passagemath-schemes 10.6.47__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.47.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.47.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.47.dist-info/RECORD +311 -0
- passagemath_schemes-10.6.47.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.47.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-312-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-312-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-312-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-312-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-312-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-312-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-312-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-312-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,836 @@
|
|
|
1
|
+
5077 a 1 [0,0,1,-7,6] 3 1
|
|
2
|
+
11197 a 1 [1,-1,1,-6,0] 3 1
|
|
3
|
+
11642 a 1 [1,-1,0,-16,28] 3 1
|
|
4
|
+
12279 a 1 [0,-1,1,-10,12] 3 1
|
|
5
|
+
13766 a 1 [1,0,1,-23,42] 3 1
|
|
6
|
+
16811 a 1 [0,0,1,-1,6] 3 1
|
|
7
|
+
18097 b 1 [1,1,1,-10,6] 3 1
|
|
8
|
+
18562 c 1 [1,0,1,-20,30] 3 1
|
|
9
|
+
18745 a 1 [0,1,1,-146,636] 3 1
|
|
10
|
+
20888 a 1 [0,0,0,-52,100] 3 1
|
|
11
|
+
21443 a 1 [1,1,1,-5,6] 3 1
|
|
12
|
+
21858 a 1 [1,1,0,-32,60] 3 1
|
|
13
|
+
22481 a 1 [1,-1,1,6,2] 3 1
|
|
14
|
+
22696 a 1 [0,1,0,-105,379] 3 1
|
|
15
|
+
24301 a 1 [1,0,0,-44,109] 3 1
|
|
16
|
+
24546 a 1 [1,1,0,-39,81] 3 1
|
|
17
|
+
24646 b 1 [1,0,1,-13,12] 3 1
|
|
18
|
+
25071 a 1 [0,-1,1,-24,-16] 3 1
|
|
19
|
+
25383 a 1 [0,-1,1,-32,80] 3 1
|
|
20
|
+
25451 a 1 [1,1,1,-54,136] 3 1
|
|
21
|
+
25751 a 1 [1,0,0,-39,94] 3 1
|
|
22
|
+
26171 a 1 [0,0,1,-49,132] 3 1
|
|
23
|
+
26198 a 1 [1,-1,0,-16,16] 3 1
|
|
24
|
+
26284 a 1 [0,1,0,-9,16] 3 1
|
|
25
|
+
26743 a 1 [1,0,0,6,-5] 3 1
|
|
26
|
+
27262 c 1 [1,-1,1,-237,1365] 3 1
|
|
27
|
+
27382 a 1 [1,0,1,-10,0] 3 1
|
|
28
|
+
27448 d 1 [0,0,0,-79,274] 3 1
|
|
29
|
+
27584 bd 1 [0,0,0,-4,64] 3 1
|
|
30
|
+
27746 a 1 [1,0,1,-12,26] 3 1
|
|
31
|
+
27747 c 1 [0,0,1,-327,2286] 3 1
|
|
32
|
+
27773 a 1 [1,-1,1,-21,42] 3 1
|
|
33
|
+
27808 a 1 [0,0,0,-364,2656] 3 1
|
|
34
|
+
28042 b 1 [1,-1,0,-19,49] 3 1
|
|
35
|
+
28498 a 1 [1,-1,0,-13,25] 3 1
|
|
36
|
+
28571 a 1 [0,-1,1,-4,10] 3 1
|
|
37
|
+
29157 b 1 [0,1,1,-240,1190] 3 1
|
|
38
|
+
30064 c 1 [0,1,0,-152,676] 3 1
|
|
39
|
+
30148 b 1 [0,0,0,-37,85] 3 1
|
|
40
|
+
30376 a 1 [0,1,0,-25,-21] 3 1
|
|
41
|
+
30446 a 1 [1,1,0,-39,-59] 3 1
|
|
42
|
+
30487 a 1 [0,0,1,-28,-15] 3 1
|
|
43
|
+
30767 d 1 [0,0,1,-31,60] 3 1
|
|
44
|
+
30815 a 1 [0,1,1,-16,26] 3 1
|
|
45
|
+
31478 b 1 [1,0,1,-5,12] 3 1
|
|
46
|
+
31737 a 1 [0,-1,1,-34,90] 3 1
|
|
47
|
+
31814 a 1 [1,0,1,2,12] 3 1
|
|
48
|
+
32192 e 1 [0,0,0,-52,160] 3 1
|
|
49
|
+
32244 c 1 [0,-1,0,-30,81] 3 1
|
|
50
|
+
32276 b 1 [0,1,0,-17,16] 3 1
|
|
51
|
+
32336 b 1 [0,1,0,-32,4] 3 1
|
|
52
|
+
33424 o 1 [0,-1,0,-312,2224] 3 1
|
|
53
|
+
33428 a 1 [0,1,0,-45,79] 3 1
|
|
54
|
+
33509 a 1 [0,1,1,-22,32] 3 1
|
|
55
|
+
33609 a 1 [1,1,1,-232,1262] 3 1
|
|
56
|
+
33709 a 1 [1,-1,1,-48,-42] 3 1
|
|
57
|
+
33914 a 1 [1,0,1,-28,282] 3 1
|
|
58
|
+
34415 a 1 [1,0,0,9,100] 3 1
|
|
59
|
+
34862 a 1 [1,-1,1,-57,345] 3 1
|
|
60
|
+
35003 a 1 [0,1,1,18,-18] 3 1
|
|
61
|
+
35083 c 1 [0,1,1,-4,8] 3 1
|
|
62
|
+
35234 a 1 [1,1,0,-181,749] 3 1
|
|
63
|
+
35243 b 1 [1,0,0,-22,21] 3 1
|
|
64
|
+
35882 b 1 [1,-1,0,-64,244] 3 1
|
|
65
|
+
36094 c 1 [1,-1,1,-162,1185] 3 1
|
|
66
|
+
36739 a 1 [1,1,1,-14,-24] 3 1
|
|
67
|
+
37229 a 1 [1,0,0,-9,4] 3 1
|
|
68
|
+
37544 c 1 [0,1,0,-177,1171] 3 1
|
|
69
|
+
38439 b 1 [0,0,1,-57,76] 3 1
|
|
70
|
+
38600 m 1 [0,0,0,-175,850] 3 1
|
|
71
|
+
38601 a 1 [0,0,1,3,16] 3 1
|
|
72
|
+
39023 a 1 [1,-1,1,-6,12] 3 1
|
|
73
|
+
39077 c 1 [0,1,1,-90,300] 3 1
|
|
74
|
+
39289 a 1 [0,1,1,-257,1500] 3 1
|
|
75
|
+
39883 a 1 [0,1,1,-14,18] 3 1
|
|
76
|
+
40331 c 1 [0,-1,1,8,-8] 3 1
|
|
77
|
+
40929 a 1 [0,-1,1,-42,110] 3 1
|
|
78
|
+
41001 a 1 [0,-1,1,-134,644] 3 1
|
|
79
|
+
41107 a 1 [0,1,1,-82,182] 3 1
|
|
80
|
+
41406 b 1 [1,1,0,-69,189] 3 1
|
|
81
|
+
41775 k 1 [0,-1,1,-58,168] 3 1
|
|
82
|
+
41785 a 1 [0,1,1,-286,1766] 3 1
|
|
83
|
+
41933 a 1 [1,0,0,-95,346] 3 1
|
|
84
|
+
42093 a 1 [0,0,1,-21,22] 3 1
|
|
85
|
+
42153 a 1 [0,-1,1,-6,20] 3 1
|
|
86
|
+
42190 a 1 [1,0,1,-19,42] 3 1
|
|
87
|
+
42264 a 1 [0,0,0,-252,1620] 3 1
|
|
88
|
+
42384 a 1 [0,-1,0,-80,336] 3 1
|
|
89
|
+
42526 b 1 [1,0,1,-78,272] 3 1
|
|
90
|
+
42528 c 1 [0,-1,0,-65,81] 3 1
|
|
91
|
+
42584 c 1 [0,1,0,-44,112] 3 1
|
|
92
|
+
43556 b 1 [0,1,0,-14,1] 3 1
|
|
93
|
+
43669 a 1 [0,0,1,-19,30] 3 1
|
|
94
|
+
