passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (311) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
  7. passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
  8. passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
  9. passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +745 -0
  29. sage/lfunctions/pari.py +818 -0
  30. sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5135 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
  34. sage/modular/abvar/abvar_newform.py +244 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +186 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +720 -0
  40. sage/modular/abvar/homspace.py +998 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +740 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1402 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +363 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +653 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1469 -0
  57. sage/modular/arithgroup/congroup_generic.py +628 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +267 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1066 -0
  61. sage/modular/arithgroup/tests.py +418 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3753 -0
  64. sage/modular/btquotients/pautomorphicform.py +2570 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1109 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +569 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1065 -0
  77. sage/modular/hecke/algebra.py +746 -0
  78. sage/modular/hecke/all.py +20 -0
  79. sage/modular/hecke/ambient_module.py +1019 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +325 -0
  82. sage/modular/hecke/hecke_operator.py +780 -0
  83. sage/modular/hecke/homspace.py +206 -0
  84. sage/modular/hecke/module.py +1767 -0
  85. sage/modular/hecke/morphism.py +174 -0
  86. sage/modular/hecke/submodule.py +989 -0
  87. sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2017 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1071 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +815 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +124 -0
  101. sage/modular/modform/ambient_g1.py +204 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +505 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4131 -0
  108. sage/modular/modform/find_generators.py +59 -0
  109. sage/modular/modform/half_integral.py +154 -0
  110. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  111. sage/modular/modform/j_invariant.py +47 -0
  112. sage/modular/modform/l_series_gross_zagier.py +133 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
  114. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  115. sage/modular/modform/notes.py +45 -0
  116. sage/modular/modform/numerical.py +514 -0
  117. sage/modular/modform/periods.py +14 -0
  118. sage/modular/modform/ring.py +1257 -0
  119. sage/modular/modform/space.py +1860 -0
  120. sage/modular/modform/submodule.py +118 -0
  121. sage/modular/modform/tests.py +64 -0
  122. sage/modular/modform/theta.py +110 -0
  123. sage/modular/modform/vm_basis.py +381 -0
  124. sage/modular/modform/weight1.py +220 -0
  125. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  126. sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
  127. sage/modular/modform_hecketriangle/all.py +30 -0
  128. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  129. sage/modular/modform_hecketriangle/constructor.py +416 -0
  130. sage/modular/modform_hecketriangle/element.py +351 -0
  131. sage/modular/modform_hecketriangle/functors.py +752 -0
  132. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  133. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
  135. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
  136. sage/modular/modform_hecketriangle/readme.py +1214 -0
  137. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  138. sage/modular/modform_hecketriangle/space.py +1037 -0
  139. sage/modular/modform_hecketriangle/subspace.py +423 -0
  140. sage/modular/modsym/all.py +17 -0
  141. sage/modular/modsym/ambient.py +3846 -0
  142. sage/modular/modsym/boundary.py +1420 -0
  143. sage/modular/modsym/element.py +336 -0
  144. sage/modular/modsym/g1list.py +178 -0
  145. sage/modular/modsym/ghlist.py +182 -0
  146. sage/modular/modsym/hecke_operator.py +73 -0
  147. sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
  148. sage/modular/modsym/manin_symbol.pxd +5 -0
  149. sage/modular/modsym/manin_symbol.pyx +497 -0
  150. sage/modular/modsym/manin_symbol_list.py +1295 -0
  151. sage/modular/modsym/modsym.py +400 -0
  152. sage/modular/modsym/modular_symbols.py +384 -0
  153. sage/modular/modsym/p1list_nf.py +1241 -0
  154. sage/modular/modsym/relation_matrix.py +591 -0
  155. sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
  156. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  157. sage/modular/modsym/space.py +2468 -0
  158. sage/modular/modsym/subspace.py +455 -0
  159. sage/modular/modsym/tests.py +375 -0
  160. sage/modular/multiple_zeta.py +2632 -0
  161. sage/modular/multiple_zeta_F_algebra.py +786 -0
  162. sage/modular/overconvergent/all.py +6 -0
  163. sage/modular/overconvergent/genus0.py +1878 -0
  164. sage/modular/overconvergent/hecke_series.py +1187 -0
  165. sage/modular/overconvergent/weightspace.py +778 -0
  166. sage/modular/pollack_stevens/all.py +4 -0
  167. sage/modular/pollack_stevens/distributions.py +874 -0
  168. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  169. sage/modular/pollack_stevens/manin_map.py +859 -0
  170. sage/modular/pollack_stevens/modsym.py +1593 -0
  171. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  172. sage/modular/pollack_stevens/sigma0.py +534 -0
  173. sage/modular/pollack_stevens/space.py +1076 -0
  174. sage/modular/quasimodform/all.py +3 -0
  175. sage/modular/quasimodform/element.py +845 -0
  176. sage/modular/quasimodform/ring.py +828 -0
  177. sage/modular/quatalg/all.py +3 -0
  178. sage/modular/quatalg/brandt.py +1642 -0
  179. sage/modular/ssmod/all.py +8 -0
  180. sage/modular/ssmod/ssmod.py +827 -0
  181. sage/rings/all__sagemath_schemes.py +1 -0
  182. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  183. sage/rings/polynomial/binary_form_reduce.py +585 -0
  184. sage/schemes/all.py +41 -0
  185. sage/schemes/berkovich/all.py +6 -0
  186. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  187. sage/schemes/berkovich/berkovich_space.py +748 -0
  188. sage/schemes/curves/affine_curve.py +2928 -0
  189. sage/schemes/curves/all.py +33 -0
  190. sage/schemes/curves/closed_point.py +434 -0
  191. sage/schemes/curves/constructor.py +381 -0
  192. sage/schemes/curves/curve.py +542 -0
  193. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  194. sage/schemes/curves/point.py +463 -0
  195. sage/schemes/curves/projective_curve.py +3026 -0
  196. sage/schemes/curves/zariski_vankampen.py +1932 -0
