onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,258 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ from logging import getLogger
6
+
7
+ from fusion_base import Fusion
8
+ from onnx import helper
9
+ from onnx_model import OnnxModel
10
+
11
+ logger = getLogger(__name__)
12
+
13
+
14
+ class FusionGelu(Fusion):
15
+ def __init__(self, model: OnnxModel):
16
+ super().__init__(model, "Gelu", "Erf")
17
+
18
+ def fuse(self, erf_node, input_name_to_nodes: dict, output_name_to_node: dict):
19
+ if self.fuse_1(erf_node, input_name_to_nodes, output_name_to_node):
20
+ return
21
+ if self.fuse_2(erf_node, input_name_to_nodes, output_name_to_node):
22
+ return
23
+ self.fuse_3(erf_node, input_name_to_nodes, output_name_to_node)
24
+
25
+ def fuse_1(self, erf_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
26
+ """
27
+ This pattern is from PyTorch model
28
+ Fuse Gelu with Erf into one node:
29
+ Pattern 1:
30
+ +-------Mul(0.5)---------------------+
31
+ | |
32
+ | v
33
+ [root] --> Div -----> Erf --> Add --> Mul -->
34
+ (B=1.4142...) (1)
35
+
36
+ Pattern 2:
37
+ +------------------------------------+
38
+ | |
39
+ | v
40
+ [root] --> Div -----> Erf --> Add --> Mul -->Mul -->
41
+ (B=1.4142...) (1) (0.5)
42
+
43
+ Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
44
+ """
45
+ if erf_node.output[0] not in input_name_to_nodes:
46
+ return
47
+ children = input_name_to_nodes[erf_node.output[0]]
48
+ if len(children) != 1 or children[0].op_type != "Add":
49
+ return
50
+ add_after_erf = children[0]
51
+
52
+ if not self.model.has_constant_input(add_after_erf, 1):
53
+ return
54
+
55
+ if add_after_erf.output[0] not in input_name_to_nodes:
56
+ return
57
+ children = input_name_to_nodes[add_after_erf.output[0]]
58
+ if len(children) != 1 or children[0].op_type != "Mul":
59
+ return
60
+ mul_after_erf = children[0]
61
+
62
+ div = self.model.match_parent(erf_node, "Div", 0, output_name_to_node)
63
+ if div is None:
64
+ return
65
+
66
+ if self.model.find_constant_input(div, 1.4142, delta=0.001) != 1:
67
+ return
68
+
69
+ subgraph_input = div.input[0]
70
+
71
+ another = 1 if mul_after_erf.input[0] == add_after_erf.output[0] else 0
72
+ if subgraph_input == mul_after_erf.input[another]: # pattern 2
73
+ children = input_name_to_nodes[mul_after_erf.output[0]]
74
+ if len(children) != 1 or children[0].op_type != "Mul":
75
+ return
76
+ mul_half = children[0]
77
+ if not self.model.has_constant_input(mul_half, 0.5):
78
+ return
79
+ subgraph_output = mul_half.output[0]
80
+ else: # pattern 1
81
+ mul_half = self.model.match_parent(mul_after_erf, "Mul", another, output_name_to_node)
82
+ if mul_half is None:
83
+ return
84
+
85
+ if not self.model.has_constant_input(mul_half, 0.5):
86
+ return
87
+
88
+ if subgraph_input not in mul_half.input:
89
+ return
90
+
91
+ subgraph_output = mul_after_erf.output[0]
92
+
93
+ subgraph_nodes = [div, erf_node, add_after_erf, mul_after_erf, mul_half]
94
+ if not self.model.is_safe_to_fuse_nodes(
95
+ subgraph_nodes, [subgraph_output], input_name_to_nodes, output_name_to_node
96
+ ):
97
+ return
98
+
99
+ self.nodes_to_remove.extend(subgraph_nodes)
100
+ fused_node = helper.make_node(
101