43730 e 1 [1,-1,0,-184,940] 3 1
|
|
95
|
+
43976 f 1 [0,0,0,-31,34] 3 1
|
|
96
|
+
44012 b 1 [0,-1,0,-65,226] 3 1
|
|
97
|
+
44233 a 1 [1,1,1,-137,600] 3 1
|
|
98
|
+
44409 b 1 [1,1,1,-45,96] 3 1
|
|
99
|
+
44755 a 1 [0,1,1,9,0] 3 1
|
|
100
|
+
44755 b 1 [0,1,1,-410,3306] 3 1
|
|
101
|
+
44794 c 1 [1,0,0,-155,721] 3 1
|
|
102
|
+
44860 b 1 [0,0,0,-28,73] 3 1
|
|
103
|
+
44869 b 1 [1,1,1,-222,-410] 3 1
|
|
104
|
+
45123 h 1 [0,-1,1,-30,2] 3 1
|
|
105
|
+
45352 a 1 [0,1,0,-137,571] 3 1
|
|
106
|
+
45985 a 1 [0,1,1,-76,230] 3 1
|
|
107
|
+
46024 a 1 [0,1,0,-65,259] 3 1
|
|
108
|
+
46222 a 1 [1,-1,0,-61,193] 3 1
|
|
109
|
+
46307 a 1 [1,0,0,-9,-2] 3 1
|
|
110
|
+
46462 d 1 [1,0,1,-53,132] 3 1
|
|
111
|
+
46672 g 1 [0,0,0,-67,130] 3 1
|
|
112
|
+
46896 d 1 [0,-1,0,-72,144] 3 1
|
|
113
|
+
47087 a 1 [1,-1,1,-31,72] 3 1
|
|
114
|
+
47440 a 1 [0,1,0,-576,5140] 3 1
|
|
115
|
+
47453 a 1 [0,0,1,-19,42] 3 1
|
|
116
|
+
47696 h 1 [0,1,0,-472,3684] 3 1
|
|
117
|
+
47976 d 1 [0,-1,0,-52,196] 3 1
|
|
118
|
+
48272 b 1 [0,0,0,-19,226] 3 1
|
|
119
|
+
48434 c 1 [1,0,1,-227,1374] 3 1
|
|
120
|
+
48444 a 1 [0,-1,0,-170,921] 3 1
|
|
121
|
+
48734 b 1 [1,0,1,45,110] 3 1
|
|
122
|
+
48734 b 2 [1,0,1,-1135,14742] 3 1
|
|
123
|
+
48746 a 1 [1,0,0,-15,121] 3 1
|
|
124
|
+
48856 a 1 [0,1,0,-1465,21099] 3 1
|
|
125
|
+
49183 a 1 [1,0,0,-1611,24754] 3 1
|
|
126
|
+
49259 a 1 [1,-1,1,159,-450] 3 1
|
|
127
|
+
49411 a 1 [0,1,1,-9,12] 3 1
|
|
128
|
+
49626 a 1 [1,-1,0,-9,49] 3 1
|
|
129
|
+
49648 d 1 [0,0,0,-2011,34714] 3 1
|
|
130
|
+
49831 a 1 [1,0,0,-79,264] 3 1
|
|
131
|
+
50029 c 1 [0,1,1,-30,60] 3 1
|
|
132
|
+
50121 a 1 [0,0,1,-147,706] 3 1
|
|
133
|
+
50360 a 1 [0,0,0,-28,148] 3 1
|
|
134
|
+
50382 f 1 [1,-1,0,-51,161] 3 1
|
|
135
|
+
50744 c 1 [0,1,0,-20,64] 3 1
|
|
136
|
+
50862 a 1 [1,1,0,-172,820] 3 1
|
|
137
|
+
51034 a 1 [1,-1,0,-91,-167] 3 1
|
|
138
|
+
51052 a 1 [0,1,0,-169,792] 3 1
|
|
139
|
+
51065 c 1 [0,1,1,-56,156] 3 1
|
|
140
|
+
51094 a 1 [1,-1,0,-1169,15709] 3 1
|
|
141
|
+
51317 a 1 [1,-1,1,-9,204] 3 1
|
|
142
|
+
51536 b 1 [0,1,0,-72,196] 3 1
|
|
143
|
+
51822 d 1 [1,-1,0,-279,1849] 3 1
|
|
144
|
+
51962 a 1 [1,-1,0,-31,73] 3 1
|
|
145
|
+
52013 a 1 [1,-1,1,-33,90] 3 1
|
|
146
|
+
52158 a 1 [1,1,0,-7,25] 3 1
|
|
147
|
+
52277 b 1 [0,1,1,-15,15] 3 1
|
|
148
|
+
52396 b 1 [0,-1,0,-532,4904] 3 1
|
|
149
|
+
53022 b 1 [1,1,0,-17,-15] 3 1
|
|
150
|
+
53083 a 1 [0,1,1,-20,30] 3 1
|
|
151
|
+
53122 a 1 [1,-1,0,47,-35] 3 1
|
|
152
|
+
53237 b 1 [0,1,1,-10,-10] 3 1
|
|
153
|
+
53238 e 1 [1,1,0,-22,40] 3 1
|
|
154
|
+
53461 b 1 [0,-1,1,-16,28] 3 1
|
|
155
|
+
53486 d 1 [1,-1,0,-344,2544] 3 1
|
|
156
|
+
53916 a 1 [0,-1,0,-45,126] 3 1
|
|
157
|
+
53926 e 1 [1,0,0,-92,784] 3 1
|
|
158
|
+
53957 b 1 [0,1,1,-50,120] 3 1
|
|
159
|
+
54489 b 1 [1,1,1,-205,56] 3 1
|
|
160
|
+
54512 b 1 [0,0,0,-91,346] 3 1
|
|
161
|
+
55064 b 1 [0,1,0,-19,30] 3 1
|
|
162
|
+
55783 e 1 [1,1,1,-475,3786] 3 1
|
|
163
|
+
55846 a 1 [1,-1,0,-154,784] 3 1
|
|
164
|
+
55935 g 1 [0,0,1,-273,2178] 3 1
|
|
165
|
+
56052 g 1 [0,0,0,-72,225] 3 1
|
|
166
|
+
56441 b 1 [1,1,1,-55,-144] 3 1
|
|
167
|
+
56982 a 1 [1,1,0,-11,81] 3 1
|
|
168
|
+
56982 b 1 [1,1,0,-382,2740] 3 1
|
|
169
|
+
58397 c 1 [1,0,0,-35,76] 3 1
|
|
170
|
+
58739 a 1 [0,0,1,-104,382] 3 1
|
|
171
|
+
58774 b 1 [1,-1,0,2,16] 3 1
|
|
172
|
+
58939 a 1 [0,1,1,9,9] 3 1
|
|
173
|
+
59111 a 1 [0,-1,1,0,42] 3 1
|
|
174
|
+
59450 i 1 [1,0,1,-131,558] 3 2
|
|
175
|
+
59450 i 2 [1,0,1,-231,-442] 3 2
|
|
176
|
+
59614 a 1 [1,0,1,-28,42] 3 1
|
|
177
|
+
59704 d 1 [0,-1,0,-4,68] 3 1
|
|
178
|
+
59936 b 1 [0,1,0,-145,639] 3 1
|
|
179
|
+
60055 b 1 [0,-1,1,-30,3306] 3 1
|
|
180
|
+
60128 a 1 [0,1,0,-2,16] 3 1
|
|
181
|
+
60215 b 1 [0,1,1,20,134] 3 1
|
|
182
|
+
60296 a 1 [0,-1,0,-24,-35] 3 1
|
|
183
|
+
60803 a 1 [0,1,1,-65,195] 3 1
|
|
184
|
+
60892 b 1 [0,0,0,-1039,12886] 3 1
|
|
185
|
+
61025 b 1 [0,0,1,-175,-594] 3 1
|
|
186
|
+
61075 a 1 [0,0,1,-475,3906] 3 1
|
|
187
|
+
61229 a 1 [0,0,1,53,1536] 3 1
|
|
188
|
+
61376 c 1 [0,1,0,-145,399] 3 2
|
|
189
|
+
61376 c 2 [0,1,0,415,3199] 3 2
|
|
190
|
+
61504 cg 1 [0,0,0,-124,496] 3 1
|
|
191
|
+
61598 c 1 [1,0,1,35,-120] 3 1
|
|
192
|
+
61651 a 1 [1,0,0,-12,19] 3 1
|
|
193
|
+
61672 b 1 [0,1,0,-92,304] 3 1
|
|
194
|
+
61805 c 1 [1,0,0,-71,226] 3 1
|
|
195
|
+
61826 a 1 [1,1,0,-161,709] 3 1
|
|
196
|
+
61839 b 1 [1,-1,1,-17,20] 3 1
|
|
197
|
+
61886 d 1 [1,1,0,-1591,27029] 3 1
|
|
198
|
+
61995 a 1 [0,-1,1,-26,32] 3 1
|
|
199
|
+
62078 c 1 [1,-1,1,-69,189] 3 1
|
|
200
|
+
62168 c 1 [0,1,0,-172,816] 3 1
|
|
201
|
+
62246 b 1 [1,0,0,-372,2704] 3 1
|
|
202
|
+
62282 a 1 [1,0,1,-30,-28] 3 1
|
|
203
|
+
