+ False
1561
+
1562
+ ::
1563
+
1564
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1565
+ sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
1566
+ sage: D = Curve([y - z], P)
1567
+ sage: Q = P([2,1,1])
1568
+ sage: C.is_transverse(D, Q)
1569
+ True
1570
+ """
1571
+ if not self.intersects_at(C, P):
1572
+ raise TypeError("(=%s) must be a point in the intersection of (=%s) and this curve" % (P, C))
1573
+ if self.is_singular(P) or C.is_singular(P):
1574
+ return False
1575
+
1576
+ # there is only one tangent at a nonsingular point of a plane curve
1577
+ return not self.tangents(P)[0] == C.tangents(P)[0]
1578
+
1579
+
1580
+ class ProjectiveCurve_field(ProjectiveCurve, AlgebraicScheme_subscheme_projective_field):
1581
+ """
1582
+ Projective curves over fields.
1583
+ """
1584
+ _point = ProjectiveCurvePoint_field
1585
+
1586
+ def __init__(self, A, X, category=None):
1587
+ """
1588
+ Initialize.
1589
+
1590
+ EXAMPLES::
1591
+
1592
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1593
+ sage: C = Curve(x*y^2*z^7 - x^10 - x^2*z^8)
1594
+ sage: loads(dumps(C)) == C
1595
+ True
1596
+
1597
+ TESTS::
1598
+
1599
+ sage: P.<x0,x1,x2,x3,x4> = ProjectiveSpace(QQ, 4)
1600
+ sage: C = Curve([x0^4 - x1^2*x4^2 - 19*x4^4, x2^4 - x3^2*x4^2 - 23*x4^4])
1601
+ Traceback (most recent call last):
1602
+ ...
1603
+ ValueError: defining equations (=[x0^4 - x1^2*x4^2 - 19*x4^4, x2^4 - x3^2*x4^2 - 23*x4^4])
1604
+ define a scheme of dimension 2 != 1
1605
+ """
1606
+ super().__init__(A, X, category=category)
1607
+
1608
+ if A.base_ring() not in Fields():
1609
+ raise TypeError("curve not defined over a field")
1610
+
1611
+ d = super(Curve_generic, self).dimension()
1612
+ if d != 1:
1613
+ raise ValueError(f"defining equations (={X}) define a scheme of dimension {d} != 1")
1614
+
1615
+ @lazy_attribute
1616
+ def _genus(self):
1617
+ """
1618
+ The geometric genus of this projective curve.
1619
+
1620
+ TESTS:
1621
+
1622
+ Geometric genus is not defined for geometrically reducible curves. You
1623
+ may get a nonsensical answer if the condition is not met::
1624
+
1625
+ sage: P2.<x,y,z> = ProjectiveSpace(QQ, 2)
1626
+ sage: C = Curve(x^2 + y^2)
1627
+ sage: C.genus() # indirect test
1628
+ -1
1629
+ """
1630
+ return self.defining_ideal().genus()
1631
+
1632
+ def arithmetic_genus(self):
1633
+ r"""
1634
+ Return the arithmetic genus of this projective curve.
1635
+
1636
+ This is the arithmetic genus `p_a(C)` as defined in [Har1977]_. If `P`
1637
+ is the Hilbert polynomial of the defining ideal of this curve, then the
1638
+ arithmetic genus of this curve is `1 - P(0)`.
1639
+
1640
+ EXAMPLES::
1641
+
1642
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
1643
+ sage: C = P.curve([w*z - x^2, w^2 + y^2 + z^2])
1644
+ sage: C.arithmetic_genus()
1645
+ 1
1646
+
1647
+ ::
1648
+
1649
+ sage: P.<x,y,z,w,t> = ProjectiveSpace(GF(7), 4)
1650
+ sage: C = P.curve([t^3 - x*y*w, x^3 + y^3 + z^3, z - w])
1651
+ sage: C.arithmetic_genus()
1652
+ 10
1653
+ """
1654
+ return 1 - self.defining_ideal().hilbert_polynomial()(0)
1655
+
1656
+ def is_complete_intersection(self):
1657
+ r"""
1658
+ Return whether this projective curve is a complete intersection.
1659
+
1660
+ EXAMPLES::
1661
+
1662
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
1663
+ sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
1664
+ sage: C.is_complete_intersection()
1665
+ False
1666
+
1667
+ ::
1668
+
1669
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
1670
+ sage: C = Curve([y*w - x^2, z*w^2 - x^3], P)
1671
+ sage: C.is_complete_intersection()
1672
+ True
1673
+
1674
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
1675
+ sage: C = Curve([z^2 - y*w, y*z - x*w, y^2 - x*z], P)
1676
+ sage: C.is_complete_intersection()
1677
+ False
1678
+ """
1679
+ singular_lib("sing.lib")
1680
+ simplify = singular_function("simplify")
1681
+ is_ci = singular_function("is_ci")
1682
+
1683
+ # verbose unless printlevel is -1.
1684
+ saved_printlevel = get_printlevel()
1685
+ set_printlevel(-1)
1686
+ id = simplify(self.defining_ideal(), 10)
1687
+ L = is_ci(id)[-1]
1688
+ set_printlevel(saved_printlevel)
1689
+
1690
+ return len(self.ambient_space().gens()) - len(id) == L
1691
+
1692
+ def tangent_line(self, p):
1693
+ """
1694
+ Return the tangent line at the point ``p``.
1695
+
1696
+ INPUT:
1697
+
1698
+ - ``p`` -- a rational point of the curve
1699
+
1700
+ EXAMPLES::
1701
+
1702
+ sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
1703
+ sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
1704
+ sage: p = C(1,1,1,1)
1705
+ sage: C.tangent_line(p)
1706
+ Projective Curve over Rational Field
1707
+ defined by -2*x + y + w, -3*x + z + 2*w
1708
+ """
1709
+ for i in range(len(p)):
1710
+ if p[i]:
1711
+ C = self.affine_patch(i)
1712
+ q = p.dehomogenize(i)
1713
+ T = C.tangent_line(q)
1714
+ return T.projective_closure(i, self.ambient_space())
1715
+
1716
+ raise TypeError("{} does not define a point in the projective space".format(p))
1717
+
1718
+
1719
+ class ProjectivePlaneCurve_field(ProjectivePlaneCurve, ProjectiveCurve_field):
1720
+ """
1721
+ Projective plane curves over fields.
1722
+ """
1723
+ _point = ProjectivePlaneCurvePoint_field
1724
+
1725
+ def arithmetic_genus(self):
1726
+ r"""
1727
+ Return the arithmetic genus of this projective curve.
1728
+
1729
+ This is the arithmetic genus `p_a(C)` as defined in [Har1977]_.
1730
+
1731
+ For an irreducible projective plane curve of degree `d`, this is simply
1732
+ `(d - 1)(d - 2)/2`. It need *not* equal the geometric genus (the genus
1733
+ of the normalization of the curve).
