onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,474 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+
6
+ import logging
7
+
8
+ import onnx
9
+ from onnx import numpy_helper
10
+ from onnx_model_bert_tf import BertOnnxModelTF
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class BertOnnxModelKeras(BertOnnxModelTF):
16
+ def __init__(self, model, num_heads, hidden_size):
17
+ super().__init__(model, num_heads, hidden_size)
18
+
19
+ def match_mask_path(self, add_or_sub_before_softmax):
20
+ mask_nodes = self.match_parent_path(
21
+ add_or_sub_before_softmax,
22
+ ["Mul", "Sub", "Reshape", "Cast"],
23
+ [1, None, 1, 0],
24
+ )
25
+ if mask_nodes is not None:
26
+ return mask_nodes
27
+
28
+ mask_nodes = self.match_parent_path(
29
+ add_or_sub_before_softmax,
30
+ ["Mul", "Sub", "Cast", "Slice", "Unsqueeze"],
31
+ [1, 1, 1, 0, 0],
32
+ )
33
+ if mask_nodes is not None:
34
+ return mask_nodes
35
+
36
+ mask_nodes = self.match_parent_path(
37
+ add_or_sub_before_softmax,
38
+ ["Mul", "Sub", "Cast", "Unsqueeze", "Unsqueeze"],
39
+ [1, None, 1, 0, 0],
40
+ )
41
+ return mask_nodes
42
+
43
+ def check_attention_input(self, matmul_q, matmul_k, matmul_v, parent, output_name_to_node):
44
+ reshape_nodes = []
45
+
46
+ for x in [matmul_q, matmul_k, matmul_v]:
47
+ root_input = x.input[0]
48
+ root_node = output_name_to_node[root_input]
49
+ if root_node == parent:
50
+ continue
51
+ if root_node.op_type == "Reshape" and root_node.input[0] == parent.output[0]:
52
+ reshape_nodes.append(root_node)
53
+ continue
54
+ logger.debug(f"Check attention input failed:{root_input}, {parent.output[0]}")
55
+ return False, []
56
+
57
+ return True, reshape_nodes
58
+
59
+ def fuse_attention(self):
60
+ self.input_name_to_nodes()
61
+ output_name_to_node = self.output_name_to_node()
62
+
63
+ nodes_to_remove = []
64
+ attention_count = 0
65
+
66
+ skip_layer_norm_nodes = self.get_nodes_by_op_type("SkipLayerNormalization")
67
+ for normalize_node in skip_layer_norm_nodes:
68
+ # SkipLayerNormalization has two inputs, and one of them is the root input for attention.
69
+ parent = self.get_parent(normalize_node, 0)
70
+ if parent is None or parent.op_type not in [
71
+ "SkipLayerNormalization",
72
+ "EmbedLayerNormalization",
73
+ ]:
74
+ if parent.op_type == "Add":
75
+ parent = self.get_parent(normalize_node, 1)
76
+ if parent is None or parent.op_type not in [
77
+ "SkipLayerNormalization",
78
+ "EmbedLayerNormalization",
79
+ ]:
80
+ logger.debug(f"First input for skiplayernorm: {parent.op_type if parent is not None else None}")
81
+ continue
82
+ else:
83
+ logger.debug(f"First input for skiplayernorm: {parent.op_type if parent is not None else None}")
84
+ continue
85
+ else:
86
+ # TODO: shall we add back the checking of children op types.
