onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,270 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (R) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
import argparse
|
|
6
|
+
import os
|
|
7
|
+
import pathlib
|
|
8
|
+
import sys
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
from image_decoder import export_decoder_onnx, test_decoder_onnx
|
|
12
|
+
from image_encoder import export_image_encoder_onnx, test_image_encoder_onnx
|
|
13
|
+
from mask_decoder import export_mask_decoder_onnx, test_mask_decoder_onnx
|
|
14
|
+
from prompt_encoder import export_prompt_encoder_onnx, test_prompt_encoder_onnx
|
|
15
|
+
from sam2_demo import run_demo, show_all_images
|
|
16
|
+
from sam2_utils import load_sam2_model, sam2_onnx_path, setup_logger
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def parse_arguments():
|
|
20
|
+
parser = argparse.ArgumentParser(description="Export SAM2 models to ONNX")
|
|
21
|
+
|
|
22
|
+
parser.add_argument(
|
|
23
|
+
"--model_type",
|
|
24
|
+
required=False,
|
|
25
|
+
type=str,
|
|
26
|
+
choices=["sam2_hiera_tiny", "sam2_hiera_small", "sam2_hiera_large", "sam2_hiera_base_plus"],
|
|
27
|
+
default="sam2_hiera_large",
|
|
28
|
+
help="The model type to export",
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
parser.add_argument(
|
|
32
|
+
"--components",
|
|
33
|
+
required=False,
|
|
34
|
+
nargs="+",
|
|
35
|
+
choices=["image_encoder", "mask_decoder", "prompt_encoder", "image_decoder"],
|
|
36
|
+
default=["image_encoder", "image_decoder"],
|
|
37
|
+
help="Type of ONNX models to export. "
|
|
38
|
+
"Note that image_decoder is a combination of prompt_encoder and mask_decoder",
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
parser.add_argument(
|
|
42
|
+
"--output_dir",
|
|
43
|
+
type=str,
|
|
44
|
+
help="The output directory for the ONNX models",
|
|
45
|
+
default="sam2_onnx_models",
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
parser.add_argument(
|
|
49
|
+
"--dynamic_batch_axes",
|
|
50
|
+
required=False,
|
|
51
|
+
default=False,
|
|
52
|
+
action="store_true",
|
|
53
|
+
help="Export image_encoder with dynamic batch axes",
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
parser.add_argument(
|
|
57
|
+
"--multimask_output",
|
|
58
|
+
required=False,
|
|
59
|
+
default=False,
|
|
60
|
+
action="store_true",
|
|
61
|
+
help="Export mask_decoder or image_decoder with multimask_output",
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
parser.add_argument(
|
|
65
|
+
"--disable_dynamic_multimask_via_stability",
|
|
66
|
+
required=False,
|
|
67
|
+
action="store_true",
|
|
68
|
+
help="Disable mask_decoder dynamic_multimask_via_stability, and output first mask only."
|
|
69
|
+
"This option will be ignored when multimask_output is True",
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
parser.add_argument(
|
|
73
|
+
"--sam2_dir",
|
|
74
|
+
required=False,
|
|
75
|
+
type=str,
|
|
76
|
+
default="./segment-anything-2",
|
|
77
|
+
help="The directory of segment-anything-2 git repository",
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
parser.add_argument(
|
|
81
|
+
"--overwrite",
|
|
82
|
+
required=False,
|
|
83
|
+
default=False,
|
|
84
|
+
action="store_true",
|
|
85
|
+
help="Overwrite onnx model file if exists.",
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
parser.add_argument(
|
|
89
|
+
"--demo",
|
|
90
|
+
required=False,
|
|
91
|
+
default=False,
|
|
92
|
+
action="store_true",
|
|
93
|
+
help="Run demo with the exported ONNX models.",
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
parser.add_argument(
|
|
97
|
+
"--optimize",
|
|
98
|
+
required=False,
|
|
99
|
+
default=False,
|
|
100
|
+
action="store_true",
|
|
101
|
+
help="Optimize onnx models",
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
parser.add_argument(
|
|
105
|
+
"--dtype", required=False, choices=["fp32", "fp16"], default="fp32", help="Data type for inference."