62319 c 1 [1,0,0,-187,-166] 3 1
|
|
204
|
+
62546 a 1 [1,1,0,-71,229] 3 1
|
|
205
|
+
62576 b 1 [0,-1,0,-104,-272] 3 1
|
|
206
|
+
62592 c 1 [0,-1,0,-57,9] 3 1
|
|
207
|
+
62823 b 1 [0,-1,1,-22,42] 3 1
|
|
208
|
+
63002 h 1 [1,-1,0,-394,3124] 3 1
|
|
209
|
+
63213 b 1 [0,1,1,-90,20] 3 1
|
|
210
|
+
63298 c 1 [1,-1,1,-129,657] 3 1
|
|
211
|
+
63422 h 1 [1,-1,1,-279,1839] 3 1
|
|
212
|
+
63437 a 1 [1,-1,1,-93,30] 3 1
|
|
213
|
+
63447 a 1 [1,1,1,-2,20] 3 1
|
|
214
|
+
63472 g 1 [0,1,0,56,372] 3 1
|
|
215
|
+
63574 d 1 [1,-1,0,-91,361] 3 1
|
|
216
|
+
63789 c 1 [1,1,1,-1934,40592] 3 1
|
|
217
|
+
63936 o 1 [0,0,0,-84,416] 3 1
|
|
218
|
+
64018 h 1 [1,0,0,-362,1444] 3 1
|
|
219
|
+
64432 d 1 [0,1,0,-24,100] 3 1
|
|
220
|
+
64522 c 1 [1,0,0,55,1561] 3 1
|
|
221
|
+
64672 h 1 [0,1,0,-102,364] 3 1
|
|
222
|
+
64763 a 1 [0,0,1,-1,12] 3 1
|
|
223
|
+
64776 a 1 [0,-1,0,-97,421] 3 1
|
|
224
|
+
65122 e 1 [1,-1,1,-339,2547] 3 1
|
|
225
|
+
65283 c 1 [1,0,0,-370,2711] 3 1
|
|
226
|
+
65424 a 1 [0,-1,0,-120,576] 3 1
|
|
227
|
+
65428 d 1 [0,0,0,-16,1] 3 1
|
|
228
|
+
65481 c 1 [1,1,1,-234,1230] 3 2
|
|
229
|
+
65481 c 2 [1,1,1,111,4956] 3 2
|
|
230
|
+
65509 a 1 [0,-1,1,-347,2607] 3 1
|
|
231
|
+
65515 a 1 [1,0,0,-220,1275] 3 1
|
|
232
|
+
65563 a 1 [0,1,1,-85,275] 3 1
|
|
233
|
+
65710 b 1 [1,-1,0,-40,100] 3 1
|
|
234
|
+
66170 b 1 [1,-1,0,-100,436] 3 1
|
|
235
|
+
66387 a 1 [1,1,1,-112,410] 3 1
|
|
236
|
+
66531 a 1 [1,1,1,-604,5462] 3 1
|
|
237
|
+
66848 j 1 [0,0,0,-13,4] 3 1
|
|
238
|
+
66993 d 1 [0,1,1,-202,1042] 3 1
|
|
239
|
+
67037 b 1 [1,0,0,-65,196] 3 1
|
|
240
|
+
67042 a 1 [1,0,0,6,100] 3 1
|
|
241
|
+
67064 a 1 [0,-1,0,-3004,64388] 3 1
|
|
242
|
+
67119 a 1 [0,1,1,-510,4430] 3 1
|
|
243
|
+
67194 e 1 [1,-1,0,-81,81] 3 1
|
|
244
|
+
67244 a 1 [0,-1,0,-669,6889] 3 1
|
|
245
|
+
67302 f 1 [1,-1,0,-261,1381] 3 1
|
|
246
|
+
67418 a 1 [1,1,0,-124,464] 3 1
|
|
247
|
+
67484 b 1 [0,0,0,-1,25] 3 1
|
|
248
|
+
67520 z 1 [0,0,0,-532,5344] 3 1
|
|
249
|
+
67926 b 1 [1,1,0,-59,141] 3 1
|
|
250
|
+
68309 a 1 [0,0,1,-11,6] 3 1
|
|
251
|
+
68499 j 1 [0,0,1,-459,3800] 3 1
|
|
252
|
+
68594 b 1 [1,0,1,-13,72] 3 1
|
|
253
|
+
68672 c 1 [0,0,0,-988,12016] 3 1
|
|
254
|
+
68751 d 1 [1,-1,1,-104,-196] 3 1
|
|
255
|
+
68773 a 1 [0,-1,1,-296,2058] 3 1
|
|
256
|
+
68802 d 1 [1,0,1,-173,812] 3 1
|
|
257
|
+
68811 b 1 [0,1,1,-102,380] 3 1
|
|
258
|
+
68890 d 1 [1,0,1,22,156] 3 1
|
|
259
|
+
68890 d 2 [1,0,1,-1638,25388] 3 1
|
|
260
|
+
69158 c 1 [1,0,0,-582,5476] 3 1
|
|
261
|
+
69232 a 1 [0,0,0,29,130] 3 1
|
|
262
|
+
69309 c 1 [0,0,1,-57,-54] 3 1
|
|
263
|
+
69321 a 1 [0,-1,1,-182,992] 3 1
|
|
264
|
+
69359 a 1 [0,0,1,-377,2816] 3 1
|
|
265
|
+
69402 e 1 [1,1,0,-71,201] 3 1
|
|
266
|
+
69477 a 1 [1,1,1,-7,20] 3 1
|
|
267
|
+
69668 b 1 [0,1,0,-30,49] 3 1
|
|
268
|
+
69850 m 1 [1,-1,0,-142,616] 3 1
|
|
269
|
+
69966 t 1 [1,-1,0,-324,-896] 3 2
|
|
270
|
+
69966 t 2 [1,-1,0,-2664,52924] 3 2
|
|
271
|
+
70022 b 1 [1,-1,0,-517,-2603] 3 1
|
|
272
|
+
70363 a 1 [0,0,1,-1459,21450] 3 1
|
|
273
|
+
70397 b 1 [0,-1,1,-3418,78052] 3 1
|
|
274
|
+
70436 b 1 [0,1,0,-22,-39] 3 1
|
|
275
|
+
70449 a 1 [0,-1,1,82,1472] 3 1
|
|
276
|
+
70449 b 1 [0,-1,1,-40,132] 3 1
|
|
277
|
+
70535 a 1 [1,-1,1,-18,6] 3 1
|
|
278
|
+
70802 b 1 [1,1,0,-21,25] 3 1
|
|
279
|
+
71145 a 1 [0,0,1,-2793,56848] 3 1
|
|
280
|
+
71215 a 1 [1,1,1,10,30] 3 1
|
|
281
|
+
71234 a 1 [1,0,1,-301,1980] 3 1
|
|
282
|
+
71288 i 1 [0,0,0,-2119,34186] 3 1
|
|
283
|
+
71374 d 1 [1,1,0,-57,145] 3 1
|
|
284
|
+
71642 b 1 [1,-1,0,-58,-140] 3 1
|
|
285
|
+
71688 a 1 [0,-1,0,-65,261] 3 1
|
|
286
|
+
72091 a 1 [0,1,1,-2,12] 3 1
|
|
287
|
+
72098 a 1 [1,1,0,-329,2209] 3 1
|
|
288
|
+
72266 a 1 [1,-1,0,-13,1] 3 1
|
|
289
|
+
72379 a 1 [0,1,1,-6,12] 3 1
|
|
290
|
+
72382 a 1 [1,1,0,-64,176] 3 1
|
|
291
|
+
72410 a 1 [1,-1,0,-130,676] 3 1
|
|
292
|
+
72471 b 1 [0,-1,1,-212,1070] 3 1
|
|
293
|
+
72578 a 1 [1,-1,0,-286,1936] 3 1
|
|
294
|
+
72683 a 1 [1,1,1,19,42] 3 1
|
|
295
|
+
72701 a 1 [1,1,1,-2,12] 3 1
|
|
296
|
+
72751 b 1 [0,1,1,-420,3180] 3 1
|
|
297
|
+
73132 a 1 [0,1,0,-421,3111] 3 1
|
|
298
|
+
73136 b 1 [0,1,0,-112,564] 3 1
|
|
299
|
+
73334 a 1 [1,0,1,-18,32] 3 1
|
|
300
|
+
73397 c 1 [0,1,1,-24,36] 3 1
|
|
301
|
+
73401 a 1 [0,-1,1,-4,24] 3 1
|
|
302
|
+
73434 b 1 [1,1,0,-19,1] 3 1
|
|
303
|
+
73931 a 1 [0,-1,1,-2042,36222] 3 1
|
|
304
|
+
74015 a 1 [0,-1,1,84,72] 3 1
|
|
305
|
+
74174 a 1 [1,0,1,-83,282] 3 1
|
|
306
|
+
74179 b 1 [0,0,1,-97,276] 3 1
|
|
307
|
+
74216 a 1 [0,0,0,-76,244] 3 1
|
|
308
|
+
74350 c 1 [1,0,1,-51,98] 3 1
|
|
309
|
+
74434 a 1 [1,1,0,8,20] 3 1
|
|
310
|
+
74451 a 1 [0,-1,1,-92,362] 3 1
|
|
311
|
+