87
+ pass
88
+
89
+ qkv_nodes = self.match_parent_path(
90
+ normalize_node,
91
+ ["Add", "Reshape", "MatMul", "Reshape", "Transpose", "MatMul"],
92
+ [None, 0, 0, 0, 0, 0],
93
+ )
94
+ if qkv_nodes is None:
95
+ logger.debug("Failed to match qkv nodes")
96
+ continue
97
+ (
98
+ add,
99
+ extra_reshape_0,
100
+ matmul,
101
+ reshape_qkv,
102
+ transpose_qkv,
103
+ matmul_qkv,
104
+ ) = qkv_nodes
105
+ logger.debug("Matched qkv nodes")
106
+
107
+ v_nodes = self.match_parent_path(
108
+ matmul_qkv,
109
+ ["Transpose", "Reshape", "Add", "Reshape", "MatMul"],
110
+ [1, 0, 0, 0, 0],
111
+ )
112
+ if v_nodes is None:
113
+ logger.debug("Failed to match v path")
114
+ continue
115
+ (transpose_v, reshape_v, add_v, extra_reshape_1, matmul_v) = v_nodes
116
+
117
+ qk_nodes = self.match_parent_path(matmul_qkv, ["Softmax", "Sub", "MatMul"], [0, 0, 0])
118
+ if qk_nodes is not None:
119
+ (softmax_qk, sub_qk, matmul_qk) = qk_nodes
120
+ q_nodes = self.match_parent_path(
121
+ matmul_qk,
122
+ ["Mul", "Transpose", "Reshape", "Add", "Reshape", "MatMul"],
123
+ [0, None, 0, 0, 0, 0],
124
+ )
125
+ if q_nodes is not None:
126
+ (
127
+ mul_q,
128
+ transpose_q,
129
+ reshape_q,
130
+ add_q,
131
+ extra_reshape_2,
132
+ matmul_q,
133
+ ) = q_nodes
134
+
135
+ else:
136
+ qk_nodes = self.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, None])
137
+ if qk_nodes is None:
138
+ qk_nodes = self.match_parent_path(matmul_qkv, ["Softmax", "Add", "Div", "MatMul"], [0, 0, 0, None])
139
+ if qk_nodes is None:
140
+ logger.debug("Failed to match qk path")
141
+ continue
142
+ (softmax_qk, add_qk, mul_qk, matmul_qk) = qk_nodes
143
+
144
+ q_nodes = self.match_parent_path(
145
+ matmul_qk,
146
+ ["Transpose", "Reshape", "Add", "Reshape", "MatMul"],
147
+ [0, 0, 0, 0, 0],
148
+ )
149
+ if q_nodes is not None:
150
+ (transpose_q, reshape_q, add_q, extra_reshape_2, matmul_q) = q_nodes
151
+
152
+ if q_nodes is None:
153
+ logger.debug("Failed to match q path")
154
+ continue
155
+
156
+ k_nodes = self.match_parent_path(
157
+ matmul_qk,
158
+ ["Transpose", "Reshape", "Add", "Reshape", "MatMul"],
159
+ [1, 0, 0, 0, 0],
160
+ )
161
+ if k_nodes is None:
162
+ logger.debug("Failed to match k path")
163
+ continue
164
+ (transpose_k, reshape_k, add_k, extra_reshape_3, matmul_k) = k_nodes
165
+
166
+ mask_nodes = self.match_mask_path(qk_nodes[1])
167
+ if mask_nodes is None:
168
+ logger.debug("Failed to match mask path")
169
+ continue
170
+ if not self.has_constant_input(mask_nodes[1], 1):
171
+ logger.debug("Sub node expected to have an input with constant value 1.0.")
172
+ continue
173
+
174
+ is_same_root, reshape_nodes = self.check_attention_input(
175
+ matmul_q, matmul_k, matmul_v, parent, output_name_to_node
176
+ )
177
+ if is_same_root:
178
+ mask_index = self.attention_mask.process_mask(mask_nodes[-1].input[0])
179
+ logger.debug("Create an Attention node.")