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
parser.add_argument(
|
|
109
|
+
"--use_gpu",
|
|
110
|
+
required=False,
|
|
111
|
+
default=False,
|
|
112
|
+
action="store_true",
|
|
113
|
+
help="Optimize onnx models for GPU",
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
parser.add_argument(
|
|
117
|
+
"--dynamo",
|
|
118
|
+
required=False,
|
|
119
|
+
default=False,
|
|
120
|
+
action="store_true",
|
|
121
|
+
help="Use dynamo for exporting onnx model. Only image_encoder supports dynamo right now.",
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
parser.add_argument(
|
|
125
|
+
"--verbose",
|
|
126
|
+
required=False,
|
|
127
|
+
default=False,
|
|
128
|
+
action="store_true",
|
|
129
|
+
help="Print verbose information",
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
args = parser.parse_args()
|
|
133
|
+
return args
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def optimize_sam2_model(onnx_model_path, optimized_model_path, float16: bool, use_gpu: bool):
|
|
137
|
+
print(f"Optimizing {onnx_model_path} to {optimized_model_path} with float16={float16} and use_gpu={use_gpu}...")
|
|
138
|
+
|
|
139
|
+
# Import from source directory.
|
|
140
|
+
transformers_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
141
|
+
if transformers_dir not in sys.path:
|
|
142
|
+
sys.path.insert(0, transformers_dir)
|
|
143
|
+
from optimizer import optimize_model # noqa: PLC0415
|
|
144
|
+
|
|
145
|
+
optimized_model = optimize_model(onnx_model_path, model_type="sam2", opt_level=1, use_gpu=use_gpu)
|
|
146
|
+
if float16:
|
|
147
|
+
optimized_model.convert_float_to_float16(keep_io_types=False)
|
|
148
|
+
optimized_model.save_model_to_file(optimized_model_path)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def main():
|
|
152
|
+
args = parse_arguments()
|
|
153
|
+
|
|
154
|
+
sam2_model = load_sam2_model(args.sam2_dir, args.model_type, device="cpu")
|
|
155
|
+
|
|
156
|
+
pathlib.Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
157
|
+
|
|
158
|
+
for component in args.components:
|
|
159
|
+
onnx_model_path = sam2_onnx_path(args.output_dir, args.model_type, component, args.multimask_output)
|
|
160
|
+
if component == "image_encoder":
|
|
161
|
+
if args.overwrite or not os.path.exists(onnx_model_path):
|
|
162
|
+
export_image_encoder_onnx(
|
|
163
|
+
sam2_model, onnx_model_path, args.dynamic_batch_axes, args.verbose, args.dynamo
|
|
164
|
+
)
|
|
165
|
+
test_image_encoder_onnx(sam2_model, onnx_model_path, dynamic_batch_axes=args.dynamic_batch_axes)
|
|
166
|
+
|
|
167
|
+
elif component == "mask_decoder":
|
|
168
|
+
if args.overwrite or not os.path.exists(onnx_model_path):
|
|
169
|
+
export_mask_decoder_onnx(
|
|
170
|
+
sam2_model,
|
|
171
|
+
onnx_model_path,
|
|
172
|
+
args.multimask_output,
|
|
173
|
+
not args.disable_dynamic_multimask_via_stability,
|
|
174
|
+
args.verbose,
|
|
175
|
+
)
|
|
176
|
+
test_mask_decoder_onnx(
|
|
177
|
+
sam2_model,
|
|
178
|
+
onnx_model_path,
|
|
179
|
+
args.multimask_output,
|
|
180
|
+
not args.disable_dynamic_multimask_via_stability,
|
|
181
|
+
)
|
|
182
|
+
elif component == "prompt_encoder":
|
|
183
|
+
if args.overwrite or not os.path.exists(onnx_model_path):
|
|
184
|
+
export_prompt_encoder_onnx(sam2_model, onnx_model_path)
|
|
185
|
+
test_prompt_encoder_onnx(sam2_model, onnx_model_path)
|
|
186
|
+
else:
|
|
187
|
+
assert component == "image_decoder"
|
|
188
|
+
if args.overwrite or not os.path.exists(onnx_model_path):
|
|
189
|
+
export_decoder_onnx(sam2_model, onnx_model_path, args.multimask_output)
|
|
190
|
+
test_decoder_onnx(sam2_model, onnx_model_path, args.multimask_output)
|
|
191
|
+
|
|
192
|
+
suffix = ""
|
|
193
|
+
convert_to_fp16 = args.dtype == "fp16"
|
|
194
|
+
if args.optimize:
|
|
195
|
+
suffix = f"_{args.dtype}_" + ("gpu" if args.use_gpu else "cpu")
|
|
196
|
+
for component in args.components:
|
|
197
|
+
onnx_model_path = sam2_onnx_path(args.output_dir, args.model_type, component, args.multimask_output)
|
|
198
|
+
optimized_model_path = sam2_onnx_path(
|
|
199
|
+
args.output_dir, args.model_type, component, args.multimask_output, suffix
|
|
200
|
+
)
|
|
201
|
+
optimize_sam2_model(onnx_model_path, optimized_model_path, convert_to_fp16, args.use_gpu)
|
|
202
|
+
|
|
203
|
+
if args.demo:
|
|
204
|
+
# Export required ONNX models for demo if not already exported.
|
|
205
|
+
image_encoder_onnx_path = sam2_onnx_path(
|
|
206
|
+
args.output_dir, args.model_type, "image_encoder", args.multimask_output
|
|
207
|
+
)
|
|
208
|
+
if not os.path.exists(image_encoder_onnx_path):
|
|
209
|
+
export_image_encoder_onnx(sam2_model, image_encoder_onnx_path, args.dynamic_batch_axes, args.verbose)
|
|
210
|
+
|
|
211
|
+
image_decoder_onnx_path = sam2_onnx_path(args.output_dir, args.model_type, "image_decoder", False)
|
|
212
|
+
if not os.path.exists(image_decoder_onnx_path):
|
|
213
|
+
export_decoder_onnx(sam2_model, image_decoder_onnx_path, False)
|
|
214
|
+
|
|
215
|
+
image_decoder_multi_onnx_path = sam2_onnx_path(args.output_dir, args.model_type, "image_decoder", True)
|
|
216
|
+
if not os.path.exists(image_decoder_multi_onnx_path):
|
|
217
|
+
export_decoder_onnx(sam2_model, image_decoder_multi_onnx_path, True)
|
|
218
|
+
|
|
219
|
+
dtype = torch.float32 if args.dtype == "fp32" else torch.float16
|
|
220
|
+
if suffix:
|
|
221
|
+
optimized_image_encoder_onnx_path = image_encoder_onnx_path.replace(".onnx", f"{suffix}.onnx")
|
|
222
|
+
if not os.path.exists(optimized_image_encoder_onnx_path):
|
|
223
|
+
optimize_sam2_model(
|
|
224
|
+
image_encoder_onnx_path, optimized_image_encoder_onnx_path, convert_to_fp16, args.use_gpu
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
optimized_image_decoder_onnx_path = image_decoder_onnx_path.replace(".onnx", f"{suffix}.onnx")
|
|
228
|
+
if not os.path.exists(optimized_image_decoder_onnx_path):
|
|
229
|
+
optimize_sam2_model(
|
|
230
|
+
image_decoder_onnx_path, optimized_image_decoder_onnx_path, convert_to_fp16, args.use_gpu
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
optimized_image_decoder_multi_onnx_path = image_decoder_multi_onnx_path.replace(".onnx", f"{suffix}.onnx")
|
|
234
|
+
if not os.path.exists(optimized_image_decoder_multi_onnx_path):