74560 p 1 [0,0,0,-508,4432] 3 1
|
|
312
|
+
74639 b 1 [1,1,1,-121,462] 3 1
|
|
313
|
+
74864 b 1 [0,1,0,-400,2964] 3 1
|
|
314
|
+
74921 g 1 [0,-1,1,-604,-596] 3 1
|
|
315
|
+
74999 a 1 [0,-1,1,15,72] 3 1
|
|
316
|
+
75159 h 1 [1,-1,1,-149,474] 3 1
|
|
317
|
+
75692 a 1 [0,0,0,8,25] 3 1
|
|
318
|
+
75729 a 1 [0,-1,1,-270,1802] 3 1
|
|
319
|
+
75765 c 1 [0,-1,1,-66,236] 3 1
|
|
320
|
+
75772 a 1 [0,0,0,-14872,698020] 3 1
|
|
321
|
+
75781 a 1 [0,0,1,-13,12] 3 1
|
|
322
|
+
76074 b 1 [1,0,1,-163,602] 3 1
|
|
323
|
+
76119 a 1 [0,-1,1,-50,152] 3 1
|
|
324
|
+
76136 c 1 [0,-1,0,-44,100] 3 1
|
|
325
|
+
76338 h 1 [1,-1,0,-51,233] 3 1
|
|
326
|
+
76358 e 1 [1,-1,1,-159,519] 3 1
|
|
327
|
+
76599 a 1 [1,-1,1,-104,434] 3 1
|
|
328
|
+
76626 e 1 [1,-1,0,-429,3509] 3 1
|
|
329
|
+
76644 c 1 [0,0,0,-192,1105] 3 1
|
|
330
|
+
76784 h 1 [0,-1,0,64,64] 3 1
|
|
331
|
+
76784 i 1 [0,0,0,-1579,24154] 3 1
|
|
332
|
+
76962 e 1 [1,0,1,-628,6062] 3 1
|
|
333
|
+
77063 a 1 [0,0,1,-104,-175] 3 1
|
|
334
|
+
77336 d 1 [0,1,0,-140,784] 3 1
|
|
335
|
+
77346 a 1 [1,-1,0,-276,1836] 3 1
|
|
336
|
+
77346 d 1 [1,-1,0,99,1093] 3 1
|
|
337
|
+
77496 f 1 [0,1,0,-660,6624] 3 1
|
|
338
|
+
77555 d 1 [1,1,1,-100,342] 3 1
|
|
339
|
+
77709 a 1 [1,1,1,-20,-34] 3 1
|
|
340
|
+
77725 c 1 [1,0,0,-838,9417] 3 1
|
|
341
|
+
77790 a 1 [1,1,0,-18,72] 3 1
|
|
342
|
+
78185 b 1 [1,0,0,-1,30] 3 1
|
|
343
|
+
78242 a 1 [1,-1,0,-3016,64516] 3 1
|
|
344
|
+
78287 b 1 [1,1,1,-74,210] 3 1
|
|
345
|
+
78344 a 1 [0,1,0,-12,49] 3 1
|
|
346
|
+
78361 a 1 [1,-1,1,-27,90] 3 1
|
|
347
|
+
78830 a 1 [1,0,1,-274,1716] 3 1
|
|
348
|
+
78923 b 1 [0,0,1,-676,7140] 3 1
|
|
349
|
+
79077 f 1 [0,1,1,-214,436] 3 1
|
|
350
|
+
79110 c 1 [1,-1,0,-135,625] 3 1
|
|
351
|
+
79198 d 1 [1,0,1,-60,110] 3 1
|
|
352
|
+
79317 b 1 [0,0,1,-129,1120] 3 1
|
|
353
|
+
79555 a 1 [1,0,0,-361,2610] 3 1
|
|
354
|
+
79675 b 1 [1,0,0,12,67] 3 1
|
|
355
|
+
79934 b 1 [1,1,0,-59,169] 3 1
|
|
356
|
+
80212 b 1 [0,-1,0,-30,121] 3 1
|
|
357
|
+
80222 a 1 [1,-1,0,-16,-12] 3 1
|
|
358
|
+
80256 a 1 [0,-1,0,-835,9571] 3 2
|
|
359
|
+
80256 a 2 [0,-1,0,-825,9801] 3 2
|
|
360
|
+
80351 d 1 [1,-1,1,51,204] 3 1
|
|
361
|
+
80559 b 1 [1,-1,1,-86,240] 3 1
|
|
362
|
+
80615 d 1 [0,1,1,-2620,50624] 3 1
|
|
363
|
+
80674 a 1 [1,1,0,-10697,420565] 3 1
|
|
364
|
+
80721 b 1 [1,-1,1,-113,618] 3 1
|
|
365
|
+
80913 a 1 [0,-1,1,-140,512] 3 1
|
|
366
|
+
80965 a 1 [0,0,1,-13,-12] 3 1
|
|
367
|
+
81063 c 1 [0,0,1,-111,396] 3 1
|
|
368
|
+
81162 c 1 [1,-1,0,-96,368] 3 1
|
|
369
|
+
81234 h 1 [1,-1,0,-198,1080] 3 1
|
|
370
|
+
81328 c 1 [0,1,0,96,196] 3 2
|
|
371
|
+
81328 c 2 [0,1,0,-424,1236] 3 2
|
|
372
|
+
81494 a 1 [1,1,0,-254,-716] 3 1
|
|
373
|
+
81524 c 1 [0,-1,0,-517,4694] 3 1
|
|
374
|
+
81939 e 1 [0,-1,1,-280,2172] 3 1
|
|
375
|
+
82093 a 1 [1,1,1,-45,106] 3 1
|
|
376
|
+
82146 a 1 [1,1,0,-2169,37989] 3 1
|
|
377
|
+
82174 c 1 [1,0,0,-1705,26841] 3 1
|
|
378
|
+
82288 q 1 [0,0,0,-419,6306] 3 1
|
|
379
|
+
82296 i 1 [0,0,0,-207,1170] 3 1
|
|
380
|
+
82480 a 1 [0,1,0,-136,660] 3 1
|
|
381
|
+
82538 a 1 [1,1,0,-18,16] 3 1
|
|
382
|
+
82539 e 1 [1,-1,1,-11,46] 3 1
|
|
383
|
+
82547 b 1 [0,0,1,-1267,17346] 3 1
|
|
384
|
+
82701 f 1 [0,0,1,-1809,29612] 3 1
|
|
385
|
+
82763 a 1 [0,-1,1,-10,22] 3 1
|
|
386
|
+
82808 c 1 [0,1,0,28,64] 3 1
|
|
387
|
+
83016 f 1 [0,0,0,-39,1226] 3 1
|
|
388
|
+
83105 a 1 [1,0,0,-3031,64086] 3 1
|
|
389
|
+
83111 c 1 [1,1,1,-42,670] 3 1
|
|
390
|
+
83262 a 1 [1,1,0,-21,9] 3 1
|
|
391
|
+
83350 a 1 [1,1,0,-400,2000] 3 1
|
|
392
|
+
83582 g 1 [1,-1,0,430,1992] 3 1
|
|
393
|
+
83718 d 1 [1,-1,0,-216,1156] 3 1
|
|
394
|
+
83798 c 1 [1,-1,1,-972,12495] 3 1
|
|
395
|
+
83806 a 1 [1,0,1,-52,114] 3 1
|
|
396
|
+
83876 a 1 [0,1,0,-125,319] 3 1
|
|
397
|
+
83928 b 1 [0,-1,0,-577,5509] 3 1
|
|
398
|
+
84176 a 1 [0,0,0,-59,-134] 3 1
|
|
399
|
+
84341 a 1 [1,1,1,-58,132] 3 1
|
|
400
|
+
84470 b 1 [1,0,1,-48,506] 3 1
|
|
401
|
+
84534 a 1 [1,1,0,-301,1885] 3 2
|
|
402
|
+
84534 a 2 [1,1,0,-421,85] 3 2
|
|
403
|
+
84650 g 1 [1,-1,0,-67,-59] 3 1
|
|
404
|
+
84746 a 1 [1,0,0,-1260,17296] 3 1
|
|
405
|
+
85174 a 1 [1,0,1,-56,6] 3 1
|
|
406
|
+
85222 a 1 [1,0,1,-40,90] 3 1
|
|
407
|
+
85295 a 1 [1,0,0,-81,286] 3 1
|
|
408
|
+
85318 e 1 [1,-1,1,-282,345] 3 1
|
|
409
|
+
85863 a 1 [0,-1,1,-232,1440] 3 1
|
|
410
|
+
85970 a 1 [1,0,1,-164,786] 3 1
|
|
411
|
+
86007 a 1 [1,1,1,-82,242] 3 1
|
|
412
|
+
86321 a 1 [1,0,0,-36,79] 3 1
|
|
413
|
+
86487 a 1 [0,-1,1,-198,2774] 3 1
|
|
414
|
+
86534 e 1 [1,0,1,-110,480] 3 1
|
|
415
|
+
86611 a 1 [0,0,1,-157,756] 3 1
|
|
416
|
+
86786 a 1 [1,0,1,-45,152] 3 1
|
|
417
|
+
86802 i 1 [1,1,0,-1334,19044] 3 1
|
|
418
|
+