180
+ attention_node = self.attention_fusion.create_attention_node(
181
+ mask_index=mask_index,
182
+ q_matmul=matmul_q,
183
+ k_matmul=matmul_k,
184
+ v_matmul=matmul_v,
185
+ q_add=add_q,
186
+ k_add=add_k,
187
+ v_add=add_v,
188
+ num_heads=self.num_heads,
189
+ hidden_size=self.hidden_size,
190
+ first_input=parent.output[0],
191
+ output=reshape_qkv.output[0],
192
+ )
193
+ if attention_node is None:
194
+ continue
195
+
196
+ self.add_node(attention_node)
197
+ attention_count += 1
198
+
199
+ nodes_to_remove.extend([reshape_qkv, transpose_qkv, matmul_qkv])
200
+ nodes_to_remove.extend(qk_nodes)
201
+ nodes_to_remove.extend(q_nodes)
202
+ nodes_to_remove.extend(k_nodes)
203
+ nodes_to_remove.extend(v_nodes)
204
+ nodes_to_remove.extend(mask_nodes)
205
+ nodes_to_remove.extend(reshape_nodes)
206
+ nodes_to_remove.append(extra_reshape_0)
207
+ self.replace_node_input(add, extra_reshape_0.output[0], matmul.output[0])
208
+ else:
209
+ logger.debug("Root node not matched.")
210
+ continue
211
+ self.remove_nodes(nodes_to_remove)
212
+ self.update_graph()
213
+ logger.info(f"Fused Attention count:{attention_count}")
214
+
215
+ def preprocess(self):
216
+ self.process_embedding()
217
+ self.fuse_mask()
218
+ self.skip_reshape()
219
+
220
+ def skip_reshape(self):
221
+ self.input_name_to_nodes()
222
+ self.output_name_to_node()
223
+
224
+ count = 0
225
+ reshape_nodes = self.get_nodes_by_op_type("Reshape")
226
+ for reshape_node in reshape_nodes:
227
+ parent = self.get_parent(reshape_node, 0)
228
+ if parent is not None and parent.op_type == "Reshape":
229
+ reshape_node.input[0] = parent.input[0]
230
+ count += 1
231
+
232
+ if count > 0:
233
+ logger.info(f"Skip consequent Reshape count: {count}")
234
+
235
+ def fuse_embedding(self, node, output_name_to_node):
236
+ assert node.op_type == "LayerNormalization"
237
+ logger.debug(f"start fusing embedding from node with output={node.output[0]}...")
238
+ word_embed_path = self.match_parent_path(node, ["Add", "Add", "Gather"], [0, 0, 0], output_name_to_node)
239
+ if word_embed_path is None:
240
+ logger.debug("failed to match word_embed_path")
241
+ return False
242
+
243
+ skip_node, add_node, gather_node = word_embed_path
244
+
245
+ word_initializer = self.get_initializer(gather_node.input[0])
246
+ if word_initializer is None:
247
+ logger.debug("failed to get word initializer")
248
+ return False
249
+
250
+ temp = numpy_helper.to_array(word_initializer)
251
+ if len(temp.shape) == 2:
252
+ logger.info(f"Found word embedding. name:{word_initializer.name}, shape:{temp.shape}")
253
+ word_embedding = word_initializer.name
254
+ else:
255
+ logger.info(f"Failed to find word embedding. name:{word_initializer.name}, shape:{temp.shape}")
256
+ return False
257
+
258
+ pos_initializer = self.get_initializer(add_node.input[1])
259
+ if pos_initializer is not None:
260
+ temp = numpy_helper.to_array(pos_initializer)
261
+ if len(temp.shape) == 3 and temp.shape[0] == 1:
262
+ tensor = numpy_helper.from_array(temp.reshape((temp.shape[1], temp.shape[2])), "position_embedding")
263
+ self.add_initializer(tensor)
264
+ logger.info(f"Found position embedding. name:{pos_initializer.name}, shape:{temp.shape[1:]}")
265
+ position_embedding = "position_embedding"
266
+ else:
267
+ logger.info(f"Failed to find position embedding. name:{pos_initializer.name}, shape:{temp.shape}")
268
+ return False
269
+ else:
270
+ pos_embed_path = self.match_parent_path(add_node, ["Gather", "Slice"], [1, 1], output_name_to_node)
271
+ if pos_embed_path is None:
272
+ logger.debug("failed to match pos_embed_path")
273
+ return False
274
+
275