1734
+
1735
+ EXAMPLES::
1736
+
1737
+ sage: x,y,z = PolynomialRing(GF(5), 3, 'xyz').gens()
1738
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8); C
1739
+ Projective Plane Curve over Finite Field of size 5
1740
+ defined by -x^9 + y^2*z^7 - x*z^8
1741
+ sage: C.arithmetic_genus()
1742
+ 28
1743
+ sage: C.genus() # geometric
1744
+ 4
1745
+
1746
+ ::
1747
+
1748
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1749
+ sage: C = Curve([y^3*x - x^2*y*z - 7*z^4])
1750
+ sage: C.arithmetic_genus()
1751
+ 3
1752
+ """
1753
+ if self.is_irreducible():
1754
+ # use genus-degree formula
1755
+ d = self.defining_polynomial().total_degree()
1756
+ return Integer(d - 1).binomial(2)
1757
+ return super().arithmetic_genus()
1758
+
1759
+ def fundamental_group(self):
1760
+ r"""
1761
+ Return a presentation of the fundamental group of the complement
1762
+ of ``self``.
1763
+
1764
+ .. NOTE::
1765
+
1766
+ The curve must be defined over the rationals or a number field
1767
+ with an embedding over `\QQbar`.
1768
+
1769
+ .. NOTE::
1770
+
1771
+ This functionality requires the ``sirocco`` package to be installed.
1772
+
1773
+ EXAMPLES::
1774
+
1775
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1776
+ sage: C = P.curve(x^2*z - y^3)
1777
+ sage: C.fundamental_group() # needs sirocco
1778
+ Finitely presented group < x0 | x0^3 >
1779
+ sage: g = P.curve(z*(x^2*z - y^3)).fundamental_group() # needs sirocco
1780
+ sage: g.sorted_presentation() # needs sirocco
1781
+ Finitely presented group < x0, x1 | x1^-1*x0^-1*x1^-1*x0*x1*x0 >
1782
+
1783
+ In the case of number fields, they need to have an embedding
1784
+ into the algebraic field::
1785
+
1786
+ sage: # needs sage.rings.number_field
1787
+ sage: a = QQ[x](x^2 + 5).roots(QQbar)[0][0]
1788
+ sage: a
1789
+ -2.236067977499790?*I
1790
+ sage: F = NumberField(a.minpoly(), 'a', embedding=a)
1791
+ sage: P.<x,y,z> = ProjectiveSpace(F, 2)
1792
+ sage: F.inject_variables()
1793
+ Defining a
1794
+ sage: C = P.curve(x^2 + a * y^2)
1795
+ sage: C.fundamental_group() # needs sirocco
1796
+ Finitely presented group < x0 | >
1797
+
1798
+ TESTS::
1799
+
1800
+ sage: # needs sage.combinat
1801
+ sage: F.<x0, x1> = FreeGroup()
1802
+ sage: G = F / [x1^-1*(x1^-1*x0^-1*x1*x0^-1)^2, (x1^-1*x0^-1)^2*x1^-1*(x0*x1)^2*x0]
1803
+ sage: G.order()
1804
+ 320
1805
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1806
+ sage: C = P.curve(z^2*y^3 - z*(33*x*z+2*x^2+8*z^2)*y^2
1807
+ ....: + (21*z^2+21*x*z-x^2)*(z^2+11*x*z-x^2)*y
1808
+ ....: + (x-18*z)*(z^2+11*x*z-x^2)^2)
1809
+ sage: G0 = C.fundamental_group() # needs sirocco
1810
+ sage: G.is_isomorphic(G0) # needs sirocco
1811
+ True
1812
+ sage: C = P.curve(z)
1813
+ sage: C.fundamental_group() # needs sirocco
1814
+ Finitely presented group < | >
1815
+ """
1816
+ from sage.schemes.curves.zariski_vankampen import fundamental_group
1817
+ F = self.base_ring()
1818
+ from sage.rings.qqbar import QQbar
1819
+ if QQbar.coerce_map_from(F) is None:
1820
+ raise NotImplementedError("the base field must have an embedding"
1821
+ " to the algebraic field")
1822
+ g = self.defining_polynomial()
1823
+ ring = self.ambient_space().affine_patch(2).coordinate_ring()
1824
+ if g.degree() == 1:
1825
+ return fundamental_group(ring.one())
1826
+ f = ring(self.affine_patch(2).defining_polynomial())
1827
+ if f.degree() == self.degree():
1828
+ return fundamental_group(f, projective=True)
1829
+ else: # in this case, the line at infinity is part of the curve, so the complement lies in the affine patch
1830
+ return fundamental_group(f, projective=False)
1831
+
1832
+ def rational_parameterization(self):
1833
+ r"""
1834
+ Return a rational parameterization of this curve.
1835
+
1836
+ This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible
1837
+ over the algebraic closure of the rational field). The curve must also be rational (have
1838
+ geometric genus zero).
1839
+
1840
+ The rational parameterization may have coefficients in a quadratic extension of the rational
1841
+ field.
1842
+
1843
+ OUTPUT: a birational map between `\mathbb{P}^{1}` and this curve, given as a scheme morphism
1844
+
1845
+ EXAMPLES::
1846
+
1847
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1848
+ sage: C = Curve([y^2*z - x^3], P)
1849
+ sage: C.rational_parameterization()
1850
+ Scheme morphism:
1851
+ From: Projective Space of dimension 1 over Rational Field
1852
+ To: Projective Plane Curve over Rational Field
1853
+ defined by -x^3 + y^2*z
1854
+ Defn: Defined on coordinates by sending (s : t) to
1855
+ (s^2*t : s^3 : t^3)
1856
+
1857
+ ::
1858
+
1859
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1860
+ sage: C = Curve([x^3 - 4*y*z^2 + x*z^2 - x*y*z], P)
1861
+ sage: C.rational_parameterization()
1862
+ Scheme morphism:
1863
+ From: Projective Space of dimension 1 over Rational Field
1864
+ To: Projective Plane Curve over Rational Field
1865
+ defined by x^3 - x*y*z + x*z^2 - 4*y*z^2
1866
+ Defn: Defined on coordinates by sending (s : t) to
1867
+ (4*s^2*t + s*t^2 : s^2*t + t^3 : 4*s^3 + s^2*t)
1868
+
1869
+ ::
1870
+
1871
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
1872
+ sage: C = Curve([x^2 + y^2 + z^2], P)
1873
+ sage: C.rational_parameterization()
1874
+ Scheme morphism:
1875
+ From: Projective Space of dimension 1 over Number Field in a
1876
+ with defining polynomial a^2 + 1
1877
+ To: Projective Plane Curve over Number Field in a
1878
+ with defining polynomial a^2 + 1 defined by x^2 + y^2 + z^2
1879
+ Defn: Defined on coordinates by sending (s : t) to
1880
+ ((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t)
1881
+ """
1882
+ if self.genus():
1883
+ raise TypeError("this curve must have geometric genus zero")
1884
+ if not isinstance(self.base_ring(), RationalField):
1885
+ raise TypeError("this curve must be defined over the rational field")
1886
+
1887
+ singular.lib("paraplanecurves.lib")
1888
+ R = singular.paraPlaneCurve(self.defining_polynomial()) # ring
1889
+ R.set_ring()
1890
+ param = singular('PARA').sage().gens() # ideal
1891
+ R = R.sage()
1892
+
1893
+ C = self.change_ring(R.base_ring())
1894
+ H = Hom(ProjectiveSpace(R.base_ring(), 1, R.gens()), C)
1895
+ return H(param)
1896
+
1897
+ def riemann_surface(self, **kwargs):
1898
+ r"""
1899
+ Return the complex Riemann surface determined by this curve.