  197. sage/schemes/cyclic_covers/all.py +2 -0
  198. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  199. sage/schemes/cyclic_covers/constructor.py +137 -0
  200. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  201. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  202. sage/schemes/elliptic_curves/BSD.py +1036 -0
  203. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  204. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  205. sage/schemes/elliptic_curves/all.py +49 -0
  206. sage/schemes/elliptic_curves/cardinality.py +609 -0
  207. sage/schemes/elliptic_curves/cm.py +1102 -0
  208. sage/schemes/elliptic_curves/constructor.py +1552 -0
  209. sage/schemes/elliptic_curves/ec_database.py +175 -0
  210. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
  211. sage/schemes/elliptic_curves/ell_egros.py +459 -0
  212. sage/schemes/elliptic_curves/ell_field.py +2836 -0
  213. sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
  214. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  215. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  216. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  217. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  218. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  219. sage/schemes/elliptic_curves/ell_point.py +4787 -0
  220. sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
  221. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  222. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  223. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  224. sage/schemes/elliptic_curves/formal_group.py +760 -0
  225. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  226. sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
  227. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  228. sage/schemes/elliptic_curves/heegner.py +7335 -0
  229. sage/schemes/elliptic_curves/height.py +2109 -0
  230. sage/schemes/elliptic_curves/hom.py +1406 -0
  231. sage/schemes/elliptic_curves/hom_composite.py +934 -0
  232. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  233. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  234. sage/schemes/elliptic_curves/hom_sum.py +682 -0
  235. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  236. sage/schemes/elliptic_curves/homset.py +271 -0
  237. sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
  238. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  239. sage/schemes/elliptic_curves/jacobian.py +237 -0
  240. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  241. sage/schemes/elliptic_curves/kraus.py +1014 -0
  242. sage/schemes/elliptic_curves/lseries_ell.py +943 -0
  243. sage/schemes/elliptic_curves/mod5family.py +105 -0
  244. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  245. sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
  246. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  247. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  248. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  249. sage/schemes/elliptic_curves/padics.py +1816 -0
  250. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  251. sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
  252. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  253. sage/schemes/elliptic_curves/saturation.py +715 -0
  254. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  255. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  256. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  257. sage/schemes/hyperelliptic_curves/all.py +6 -0
  258. sage/schemes/hyperelliptic_curves/constructor.py +291 -0
  259. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
  260. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  261. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  264. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  265. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
  266. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  267. sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
  270. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  271. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  272. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
  273. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  274. sage/schemes/jacobians/all.py +2 -0
  275. sage/schemes/overview.py +161 -0
  276. sage/schemes/plane_conics/all.py +22 -0
  277. sage/schemes/plane_conics/con_field.py +1296 -0
  278. sage/schemes/plane_conics/con_finite_field.py +158 -0
  279. sage/schemes/plane_conics/con_number_field.py +456 -0
  280. sage/schemes/plane_conics/con_rational_field.py +406 -0
  281. sage/schemes/plane_conics/con_rational_function_field.py +580 -0
  282. sage/schemes/plane_conics/constructor.py +249 -0
  283. sage/schemes/plane_quartics/all.py +2 -0
  284. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  285. sage/schemes/plane_quartics/quartic_generic.py +73 -0
  286. sage/schemes/riemann_surfaces/all.py +1 -0
  287. sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
  288. sage_wheels/share/cremona/cremona_mini.db +0 -0
  289. sage_wheels/share/ellcurves/rank0 +30427 -0
  290. sage_wheels/share/ellcurves/rank1 +31871 -0
  291. sage_wheels/share/ellcurves/rank10 +6 -0
  292. sage_wheels/share/ellcurves/rank11 +6 -0
  293. sage_wheels/share/ellcurves/rank12 +1 -0
  294. sage_wheels/share/ellcurves/rank14 +1 -0
  295. sage_wheels/share/ellcurves/rank15 +1 -0
  296. sage_wheels/share/ellcurves/rank17 +1 -0
  297. sage_wheels/share/ellcurves/rank19 +1 -0
  298. sage_wheels/share/ellcurves/rank2 +2388 -0
  299. sage_wheels/share/ellcurves/rank20 +1 -0
  300. sage_wheels/share/ellcurves/rank21 +1 -0
  301. sage_wheels/share/ellcurves/rank22 +1 -0
  302. sage_wheels/share/ellcurves/rank23 +1 -0
  303. sage_wheels/share/ellcurves/rank24 +1 -0
  304. sage_wheels/share/ellcurves/rank28 +1 -0
  305. sage_wheels/share/ellcurves/rank3 +836 -0
  306. sage_wheels/share/ellcurves/rank4 +10 -0
  307. sage_wheels/share/ellcurves/rank5 +5 -0
  308. sage_wheels/share/ellcurves/rank6 +5 -0
  309. sage_wheels/share/ellcurves/rank7 +5 -0
  310. sage_wheels/share/ellcurves/rank8 +6 -0
  311. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,740 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.flint sage.libs.pari
3
+ """
4
+ Torsion subgroups of modular abelian varieties
5
+
6
+ Sage can compute information about the structure of the torsion
7
+ subgroup of a modular abelian variety. Sage computes a multiple of
8
+ the order by computing the greatest common divisor of the orders of
9
+ the torsion subgroup of the reduction of the abelian variety modulo
10
+ p for various primes p. Sage computes a divisor of the order by
11
+ computing the rational cuspidal subgroup. When these two bounds
12
+ agree (which is often the case), we determine the exact structure
13
+ of the torsion subgroup.