+ pos_gather, pos_slice = pos_embed_path
276
+ pos_initializer = self.get_initializer(pos_gather.input[0])
277
+ if pos_initializer is None:
278
+ logger.debug("failed to get pos initializer")
279
+ return False
280
+
281
+ temp = numpy_helper.to_array(pos_initializer)
282
+ if len(temp.shape) == 2:
283
+ logger.info(f"Found word embedding. name:{pos_initializer.name}, shape:{temp.shape}")
284
+ position_embedding = pos_initializer.name
285
+ else:
286
+ logger.info(f"Failed to find position embedding. name:{pos_initializer.name}, shape:{temp.shape}")
287
+ return False
288
+
289
+ gather = self.get_parent(skip_node, 1, output_name_to_node)
290
+ if gather is None or gather.op_type != "Gather":
291
+ logger.debug("failed to get gather")
292
+ return False
293
+
294
+ segment_initializer = self.get_initializer(gather.input[0])
295
+ if segment_initializer is None:
296
+ logger.debug("failed to get segment initializer")
297
+ return False
298
+
299
+ temp = numpy_helper.to_array(segment_initializer)
300
+ if len(temp.shape) == 2:
301
+ logger.info(f"Found segment embedding. name:{segment_initializer.name}, shape:{temp.shape}")
302
+ segment_embedding = segment_initializer.name
303
+ else:
304
+ logger.info(f"Failed to find segment embedding. name:{segment_initializer.name}, shape:{temp.shape}")
305
+ return False
306
+
307
+ logger.info("Create Embedding node")
308
+ self.create_embedding_subgraph(node, word_embedding, segment_embedding, position_embedding)
309
+ return True
310
+
311
+ def process_embedding(self):
312
+ """
313
+ Automatically detect word, segment and position embeddings.
314
+ """
315
+ logger.info("start processing embedding layer...")
316
+ output_name_to_node = self.output_name_to_node()
317
+ for node in self.nodes():
318
+ if node.op_type == "LayerNormalization":
319
+ if self.fuse_embedding(node, output_name_to_node):
320
+ return
321
+ break
322
+
323
+ def fuse_mask(self):
324
+ nodes_to_remove = []
325
+ for node in self.nodes():
326
+ if node.op_type == "Mul" and self.has_constant_input(node, -10000):
327
+ mask_path = self.match_parent_path(node, ["Sub", "Cast", "Slice", "Unsqueeze"], [0, 1, 0, 0])
328
+ if mask_path is None:
329
+ continue
330
+ sub_node, cast_node, slice_node, unsqueeze_node = mask_path
331
+
332
+ mask_input_name = self.attention_mask.get_first_mask()
333
+ if unsqueeze_node.input[0] != mask_input_name:
334
+ print(f"Cast input {unsqueeze_node.input[0]} is not mask input {mask_input_name}")
335
+ continue
336
+
337
+ unsqueeze_added_1 = onnx.helper.make_node(
338
+ "Unsqueeze",
339
+ inputs=[mask_input_name],
340
+ outputs=["mask_fuse_unsqueeze1_output"],
341
+ name="Mask_UnSqueeze_1",
342
+ axes=[1],
343
+ )
344
+
345
+ unsqueeze_added_2 = onnx.helper.make_node(
346
+ "Unsqueeze",
347
+ inputs=["mask_fuse_unsqueeze1_output"],
348
+ outputs=["mask_fuse_unsqueeze2_output"],
349
+ name="Mask_UnSqueeze_2",
350
+ axes=[2],
351
+ )
352
+
353
+ # self.replace_node_input(cast_node, cast_node.input[0], 'mask_fuse_unsqueeze2_output')
354
+ cast_node_2 = onnx.helper.make_node(
355
+ "Cast",
356
+ inputs=["mask_fuse_unsqueeze2_output"],
357
+ outputs=["mask_fuse_cast_output"],
358
+ )
359
+ cast_node_2.attribute.extend([onnx.helper.make_attribute("to", 1)])
360
+ self.replace_node_input(sub_node, sub_node.input[1], "mask_fuse_cast_output")
361
+
362
+ nodes_to_remove.extend([slice_node, unsqueeze_node, cast_node])
363
+ self.add_node(unsqueeze_added_1)
364
+ self.add_node(unsqueeze_added_2)
365
+ self.add_node(cast_node_2)
366
+
367
+ self.remove_nodes(nodes_to_remove)
368
+
369
+ # Prune graph is done after removing nodes to remove island nodes.