|
|
235
|
+
optimize_sam2_model(
|
|
236
|
+
image_decoder_multi_onnx_path,
|
|
237
|
+
optimized_image_decoder_multi_onnx_path,
|
|
238
|
+
convert_to_fp16,
|
|
239
|
+
args.use_gpu,
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
# Use optimized models to run demo.
|
|
243
|
+
image_encoder_onnx_path = optimized_image_encoder_onnx_path
|
|
244
|
+
image_decoder_onnx_path = optimized_image_decoder_onnx_path
|
|
245
|
+
image_decoder_multi_onnx_path = optimized_image_decoder_multi_onnx_path
|
|
246
|
+
|
|
247
|
+
ort_image_files = run_demo(
|
|
248
|
+
args.sam2_dir,
|
|
249
|
+
args.model_type,
|
|
250
|
+
engine="ort",
|
|
251
|
+
dtype=dtype,
|
|
252
|
+
image_encoder_onnx_path=image_encoder_onnx_path,
|
|
253
|
+
image_decoder_onnx_path=image_decoder_onnx_path,
|
|
254
|
+
image_decoder_multi_onnx_path=image_decoder_multi_onnx_path,
|
|
255
|
+
use_gpu=args.use_gpu,
|
|
256
|
+
)
|
|
257
|
+
print("demo output files for ONNX Runtime:", ort_image_files)
|
|
258
|
+
|
|
259
|
+
# Get results from torch engine to compare.
|
|
260
|
+
torch_image_files = run_demo(args.sam2_dir, args.model_type, engine="torch", dtype=dtype, use_gpu=args.use_gpu)
|
|
261
|
+
print("demo output files for PyTorch:", torch_image_files)
|
|
262
|
+
|
|
263
|
+
show_all_images(ort_image_files, torch_image_files, suffix)
|
|
264
|
+
print(f"Combined demo output: sam2_demo{suffix}.png")
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
if __name__ == "__main__":
|
|
268
|
+
setup_logger(verbose=False)
|
|
269
|
+
with torch.no_grad():
|
|
270
|
+
main()
|
|
@@ -0,0 +1,272 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (R) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
import logging
|
|
6
|
+
import warnings
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
from image_encoder import SAM2ImageEncoder, random_sam2_input_image
|
|
11
|
+
from mask_decoder import SAM2MaskDecoder
|
|
12
|
+
from prompt_encoder import SAM2PromptEncoder
|
|
13
|
+
from sam2.modeling.sam2_base import SAM2Base
|
|
14
|
+
from sam2_utils import compare_tensors_with_tolerance
|
|
15
|
+
from torch import nn
|
|
16
|
+
|
|
17
|
+
logger = logging.getLogger(__name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class SAM2ImageDecoder(nn.Module):
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
sam_model: SAM2Base,
|
|
24
|
+
multimask_output: bool,
|
|
25
|
+
dynamic_multimask_via_stability: bool = True,
|
|
26
|
+
return_logits: bool = False,
|
|
27
|
+
mask_threshold: float = 0.0,
|
|
28
|
+
) -> None:
|
|
29
|
+
super().__init__()
|
|
30
|
+
self.prompt_encoder = SAM2PromptEncoder(sam_model)
|
|
31
|
+
self.mask_decoder = SAM2MaskDecoder(sam_model, multimask_output, dynamic_multimask_via_stability)
|
|
32
|
+
self.return_logits = return_logits
|
|
33
|
+
self.mask_threshold = mask_threshold
|
|
34
|
+
|
|
35
|
+
@torch.no_grad()
|
|
36
|
+
def forward(
|
|
37
|
+
self,
|
|
38
|
+
image_features_0: torch.Tensor,
|
|
39
|
+
image_features_1: torch.Tensor,
|
|
40
|
+
image_embeddings: torch.Tensor,
|
|
41
|
+
point_coords: torch.Tensor,
|
|
42
|
+
point_labels: torch.Tensor,
|
|
43
|
+
input_masks: torch.Tensor,
|
|
44
|
+
has_input_masks: torch.Tensor,
|
|
45
|
+
original_image_size: torch.Tensor,
|
|
46
|
+
enable_nvtx_profile: bool = False,
|
|
47
|
+
):
|
|
48
|
+
"""
|
|
49
|
+
Decode masks from image features and prompts. Batched images are not supported. H=W=1024.
|
|
50
|
+
|
|
51
|
+
Args:
|
|
52
|
+
image_features_0 (torch.Tensor): [1, 32, H/4, W/4]. high resolution features of level 0 from image encoder.
|
|
53
|
+
image_features_1 (torch.Tensor): [1, 64, H/8, W/8]. high resolution features of level 1 from image encoder.
|
|
54
|
+
image_embeddings (torch.Tensor): [1, 256, H/16, W/16]. image embedding from image encoder.
|
|
55
|
+
point_coords (torch.Tensor): [L, P, 2] shape and float32 dtype and contains the absolute pixel
|
|
56
|
+
coordinate in (x, y) format of the P input points in image of size 1024x1024.