14
+
15
+ AUTHORS:
16
+
17
+ - William Stein (2007-03)
18
+
19
+ EXAMPLES: First we consider `J_0(50)` where everything
20
+ works out nicely::
21
+
22
+ sage: J = J0(50)
23
+ sage: T = J.rational_torsion_subgroup(); T
24
+ Torsion subgroup of Abelian variety J0(50) of dimension 2
25
+ sage: T.multiple_of_order()
26
+ 15
27
+ sage: T.divisor_of_order()
28
+ 15
29
+ sage: T.gens()
30
+ ([(1/15, 3/5, 2/5, 14/15)],)
31
+ sage: T.invariants()
32
+ [15]
33
+ sage: d = J.decomposition(); d
34
+ [Simple abelian subvariety 50a(1,50) of dimension 1 of J0(50),
35
+ Simple abelian subvariety 50b(1,50) of dimension 1 of J0(50)]
36
+ sage: d[0].rational_torsion_subgroup().order() # needs database_cremona_mini_ellcurve
37
+ 3
38
+ sage: d[1].rational_torsion_subgroup().order() # needs database_cremona_mini_ellcurve
39
+ 5
40
+
41
+ Next we make a table of the upper and lower bounds for each new
42
+ factor.
43
+
44
+ ::
45
+
46
+ sage: # needs database_cremona_mini_ellcurve
47
+ sage: for N in range(1,38):
48
+ ....: for A in J0(N).new_subvariety().decomposition():
49
+ ....: T = A.rational_torsion_subgroup()
50
+ ....: print('%-5s%-5s%-5s%-5s'%(N, A.dimension(), T.divisor_of_order(), T.multiple_of_order()))
51
+ 11 1 5 5
52
+ 14 1 6 6
53
+ 15 1 8 8
54
+ 17 1 4 4
55
+ 19 1 3 3
56
+ 20 1 6 6
57
+ 21 1 8 8
58
+ 23 2 11 11
59
+ 24 1 8 8
60
+ 26 1 3 3
61
+ 26 1 7 7
62
+ 27 1 3 3
63
+ 29 2 7 7
64
+ 30 1 6 6
65
+ 31 2 5 5
66
+ 32 1 4 4
67
+ 33 1 4 4
68
+ 34 1 6 6
69
+ 35 1 3 3
70
+ 35 2 16 16
71
+ 36 1 6 6
72
+ 37 1 1 1
73
+ 37 1 3 3
74
+
75
+ TESTS::
76
+
77
+ sage: T = J0(54).rational_torsion_subgroup()
78
+ sage: loads(dumps(T)) == T
79
+ True
80
+ """
81
+
82
+ # ****************************************************************************
83
+ # Copyright (C) 2007 William Stein <wstein@gmail.com>
84
+ #
85
+ # This program is free software: you can redistribute it and/or modify
86
+ # it under the terms of the GNU General Public License as published by
87
+ # the Free Software Foundation, either version 2 of the License, or
88
+ # (at your option) any later version.
89
+ # https://www.gnu.org/licenses/
90
+ # ****************************************************************************
91
+
92
+ from sage.arith.misc import divisors, gcd
93
+ from sage.misc.misc_c import prod
94
+ from sage.modular.abvar.torsion_point import TorsionPoint
95
+ from sage.modular.arithgroup.all import Gamma0_class, Gamma1_class
96
+ from sage.modular.dirichlet import DirichletGroup
97
+ from sage.modules.module import Module
98
+ from sage.rings.fast_arith import prime_range
99
+ from sage.rings.integer_ring import ZZ
100
+ from sage.rings.rational_field import QQ
101
+ from sage.sets.primes import Primes
102
+ from sage.structure.richcmp import richcmp_method, richcmp
103
+
104
+ from .finite_subgroup import FiniteSubgroup
105
+
106
+
107
+ @richcmp_method
108
+ class RationalTorsionSubgroup(FiniteSubgroup):
109
+ """
110
+ The torsion subgroup of a modular abelian variety.