1900
+
1901
+ OUTPUT: a :class:`~sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface` object
1902
+
1903
+ EXAMPLES::
1904
+
1905
+ sage: R.<x,y,z> = QQ[]
1906
+ sage: C = Curve(x^3 + 3*y^3 + 5*z^3)
1907
+ sage: C.riemann_surface() # needs sage.graphs
1908
+ Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0,
1909
+ with 53 bits of precision
1910
+ """
1911
+ return self.affine_patch(2).riemann_surface(**kwargs)
1912
+
1913
+
1914
+ class ProjectivePlaneCurve_finite_field(ProjectivePlaneCurve_field):
1915
+ """
1916
+ Projective plane curves over finite fields
1917
+ """
1918
+ _point = ProjectivePlaneCurvePoint_finite_field
1919
+
1920
+ def rational_points_iterator(self):
1921
+ r"""
1922
+ Return a generator object for the rational points on this curve.
1923
+
1924
+ INPUT:
1925
+
1926
+ - ``self`` -- a projective curve
1927
+
1928
+ OUTPUT: a generator of all the rational points on the curve defined over its base field
1929
+
1930
+ EXAMPLES::
1931
+
1932
+ sage: F = GF(37)
1933
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
1934
+ sage: C = Curve(X^7 + Y*X*Z^5*55 + Y^7*12)
1935
+ sage: len(list(C.rational_points_iterator()))
1936
+ 37
1937
+
1938
+ ::
1939
+
1940
+ sage: F = GF(2)
1941
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
1942
+ sage: C = Curve(X*Y*Z)
1943
+ sage: a = C.rational_points_iterator()
1944
+ sage: next(a)
1945
+ (1 : 0 : 0)
1946
+ sage: next(a)
1947
+ (0 : 1 : 0)
1948
+ sage: next(a)
1949
+ (1 : 1 : 0)
1950
+ sage: next(a)
1951
+ (0 : 0 : 1)
1952
+ sage: next(a)
1953
+ (1 : 0 : 1)
1954
+ sage: next(a)
1955
+ (0 : 1 : 1)
1956
+ sage: next(a)
1957
+ Traceback (most recent call last):
1958
+ ...
1959
+ StopIteration
1960
+
1961
+ ::
1962
+
1963
+ sage: # needs sage.rings.finite_rings
1964
+ sage: F = GF(3^2,'a')
1965
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
1966
+ sage: C = Curve(X^3 + 5*Y^2*Z - 33*X*Y*X)
1967
+ sage: b = C.rational_points_iterator()
1968
+ sage: next(b)
1969
+ (0 : 1 : 0)
1970
+ sage: next(b)
1971
+ (0 : 0 : 1)
1972
+ sage: next(b)
1973
+ (2*a + 2 : a : 1)
1974
+ sage: next(b)
1975
+ (2 : a + 1 : 1)
1976
+ sage: next(b)
1977
+ (a + 1 : 2*a + 1 : 1)
1978
+ sage: next(b)
1979
+ (1 : 2 : 1)
1980
+ sage: next(b)
1981
+ (2*a + 2 : 2*a : 1)
1982
+ sage: next(b)
1983
+ (2 : 2*a + 2 : 1)
1984
+ sage: next(b)
1985
+ (a + 1 : a + 2 : 1)
1986
+ sage: next(b)
1987
+ (1 : 1 : 1)
1988
+ sage: next(b)
1989
+ Traceback (most recent call last):
1990
+ ...
1991
+ StopIteration
1992
+ """
1993
+ g = self.defining_polynomial()
1994
+ K = g.parent().base_ring()
1995
+ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
1996
+ R = PolynomialRing(K, 'X')
1997
+ X = R.gen()
1998
+ one = K.one()
1999
+ zero = K.zero()
2000
+
2001
+ # the point with Z = 0 = Y
2002
+ try:
2003
+ t = self.point([one, zero, zero])
2004
+ yield t
2005
+ except TypeError:
2006
+ pass
2007
+
2008
+ # points with Z = 0, Y = 1
2009
+ g10 = R(g(X, one, zero))
2010
+ if g10.is_zero():
2011
+ for x in K:
2012
+ yield self.point([x, one, zero])
2013
+ else:
2014
+ for x in g10.roots(multiplicities=False):
2015
+ yield self.point([x, one, zero])
2016
+
2017
+ # points with Z = 1
2018
+ for y in K:
2019
+ gy1 = R(g(X, y, one))
2020
+ if gy1.is_zero():
2021
+ for x in K:
2022
+ yield self.point([x, y, one])
2023
+ else:
2024
+ for x in gy1.roots(multiplicities=False):
2025
+ yield self.point([x, y, one])
2026
+
2027
+ def _points_via_singular(self, sort=True):
2028
+ r"""
2029
+ Return all rational points on this curve, computed using Singular's
2030
+ Brill-Noether implementation.
2031
+
2032
+ INPUT:
2033
+
2034
+ - ``sort`` -- boolean (default: ``True``); if ``True`` return the
2035
+ point list sorted. If ``False``, returns the points in the order
2036
+ computed by Singular.
2037
+
2038
+ EXAMPLES::
2039
+
2040
+ sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()
2041
+ sage: f = y^2*z^7 - x^9 - x*z^8
2042
+ sage: C = Curve(f); C
2043
+ Projective Plane Curve over Finite Field of size 5 defined by
2044
+ -x^9 + y^2*z^7 - x*z^8
2045
+ sage: C._points_via_singular()
2046
+ [(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1),
2047
+ (3 : 1 : 1), (3 : 4 : 1)]
2048
+ sage: C._points_via_singular(sort=False) # random
2049
+ [(0 : 1 : 0), (3 : 1 : 1), (3 : 4 : 1), (2 : 2 : 1),
2050
+ (0 : 0 : 1), (2 : 3 : 1)]
2051
+
2052
+
2053
+ .. NOTE::
2054
+
2055
+ The Brill-Noether package does not always work (i.e., the
2056
+ 'bn' algorithm. When it fails a :exc:`RuntimeError` exception is
2057
+ raised.
2058
+ """
2059
+ f = self.defining_polynomial()._singular_()
2060
+ singular = f.parent()
2061
+ singular.lib('brnoeth')
2062
+ try:
2063
+ X1 = f.Adj_div()
2064
+ except (TypeError, RuntimeError) as s:
2065
+ raise RuntimeError(str(s) + "\n\n ** Unable to use the\
2066
+ Brill-Noether Singular package to\
2067
+ compute all points (see above).")
2068
+
2069
+ X2 = singular.NSplaces(1, X1)
2070
+ R = X2[5][1][1]
2071
+ R.set_ring()
2072
+
2073
+ # We use sage_flattened_str_list since iterating through
2074
+ # the entire list through the sage/singular interface directly
2075
+ # would involve hundreds of calls to singular, and timing issues with
2076
+ # the expect interface could crop up. Also, this is vastly
2077
+ # faster (and more robust).
2078
+ v = singular('POINTS').sage_flattened_str_list()
2079
+ pnts = [self(int(v[3*i]), int(v[3*i+1]), int(v[3*i+2]))
2080
+ for i in range(len(v)//3)]
2081
+ # singular always dehomogenizes with respect to the last variable
2082
+ # so if this variable divides the curve equation, we need to add
2083
+ # points at infinity
2084
+ F = self.defining_polynomial()
2085
+ z = F.parent().gens()[-1]
2086
+ if z.divides(F):
2087
+ pnts += [self(1, a, 0) for a in self.base_ring()]
2088
+ pnts += [self(0, 1, 0)]
2089
+ # remove multiple points
2090
+ pnts = list(set(pnts))
2091
+ if sort:
2092
+ pnts.sort()
2093
+ return pnts
2094
+
2095
+ def riemann_roch_basis(self, D):
2096
+ r"""
2097
+ Return a basis for the Riemann-Roch space corresponding to `D`.