370
+ if len(nodes_to_remove) > 0:
371
+ self.prune_graph()
372
+
373
+ logger.info("Fused mask" if len(nodes_to_remove) > 0 else "Failed to fuse mask")
374
+
375
+ def remove_extra_reshape(self):
376
+ skiplayernorm_nodes = self.get_nodes_by_op_type("SkipLayerNormalization")
377
+ reshape_removed = 0
378
+ for skiplayernorm_node in skiplayernorm_nodes:
379
+ path = self.match_parent_path(
380
+ skiplayernorm_node,
381
+ [
382
+ "Add",
383
+ "Reshape",
384
+ "MatMul",
385
+ "Reshape",
386
+ "Gelu",
387
+ "Add",
388
+ "Reshape",
389
+ "MatMul",
390
+ "SkipLayerNormalization",
391
+ ],
392
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
393
+ )
394
+ if path is None:
395
+ continue
396
+
397
+ (
398
+ add_1,
399
+ reshape_1,
400
+ matmul_1,
401
+ reshape_2,
402
+ gelu,
403
+ add_2,
404
+ reshape_3,
405
+ matmul_2,
406
+ skiplayernorm,
407
+ ) = path
408
+ add_2.input[0] = matmul_2.output[0]
409
+ self.remove_node(reshape_3)
410
+ matmul_1.input[0] = gelu.output[0]
411
+ self.remove_node(reshape_2)
412
+ add_1.input[0] = matmul_1.output[0]
413
+ self.remove_node(reshape_1)
414
+ reshape_removed += 3
415
+
416
+ return reshape_removed
417
+
418
+ def remove_extra_reshape_2(self):
419
+ skiplayernorm_nodes = self.get_nodes_by_op_type("SkipLayerNormalization")
420
+ reshape_removed = 0
421
+ for skiplayernorm_node in skiplayernorm_nodes:
422
+ path = self.match_parent_path(
423
+ skiplayernorm_node,
424
+ [
425
+ "Add",
426
+ "Reshape",
427
+ "MatMul",
428
+ "Reshape",
429
+ "Gelu",
430
+ "Add",
431
+ "Reshape",
432
+ "MatMul",
433
+ "Reshape",
434
+ "SkipLayerNormalization",
435
+ ],
436
+ [None, 0, 0, 0, 0, 0, 0, 0, 0, 0],
437
+ )
438
+ if path is None:
439
+ continue
440
+
441
+ (
442
+ add_1,
443
+ reshape_1,
444
+ matmul_1,
445
+ reshape_2,
446
+ gelu,
447
+ add_2,
448
+ reshape_3,
449
+ matmul_2,
450
+ reshape_4,
451
+ skiplayernorm,
452
+ ) = path
453
+
454
+ matmul_2.input[0] = skiplayernorm.output[0]
455
+ self.remove_node(reshape_4)
456
+
457
+ add_2.input[0] = matmul_2.output[0]
458
+ self.remove_node(reshape_3)
459
+
460
+ matmul_1.input[0] = gelu.output[0]
461
+ self.remove_node(reshape_2)
462
+
463
+ add_1.input[0] = matmul_1.output[0]
464
+ self.remove_node(reshape_1)
465
+
466
+ reshape_removed += 4
467
+
468
+ return reshape_removed
469
+
470
+ def postprocess(self):
471
+ reshape_removed = self.remove_extra_reshape() + self.remove_extra_reshape_2()
472
+ logger.info(f"Remove {reshape_removed} Reshape nodes.")
473
+
474
+ self.prune_graph()