86895 f 1 [0,0,1,-63,344] 3 1
|
|
419
|
+
86903 b 1 [0,1,1,115,-390] 3 1
|
|
420
|
+
87116 c 1 [0,1,0,-174,841] 3 1
|
|
421
|
+
87130 a 1 [1,-1,0,-25,25] 3 1
|
|
422
|
+
87194 a 1 [1,0,1,-37,84] 3 1
|
|
423
|
+
87228 c 1 [0,0,0,-57,785] 3 1
|
|
424
|
+
87289 b 1 [1,1,1,-132,-20] 3 1
|
|
425
|
+
87336 g 1 [0,0,0,-399,3314] 3 1
|
|
426
|
+
87398 b 1 [1,0,1,3,20] 3 1
|
|
427
|
+
87634 a 1 [1,0,1,-4358,110352] 3 1
|
|
428
|
+
87763 b 1 [1,-1,1,-588,-4872] 3 1
|
|
429
|
+
87837 a 1 [0,-1,1,-7172,236912] 3 1
|
|
430
|
+
87855 a 1 [1,1,1,-141,588] 3 1
|
|
431
|
+
87866 a 1 [1,-1,0,22,4] 3 1
|
|
432
|
+
87914 e 1 [1,0,0,5,81] 3 1
|
|
433
|
+
88022 a 1 [1,1,0,-534,4564] 3 1
|
|
434
|
+
88024 a 1 [0,0,0,14,1] 3 1
|
|
435
|
+
88208 c 1 [0,1,0,-17448,881332] 3 1
|
|
436
|
+
88264 h 1 [0,0,0,-199,1546] 3 1
|
|
437
|
+
88337 a 1 [1,0,0,-15,16] 3 1
|
|
438
|
+
88362 e 1 [1,-1,0,-108,324] 3 1
|
|
439
|
+
88460 a 1 [0,1,0,-310,2025] 3 1
|
|
440
|
+
88492 a 1 [0,1,0,-49,120] 3 1
|
|
441
|
+
88502 f 1 [1,0,1,-838,9252] 3 2
|
|
442
|
+
88502 f 2 [1,0,1,-1028,4692] 3 2
|
|
443
|
+
88582 e 1 [1,1,0,-766,7904] 3 1
|
|
444
|
+
88705 c 1 [1,-1,1,-597,20946] 3 1
|
|
445
|
+
88754 a 1 [1,-1,0,-10,11412] 3 1
|
|
446
|
+
88765 d 1 [1,-1,1,18,6] 3 1
|
|
447
|
+
88883 a 1 [1,-1,1,0,14] 3 1
|
|
448
|
+
88975 c 1 [0,-1,1,-3,33] 3 1
|
|
449
|
+
89098 a 1 [1,1,0,-83,301] 3 1
|
|
450
|
+
89294 a 1 [1,-1,1,-84,567] 3 1
|
|
451
|
+
89421 b 1 [1,1,1,-1198,15164] 3 1
|
|
452
|
+
89428 b 1 [0,1,0,47,240] 3 1
|
|
453
|
+
89475 a 1 [1,1,1,37,1406] 3 1
|
|
454
|
+
89574 a 1 [1,1,0,-31,85] 3 1
|
|
455
|
+
89576 d 1 [0,-1,0,-15,16] 3 1
|
|
456
|
+
89687 a 1 [1,0,0,-14,13] 3 1
|
|
457
|
+
89738 b 1 [1,-1,0,-31,61] 3 1
|
|
458
|
+
89992 a 1 [0,0,0,-31,226] 3 1
|
|
459
|
+
90297 b 1 [0,0,1,-114,412] 3 1
|
|
460
|
+
90312 i 1 [0,1,0,-620,6864] 3 1
|
|
461
|
+
90459 o 1 [0,0,1,-1587,72076] 3 1
|
|
462
|
+
90568 e 1 [0,1,0,-36,-32] 3 1
|
|
463
|
+
90644 b 1 [0,0,0,56,1] 3 1
|
|
464
|
+
90704 c 1 [0,1,0,-77,-281] 3 1
|
|
465
|
+
90840 a 1 [0,-1,0,-121,445] 3 1
|
|
466
|
+
90935 a 1 [0,1,1,34,426] 3 1
|
|
467
|
+
90953 a 1 [1,-1,1,-261,-5418] 3 1
|
|
468
|
+
91031 c 1 [0,1,1,-9210,271050] 3 1
|
|
469
|
+
91055 a 1 [0,1,1,-46,110] 3 1
|
|
470
|
+
91248 s 1 [0,-1,0,-112,256] 3 1
|
|
471
|
+
91270 c 1 [1,0,1,-173,1428] 3 1
|
|
472
|
+
91341 d 1 [0,0,1,-129,562] 3 1
|
|
473
|
+
91388 b 1 [0,1,0,54,793] 3 1
|
|
474
|
+
91506 a 1 [1,1,0,-481,3865] 3 1
|
|
475
|
+
91607 a 1 [1,0,0,-19,-30] 3 1
|
|
476
|
+
91744 d 1 [0,1,0,-1281,17263] 3 1
|
|
477
|
+
91775 c 1 [0,1,1,-38,84] 3 1
|
|
478
|
+
91958 a 1 [1,1,0,-69,-179] 3 1
|
|
479
|
+
91963 a 1 [0,0,1,-11,20] 3 1
|
|
480
|
+
91985 b 1 [0,0,1,-367,2580] 3 1
|
|
481
|
+
92096 d 1 [0,-1,0,-41,169] 3 1
|
|
482
|
+
92144 a 1 [0,1,0,-1056,12916] 3 1
|
|
483
|
+
92437 a 1 [0,-1,1,-24,-36] 3 1
|
|
484
|
+
92437 b 1 [0,-1,1,-2158,38530] 3 1
|
|
485
|
+
92480 bb 1 [0,1,0,-521,4279] 3 2
|
|
486
|
+
92480 bb 2 [0,1,0,159,15295] 3 2
|
|
487
|
+
92553 b 1 [1,1,1,-22,-40] 3 1
|
|
488
|
+
92601 a 1 [0,0,1,33,216] 3 1
|
|
489
|
+
92651 a 1 [0,-1,1,-14,30] 3 1
|
|
490
|
+
92869 d 1 [0,-1,1,-574,5440] 3 1
|
|
491
|
+
93087 a 1 [0,0,1,-18,-15] 3 1
|
|
492
|
+
93376 c 1 [0,1,0,-129,415] 3 1
|
|
493
|
+
93508 b 1 [0,0,0,-61,181] 3 1
|
|
494
|
+
93545 e 1 [0,0,1,-67,132] 3 1
|
|
495
|
+
93783 a 1 [1,0,0,-6002,180009] 3 1
|
|
496
|
+
93814 a 1 [1,1,0,-196,980] 3 1
|
|
497
|
+
93904 a 1 [0,1,0,-104,340] 3 1
|
|
498
|
+
94064 a 1 [0,0,0,-187,970] 3 1
|
|
499
|
+
94259 d 1 [0,-1,1,-46262,3848910] 3 1
|
|
500
|
+
94281 b 1 [0,-1,1,-154,3234] 3 1
|
|
501
|
+
94659 a 1 [0,-1,1,-63,380] 3 1
|
|
502
|
+
94715 b 1 [0,0,1,-268,-1527] 3 1
|
|
503
|
+
94739 a 1 [1,0,1,-4530,116957] 3 1
|
|
504
|
+
95134 d 1 [1,0,0,-4145,105961] 3 1
|
|
505
|
+
95227 g 1 [1,1,1,-184,870] 3 1
|
|
506
|
+
95323 b 1 [1,-1,1,-532,4600] 3 1
|
|
507
|
+
95887 b 1 [0,1,1,-100,350] 3 1
|
|
508
|
+
95954 c 1 [1,1,0,-190,932] 3 1
|
|
509
|
+
96153 a 1 [1,1,1,-172,800] 3 1
|
|
510
|
+
96163 a 1 [0,-1,1,-274,1666] 3 1
|
|
511
|
+
96266 d 1 [1,0,0,-145,681] 3 1
|
|
512
|
+
96376 b 1 [0,0,0,-367,2770] 3 1
|
|
513
|
+
96466 b 1 [1,0,1,-12,20] 3 1
|
|
514
|
+
96544 a 1 [0,-1,0,-362,2776] 3 1
|
|
515
|
+
96873 a 1 [1,1,1,-1422,20040] 3 1
|
|
516
|
+
96937 a 1 [1,1,1,-170,996] 3 1
|
|
517
|
+
97111 a 1 [1,-1,1,-541,4982] 3 1
|
|
518
|
+
97345 d 1 [1,-1,1,-927,10926] 3 1
|
|
519
|
+
97389 a 1 [0,0,1,-93,342] 3 1
|
|
520
|
+
97408 a 1 [0,0,0,-52,-80] 3 1
|
|
521
|
+
97423 a 1 [1,0,0,-4,15] 3 1
|
|
522
|
+
97506 a 1 [1,-1,0,-51,133] 3 1
|
|
523
|
+
97543 a 1 [1,1,1,-23,30] 3 1
|
|
524
|
+
97668 f 1 [0,0,0,-117,405] 3 1
|
|
525
|
+