+ "Gelu", inputs=[subgraph_input], outputs=[subgraph_output], name=self.model.create_node_name("Gelu")
102
+ )
103
+ fused_node.domain = "com.microsoft"
104
+ self.nodes_to_add.append(fused_node)
105
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
106
+ self.increase_counter("Gelu")
107
+ return True
108
+
109
+ def fuse_2(self, erf_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
110
+ """
111
+ This pattern is from Keras model
112
+ Fuse Gelu with Erf into one node:
113
+ +------------------------------------------+
114
+ | |
115
+ | v
116
+ [root] --> Div -----> Erf --> Add --> Mul -->Mul
117
+ (B=1.4142...) (A=1) (A=0.5)
118
+
119
+ Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
120
+ """
121
+ if erf_node.output[0] not in input_name_to_nodes:
122
+ return
123
+ children = input_name_to_nodes[erf_node.output[0]]
124
+ if len(children) != 1 or children[0].op_type != "Add":
125
+ return
126
+ add_after_erf = children[0]
127
+
128
+ if not self.model.has_constant_input(add_after_erf, 1):
129
+ return
130
+
131
+ if add_after_erf.output[0] not in input_name_to_nodes:
132
+ return
133
+ children = input_name_to_nodes[add_after_erf.output[0]]
134
+ if len(children) != 1 or children[0].op_type != "Mul":
135
+ return
136
+ mul_after_erf = children[0]
137
+
138
+ if not self.model.has_constant_input(mul_after_erf, 0.5):
139
+ return
140
+
141
+ if mul_after_erf.output[0] not in input_name_to_nodes:
142
+ return
143
+ children = input_name_to_nodes[mul_after_erf.output[0]]
144
+ if len(children) != 1 or children[0].op_type != "Mul":
145
+ return
146
+ mul = children[0]
147
+
148
+ div = self.model.match_parent(erf_node, "Div", 0, output_name_to_node)
149
+ if div is None:
150
+ return
151
+
152
+ sqrt_node = None
153
+ if self.model.find_constant_input(div, 1.4142, delta=0.001) != 1:
154
+ sqrt_node = self.model.match_parent(div, "Sqrt", 1, output_name_to_node)
155
+ if sqrt_node is None:
156
+ return
157
+ if not self.model.has_constant_input(sqrt_node, 2.0):
158
+ return
159
+
160
+ root_node = self.model.get_parent(div, 0, output_name_to_node)
161
+ if root_node is None:
162
+ return
163
+
164
+ if root_node.output[0] not in mul.input:
165
+ return
166
+
167
+ subgraph_nodes = [div, erf_node, add_after_erf, mul_after_erf, mul]
168
+ if sqrt_node:
169
+ subgraph_nodes.append(sqrt_node)
170
+
171
+ if not self.model.is_safe_to_fuse_nodes(
172
+ subgraph_nodes, [mul.output[0]], input_name_to_nodes, output_name_to_node
173
+ ):
174
+ return
175
+
176
+ self.nodes_to_remove.extend(subgraph_nodes)
177
+ fused_node = helper.make_node(
178
+ "Gelu", inputs=[root_node.output[0]], outputs=[mul.output[0]], name=self.model.create_node_name("Gelu")
179
+ )
180
+ fused_node.domain = "com.microsoft"
181
+ self.nodes_to_add.append(fused_node)
182
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
183
+ self.increase_counter("Gelu")
184
+ return True
185
+
186
+ def fuse_3(self, erf_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
187
+ """
188
+ This pattern is from TensorFlow model
189
+ Fuse Gelu with Erf into one node:
190
+ +----------------------------------------------+
191
+ | |
192
+ | v
193
+ [root] --> Mul -----> Erf --> Add --> Mul -->Mul
194
+ (A=0.7071067690849304) (B=1) (B=0.5)
195
+
196
+ Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
197
+ """
198
+
199
+ if erf_node.output[0] not in input_name_to_nodes:
200
+ return
201
+ children = input_name_to_nodes[erf_node.output[0]]
202
+ if len(children) != 1 or children[0].op_type != "Add":
203
+ return
204
+ add_after_erf = children[0]
205
+
206
+ if not self.model.has_constant_input(add_after_erf, 1):
207
+ return
208
+
209
+ if add_after_erf.output[0] not in input_name_to_nodes:
210
+ return
211
+ children = input_name_to_nodes[add_after_erf.output[0]]
212
+ if len(children) != 1 or children[0].op_type != "Mul":
213
+ return
214
+ mul_half = children[0]
215
+
216
+ if not self.model.has_constant_input(mul_half, 0.5):
217
+ return
218
+
219
+ first_mul = self.model.match_parent(erf_node, "Mul", 0, output_name_to_node)
220
+ if first_mul is None:
221
+ return
222
+
223
+ i = self.model.find_constant_input(first_mul, 0.7071067690849304, delta=0.001)
224
+ if i < 0:
225
+ return
226
+
227
+ root_node = self.model.get_parent(first_mul, 0 if i == 1 else 1, output_name_to_node)
228
+ if root_node is None:
229
+ return
230
+
231
+ if mul_half.output[0] not in input_name_to_nodes:
232
+ return
233
+ children = input_name_to_nodes[mul_half.output[0]]
234
+ if len(children) != 1 or children[0].op_type != "Mul":
235
+ return
236
+ last_mul = children[0]
237
+
238
+ if not (last_mul.input[0] == root_node.output[0] or last_mul.input[1] == root_node.output[0]):
239
+ return
240
+
241
+ subgraph_nodes = [first_mul, erf_node, add_after_erf, mul_half, last_mul]
242
+ if not self.model.is_safe_to_fuse_nodes(
243
+ subgraph_nodes,
244
+ [last_mul.output[0]],
245
+ input_name_to_nodes,
246
+ output_name_to_node,
247
+ ):
248
+ return
249
+
250
+ self.nodes_to_remove.extend(subgraph_nodes)
251
+ fused_node = helper.make_node(
252
+ "Gelu", inputs=[root_node.output[0]], outputs=[last_mul.output[0]], name=self.model.create_node_name("Gelu")
253
+ )
254
+ fused_node.domain = "com.microsoft"
255
+ self.nodes_to_add.append(fused_node)
256
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
257
+ self.increase_counter("Gelu")
258
+ return True
@@ -0,0 +1,25 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+
6
+ from fusion_base import Fusion
7
+ from onnx import helper
8
+ from onnx_model import OnnxModel
9
+
10
+
11
+ class FusionGeluApproximation(Fusion):
12
+ def __init__(self, model: OnnxModel):
13
+ super().__init__(model, "FastGelu", ["Gelu", "BiasGelu"], "GeluApproximation")
14
+
15
+ def fuse(self, node, input_name_to_nodes, output_name_to_node):
16
+ new_node = helper.make_node(
17
+ "FastGelu",
18
+ inputs=node.input,
19
+ outputs=node.output,
20
+ name=self.model.create_node_name("FastGelu", node.op_type + "_Approximation"),
21
+ )
22
+ new_node.domain = "com.microsoft"
23
+ self.nodes_to_remove.append(node)
24
+ self.nodes_to_add.append(new_node)
25
+ self.node_name_to_graph_name[new_node.name] = self.this_graph_name
@@ -0,0 +1,121 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+
6
+ from logging import getLogger
7
+
8
+ from fusion_base import Fusion
9
+ from fusion_utils import NumpyHelper
10
+ from onnx import NodeProto, TensorProto, helper
11
+ from onnx_model import OnnxModel
12
+
13
+ logger = getLogger(__name__)
14
+
15
+
16