111
+ """
112
+ def __init__(self, abvar):
113
+ """
114
+ Create the torsion subgroup.
115
+
116
+ INPUT:
117
+
118
+ - ``abvar`` -- a modular abelian variety
119
+
120
+ EXAMPLES::
121
+
122
+ sage: T = J0(14).rational_torsion_subgroup(); T
123
+ Torsion subgroup of Abelian variety J0(14) of dimension 1
124
+ sage: type(T)
125
+ <class 'sage.modular.abvar.torsion_subgroup.RationalTorsionSubgroup_with_category'>
126
+ """
127
+ FiniteSubgroup.__init__(self, abvar)
128
+
129
+ def _repr_(self):
130
+ """
131
+ Return string representation of this torsion subgroup.
132
+
133
+ EXAMPLES::
134
+
135
+ sage: T = J1(13).rational_torsion_subgroup(); T
136
+ Torsion subgroup of Abelian variety J1(13) of dimension 2
137
+ sage: T._repr_()
138
+ 'Torsion subgroup of Abelian variety J1(13) of dimension 2'
139
+ """
140
+ return "Torsion subgroup of %s" % self.abelian_variety()
141
+
142
+ def __richcmp__(self, other, op):
143
+ """
144
+ Compare torsion subgroups.
145
+
146
+ INPUT:
147
+
148
+ - ``other`` -- an object
149
+
150
+ If other is a torsion subgroup, the abelian varieties are compared.
151
+ Otherwise, the generic behavior for finite abelian variety
152
+ subgroups is used.
153
+
154
+ EXAMPLES::
155
+
156
+ sage: G = J0(11).rational_torsion_subgroup(); H = J0(13).rational_torsion_subgroup()
157
+ sage: G == G
158
+ True
159
+ sage: G < H # since 11 < 13
160
+ True
161
+ sage: G > H
162
+ False
163
+ """
164
+ if isinstance(other, RationalTorsionSubgroup):
165
+ return richcmp(self.abelian_variety(), other.abelian_variety(), op)
166
+ return FiniteSubgroup.__richcmp__(self, other, op)
167
+
168
+ def order(self, proof=True):
169
+ """
170
+ Return the order of the torsion subgroup of this modular abelian
171
+ variety.
172
+
173
+ This function may fail if the multiple obtained by counting points
174
+ modulo `p` exceeds the divisor obtained from the rational cuspidal
175
+ subgroup.
176
+
177
+ The computation of the rational torsion order of J1(p) is conjectural
178
+ and will only be used if ``proof=False``. See Section 6.2.3 of [CES2003]_.
179
+
180
+ INPUT:
181
+
182
+ - ``proof`` -- boolean (default: ``True``)
183
+
184
+ OUTPUT: the order of this torsion subgroup
185
+
186
+ EXAMPLES::
187
+
188
+ sage: A = J0(11)
189
+ sage: A.rational_torsion_subgroup().order()
190
+ 5
191
+ sage: A = J0(23)
192
+ sage: A.rational_torsion_subgroup().order()
193
+ 11
194
+ sage: T = J0(37)[1].rational_torsion_subgroup()
195
+ sage: T.order() # needs database_cremona_mini_ellcurve
196
+ 3
197
+
198
+ sage: J = J1(13)
199
+ sage: J.rational_torsion_subgroup().order()
200
+ 19
201
+
202
+ Sometimes the order can only be computed with ``proof=False``. ::
203
+
204
+ sage: J = J1(23)
205
+ sage: J.rational_torsion_subgroup().order()
206
+ Traceback (most recent call last):
207
+ ...
208
+ RuntimeError: Unable to compute order of torsion subgroup
209
+ (it is in [408991, 9406793])
210
+
211
+ sage: J.rational_torsion_subgroup().order(proof=False)
212
+ 408991
213
+ """
214
+ O = self.possible_orders(proof=proof)
215
+ if len(O) == 1:
216
+ n = O[0]
217
+ self._order = n
218
+ return n
219
+ raise RuntimeError("Unable to compute order of torsion subgroup (it is in %s)" % O)
220
+
221
+ def lattice(self):
222
+ """
223
+ Return lattice that defines this torsion subgroup, if possible.
224
+
225
+ .. warning::
226
+
227
+ There is no known algorithm in general to compute the
228
+ rational torsion subgroup. Use rational_cusp_group to
229
+ obtain a subgroup of the rational torsion subgroup in
230
+ general.
231
+
232
+ EXAMPLES::
233
+
234
+ sage: J0(11).rational_torsion_subgroup().lattice()
235
+ Free module of degree 2 and rank 2 over Integer Ring
236
+ Echelon basis matrix:
237
+ [ 1 0]
238
+ [ 0 1/5]
239
+
240
+ The following fails because in fact I know of no (reasonable)
241
+ algorithm to provably compute the torsion subgroup in general.