|
|
57
|
+
point_labels (torch.Tensor): shape [L, P] and int32 dtype, where 1 means
|
|
58
|
+
positive (foreground), 0 means negative (background), -1 means padding,
|
|
59
|
+
2 (box left upper corner), 3 (box right bottom corner).
|
|
60
|
+
input_masks (torch.Tensor): [L, 1, H/4, W/4]. Low resolution mask input to the model.
|
|
61
|
+
Typically coming from a previous iteration.
|
|
62
|
+
has_input_masks (torch.Tensor): [L]. 1.0 if input_masks is used, 0.0 otherwise.
|
|
63
|
+
original_image_size(torch.Tensor): [2]. original image size H_o, W_o.
|
|
64
|
+
enable_nvtx_profile (bool): enable NVTX profiling.
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
masks (torch.Tensor): [1, M, H_o, W_o] where M=3 or 1. Masks of original image size.
|
|
68
|
+
iou_predictions (torch.Tensor): [1, M]. scores for M masks.
|
|
69
|
+
low_res_masks (torch.Tensor, optional): [1, M, H/4, W/4]. low resolution masks.
|
|
70
|
+
"""
|
|
71
|
+
nvtx_helper = None
|
|
72
|
+
if enable_nvtx_profile:
|
|
73
|
+
from nvtx_helper import NvtxHelper # noqa: PLC0415
|
|
74
|
+
|
|
75
|
+
nvtx_helper = NvtxHelper(["prompt_encoder", "mask_decoder", "post_process"])
|
|
76
|
+
|
|
77
|
+
if nvtx_helper is not None:
|
|
78
|
+
nvtx_helper.start_profile("prompt_encoder", color="blue")
|
|
79
|
+
|
|
80
|
+
sparse_embeddings, dense_embeddings, image_pe = self.prompt_encoder(
|
|
81
|
+
point_coords, point_labels, input_masks, has_input_masks
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
if nvtx_helper is not None:
|
|
85
|
+
nvtx_helper.stop_profile("prompt_encoder")
|
|
86
|
+
nvtx_helper.start_profile("mask_decoder", color="red")
|
|
87
|
+
|
|
88
|
+
low_res_masks, iou_predictions = self.mask_decoder(
|
|
89
|
+
image_features_0, image_features_1, image_embeddings, image_pe, sparse_embeddings, dense_embeddings
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
if nvtx_helper is not None:
|
|
93
|
+
nvtx_helper.stop_profile("mask_decoder")
|
|
94
|
+
nvtx_helper.start_profile("post_process", color="green")
|
|
95
|
+
|
|
96
|
+
# Interpolate the low resolution masks back to the original image size.
|
|
97
|
+
masks = F.interpolate(
|
|
98
|
+
low_res_masks,
|
|
99
|
+
(original_image_size[0], original_image_size[1]),
|
|
100
|
+
mode="bilinear",
|
|
101
|
+
align_corners=False, # Note that align_corners=True has less mismatches during comparing ORT and PyTorch.