97782 a 1 [1,1,0,2,484] 3 1
|
|
526
|
+
97811 a 1 [1,-1,1,-963,11748] 3 1
|
|
527
|
+
97834 c 1 [1,1,0,-4912,130880] 3 1
|
|
528
|
+
97877 a 1 [1,-1,1,-54,174] 3 1
|
|
529
|
+
98081 a 1 [1,-1,1,-129,594] 3 1
|
|
530
|
+
98231 a 1 [1,-1,1,1080,420] 3 1
|
|
531
|
+
98597 a 1 [0,1,1,-255,1485] 3 1
|
|
532
|
+
98730 d 1 [1,-1,0,-240,1556] 3 1
|
|
533
|
+
98841 c 1 [0,1,1,-114,488] 3 1
|
|
534
|
+
98891 a 1 [1,-1,1,6,12] 3 1
|
|
535
|
+
99153 b 1 [1,-1,1,67,-120] 3 1
|
|
536
|
+
99248 d 1 [0,0,0,8,60] 3 1
|
|
537
|
+
99326 a 1 [1,-1,1,-174,957] 3 1
|
|
538
|
+
99378 d 1 [1,-1,0,-153,841] 3 1
|
|
539
|
+
99572 b 1 [0,1,0,-2606,50353] 3 1
|
|
540
|
+
99776 q 1 [0,-1,0,-121,569] 3 1
|
|
541
|
+
99966 a 1 [1,1,0,-186,900] 3 1
|
|
542
|
+
99968 j 1 [0,0,0,-196,976] 3 1
|
|
543
|
+
100134 e 1 [1,-1,0,-21,1] 3 1
|
|
544
|
+
100143 b 1 [1,-1,1,-110,190] 3 1
|
|
545
|
+
100209 a 1 [0,1,1,-520,4450] 3 1
|
|
546
|
+
100269 c 1 [0,0,1,-69,240] 3 1
|
|
547
|
+
100336 a 1 [0,-1,0,-184,1040] 3 1
|
|
548
|
+
100480 f 1 [0,1,0,-91,309] 3 1
|
|
549
|
+
100494 a 1 [1,-1,0,-234,1444] 3 1
|
|
550
|
+
100496 a 1 [0,0,0,-67,610] 3 1
|
|
551
|
+
100528 l 1 [0,1,0,0,244] 3 1
|
|
552
|
+
100720 d 1 [0,-1,0,-4741,127241] 3 1
|
|
553
|
+
100794 a 1 [1,1,0,-6,84] 3 1
|
|
554
|
+
100794 i 1 [1,0,1,-1343,18902] 3 1
|
|
555
|
+
100886 a 1 [1,-1,0,-58,184] 3 1
|
|
556
|
+
100910 a 1 [1,-1,0,-10,100] 3 1
|
|
557
|
+
100912 t 1 [0,1,0,-560,-2156] 3 2
|
|
558
|
+
100912 t 2 [0,1,0,-4800,125044] 3 2
|
|
559
|
+
100915 a 1 [1,1,1,-51,118] 3 1
|
|
560
|
+
100955 d 1 [0,0,1,-247,1542] 3 1
|
|
561
|
+
100972 a 1 [0,1,0,-29,127] 3 1
|
|
562
|
+
100990 a 1 [1,1,0,-138,568] 3 1
|
|
563
|
+
100990 f 1 [1,-1,1,-948,11031] 3 1
|
|
564
|
+
101066 e 1 [1,0,0,-322,2244] 3 1
|
|
565
|
+
101106 b 1 [1,-1,0,-1101,14373] 3 1
|
|
566
|
+
101144 b 1 [0,1,0,31,67] 3 1
|
|
567
|
+
101235 c 1 [0,-1,1,-786,8192] 3 1
|
|
568
|
+
101403 l 1 [0,0,1,-117,506] 3 1
|
|
569
|
+
101482 a 1 [1,1,0,-16,14] 3 1
|
|
570
|
+
101507 e 1 [0,1,1,-22,-10] 3 1
|
|
571
|
+
101536 d 1 [0,1,0,-670,6444] 3 1
|
|
572
|
+
101540 a 1 [0,-1,0,-261,961] 3 1
|
|
573
|
+
101559 d 1 [0,1,1,-224,1196] 3 1
|
|
574
|
+
101646 j 1 [1,-1,1,-1427,19635] 3 1
|
|
575
|
+
101655 f 1 [0,0,1,-63,218] 3 1
|
|
576
|
+
101682 h 1 [1,-1,0,-684,7164] 3 1
|
|
577
|
+
101726 b 1 [1,-1,0,-73,-131] 3 1
|
|
578
|
+
102104 a 1 [0,1,0,1,22] 3 1
|
|
579
|
+
102126 a 1 [1,1,0,16,36] 3 1
|
|
580
|
+
102272 b 1 [0,1,0,-255,289] 3 2
|
|
581
|
+
102272 b 2 [0,1,0,-3145,66759] 3 2
|
|
582
|
+
102289 b 1 [0,1,1,-550,4790] 3 1
|
|
583
|
+
102307 a 1 [0,0,1,-83,-150] 3 1
|
|
584
|
+
102311 a 1 [0,-1,1,-219,1395] 3 1
|
|
585
|
+
102385 a 1 [0,1,1,-26,30] 3 1
|
|
586
|
+
102454 a 1 [1,0,1,-147,674] 3 1
|
|
587
|
+
102512 a 1 [0,1,0,-2240,40084] 3 1
|
|
588
|
+
102743 c 1 [1,-1,1,-15,30] 3 1
|
|
589
|
+
102914 a 1 [1,0,1,-25,72] 3 1
|
|
590
|
+
102926 c 1 [1,0,0,-157,561] 3 1
|
|
591
|
+
102948 b 1 [0,-1,0,-17,66] 3 1
|
|
592
|
+
102969 b 1 [0,0,1,-3864,92497] 3 1
|
|
593
|
+
103156 e 1 [0,-1,0,-7770,231361] 3 1
|
|
594
|
+
103370 c 1 [1,-1,0,-79,385] 3 1
|
|
595
|
+
103525 c 1 [1,0,0,-433,3432] 3 2
|
|
596
|
+
103525 c 2 [1,0,0,-458,3007] 3 2
|
|
597
|
+
103779 b 1 [0,0,1,-129,702] 3 1
|
|
598
|
+
103794 a 1 [1,1,0,-38,36] 3 1
|
|
599
|
+
103844 b 1 [0,1,0,-122,289] 3 1
|
|
600
|
+
103865 a 1 [1,0,0,-6050,180625] 3 1
|
|
601
|
+
104014 a 1 [1,0,1,8,30] 3 1
|
|
602
|
+
104014 b 1 [1,0,0,-2819,57409] 3 1
|
|
603
|
+
104019 a 1 [0,1,1,-64,442] 3 1
|
|
604
|
+
104081 c 1 [0,-1,1,-3074,59136] 3 1
|
|
605
|
+
104216 b 1 [0,0,0,-964,-1724] 3 1
|
|
606
|
+
104219 a 1 [1,1,0,-1808,28849] 3 1
|
|
607
|
+
104384 d 1 [0,1,0,-329,2167] 3 2
|
|
608
|
+
104384 d 2 [0,1,0,-609,-2369] 3 2
|
|
609
|
+
104386 b 1 [1,-1,0,-988,12204] 3 1
|
|
610
|
+
104434 c 1 [1,0,1,-8158,407892] 3 1
|
|
611
|
+
104484 c 1 [0,1,0,-65,504] 3 1
|
|
612
|
+
104491 a 1 [1,-1,1,-724,7674] 3 1
|
|
613
|
+
104646 c 1 [1,1,0,80,256] 3 1
|
|
614
|
+
104646 d 1 [1,0,1,-218,1352] 3 1
|
|
615
|
+
104684 a 1 [0,-1,0,43,49] 3 1
|
|
616
|
+
104734 f 1 [1,-1,1,-4062,98925] 3 1
|
|
617
|
+
104865 a 1 [0,-1,1,-360,2756] 3 1
|
|
618
|
+
104890 e 1 [1,-1,0,-8305,293725] 3 1
|
|
619
|
+
104907 f 1 [0,-1,1,-62,230] 3 1
|
|
620
|
+
105136 b 1 [0,1,0,-364,2556] 3 1
|
|
621
|
+
105184 c 1 [0,1,0,-65,79] 3 1
|
|
622
|
+
105190 a 1 [1,0,1,156,1442] 3 1
|
|
623
|
+
105314 e 1 [1,0,0,153,6601] 3 1
|
|
624
|
+
105376 b 1 [0,-1,0,-97,1169] 3 1
|
|
625
|
+
105536 c 1 [0,1,0,-2209,39231] 3 2
|
|
626
|
+
105536 c 2 [0,1,0,-2369,33055] 3 2
|
|
627
|
+
105558 f 1 [1,0,1,-313,1832] 3 2
|
|
628
|
+
105558 f 2 [1,0,1,497,9932] 3 2
|
|
629
|
+
105643 b 1 [0,0,1,-41,102] 3 1