242
+
243
+ ::
244
+
245
+ sage: T = J0(33).rational_torsion_subgroup()
246
+ sage: T.lattice()
247
+ Traceback (most recent call last):
248
+ ...
249
+ NotImplementedError: unable to compute the rational torsion subgroup
250
+ in this case (there is no known general algorithm yet)
251
+
252
+ The problem is that the multiple of the order obtained by counting
253
+ points over finite fields is twice the divisor of the order got
254
+ from the rational cuspidal subgroup.
255
+
256
+ ::
257
+
258
+ sage: T.multiple_of_order(30)
259
+ 200
260
+ sage: J0(33).rational_cusp_subgroup().order()
261
+ 100
262
+ """
263
+ A = self.abelian_variety()
264
+ if A.dimension() == 0:
265
+ return []
266
+ R = A.rational_cusp_subgroup()
267
+ if R.order() == self.multiple_of_order():
268
+ return R.lattice()
269
+ else:
270
+ raise NotImplementedError("unable to compute the rational torsion subgroup in this case (there is no known general algorithm yet)")
271
+
272
+ def possible_orders(self, proof=True):
273
+ """
274
+ Return the possible orders of this torsion subgroup. Outside of special
275
+ cases, this is done by computing a divisor and multiple of the order.
276
+
277
+ INPUT:
278
+
279
+ - ``proof`` -- boolean (default: ``True``)
280
+
281
+ OUTPUT: an array of positive integers
282
+
283
+ The computation of the rational torsion order of J1(p) is conjectural
284
+ and will only be used if ``proof=False``. See Section 6.2.3 of [CES2003]_.
285
+
286
+ EXAMPLES::
287
+
288
+ sage: J0(11).rational_torsion_subgroup().possible_orders()
289
+ [5]
290
+ sage: J0(33).rational_torsion_subgroup().possible_orders()
291
+ [100, 200]
292
+
293
+ sage: J1(13).rational_torsion_subgroup().possible_orders()
294
+ [19]
295
+ sage: J1(16).rational_torsion_subgroup().possible_orders()
296
+ [1, 2, 4, 5, 10, 20]
297
+ """
298
+ try:
299
+ if proof:
300
+ return self._possible_orders
301
+ else:
302
+ return self._possible_orders_proof_false
303
+ except AttributeError:
304
+ pass
305
+
306
+ A = self.abelian_variety()
307
+ N = A.level()
308
+ # return the order of the cuspidal subgroup in the J0(p) case
309
+ if A.is_J0() and N.is_prime():
310
+ self._possible_orders = [QQ((A.level()-1)/12).numerator()]
311
+ self._possible_orders_proof_false = self._possible_orders
312
+ return self._possible_orders
313
+
314
+ # the elliptic curve case
315
+ if A.dimension() == 1:
316
+ self._possible_orders = [A.elliptic_curve().torsion_order()]
317
+ self._possible_orders_proof_false = self._possible_orders
318
+ return self._possible_orders
319
+
320
+ # the conjectural J1(p) case
321
+ if not proof and A.is_J1() and N.is_prime():
322
+ epsilons = [epsilon for epsilon in DirichletGroup(N)
323
+ if not epsilon.is_trivial() and epsilon.is_even()]
324
+ bernoullis = [epsilon.bernoulli(2) for epsilon in epsilons]
325
+ self._possible_orders_proof_false = [ZZ(N/(2**(N-3))*prod(bernoullis))]
326
+ return self._possible_orders_proof_false
327
+
328
+ u = self.multiple_of_order()
329
+ l = self.divisor_of_order()
330
+
331
+ assert u % l == 0
332
+ O = [l * d for d in divisors(u//l)]
333
+ self._possible_orders = O
334
+ if u == l:
335
+ self._possible_orders_proof_false = O
336
+ return O
337
+
338
+ def divisor_of_order(self):
339
+ """
340
+ Return a divisor of the order of this torsion subgroup of a modular
341
+ abelian variety.