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
|
|
105
|
+
if not self.return_logits:
|
|
106
|
+
masks = masks > self.mask_threshold
|
|
107
|
+
|
|
108
|
+
if nvtx_helper is not None:
|
|
109
|
+
nvtx_helper.stop_profile("post_process")
|
|
110
|
+
nvtx_helper.print_latency()
|
|
111
|
+
|
|
112
|
+
return masks, iou_predictions, low_res_masks
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def export_decoder_onnx(
|
|
116
|
+
sam2_model: SAM2Base,
|
|
117
|
+
onnx_model_path: str,
|
|
118
|
+
multimask_output: bool = False,
|
|
119
|
+
verbose: bool = False,
|
|
120
|
+
):
|
|
121
|
+
batch_size = 1
|
|
122
|
+
image = random_sam2_input_image(batch_size)
|
|
123
|
+
sam2_encoder = SAM2ImageEncoder(sam2_model).cpu()
|
|
124
|
+
image_features_0, image_features_1, image_embeddings = sam2_encoder(image)
|
|
125
|
+
|
|
126
|
+
logger.info("image_features_0.shape: %s", image_features_0.shape)
|
|
127
|
+
logger.info("image_features_1.shape: %s", image_features_1.shape)
|
|
128
|
+
logger.info("image_embeddings.shape: %s", image_embeddings.shape)
|
|
129
|
+
|
|
130
|
+
sam2_decoder = SAM2ImageDecoder(
|
|
131
|
+
sam2_model,
|
|
132
|
+
multimask_output=multimask_output,
|
|
133
|
+
dynamic_multimask_via_stability=True,
|
|
134
|
+
).cpu()
|
|
135
|
+
|
|
136
|
+
num_labels = 2
|
|
137
|
+
num_points = 3
|
|
138
|
+
point_coords = torch.randint(low=0, high=1024, size=(num_labels, num_points, 2), dtype=torch.float)
|
|
139
|
+
point_labels = torch.randint(low=0, high=1, size=(num_labels, num_points), dtype=torch.int32)
|
|
140
|
+
input_masks = torch.zeros(num_labels, 1, 256, 256, dtype=torch.float)
|
|
141
|
+
has_input_masks = torch.ones(1, dtype=torch.float)
|
|
142
|
+
original_image_size = torch.tensor([1200, 1800], dtype=torch.int32)
|
|
143
|
+
|
|
144
|
+
example_inputs = (
|
|
145
|
+
image_features_0,
|
|
146
|
+
image_features_1,
|
|
147
|
+
image_embeddings,
|
|
148
|
+
point_coords,
|
|
149
|
+
point_labels,
|
|
150
|
+
input_masks,
|
|
151
|
+
has_input_masks,
|
|
152
|
+
original_image_size,
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
logger.info("point_coords.shape: %s", point_coords.shape)
|
|
156
|
+
logger.info("point_labels.shape: %s", point_labels.shape)
|
|
157
|
+
logger.info("input_masks.shape: %s", input_masks.shape)
|
|
158
|
+
logger.info("has_input_masks.shape: %s", has_input_masks.shape)
|
|
159
|
+
logger.info("original_image_size.shape: %s", original_image_size.shape)
|
|
160
|
+
|
|
161
|
+
if verbose:
|
|
162
|
+
masks, iou_predictions, low_res_masks = sam2_decoder(*example_inputs)
|
|
163
|
+
logger.info("masks.shape: %s", masks.shape)
|
|
164
|
+
logger.info("iou_predictions.shape: %s", iou_predictions.shape)
|
|
165
|
+
logger.info("low_res_masks.shape: %s", low_res_masks.shape)
|
|
166
|
+
|
|
167
|
+
input_names = [
|
|
168
|
+
"image_features_0",
|
|
169
|
+
"image_features_1",
|
|
170
|
+
"image_embeddings",
|
|
171
|
+
"point_coords",
|
|
172
|
+
"point_labels",
|
|
173
|
+
"input_masks",
|
|
174
|
+
"has_input_masks",
|
|
175
|
+
"original_image_size",
|
|
176
|
+
]
|
|
177
|
+
|
|
178
|
+
output_names = ["masks", "iou_predictions", "low_res_masks"]
|
|
179
|
+
|
|
180
|
+
dynamic_axes = {
|
|
181
|
+
"point_coords": {0: "num_labels", 1: "num_points"},
|
|
182
|
+
"point_labels": {0: "num_labels", 1: "num_points"},
|
|
183
|
+
"input_masks": {0: "num_labels"},
|
|
184
|
+
"has_input_masks": {0: "num_labels"},
|
|
185
|
+
"masks": {0: "num_labels", 2: "original_image_height", 3: "original_image_width"},
|
|
186
|
+
"low_res_masks": {0: "num_labels"},
|
|
187
|
+
"iou_predictions": {0: "num_labels"},
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