|
|
630
|
+
105883 a 1 [0,1,1,-539,4641] 3 1
|
|
631
|
+
105915 a 1 [1,1,1,-911,10208] 3 1
|
|
632
|
+
105965 b 1 [0,1,1,-190,944] 3 1
|
|
633
|
+
106037 b 1 [0,1,1,-98,342] 3 1
|
|
634
|
+
106110 c 1 [1,-1,0,-60,116] 3 1
|
|
635
|
+
106164 e 1 [0,0,0,-84,281] 3 1
|
|
636
|
+
106244 a 1 [0,-1,0,-44,184] 3 1
|
|
637
|
+
106276 b 1 [0,-1,0,-54,169] 3 1
|
|
638
|
+
106309 a 1 [0,0,1,-19,-28] 3 1
|
|
639
|
+
106361 a 1 [1,1,1,-47,132] 3 1
|
|
640
|
+
106449 b 1 [1,1,1,-21,72] 3 1
|
|
641
|
+
106497 b 1 [1,-1,1,-29,72] 3 1
|
|
642
|
+
106509 a 1 [0,-1,1,168,-340] 3 1
|
|
643
|
+
106749 b 1 [0,0,1,-27,156] 3 1
|
|
644
|
+
106757 a 1 [0,1,1,-680,-7038] 3 1
|
|
645
|
+
106894 h 1 [1,0,0,-6400,197376] 3 1
|
|
646
|
+
107080 c 1 [0,0,0,-247,1114] 3 1
|
|
647
|
+
107199 f 1 [1,-1,1,-2516,37442] 3 1
|
|
648
|
+
107349 b 1 [1,1,1,-90,96] 3 1
|
|
649
|
+
107350 i 1 [1,-1,0,-592,5716] 3 1
|
|
650
|
+
107521 b 1 [1,0,0,-122,589] 3 1
|
|
651
|
+
107732 b 1 [0,-1,0,-212,1096] 3 1
|
|
652
|
+
107776 k 1 [0,1,0,-219,1177] 3 1
|
|
653
|
+
107776 l 1 [0,1,0,-15,-11] 3 1
|
|
654
|
+
107854 a 1 [1,0,1,-81,-220] 3 1
|
|
655
|
+
108071 b 1 [0,1,1,-54,-102] 3 1
|
|
656
|
+
108258 h 1 [1,1,1,-302,875] 3 1
|
|
657
|
+
108302 a 1 [1,-1,0,-88,340] 3 1
|
|
658
|
+
108320 b 1 [0,-1,0,-1,401] 3 1
|
|
659
|
+
108341 a 1 [0,0,1,-31,12] 3 1
|
|
660
|
+
108343 a 1 [1,0,0,-5,16] 3 1
|
|
661
|
+
108546 e 1 [1,1,1,-335,2261] 3 1
|
|
662
|
+
108694 b 1 [1,0,1,-618,5852] 3 1
|
|
663
|
+
108701 a 1 [0,1,1,-30,138] 3 1
|
|
664
|
+
108708 b 1 [0,-1,0,3,54] 3 1
|
|
665
|
+
108737 b 1 [0,-1,1,11,64] 3 1
|
|
666
|
+
108762 b 1 [1,1,0,34,36] 3 1
|
|
667
|
+
108779 b 1 [0,0,1,-3146,67911] 3 1
|
|
668
|
+
108813 d 1 [0,-1,1,1518,1190] 3 1
|
|
669
|
+
108914 a 1 [1,-1,0,-2446,48016] 3 1
|
|
670
|
+
108977 b 1 [1,-1,1,-27,0] 3 1
|
|
671
|
+
109024 a 1 [0,-1,0,10,16] 3 1
|
|
672
|
+
109115 c 1 [0,-1,1,-41,117] 3 1
|
|
673
|
+
109172 b 1 [0,-1,0,-37,134] 3 1
|
|
674
|
+
109304 a 1 [0,1,0,-81,403] 3 1
|
|
675
|
+
109330 k 1 [1,0,1,-4948,133506] 3 2
|
|
676
|
+
109330 k 2 [1,0,1,-5528,100098] 3 2
|
|
677
|
+
109366 a 1 [1,-1,1,-597,5805] 3 1
|
|
678
|
+
109439 a 1 [1,0,0,-12,1] 3 1
|
|
679
|
+
109470 g 1 [1,1,0,-767,7569] 3 2
|
|
680
|
+
109470 g 2 [1,1,0,-2017,-25181] 3 2
|
|
681
|
+
109495 d 1 [1,-1,1,-4842,130866] 3 1
|
|
682
|
+
109528 a 1 [0,0,0,-196,1060] 3 1
|
|
683
|
+
109542 e 1 [1,0,1,-103,182] 3 1
|
|
684
|
+
109600 c 1 [0,1,0,-33,10063] 3 1
|
|
685
|
+
109600 i 1 [0,1,0,-1073,13183] 3 1
|
|
686
|
+
109612 b 1 [0,1,0,-65,184] 3 1
|
|
687
|
+
109687 b 1 [1,0,0,930,35161] 3 1
|
|
688
|
+
109840 h 1 [0,1,0,-296,1780] 3 1
|
|
689
|
+
109926 b 1 [1,-1,0,-483,4229] 3 1
|
|
690
|
+
109968 r 1 [0,-1,0,24,432] 3 1
|
|
691
|
+
109975 a 1 [0,1,1,-118,434] 3 1
|
|
692
|
+
110085 a 1 [0,-1,1,-16,72] 3 1
|
|
693
|
+
110095 a 1 [0,0,1,-43,114] 3 1
|
|
694
|
+
110104 a 1 [0,0,0,-316,2164] 3 1
|
|
695
|
+
110118 c 1 [1,0,1,-53,272] 3 1
|
|
696
|
+
110120 d 1 [0,0,0,-487,3466] 3 1
|
|
697
|
+
110121 c 1 [0,-1,1,-10521,391610] 3 1
|
|
698
|
+
110162 h 1 [1,-1,0,-1438,-9644] 3 1
|
|
699
|
+
110210 a 1 [1,-1,0,755,-2075] 3 1
|
|
700
|
+
110228 a 1 [0,1,0,-116,676] 3 1
|
|
701
|
+
110318 b 1 [1,0,1,32,42] 3 1
|
|
702
|
+
110343 c 1 [1,0,0,-45,1296] 3 1
|
|
703
|
+
110383 e 1 [0,-1,1,-2730,55812] 3 1
|
|
704
|
+
110482 a 1 [1,-1,0,-25,109] 3 1
|
|
705
|
+
110499 a 1 [0,1,1,-112,592] 3 1
|
|
706
|
+
110517 a 1 [0,-1,1,-110,272] 3 1
|
|
707
|
+
110528 a 1 [0,-1,0,-49,305] 3 1
|
|
708
|
+
110528 u 1 [0,0,0,-11452,472720] 3 1
|
|
709
|
+
110606 a 1 [1,0,1,-122,444] 3 1
|
|
710
|
+
110666 c 1 [1,0,0,-109,465] 3 1
|
|
711
|
+
110725 c 1 [0,-1,1,-108,-132] 3 1
|
|
712
|
+
110976 h 1 [0,-1,0,-79,583] 3 2
|
|
713
|
+
110976 h 2 [0,-1,0,-1609,25369] 3 2
|
|
714
|
+
110988 b 1 [0,0,0,-336,4196] 3 1
|
|
715
|
+
111201 a 1 [1,1,1,-10,26] 3 1
|
|
716
|
+
111226 b 1 [1,0,1,-232,1266] 3 1
|
|
717
|
+
111272 b 1 [0,1,0,-705,6979] 3 1
|
|
718
|
+
111433 c 1 [1,0,0,-182,931] 3 1
|
|
719
|
+
111472 b 1 [0,1,0,-120,484] 3 1
|
|
720
|
+
111488 f 1 [0,-1,0,-2137,41129] 3 1
|
|
721
|
+
111566 a 1 [1,-1,0,-1783,-851] 3 1
|
|
722
|
+
111708 c 1 [0,0,0,-2109,37181] 3 1
|
|
723
|
+
111715 a 1 [1,0,0,-110,397] 3 1
|
|
724
|
+
111879 b 1 [0,0,1,-27,46] 3 1
|
|
725
|
+
111879 d 1 [0,0,1,-1326,-16880] 3 1
|
|
726
|
+
111941 a 1 [0,1,1,-16,14] 3 1
|
|
727
|
+
111941 d 1 [0,0,1,-15809,677310] 3 1
|
|
728
|
+
111989 a 1 [0,1,1,-12,0] 3 1
|
|
729
|
+
112028 e 1 [0,1,0,-42,49] 3 1
|
|
730
|
+
112405 a 1 [1,-1,1,-24543,1486032] 3 1
|
|
731
|
+
112576 d 1 [0,1,0,-41,151] 3 1
|
|
732
|
+
112607 a 1 [0,1,1,166,546] 3 1
|
|
733
|
+