342
+
343
+ OUTPUT: a divisor of this torsion subgroup
344
+
345
+ EXAMPLES::
346
+
347
+ sage: t = J0(37)[1].rational_torsion_subgroup()
348
+ sage: t.divisor_of_order() # needs database_cremona_mini_ellcurve
349
+ 3
350
+
351
+ sage: J = J1(19)
352
+ sage: J.rational_torsion_subgroup().divisor_of_order() # needs database_cremona_mini_ellcurve
353
+ 4383
354
+
355
+ sage: # needs database_cremona_mini_ellcurve
356
+ sage: J = J0(45)
357
+ sage: J.rational_cusp_subgroup().order()
358
+ 32
359
+ sage: J.rational_cuspidal_subgroup().order()
360
+ 64
361
+ sage: J.rational_torsion_subgroup().divisor_of_order()
362
+ 64
363
+ """
364
+ try:
365
+ return self._divisor_of_order
366
+ except AttributeError:
367
+ pass
368
+
369
+ A = self.abelian_variety()
370
+ N = A.level()
371
+
372
+ if A.dimension() == 0:
373
+ self._divisor_of_order = ZZ(1)
374
+ return self._divisor_of_order
375
+
376
+ # return the order of the cuspidal subgroup in the J0(p) case
377
+ if A.is_J0() and N.is_prime():
378
+ self._divisor_of_order = QQ((A.level()-1)/12).numerator()
379
+ return self._divisor_of_order
380
+
381
+ # The elliptic curve case
382
+ if A.dimension() == 1:
383
+ self._divisor_of_order = A.elliptic_curve().torsion_order()
384
+ return self._divisor_of_order
385
+
386
+ # The J1(p) case
387
+ if A.is_J1() and N.is_prime():
388
+ epsilons = [epsilon for epsilon in DirichletGroup(N)
389
+ if not epsilon.is_trivial() and epsilon.is_even()]
390
+ bernoullis = [epsilon.bernoulli(2) for epsilon in epsilons]
391
+ self._divisor_of_order = ZZ(N/(2**(N-3))*prod(bernoullis))
392
+ return self._divisor_of_order
393
+
394
+ # The Gamma0 case
395
+ if all(isinstance(G, Gamma0_class) for G in A.groups()):
396
+ self._divisor_of_order = A.rational_cuspidal_subgroup().order()
397
+ return self._divisor_of_order
398
+
399
+ # Unhandled case
400
+ self._divisor_of_order = ZZ(1)
401
+ return self._divisor_of_order
402
+
403
+ def multiple_of_order(self, maxp=None, proof=True):
404
+ """
405
+ Return a multiple of the order.
406
+
407
+ INPUT:
408
+
409
+ - ``proof`` -- boolean (default: ``True``)
410
+
411
+ The computation of the rational torsion order of J1(p) is conjectural
412
+ and will only be used if proof=False. See Section 6.2.3 of [CES2003]_.
413
+
414
+ EXAMPLES::
415
+
416
+ sage: J = J1(11); J
417
+ Abelian variety J1(11) of dimension 1
418
+ sage: J.rational_torsion_subgroup().multiple_of_order() # needs database_cremona_mini_ellcurve
419
+ 5
420
+
421
+ sage: J = J0(17)
422
+ sage: J.rational_torsion_subgroup().order() # needs database_cremona_mini_ellcurve
423
+ 4
424
+
425
+ This is an example where proof=False leads to a better bound and better
426
+ performance. ::
427
+
428
+ sage: J = J1(23)
429
+ sage: J.rational_torsion_subgroup().multiple_of_order() # long time (2s) # needs database_cremona_mini_ellcurve
430
+ 9406793
431
+ sage: J.rational_torsion_subgroup().multiple_of_order(proof=False) # needs database_cremona_mini_ellcurve
432
+ 408991
433
+ """
434
+
435
+ try:
436
+ if proof:
437
+ return self._multiple_of_order
438
+ else:
439
+ return self._multiple_of_order_proof_false
440
+ except AttributeError:
441
+ pass
442
+
443
+ A = self.abelian_variety()
444
+ N = A.level()
445
+
446
+ if A.dimension() == 0:
447
+ self._multiple_of_order = ZZ(1)
448
+ self._multiple_of_order_proof_false = self._multiple_of_order
449
+ return self._multiple_of_order
450
+
451
+ # return the order of the cuspidal subgroup in the J0(p) case
452
+ if A.is_J0() and N.is_prime():
453
+ self._multiple_of_order = QQ((A.level()-1)/12).numerator()
454
+ self._multiple_of_order_proof_false = self._multiple_of_order
455
+ return self._multiple_of_order
456
+
457
+ # The elliptic curve case
458
+ if A.dimension() == 1:
459
+ self._multiple_of_order = A.elliptic_curve().torsion_order()
460
+ self._multiple_of_order_proof_false = self._multiple_of_order
461
+ return self._multiple_of_order
462
+
463
+ # The conjectural J1(p) case
464
+ if not proof and A.is_J1() and N.is_prime():
465
+ epsilons = [epsilon for epsilon in DirichletGroup(N)
466
+ if not epsilon.is_trivial() and epsilon.is_even()]
467
+ bernoullis = [epsilon.bernoulli(2) for epsilon in epsilons]
468
+ self._multiple_of_order_proof_false = ZZ(N/(2**(N-3))*prod(bernoullis))
469
+ return self._multiple_of_order_proof_false
470
+
471
+ # The Gamma0 and Gamma1 case
472
+ if all(isinstance(G, (Gamma0_class, Gamma1_class)) for G in A.groups()):
473
+ self._multiple_of_order = self.multiple_of_order_using_frobp()
474
+ return self._multiple_of_order
475
+
476
+ # Unhandled case
477
+ raise NotImplementedError("No implemented algorithm")
478
+
479
+ def multiple_of_order_using_frobp(self, maxp=None):
480
+ """
481
+ Return a multiple of the order of this torsion group.