2098
+
2099
+ This uses Singular's Brill-Noether implementation.
2100
+
2101
+ INPUT:
2102
+
2103
+ - ``D`` -- a divisor
2104
+
2105
+ OUTPUT: list of function field elements that form a basis of the
2106
+ Riemann-Roch space
2107
+
2108
+ EXAMPLES::
2109
+
2110
+ sage: R.<x,y,z> = GF(2)[]
2111
+ sage: f = x^3*y + y^3*z + x*z^3
2112
+ sage: C = Curve(f); pts = C.rational_points()
2113
+ sage: D = C.divisor([ (4, pts[0]), (4, pts[2]) ])
2114
+ sage: C.riemann_roch_basis(D)
2115
+ [x/y, 1, z/y, z^2/y^2, z/x, z^2/(x*y)]
2116
+
2117
+ ::
2118
+
2119
+ sage: R.<x,y,z> = GF(5)[]
2120
+ sage: f = x^7 + y^7 + z^7
2121
+ sage: C = Curve(f); pts = C.rational_points()
2122
+ sage: D = C.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ])
2123
+ sage: C.riemann_roch_basis(D)
2124
+ [(-2*x + y)/(x + y), (-x + z)/(x + y)]
2125
+
2126
+ .. NOTE::
2127
+
2128
+ Currently this only works over prime field and divisors
2129
+ supported on rational points.
2130
+ """
2131
+ F = self.base_ring()
2132
+ if not F.is_prime_field():
2133
+ raise TypeError("only works for curves over prime finite fields")
2134
+
2135
+ f = self.defining_polynomial()._singular_()
2136
+ singular = f.parent()
2137
+ singular.lib('brnoeth')
2138
+ try:
2139
+ X1 = f.Adj_div()
2140
+ except (TypeError, RuntimeError) as s:
2141
+ raise RuntimeError(str(s) + "\n\n ** Unable to use the Brill-Noether Singular package to compute all points (see above).")
2142
+ X2 = singular.NSplaces(1, X1)
2143
+ # retrieve list of all computed closed points (possibly of degree >1)
2144
+ v = X2[3].sage_flattened_str_list()
2145
+ # We use sage_flattened_str_list since iterating through
2146
+ # the entire list through the sage/singular interface directly
2147
+ # would involve hundreds of calls to singular, and timing issues with
2148
+ # the expect interface could crop up. Also, this is vastly
2149
+ # faster (and more robust).
2150
+
2151
+ v = [v[i].partition(',') for i in range(len(v))]
2152
+ pnts = [(int(v[i][0]), int(v[i][2])-1) for i in range(len(v))]
2153
+ # retrieve coordinates of rational points
2154
+ R = X2[5][1][1]
2155
+ R.set_ring()
2156
+ v = singular('POINTS').sage_flattened_str_list()
2157
+ coords = [self(int(v[3*i]), int(v[3*i+1]), int(v[3*i+2])) for i in range(len(v)//3)]
2158
+ # build correct representation of D for singular
2159
+ Dcoeffs = []
2160
+ for x in pnts:
2161
+ if x[0] == 1:
2162
+ Dcoeffs.append(D.coefficient(coords[x[1]]))
2163
+ else:
2164
+ Dcoeffs.append(0)
2165
+ G = singular(','.join(str(x) for x in Dcoeffs), type='intvec')
2166
+ # call singular's brill noether routine and return
2167
+ T = X2[1][2]
2168
+ T.set_ring()
2169
+ LG = G.BrillNoether(X2)
2170
+ LG = [X.split(',\n') for X in LG.sage_structured_str_list()]
2171
+ x, y, z = self.ambient_space().coordinate_ring().gens()
2172
+ vars = {'x': x, 'y': y, 'z': z}
2173
+ V = [(sage_eval(a, vars)/sage_eval(b, vars)) for a, b in LG]
2174
+ return V
2175
+
2176
+ def rational_points(self, algorithm='enum', sort=True):
2177
+ r"""
2178
+ Return the rational points on this curve.
2179
+
2180
+ INPUT:
2181
+
2182
+ - ``algorithm`` -- one of
2183
+
2184
+ - ``'enum'`` -- straightforward enumeration
2185
+
2186
+ - ``'bn'`` -- via Singular's brnoeth package
2187
+
2188
+ - ``sort`` -- boolean (default: ``True``); whether the output
2189
+ points should be sorted. If ``False``, the order of the output
2190
+ is non-deterministic.
2191
+
2192
+ OUTPUT: list of all the rational points on the curve, possibly sorted
2193
+
2194
+ .. NOTE::
2195
+
2196
+ The Brill-Noether package does not always work (i.e., the 'bn'
2197
+ algorithm. When it fails a :exc:`RuntimeError` exception is raised.
2198
+
2199
+ EXAMPLES::
2200
+
2201
+ sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()
2202
+ sage: f = y^2*z^7 - x^9 - x*z^8
2203
+ sage: C = Curve(f); C
2204
+ Projective Plane Curve over Finite Field of size 5
2205
+ defined by -x^9 + y^2*z^7 - x*z^8
2206
+ sage: C.rational_points()
2207
+ [(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1),
2208
+ (3 : 1 : 1), (3 : 4 : 1)]
2209
+ sage: C = Curve(x - y + z)
2210
+ sage: C.rational_points()
2211
+ [(0 : 1 : 1), (1 : 1 : 0), (1 : 2 : 1), (2 : 3 : 1),
2212
+ (3 : 4 : 1), (4 : 0 : 1)]
2213
+ sage: C = Curve(x*z + z^2)
2214
+ sage: C.rational_points('all')
2215
+ [(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0), (2 : 1 : 0),
2216
+ (3 : 1 : 0), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1),
2217
+ (4 : 2 : 1), (4 : 3 : 1), (4 : 4 : 1)]
2218
+
2219
+ ::
2220
+
2221
+ sage: F = GF(7)
2222
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
2223
+ sage: C = Curve(X^3 + Y^3 - Z^3)
2224
+ sage: C.rational_points()
2225
+ [(0 : 1 : 1), (0 : 2 : 1), (0 : 4 : 1), (1 : 0 : 1), (2 : 0 : 1),
2226
+ (3 : 1 : 0), (4 : 0 : 1), (5 : 1 : 0), (6 : 1 : 0)]
2227
+
2228
+ ::
2229
+
2230
+ sage: F = GF(1237)
2231
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
2232
+ sage: C = Curve(X^7 + 7*Y^6*Z + Z^4*X^2*Y*89)
2233
+ sage: len(C.rational_points())
2234
+ 1237
2235
+
2236
+ ::
2237
+
2238
+ sage: # needs sage.rings.finite_rings
2239
+ sage: F = GF(2^6,'a')
2240
+ sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
2241
+ sage: C = Curve(X^5 + 11*X*Y*Z^3 + X^2*Y^3 - 13*Y^2*Z^3)
2242
+ sage: len(C.rational_points())
2243
+ 104
2244
+
2245
+ ::
2246
+
2247
+ sage: R.<x,y,z> = GF(2)[]
2248
+ sage: f = x^3*y + y^3*z + x*z^3
2249
+ sage: C = Curve(f); pts = C.rational_points()
2250
+ sage: pts
2251
+ [(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)]
2252
+ """
2253
+ if algorithm == "enum":
2254
+ points = list(self.rational_points_iterator())
2255
+ if sort:
2256
+ points.sort()
2257
+ return points
2258
+
2259
+ F = self.base_ring()
2260
+ if not F.is_prime_field():
2261
+ raise TypeError("other algorithms only works for curves over prime finite fields")
2262
+
2263
+ if algorithm == "bn":
2264
+ return self._points_via_singular(sort=sort)
2265
+
2266
+ if algorithm == "all":
2267
+ S_enum = self.rational_points(algorithm='enum')
2268
+ S_bn = self.rational_points(algorithm='bn')
2269
+ if S_enum != S_bn:
2270
+ raise RuntimeError("Bug in rational_points -- different\
2271
+ algorithms give different answers for\
2272
+ curve %s!" % self)
2273
+ return S_enum
2274
+
2275
+ raise ValueError(f"No algorithm '{algorithm}' known")
2276
+
2277
+
2278
+ class IntegralProjectiveCurve(ProjectiveCurve_field):
2279
+ """
2280
+ Integral projective curve.