112654 c 1 [1,1,0,-149,289] 3 1
|
|
734
|
+
112771 a 1 [1,-1,1,-33,78] 3 1
|
|
735
|
+
112776 d 1 [0,-1,0,-412,3364] 3 1
|
|
736
|
+
112966 a 1 [1,0,1,-484,4050] 3 1
|
|
737
|
+
113032 d 1 [0,1,0,-52,96] 3 1
|
|
738
|
+
113072 b 1 [0,0,0,-659,6514] 3 1
|
|
739
|
+
113106 b 1 [1,1,0,-129,441] 3 1
|
|
740
|
+
113114 a 1 [1,0,1,-285,1820] 3 1
|
|
741
|
+
113131 a 1 [0,0,1,-29,62] 3 1
|
|
742
|
+
113386 h 1 [1,-1,0,-3586,83656] 3 1
|
|
743
|
+
113592 a 1 [0,1,0,-345,1899] 3 1
|
|
744
|
+
113594 f 1 [1,0,0,-1270,13476] 3 2
|
|
745
|
+
113594 f 2 [1,0,0,2890,84196] 3 2
|
|
746
|
+
113631 e 1 [0,-1,1,-72,272] 3 1
|
|
747
|
+
113632 f 1 [0,-1,0,911,78593] 3 1
|
|
748
|
+
113706 i 1 [1,-1,1,-902,12565] 3 1
|
|
749
|
+
113749 a 1 [0,-1,1,-12,0] 3 1
|
|
750
|
+
113839 e 1 [0,0,1,-11911,500346] 3 1
|
|
751
|
+
113946 b 1 [1,1,0,-42,0] 3 2
|
|
752
|
+
113946 b 2 [1,1,0,168,210] 3 2
|
|
753
|
+
114235 d 1 [0,0,1,-313,1668] 3 1
|
|
754
|
+
114236 a 1 [0,0,0,-71,190] 3 1
|
|
755
|
+
114336 n 1 [0,0,0,-444,2176] 3 1
|
|
756
|
+
114368 e 1 [0,1,0,-593,5359] 3 1
|
|
757
|
+
114399 c 1 [0,0,1,-129,522] 3 1
|
|
758
|
+
114433 a 1 [0,-1,1,22,30] 3 1
|
|
759
|
+
114477 b 1 [1,1,1,-67,1022] 3 1
|
|
760
|
+
114501 a 1 [1,1,1,-60,156] 3 1
|
|
761
|
+
114537 c 1 [0,-1,1,-62,212] 3 1
|
|
762
|
+
114560 s 1 [0,1,0,-41,295] 3 1
|
|
763
|
+
114801 a 1 [0,-1,1,-426,3548] 3 1
|
|
764
|
+
114829 a 1 [0,-1,1,213,-1233] 3 1
|
|
765
|
+
114865 a 1 [0,0,1,-23,-22] 3 1
|
|
766
|
+
114928 h 1 [0,1,0,-1336,18516] 3 1
|
|
767
|
+
114950 d 1 [1,0,1,-476,1098] 3 2
|
|
768
|
+
114950 d 2 [1,0,1,-5976,177098] 3 2
|
|
769
|
+
115021 a 1 [1,0,0,-52,141] 3 1
|
|
770
|
+
115082 a 1 [1,-1,0,-208,1180] 3 1
|
|
771
|
+
115134 b 1 [1,1,0,-26,120] 3 1
|
|
772
|
+
115184 d 1 [0,-1,0,48,16] 3 1
|
|
773
|
+
115370 f 1 [1,0,0,-166,996] 3 1
|
|
774
|
+
115461 c 1 [0,0,1,-174,765] 3 1
|
|
775
|
+
115497 d 1 [0,0,1,294,-1224] 3 1
|
|
776
|
+
115497 g 1 [1,-1,1,40,420] 3 1
|
|
777
|
+
115640 m 1 [0,0,0,-343,2842] 3 1
|
|
778
|
+
115702 b 1 [1,0,1,-192,-550] 3 2
|
|
779
|
+
115702 b 2 [1,0,1,638,-3870] 3 2
|
|
780
|
+
115729 b 1 [0,1,1,3,72] 3 1
|
|
781
|
+
115736 a 1 [0,0,0,-292,580] 3 1
|
|
782
|
+
115774 b 1 [1,0,1,-38,72] 3 1
|
|
783
|
+
115775 d 1 [1,0,0,-1188,15367] 3 2
|
|
784
|
+
115775 d 2 [1,0,0,-2563,-27258] 3 2
|
|
785
|
+
115908 b 1 [0,-1,0,10,201] 3 1
|
|
786
|
+
115958 a 1 [1,-1,0,-139,-251] 3 1
|
|
787
|
+
116053 c 1 [0,0,1,-76,-228] 3 1
|
|
788
|
+
116098 c 1 [1,0,1,-63,-190] 3 1
|
|
789
|
+
116121 b 1 [0,1,1,-80,350] 3 1
|
|
790
|
+
116197 b 1 [0,-1,1,-30,72] 3 1
|
|
791
|
+
116206 d 1 [1,-1,1,-534,4389] 3 1
|
|
792
|
+
116210 a 1 [1,0,1,-673,6756] 3 1
|
|
793
|
+
116217 b 1 [0,0,1,-9,30] 3 1
|
|
794
|
+
116217 d 1 [0,0,1,2106,-11348] 3 1
|
|
795
|
+
116332 b 1 [0,-1,0,-101,-98] 3 1
|
|
796
|
+
116406 d 1 [1,-1,0,-276,1888] 3 1
|
|
797
|
+
116529 d 1 [0,-1,1,-602,6602] 3 1
|
|
798
|
+
116628 a 1 [0,-1,0,-309,2193] 3 1
|
|
799
|
+
116697 a 1 [0,-1,1,-2219,40976] 3 1
|
|
800
|
+
116794 b 1 [1,0,0,-254,1348] 3 1
|
|
801
|
+
116973 d 1 [0,0,1,-111,72] 3 1
|
|
802
|
+
116984 f 1 [0,0,0,-559,4786] 3 1
|
|
803
|
+
117051 a 1 [0,-1,1,-1545,23897] 3 1
|
|
804
|
+
117158 a 1 [1,-1,0,-25,49] 3 1
|
|
805
|
+
117242 a 1 [1,-1,0,-1141,-13439] 3 1
|
|
806
|
+
117438 i 1 [1,1,0,-804,18756] 3 1
|
|
807
|
+
117516 a 1 [0,-1,0,-1062,13689] 3 1
|
|
808
|
+
117616 b 1 [0,1,0,-776,8068] 3 1
|
|
809
|
+
117648 bh 1 [0,0,0,-2307,42050] 3 2
|
|
810
|
+
117648 bh 2 [0,0,0,-147,117650] 3 2
|
|
811
|
+
117818 b 1 [1,0,0,-144,640] 3 1
|
|
812
|
+
117848 a 1 [0,1,0,-9,91] 3 1
|
|
813
|
+
118023 b 1 [0,1,1,-82,100] 3 1
|
|
814
|
+
118158 e 1 [1,1,1,-332,4205] 3 1
|
|
815
|
+
118197 b 1 [1,-1,1,-842,9690] 3 1
|
|
816
|
+
118336 bj 1 [0,-1,0,-57,121] 3 1
|
|
817
|
+
118439 a 1 [1,-1,1,-7,70] 3 1
|
|
818
|
+
118502 a 1 [1,0,1,-15,50] 3 1
|
|
819
|
+
118547 b 1 [1,0,0,-2444,34645] 3 1
|
|
820
|
+
118622 b 1 [1,-1,0,-1426,18196] 3 1
|
|
821
|
+
118728 f 1 [0,0,0,-3684,86276] 3 1
|
|
822
|
+
118761 b 1 [0,-1,1,-70,252] 3 1
|
|
823
|
+
118764 f 1 [0,0,0,-144,729] 3 1
|
|
824
|
+
118848 w 1 [0,-1,0,-449,3873] 3 1
|
|
825
|
+
118866 k 1 [1,1,1,-435,1521] 3 1
|
|
826
|
+
119252 d 1 [0,1,0,-1629,22060] 3 1
|
|
827
|
+
119416 d 1 [0,-1,0,-3052,193316] 3 1
|
|
828
|
+
119481 a 1 [0,1,1,-270,1640] 3 1
|
|
829
|
+
119555 b 1 [1,1,1,-26,24] 3 1
|
|
830
|
+
119689 b 1 [1,1,1,-27,40] 3 1
|
|
831
|
+
119740 b 1 [0,0,0,-148,697] 3 1
|
|
832
|
+
119744 i 1 [0,1,0,-7489,246975] 3 1
|
|
833
|
+
119744 j 1 [0,1,0,95,159] 3 1
|
|
834
|
+
119822 a 1 [1,0,1,-144,650] 3 1
|
|
835
|
+
119859 b 1 [0,1,1,-212,1202] 3 1
|
|
836
|
+
119888 a 1 [0,0,0,-8699,252426] 3 1
|