+ class FusionGemmFastGelu(Fusion):
17
+ def __init__(self, model: OnnxModel):
18
+ super().__init__(model, "GemmFastGelu", "FastGelu", "GemmFastGelu")
19
+ self.shape_infer = None
20
+ self.shape_infer_done = False
21
+
22
+ def get_dimensions_from_tensor_proto(self, tensor_proto: TensorProto) -> int | None:
23
+ if tensor_proto.type.tensor_type.HasField("shape"):
24
+ return len(tensor_proto.type.tensor_type.shape.dim)
25
+ else:
26
+ return None
27
+
28
+ def get_dimensions(self, input_name: str) -> int | None:
29
+ graph_input = self.model.find_graph_input(input_name)
30
+ if graph_input:
31
+ return self.get_dimensions_from_tensor_proto(graph_input)
32
+
33
+ if not self.shape_infer_done:
34
+ self.shape_infer = self.model.infer_runtime_shape(update=True)
35
+ self.shape_infer_done = True
36
+
37
+ if self.shape_infer is not None:
38
+ return self.get_dimensions_from_tensor_proto(self.shape_infer.known_vi_[input_name])
39
+
40
+ return None
41
+
42
+ def fuse(
43
+ self,
44
+ node: NodeProto,
45
+ input_name_to_nodes: dict[str, list[NodeProto]],
46
+ output_name_to_node: dict[str, NodeProto],
47
+ ):
48
+ """
49
+ This pattern is from PyTorch bert model
50
+ Fuse MatMul with FastGelu into one node:
51
+
52
+ [root] --> MatMul --> FastGelu -->
53
+
54
+ """
55
+ has_bias = False
56
+ if len(node.input) == 2:
57
+ has_bias = True
58
+
59
+ match_nodes = self.model.match_parent_path(node, ["MatMul"], [0])
60
+ if match_nodes is None:
61
+ return
62
+ matmul = match_nodes[0]
63
+
64
+ # matmul input X should >= two dimension, input weight should be two dimension
65
+ weight_index = -1
66
+ x_dims = 0
67
+ weight = None
68
+
69
+ for i, input in enumerate(matmul.input):
70
+ initializer = self.model.get_initializer(input)
71
+ if initializer is None:
72
+ x_dims = self.get_dimensions(matmul.input[i])
73
+ else:
74
+ weight_index = i
75
+ weight = NumpyHelper.to_array(initializer)
76
+ if weight is None:
77
+ return
78
+ if len(weight.shape) != 2:
79
+ return
80
+ if x_dims < len(weight.shape):
81
+ return
82
+
83
+ # bias weight should be one dimension
84
+ bias_index = -1
85
+ if has_bias:
86
+ bias_weight = None
87
+ for i, input in enumerate(node.input):
88
+ initializer = self.model.get_initializer(input)
89
+ if initializer is None:
90
+ continue
91
+ bias_index = i
92
+ bias_weight = NumpyHelper.to_array(initializer)
93
+ break
94
+ if bias_weight is None:
95
+ return
96
+ if len(bias_weight.shape) != 1:
97
+ return
98
+
99
+ subgraph_nodes = [node, matmul]
100
+ if not self.model.is_safe_to_fuse_nodes(
101
+ subgraph_nodes, [node.output[0]], input_name_to_nodes, output_name_to_node
102
+ ):
103
+ return
104
+
105
+ self.nodes_to_remove.extend(subgraph_nodes)
106
+
107
+ inputs = (
108
+ [matmul.input[1 - weight_index], matmul.input[weight_index], node.input[bias_index]]
109
+ if has_bias
110
+ else [matmul.input[1 - weight_index], matmul.input[weight_index]]
111
+ )
112
+
113
+ fused_node = helper.make_node(
114
+ "GemmFastGelu",
115
+ inputs=inputs,
116
+ outputs=node.output,
117
+ name=self.model.create_node_name("GemmFastGelu"),
118
+ )
119
+ fused_node.domain = "com.microsoft"
120
+ self.nodes_to_add.append(fused_node)
121
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name