2281
+ """
2282
+ _point = IntegralProjectiveCurvePoint
2283
+ _closed_point = IntegralProjectiveCurveClosedPoint
2284
+
2285
+ def __init__(self, A, f):
2286
+ """
2287
+ Initialize.
2288
+
2289
+ TESTS::
2290
+
2291
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2292
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2293
+ sage: loads(dumps(C)) == C
2294
+ True
2295
+ """
2296
+ super().__init__(A, f)
2297
+
2298
+ ideal = self.defining_ideal()
2299
+ gs = self.ambient_space().gens()
2300
+ for i in range(self.ngens()):
2301
+ if gs[i] not in ideal:
2302
+ self._open_affine = self.affine_patch(i)
2303
+ self._open_affine_index = i
2304
+ break
2305
+ else:
2306
+ raise ValueError("no projective curve defined")
2307
+
2308
+ def function_field(self):
2309
+ """
2310
+ Return the function field of this curve.
2311
+
2312
+ EXAMPLES::
2313
+
2314
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
2315
+ sage: C = Curve(x^2 + y^2 + z^2, P)
2316
+ sage: C.function_field()
2317
+ Function field in z defined by z^2 + y^2 + 1
2318
+
2319
+ ::
2320
+
2321
+ sage: # needs sage.rings.finite_rings
2322
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2323
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2324
+ sage: C.function_field()
2325
+ Function field in z defined by z^5 + y*z^3 + y^5 + 1
2326
+ """
2327
+ return self._function_field
2328
+
2329
+ @lazy_attribute
2330
+ def _genus(self):
2331
+ """
2332
+ The geometric genus of the curve.
2333
+
2334
+ EXAMPLES::
2335
+
2336
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2337
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2338
+ sage: C.genus() # indirect doctest
2339
+ 1
2340
+ """
2341
+ return self._open_affine.genus()
2342
+
2343
+ def __call__(self, *args):
2344
+ """
2345
+ Return a rational point, a pointset or a function depending on ``args``.
2346
+
2347
+ EXAMPLES::
2348
+
2349
+ sage: # needs sage.rings.finite_rings
2350
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2351
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2352
+ sage: C(1,1,1)
2353
+ (1 : 1 : 1)
2354
+ sage: C(y/z)
2355
+ (y/(y^5 + 1))*z^4 + (y^2/(y^5 + 1))*z^2
2356
+ sage: C(GF(4^2))
2357
+ Set of rational points of Closed subscheme of Projective Space of
2358
+ dimension 2 over Finite Field in z4 of size 2^4 defined by:
2359
+ x^5 + y^5 + x*y*z^3 + z^5
2360
+ """
2361
+ try:
2362
+ return super().__call__(*args)
2363
+ except TypeError as e:
2364
+ try:
2365
+ return self.function(*args)
2366
+ except AttributeError:
2367
+ raise e
2368
+
2369
+ def function(self, f):
2370
+ """
2371
+ Return the function field element corresponding to ``f``.
2372
+
2373
+ INPUT:
2374
+
2375
+ - ``f`` -- a fraction of homogeneous polynomials of the coordinate ring
2376
+ of the ambient space of the curve
2377
+
2378
+ OUTPUT: an element of the function field
2379
+
2380
+ EXAMPLES::
2381
+
2382
+ sage: # needs sage.rings.finite_rings
2383
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2384
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2385
+ sage: f = C.function(x/y); f
2386
+ 1/y
2387
+ sage: f.divisor()
2388
+ Place (1/y, 1/y^2*z^2 + z2/y*z + 1)
2389
+ + Place (1/y, 1/y^2*z^2 + ((z2 + 1)/y)*z + 1)
2390
+ + Place (1/y, 1/y*z + 1)
2391
+ - Place (y, z^2 + z2*z + 1)
2392
+ - Place (y, z^2 + (z2 + 1)*z + 1)
2393
+ - Place (y, z + 1)
2394
+ """
2395
+ S = self.ambient_space().coordinate_ring()
2396
+ phi = self._map_to_function_field
2397
+ num = S(f.numerator())
2398
+ den = S(f.denominator())
2399
+ if num.degree() != den.degree():
2400
+ raise ValueError("not define a function on the curve")
2401
+
2402
+ return phi(num)/phi(den)
2403
+
2404
+ def coordinate_functions(self, i=None):
2405
+ """
2406
+ Return the coordinate functions for the ``i``-th affine patch.
2407
+
2408
+ If ``i`` is ``None``, return the homogeneous coordinate functions.
2409
+
2410
+ EXAMPLES::
2411
+
2412
+ sage: # needs sage.rings.finite_rings
2413
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2414
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2415
+ sage: C.coordinate_functions(0)
2416
+ (y, z)
2417
+ sage: C.coordinate_functions(1)
2418
+ (1/y, 1/y*z)
2419
+ """
2420
+ coords = self._coordinate_functions
2421
+ if i is None:
2422
+ return coords
2423
+ inv = ~coords[i]
2424
+ return tuple([coords[j]*inv for j in range(len(coords)) if j != i])
2425
+
2426
+ def pull_from_function_field(self, f):
2427
+ """
2428
+ Return the fraction corresponding to ``f``.
2429
+
2430
+ INPUT:
2431
+
2432
+ - ``f`` -- an element of the function field
2433
+
2434
+ OUTPUT:
2435
+
2436
+ A fraction of homogeneous polynomials in the coordinate ring of the
2437
+ ambient space of the curve.
2438
+
2439
+ EXAMPLES::
2440
+
2441
+ sage: # needs sage.rings.finite_rings
2442
+ sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
2443
+ sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
2444
+ sage: F = C.function_field()
2445
+ sage: C.pull_from_function_field(F.gen())
2446
+ z/x
2447
+ sage: C.pull_from_function_field(F.one())
2448
+ 1
2449
+ sage: C.pull_from_function_field(F.zero())
2450
+ 0
2451
+ sage: f1 = F.gen()
2452
+ sage: f2 = F.base_ring().gen()
2453
+ sage: C.function(C.pull_from_function_field(f1)) == f1
2454
+ True
2455
+ sage: C.function(C.pull_from_function_field(f2)) == f2
2456
+ True
2457
+ """
2458
+ return self._map_from_function_field(f)
2459
+
2460
+ @lazy_attribute
2461
+ def _function_field(self):
2462
+ """
2463
+ Return the abstract function field of the curve.