with warnings.catch_warnings():
|
|
191
|
+
if not verbose:
|
|
192
|
+
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
|
|
193
|
+
warnings.filterwarnings("ignore", category=UserWarning)
|
|
194
|
+
|
|
195
|
+
torch.onnx.export(
|
|
196
|
+
sam2_decoder,
|
|
197
|
+
example_inputs,
|
|
198
|
+
onnx_model_path,
|
|
199
|
+
export_params=True,
|
|
200
|
+
opset_version=16,
|
|
201
|
+
do_constant_folding=True,
|
|
202
|
+
input_names=input_names,
|
|
203
|
+
output_names=output_names,
|
|
204
|
+
dynamic_axes=dynamic_axes,
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
logger.info("decoder onnx model saved to %s", onnx_model_path)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
def test_decoder_onnx(
|
|
211
|
+
sam2_model: SAM2Base,
|
|
212
|
+
onnx_model_path: str,
|
|
213
|
+
multimask_output=False,
|
|
214
|
+
):
|
|
215
|
+
batch_size = 1
|
|
216
|
+
image = random_sam2_input_image(batch_size)
|
|
217
|
+
sam2_encoder = SAM2ImageEncoder(sam2_model).cpu()
|
|
218
|
+
image_features_0, image_features_1, image_embeddings = sam2_encoder(image)
|
|
219
|
+
|
|
220
|
+
sam2_image_decoder = SAM2ImageDecoder(
|
|
221
|
+
sam2_model,
|
|
222
|
+
multimask_output=multimask_output,
|
|
223
|
+
dynamic_multimask_via_stability=True,
|
|
224
|
+
).cpu()
|
|
225
|
+
|
|
226
|
+
num_labels = 1
|
|
227
|
+
num_points = 5
|
|
228
|
+
point_coords = torch.randint(low=0, high=1024, size=(num_labels, num_points, 2), dtype=torch.float)
|
|
229
|
+
point_labels = torch.randint(low=0, high=1, size=(num_labels, num_points), dtype=torch.int32)
|
|
230
|
+
input_masks = torch.zeros(num_labels, 1, 256, 256, dtype=torch.float)
|
|
231
|
+
has_input_masks = torch.zeros(1, dtype=torch.float)
|
|
232
|
+
original_image_size = torch.tensor([1500, 1500], dtype=torch.int32)
|
|
233
|
+
|
|
234
|
+
example_inputs = (
|
|
235
|
+
image_features_0,
|
|
236
|
+
image_features_1,
|
|
237
|
+
image_embeddings,
|
|
238
|
+
point_coords,
|
|
239
|
+
point_labels,
|
|
240
|
+
input_masks,
|
|
241
|
+
has_input_masks,
|
|
242
|
+
original_image_size,
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
masks, iou_predictions, low_res_masks = sam2_image_decoder(*example_inputs)
|
|
246
|
+
|
|
247
|
+
import onnxruntime # noqa: PLC0415
|
|
248
|
+
|
|
249
|
+
ort_session = onnxruntime.InferenceSession(onnx_model_path, providers=["CPUExecutionProvider"])
|
|
250
|
+
|
|
251
|
+
model_inputs = ort_session.get_inputs()
|
|
252
|
+
input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
|
253
|
+
logger.info("input_names: %s", input_names)
|
|
254
|
+
|
|
255
|
+
model_outputs = ort_session.get_outputs()
|
|
256
|
+
output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
|
257
|
+
logger.info("output_names: %s", output_names)
|
|
258
|
+
inputs = {model_inputs[i].name: example_inputs[i].numpy() for i in range(len(model_inputs))}
|
|
259
|
+
outputs = ort_session.run(output_names, inputs)
|
|
260
|
+
|
|
261
|
+
for i, output_name in enumerate(output_names):
|
|
262
|
+
logger.info(f"{output_name}.shape: %s", outputs[i].shape)
|
|
263
|
+
|
|
264
|
+
ort_masks, ort_iou_predictions, ort_low_res_masks = outputs
|
|
265
|
+
if (
|
|
266
|
+
compare_tensors_with_tolerance("masks", masks.float(), torch.tensor(ort_masks).float())
|
|
267
|
+
and compare_tensors_with_tolerance("iou_predictions", iou_predictions, torch.tensor(ort_iou_predictions))
|
|
268
|
+
and compare_tensors_with_tolerance("low_res_masks", low_res_masks, torch.tensor(ort_low_res_masks))
|
|
269
|
+
):
|
|
270
|
+
print("onnx model has been verified:", onnx_model_path)
|
|
271
|
+
else:
|
|
272
|
+
print("onnx model verification failed:", onnx_model_path)
|