482
+
483
+ In the `Gamma_0` case, the multiple is computed using characteristic
484
+ polynomials of Hecke operators of odd index not dividing the level. In
485
+ the `Gamma_1` case, the multiple is computed by expressing the
486
+ frobenius polynomial in terms of the characteristic polynomial of left
487
+ multiplication by `a_p` for odd primes p not dividing the level.
488
+
489
+ INPUT:
490
+
491
+ - ``maxp`` -- (default: ``None``) if ``maxp`` is ``None``, return gcd
492
+ of best bound computed so far with bound obtained by computing GCD's
493
+ of orders modulo `p` until this gcd stabilizes for 3 successive
494
+ primes. If ``maxp`` is given, just use all primes up to and including
495
+ ``maxp``.
496
+
497
+ EXAMPLES::
498
+
499
+ sage: J = J0(11)
500
+ sage: G = J.rational_torsion_subgroup()
501
+ sage: G.multiple_of_order_using_frobp(11)
502
+ 5
503
+
504
+ Increasing maxp may yield a tighter bound. If maxp=None, then Sage
505
+ will use more primes until the multiple stabilizes for 3 successive
506
+ primes. ::
507
+
508
+ sage: J = J0(389)
509
+ sage: G = J.rational_torsion_subgroup(); G
510
+ Torsion subgroup of Abelian variety J0(389) of dimension 32
511
+ sage: G.multiple_of_order_using_frobp()
512
+ 97
513
+ sage: [G.multiple_of_order_using_frobp(p) for p in prime_range(3,11)]
514
+ [92645296242160800, 7275, 291]
515
+ sage: [G.multiple_of_order_using_frobp(p) for p in prime_range(3,13)]
516
+ [92645296242160800, 7275, 291, 97]
517
+ sage: [G.multiple_of_order_using_frobp(p) for p in prime_range(3,19)]
518
+ [92645296242160800, 7275, 291, 97, 97, 97]
519
+
520
+ We can compute the multiple of order of the torsion subgroup for Gamma0
521
+ and Gamma1 varieties, and their products. ::
522
+
523
+ sage: A = J0(11) * J0(33)
524
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp()
525
+ 1000
526
+
527
+ sage: A = J1(23)
528
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp()
529
+ 9406793
530
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp(maxp=50)
531
+ 408991
532
+
533
+ sage: A = J1(19) * J0(21)
534
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp()
535
+ 35064
536
+
537
+ The next example illustrates calling this function with a larger
538
+ input and how the result may be cached when maxp is None::
539
+
540
+ sage: T = J0(43)[1].rational_torsion_subgroup()
541
+ sage: T.multiple_of_order_using_frobp()
542
+ 14
543
+ sage: T.multiple_of_order_using_frobp(50)
544
+ 7
545
+ sage: T.multiple_of_order_using_frobp()
546
+ 7
547
+
548
+ This function is not implemented for general congruence subgroups
549
+ unless the dimension is zero. ::
550
+
551
+ sage: A = JH(13,[2]); A
552
+ Abelian variety J0(13) of dimension 0
553
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp()
554
+ 1
555
+
556
+ sage: A = JH(15, [2]); A
557
+ Abelian variety JH(15,[2]) of dimension 1
558
+ sage: A.rational_torsion_subgroup().multiple_of_order_using_frobp()
559
+ Traceback (most recent call last):
560
+ ...
561
+ NotImplementedError: torsion multiple only implemented for Gamma0 and Gamma1
562
+ """
563
+ if maxp is None:
564
+ try:
565
+ return self.__multiple_of_order_using_frobp
566
+ except AttributeError:
567
+ pass
568
+ A = self.abelian_variety()
569
+ if A.dimension() == 0:
570
+ T = ZZ.one()
571
+ self.__multiple_of_order_using_frobp = T
572
+ return T
573
+ if not all(isinstance(G, (Gamma0_class, Gamma1_class)) for G in A.groups()):
574
+ raise NotImplementedError("torsion multiple only implemented for Gamma0 and Gamma1")
575
+
576
+ bnd = ZZ.zero()
577
+ N = A.level()
578
+ cnt = 0
579
+ if maxp is None:
580
+ X = Primes()
581
+ else:
582
+ X = prime_range(maxp+1)
583
+ for p in X:
584
+ if (2*N) % p == 0:
585
+ continue
586
+
587
+ if (len(A.groups()) == 1 and isinstance(A.groups()[0], Gamma0_class)):
588
+ f = A.hecke_polynomial(p)
589
+ b = ZZ(f(p+1))
590
+ else:
591
+ from .constructor import AbelianVariety
592
+ D = [AbelianVariety(f) for f in
593
+ A.newform_decomposition('a')]
594
+ b = 1
595
+ for simple in D:
596
+ G = simple.newform_level()[1]
597
+ if isinstance(G, Gamma0_class):
598
+ f = simple.hecke_polynomial(p)
599
+ b *= ZZ(f(p+1))
600
+ else:
601
+ f = simple.newform('a')
602
+ Kf = f.base_ring()
603
+ eps = f.character()
604
+ Qe = eps.base_ring()
605
+
606
+ if Kf != QQ:
607
+ # relativize number fields to compute charpoly of
608
+ # left multiplication of ap on Kf as a Qe-vector
609
+ # space.