2464
+
2465
+ TESTS::
2466
+
2467
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2468
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2469
+ sage: C._function_field
2470
+ Function field in z defined by z^8 + 4*y^2*z^7 + 1
2471
+ """
2472
+ return self._open_affine._function_field
2473
+
2474
+ @lazy_attribute
2475
+ def _map_to_function_field(self):
2476
+ """
2477
+ Return the map to the function field of the curve.
2478
+
2479
+ TESTS::
2480
+
2481
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2482
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2483
+ sage: C._map_to_function_field
2484
+ Ring morphism:
2485
+ From: Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
2486
+ To: Function field in z defined by z^8 + 4*y^2*z^7 + 1
2487
+ Defn: x |--> 1
2488
+ y |--> y
2489
+ z |--> z
2490
+ """
2491
+ F = self._function_field
2492
+ S = self.ambient_space().coordinate_ring()
2493
+ return hom(S, F, self._coordinate_functions)
2494
+
2495
+ @lazy_attribute
2496
+ def _coordinate_functions(self):
2497
+ """
2498
+ Return the homogeneous coordinate functions of the curve.
2499
+
2500
+ TESTS::
2501
+
2502
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2503
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2504
+ sage: C._coordinate_functions
2505
+ (1, y, z)
2506
+ """
2507
+ # homogeneous coordinate functions
2508
+ coords = list(self._open_affine._coordinate_functions)
2509
+ coords.insert(self._open_affine_index, self._function_field.one())
2510
+ return tuple(coords)
2511
+
2512
+ @lazy_attribute
2513
+ def _map_from_function_field(self):
2514
+ """
2515
+ Return the map from the function field of the curve.
2516
+
2517
+ TESTS::
2518
+
2519
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2520
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2521
+ sage: F = C.function_field()
2522
+ sage: f = F.random_element()
2523
+ sage: C.function(C._map_from_function_field(f)) == f
2524
+ True
2525
+ """
2526
+ S = self.ambient_space().coordinate_ring()
2527
+ phi = self._open_affine._nonsingular_model[2]
2528
+ i = self._open_affine_index
2529
+
2530
+ def m(f):
2531
+ pf = phi(f)
2532
+ num = S(pf.numerator()).homogenize(i)
2533
+ den = S(pf.denominator()).homogenize(i)
2534
+ return num / den * S.gen(i) ** (den.total_degree() - num.total_degree())
2535
+
2536
+ return m
2537
+
2538
+ @lazy_attribute
2539
+ def _singularities(self):
2540
+ """
2541
+ Return a list of the pairs of a singular closed point and the places above it.
2542
+
2543
+ TESTS::
2544
+
2545
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2546
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2547
+ sage: C._singularities
2548
+ [(Point (x, z), [Place (1/y, 1/y*z^5 + 4*y*z^4 + 1/y^2*z)])]
2549
+ sage: D = Curve(x)
2550
+ sage: D._singularities
2551
+ []
2552
+ """
2553
+ S = self.ambient_space().coordinate_ring()
2554
+ to_F = self._map_to_function_field
2555
+ sing = self.singular_subscheme() # singular locus
2556
+
2557
+ # for each affine patch, places on which the dehomogenized polynomials
2558
+ # defining the singular locus are collected.
2559
+ places = []
2560
+ for i in range(self.ngens()):
2561
+ denom = self._coordinate_functions[i]
2562
+ if denom:
2563
+ funcs = []
2564
+ for p in S._first_ngens(i) + sing.defining_polynomials():
2565
+ f = to_F(p)/denom**p.degree()
2566
+ if not f.is_zero():
2567
+ funcs.append(f)
2568
+
2569
+ if funcs:
2570
+ f = funcs.pop()
2571
+ pls = f.zeros()
2572
+ for f in funcs:
2573
+ pls = [p for p in pls if f.valuation(p) > 0]
2574
+
2575
+ places.extend(pls)
2576
+
2577
+ # compute closed points below the places lying on the singular locus,
2578
+ # and then collect places lying on each closed points
2579
+ points_and_places = []
2580
+ for place in places:
2581
+ p = self.place_to_closed_point(place)
2582
+ for q, places in points_and_places:
2583
+ if p == q:
2584
+ places.append(place)
2585
+ break
2586
+ else: # new singularity
2587
+ points_and_places.append((p, [place]))
2588
+
2589
+ return points_and_places
2590
+
2591
+ def singular_closed_points(self):
2592
+ """
2593
+ Return the singular closed points of the curve.
2594
+
2595
+ EXAMPLES::
2596
+
2597
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
2598
+ sage: C = Curve(y^2*z - x^3, P)
2599
+ sage: C.singular_closed_points()
2600
+ [Point (x, y)]
2601
+
2602
+ ::
2603
+
2604
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2605
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2606
+ sage: C.singular_closed_points()
2607
+ [Point (x, z)]
2608
+ """
2609
+ return [p[0] for p in self._singularities]
2610
+
2611
+ @cached_method
2612
+ def place_to_closed_point(self, place):
2613
+ """
2614
+ Return the closed point at the place.
2615
+
2616
+ INPUT:
2617
+
2618
+ - ``place`` -- a place of the function field of the curve
2619
+
2620
+ EXAMPLES::
2621
+
2622
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2623
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2624
+ sage: pls = C.places()
2625
+ sage: C.place_to_closed_point(pls[-1])
2626
+ Point (x - 2*z, y - 2*z)
2627
+ sage: pls2 = C.places(2)
2628
+ sage: C.place_to_closed_point(pls2[0])
2629
+ Point (y^2 + y*z + z^2, x + y)
2630
+ """
2631
+ F = self.function_field()
2632
+
2633
+ A = self.ambient_space()
2634
+ S = A.coordinate_ring().change_ring(order='degrevlex') # homogeneous coordinate ring
2635
+
2636
+ # prepare coordinates for the affine patch containing the place
2637
+ vals = [f.valuation(place) for f in self._coordinate_functions]
2638
+ imin = vals.index(min(vals))
2639
+ R = S.remove_var(S.gen(imin))
2640
+ hcoords = self._coordinate_functions
2641
+ coords = [hcoords[i]/hcoords[imin] for i in range(S.ngens()) if i != imin]
2642
+
2643
+ k, from_k, to_k = place.residue_field()
2644
+ V, from_V, to_V = k.vector_space(F.constant_base_field(), map=True)
2645
+
2646
+ # implement an FGLM-like algorithm
2647
+ e = [0 for i in range(R.ngens())]
2648
+ basis = [R.one()]
2649
+ basis_vecs = [to_V(k.one())] # represent as a vector
2650
+
2651
+ gens = []
2652
+ gens_lts = []
2653
+ terminate = False
2654
+ while True: # check FGLM termination condition
2655
+ # compute next exponent in degree reverse lexicographical order
2656
+ j = R.ngens() - 1
2657
+ while j > 0 and not e[j]:
2658
+ j -= 1
2659
+
2660
+ if not j: # j is zero
2661
+ if terminate:
2662
+ break
2663
+ terminate = True
2664
+ d = e[0]
2665
+ e[0] = 0
2666
+ e[-1] = d + 1
2667
+ else:
2668
+ e[j] -= 1
2669
+ e[j-1] += 1
2670
+
2671
+ m = R.monomial(*e)
2672
+ if any(g.divides(m) for g in gens_lts):
2673
+ continue
2674
+
2675
+ prod = 1
2676
+ for i in range(R.ngens()):
2677
+ prod *= coords[i]**e[i]
2678
+ vec = to_V(to_k(prod)) # represent as a vector
2679
+ mat = matrix(basis_vecs)
2680
+ try:
2681
+ s = mat.solve_left(vec)
2682
+ except ValueError: # no solution
2683
+ basis.append(m)
2684
+ basis_vecs.append(vec)
2685
+ terminate = False
2686
+ continue
2687
+
2688
+ gens.append(m - sum([s[i] * basis[i] for i in range(len(basis))]))
2689
+ gens_lts.append(m)
2690
+
2691
+ gens_homo = [S(g).homogenize(imin) for g in gens]
2692
+ prime = S.ideal(gens_homo).groebner_basis().ideal()
2693
+
2694
+ return self._closed_point(self, prime, len(basis))
2695
+
2696
+ def places_on(self, point):
2697
+ """
2698
+ Return the places on the closed point.
2699
+
2700
+ INPUT:
2701
+
2702
+ - ``point`` -- a closed point of the curve
2703
+
2704
+ EXAMPLES::
2705
+
2706
+ sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
2707
+ sage: C = Curve(x*y*z^4 - x^6 - y^6)
2708
+ sage: C.singular_closed_points()
2709
+ [Point (x, y)]
2710
+ sage: p, = _
2711
+ sage: C.places_on(p)
2712
+ [Place (1/y, 1/y^2*z, 1/y^3*z^2, 1/y^4*z^3),
2713
+ Place (y, y*z, y*z^2, y*z^3)]
2714
+ sage: pl1, pl2 =_
2715
+ sage: C.place_to_closed_point(pl1)
2716
+ Point (x, y)
2717
+ sage: C.place_to_closed_point(pl2)
2718
+ Point (x, y)
2719
+
2720
+ ::
2721
+
2722
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2723
+ sage: C = Curve(x^2*z - y^3)
2724
+ sage: [C.places_on(p) for p in C.closed_points()]
2725
+ [[Place (1/y)],
2726
+ [Place (y)],
2727
+ [Place (y + 1)],
2728
+ [Place (y + 2)],
2729
+ [Place (y + 3)],
2730
+ [Place (y + 4)]]
2731
+ """
2732
+ prime = point.prime_ideal()
2733
+
2734
+ # determine the affine patch where the point lies
2735
+ S = prime.ring()
2736
+ for i in range(S.ngens()):
2737
+ if S.gen(i) not in prime:
2738
+ break
2739
+
2740
+ phi = self._map_to_function_field
2741
+ denom = self._coordinate_functions[i]
2742
+ gs = [phi(f)/denom**f.degree() for f in prime.gens()]
2743
+ fs = [g for g in gs if not g.is_zero()]
2744
+ f = fs.pop()
2745
+ places = []
2746
+ for p in f.zeros():
2747
+ if all(f.valuation(p) > 0 for f in fs):
2748
+ places.append(p)
2749
+ return places
2750
+
2751
+ def jacobian(self, model, base_div=None):
2752
+ """
2753
+ Return the Jacobian of this curve.
2754
+
2755
+ INPUT:
2756
+
2757
+ - ``model`` -- model to use for arithmetic
2758
+
2759
+ - ``base_div`` -- an effective divisor for the model
2760
+
2761
+ The degree of the base divisor should satisfy certain degree condition
2762
+ corresponding to the model used. The following table lists these
2763
+ conditions. Let `g` be the geometric genus of the curve.
2764
+
2765
+ - ``hess``: ideal-based arithmetic; requires base divisor of degree `g`
2766
+
2767
+ - ``km_large``: Khuri-Makdisi's large model; requires base divisor of
2768
+ degree at least `2g + 1`
2769
+
2770
+ - ``km_medium``: Khuri-Makdisi's medium model; requires base divisor of
2771
+ degree at least `2g + 1`
2772
+
2773
+ - ``km_small``: Khuri-Makdisi's small model requires base divisor of
2774
+ degree at least `g + 1`
2775
+
2776
+ We assume the curve (or its function field) has a rational place. If a
2777
+ base divisor is not given, one is chosen using a rational place.
2778
+
2779
+ EXAMPLES::
2780
+
2781
+ sage: A.<x,y> = AffineSpace(GF(5), 2)
2782
+ sage: C = Curve(y^2*(x^3 - 1) - (x^3 - 2)).projective_closure()
2783
+ sage: J = C.jacobian(model='hess'); J
2784
+ Jacobian of Projective Plane Curve over Finite Field of size 5
2785
+ defined by 2*x0^5 - x0^2*x1^3 - x0^3*x2^2 + x1^3*x2^2 (Hess model)
2786
+ sage: J.base_divisor().degree() == C.genus()
2787
+ True
2788
+ """
2789
+ return self.function_field().jacobian(model, base_div, curve=self)
2790
+
2791
+
2792
+ class IntegralProjectiveCurve_finite_field(IntegralProjectiveCurve):
2793
+ """
2794
+ Integral projective curve over a finite field.
2795
+
2796
+ INPUT:
2797
+
2798
+ - ``A`` -- an ambient projective space
2799
+
2800
+ - ``f`` -- homogeneous polynomials defining the curve
2801
+
2802
+ EXAMPLES::
2803
+
2804
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2805
+ sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
2806
+ sage: C.function_field()
2807
+ Function field in z defined by z^8 + 4*y^2*z^7 + 1
2808
+ sage: C.closed_points()
2809
+ [Point (x, z),
2810
+ Point (x, y),
2811
+ Point (x - 2*z, y + 2*z),
2812
+ Point (x + 2*z, y + z),
2813
+ Point (x + 2*z, y - z),
2814
+ Point (x - 2*z, y - 2*z)]
2815
+ """
2816
+ _point = IntegralProjectiveCurvePoint_finite_field
2817
+
2818
+ def places(self, degree=1):
2819
+ """
2820
+ Return all places on the curve of the ``degree``.
2821
+
2822
+ INPUT:
2823
+
2824
+ - ``degree`` -- positive integer
2825
+
2826
+ EXAMPLES::
2827
+
2828
+ sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
2829
+ sage: C = Curve(x^2*z - y^3)
2830
+ sage: C.places()
2831
+ [Place (1/y),
2832
+ Place (y),
2833
+ Place (y + 1),
2834
+ Place (y + 2),
2835
+ Place (y + 3),
2836
+ Place (y + 4)]
2837
+ sage: C.places(2)
2838
+ [Place (y^2 + 2),
2839
+ Place (y^2 + 3),
2840
+ Place (y^2 + y + 1),
2841
+ Place (y^2 + y + 2),
2842
+ Place (y^2 + 2*y + 3),
2843
+ Place (y^2 + 2*y + 4),
2844
+ Place (y^2 + 3*y + 3),
2845
+ Place (y^2 + 3*y + 4),
2846
+ Place (y^2 + 4*y + 1),
2847
+ Place (y^2 + 4*y + 2)]
2848
+ """
2849
+ F = self.function_field()
2850
+ return F.places(degree)
2851
+
2852
+ def closed_points(self, degree=1):
2853
+ """
2854
+ Return a list of closed points of ``degree`` of the curve.