610
+ Lf = Kf.relativize(Qe.gen(), 'a')
611
+ to_Lf = Lf.structure()[1]
612
+
613
+ name = Kf._names[0]
614
+ ap = to_Lf(f.modular_symbols(1).eigenvalue(p, name))
615
+
616
+ G_ps = ap.matrix().charpoly()
617
+ b *= ZZ(Qe(G_ps(1 + to_Lf(eps(p))*p)).norm())
618
+ else:
619
+ ap = f.modular_symbols(1).eigenvalue(p)
620
+ b *= ZZ(1 + eps(p)*p - ap)
621
+
622
+ if bnd == 0:
623
+ bnd = b
624
+ else:
625
+ bnd_last = bnd
626
+ bnd = ZZ(gcd(bnd, b))
627
+ if bnd == bnd_last:
628
+ cnt += 1
629
+ else:
630
+ cnt = 0
631
+ if maxp is None and cnt >= 2:
632
+ break
633
+
634
+ # The code below caches the computed bound and
635
+ # will be used if this function is called
636
+ # again with maxp equal to None (the default).
637
+ if maxp is None:
638
+ # maxp is None but self.__multiple_of_order_using_frobp is
639
+ # not set, since otherwise we would have immediately
640
+ # returned at the top of this function
641
+ self.__multiple_of_order_using_frobp = bnd
642
+ else:
643
+ # maxp is given -- record new info we get as
644
+ # a gcd...
645
+ try:
646
+ self.__multiple_of_order_using_frobp = \
647
+ gcd(self.__multiple_of_order_using_frobp, bnd)
648
+ except AttributeError:
649
+ # ... except in the case when
650
+ # self.__multiple_of_order_using_frobp was never set. In this
651
+ # case, we just set it as long as the gcd stabilized for 3 in a
652
+ # row.
653
+ if cnt >= 2:
654
+ self.__multiple_of_order_using_frobp = bnd
655
+ return bnd
656
+
657
+
658
+ class QQbarTorsionSubgroup(Module):
659
+
660
+ Element = TorsionPoint
661
+
662
+ def __init__(self, abvar):
663
+ """
664
+ Group of all torsion points over the algebraic closure on an
665
+ abelian variety.
666
+
667
+ INPUT:
668
+
669
+ - ``abvar`` -- an abelian variety
670
+
671
+ EXAMPLES::
672
+
673
+ sage: A = J0(23)
674
+ sage: A.qbar_torsion_subgroup() # needs sage.rings.number_field
675
+ Group of all torsion points in QQbar on Abelian variety J0(23) of dimension 2
676
+ """
677
+ self.__abvar = abvar
678
+ Module.__init__(self, ZZ)
679
+
680
+ def _repr_(self):
681
+ """
682
+ Print representation of QQbar points.
683
+
684
+ OUTPUT: string
685
+
686
+ EXAMPLES::
687
+
688
+ sage: J0(23).qbar_torsion_subgroup()._repr_() # needs sage.rings.number_field
689
+ 'Group of all torsion points in QQbar on Abelian variety J0(23) of dimension 2'
690
+ """
691
+ return 'Group of all torsion points in QQbar on %s' % self.__abvar
692
+
693
+ def field_of_definition(self):
694
+ """
695
+ Return the field of definition of this subgroup. Since this is the
696
+ group of all torsion it is defined over the base field of this
697
+ abelian variety.
698
+
699
+ OUTPUT: a field
700
+
701
+ EXAMPLES::
702
+
703
+ sage: J0(23).qbar_torsion_subgroup().field_of_definition() # needs sage.rings.number_field
704
+ Rational Field
705
+ """
706
+ return self.__abvar.base_field()
707
+
708
+ def _element_constructor_(self, x):
709
+ r"""
710
+ Create an element in this torsion subgroup.
711
+
712
+ INPUT:
713
+
714
+ - ``x`` -- vector in `\QQ^{2d}`
715
+
716
+ OUTPUT: torsion point
717
+
718
+ EXAMPLES::
719
+
720
+ sage: P = J0(23).qbar_torsion_subgroup()([1,1/2,3/4,2]); P # needs sage.rings.number_field
721
+ [(1, 1/2, 3/4, 2)]
722
+ sage: P.order() # needs sage.rings.number_field
723
+ 4
724
+ """
725
+ v = self.__abvar.vector_space()(x)
726
+ return self.element_class(self, v)
727
+
728
+ def abelian_variety(self):
729
+ """
730
+ Return the abelian variety that this is the set of all torsion
731
+ points on.
732
+
733
+ OUTPUT: abelian variety
734
+
735
+ EXAMPLES::
736
+
737
+ sage: J0(23).qbar_torsion_subgroup().abelian_variety() # needs sage.rings.number_field
738
+ Abelian variety J0(23) of dimension 2
739
+ """
740
+ return self.__abvar