2855
+
2856
+ INPUT:
2857
+
2858
+ - ``degree`` -- positive integer
2859
+
2860
+ EXAMPLES::
2861
+
2862
+ sage: # needs sage.rings.finite_rings
2863
+ sage: A.<x,y> = AffineSpace(GF(9),2)
2864
+ sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x-2)
2865
+ sage: Cp = C.projective_closure()
2866
+ sage: Cp.closed_points()
2867
+ [Point (x0, x1),
2868
+ Point (x0 + (-z2 - 1)*x2, x1),
2869
+ Point (x0 + (z2 + 1)*x2, x1),
2870
+ Point (x0 + z2*x2, x1 + (z2 - 1)*x2),
2871
+ Point (x0 + (-z2)*x2, x1 + (-z2 + 1)*x2),
2872
+ Point (x0 + (-z2 - 1)*x2, x1 + (-z2 - 1)*x2),
2873
+ Point (x0 + (z2 + 1)*x2, x1 + (z2 + 1)*x2),
2874
+ Point (x0 + (z2 - 1)*x2, x1 + z2*x2),
2875
+ Point (x0 + (-z2 + 1)*x2, x1 + (-z2)*x2),
2876
+ Point (x0 + x2, x1 - x2),
2877
+ Point (x0 - x2, x1 + x2)]
2878
+ """
2879
+ F = self.function_field()
2880
+ places_above = F.places(degree)
2881
+
2882
+ points = []
2883
+
2884
+ # consider singular points
2885
+ for p in self.singular_closed_points():
2886
+ if p.degree() == degree:
2887
+ points.append(p)
2888
+ for place in p.places():
2889
+ if place.degree() == degree:
2890
+ places_above.remove(place)
2891
+
2892
+ for place in places_above:
2893
+ p = self.place_to_closed_point(place)
2894
+ assert p.degree() == degree # sanity check
2895
+ points.append(p)
2896
+
2897
+ return points
2898
+
2899
+ @cached_method
2900
+ def L_polynomial(self, name='t'):
2901
+ """
2902
+ Return the L-polynomial of this possibly singular curve.
2903
+
2904
+ INPUT:
2905
+
2906
+ - ``name`` -- (default: ``t``) name of the variable of the polynomial
2907
+
2908
+ EXAMPLES::
2909
+
2910
+ sage: A.<x,y> = AffineSpace(GF(3), 2)
2911
+ sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
2912
+ sage: Cbar = C.projective_closure()
2913
+ sage: Cbar.L_polynomial()
2914
+ 9*t^4 - 3*t^3 + t^2 - t + 1
2915
+ """
2916
+ F = self.function_field()
2917
+ L = F.L_polynomial()
2918
+
2919
+ R = L.parent()
2920
+ T = R.gen()
2921
+
2922
+ f = R.one()
2923
+ for p, places in self._singularities:
2924
+ for place in places:
2925
+ f = f * (1 - T**place.degree())
2926
+ f = f // (1 - T**p.degree())
2927
+
2928
+ return L * f
2929
+
2930
+ def number_of_rational_points(self, r=1):
2931
+ """
2932
+ Return the number of rational points of the curve with
2933
+ constant field extended by degree ``r``.
2934
+
2935
+ INPUT:
2936
+
2937
+ - ``r`` -- positive integer (default: `1`)
2938
+
2939
+ EXAMPLES::
2940
+
2941
+ sage: # needs sage.rings.finite_rings
2942
+ sage: A.<x,y> = AffineSpace(GF(3), 2)
2943
+ sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
2944
+ sage: Cbar = C.projective_closure()
2945
+ sage: Cbar.number_of_rational_points(3)
2946
+ 21
2947
+ sage: D = Cbar.change_ring(Cbar.base_ring().extension(3))
2948
+ sage: D.base_ring()
2949
+ Finite Field in z3 of size 3^3
2950
+ sage: len(D.closed_points())
2951
+ 21
2952
+ """
2953
+ q = self.base_ring().order()
2954
+ L = self.L_polynomial()
2955
+ Lp = L.derivative()
2956
+
2957
+ R = IntegerRing()[[L.parent().gen()]] # power series ring
2958
+ L = R(L)
2959
+ Lp = R(Lp)
2960
+
2961
+ f = R(Lp / L, prec=r)
2962
+ n = f[r-1] + q**r + 1
2963
+
2964
+ return n
2965
+
2966
+
2967
+ class IntegralProjectivePlaneCurve(IntegralProjectiveCurve, ProjectivePlaneCurve_field):
2968
+ _point = IntegralProjectivePlaneCurvePoint
2969
+
2970
+
2971
+ class IntegralProjectivePlaneCurve_finite_field(IntegralProjectiveCurve_finite_field,
2972
+ ProjectivePlaneCurve_finite_field):
2973
+ """
2974
+ Integral projective plane curve over a finite field.
2975
+
2976
+ INPUT:
2977
+
2978
+ - ``A`` -- ambient projective plane
2979
+
2980
+ - ``f`` -- a homogeneous equation that defines the curve
2981
+
2982
+ EXAMPLES::
2983
+
2984
+ sage: # needs sage.rings.finite_rings
2985
+ sage: A.<x,y> = AffineSpace(GF(9), 2)
2986
+ sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
2987
+ sage: Cb = C.projective_closure()
2988
+ sage: Cb.singular_closed_points()
2989
+ [Point (x0, x1)]
2990
+ sage: Cb.function_field()
2991
+ Function field in y defined by y^2 + 2*x^5 + 2*x^4 + x^3 + x + 1
2992
+ """
2993
+ _point = IntegralProjectivePlaneCurvePoint_finite_field
2994
+
2995
+
2996
+ def Hasse_bounds(q, genus=1):
2997
+ r"""
2998
+ Return the Hasse-Weil bounds for the cardinality of a nonsingular
2999
+ curve defined over `\GF{q}` of given ``genus``.
3000
+
3001
+ INPUT:
3002
+
3003
+ - ``q`` -- integer; a prime power
3004
+
3005
+ - ``genus`` -- nonnegative integer (default: 1)
3006
+
3007
+ OUTPUT: tuple; the Hasse bounds (lb,ub) for the cardinality of a curve of
3008
+ genus ``genus`` defined over `\GF{q}`
3009
+
3010
+ EXAMPLES::
3011
+
3012
+ sage: Hasse_bounds(2)
3013
+ (1, 5)
3014
+ sage: Hasse_bounds(next_prime(10^30)) # needs sage.libs.pari
3015
+ (999999999999998000000000000058, 1000000000000002000000000000058)
3016
+ """
3017
+ if genus == 1:
3018
+ rq = (4*q).isqrt()
3019
+ else:
3020
+ rq = (4*(genus**2)*q).isqrt()
3021
+ return (q+1-rq, q+1+rq)
3022
+
3023
+
3024
+ # Fix pickles from changing class names and plane_curves folder name
3025
+ register_unpickle_override('sage.schemes.plane_curves.projective_curve',
3026
+ 'ProjectiveCurve_generic', ProjectivePlaneCurve)