onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1035 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License. See License.txt in the project root for
|
|
4
|
+
# license information.
|
|
5
|
+
# --------------------------------------------------------------------------
|
|
6
|
+
import json
|
|
7
|
+
import logging
|
|
8
|
+
import os
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
import torch
|
|
13
|
+
from convert_generation import add_cache_indirection_to_mha, add_output_qk_to_mha, fix_past_sequence_length
|
|
14
|
+
from optimizer import optimize_model
|
|
15
|
+
from transformers import AutoTokenizer, WhisperConfig, WhisperForConditionalGeneration, WhisperProcessor
|
|
16
|
+
from whisper_decoder import WhisperDecoder
|
|
17
|
+
from whisper_encoder import WhisperEncoder
|
|
18
|
+
from whisper_encoder_decoder_init import WhisperEncoderDecoderInit
|
|
19
|
+
from whisper_jump_times import WhisperJumpTimes
|
|
20
|
+
|
|
21
|
+
from onnxruntime import InferenceSession
|
|
22
|
+
|
|
23
|
+
logger = logging.getLogger(__name__)
|
|
24
|
+
|
|
25
|
+
PRETRAINED_WHISPER_MODELS = [
|
|
26
|
+
"whisper-tiny",
|
|
27
|
+
"whisper-tiny.en",
|
|
28
|
+
"whisper-base",
|
|
29
|
+
"whisper-base.en",
|
|
30
|
+
"whisper-small",
|
|
31
|
+
"whisper-small.en",
|
|
32
|
+
"whisper-medium",
|
|
33
|
+
"whisper-medium.en",
|
|
34
|
+
"whisper-large",
|
|
35
|
+
"whisper-large-v2",
|
|
36
|
+
"whisper-large-v3",
|
|
37
|
+
"whisper-large-v3-turbo",
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class WhisperHelper:
|
|
42
|
+
@staticmethod
|
|
43
|
+
def get_onnx_path(
|
|
44
|
+
output_dir: str,
|
|
45
|
+
model_name_or_path: str,
|
|
46
|
+
suffix: str = "",
|
|
47
|
+
new_folder: bool = False,
|
|
48
|
+
) -> str:
|
|
49
|
+
"""Build onnx path
|
|
50
|
+
|
|
51
|
+
Args:
|
|
52
|
+
output_dir (str): output directory
|
|
53
|
+
model_name_or_path (str): pretrained model name, or path to the model checkpoint
|
|
54
|
+
suffix (str, optional): suffix like "_encoder" or "_decoder_fp16" will be appended to file name. Defaults to None.
|
|
55
|
+
new_folder (bool, optional): create a new directory for the model. Defaults to False.
|
|
56
|
+
Returns:
|
|
57
|
+
str: path of onnx model
|
|
58
|
+
"""
|
|
59
|
+
model_name = model_name_or_path
|
|
60
|
+
if os.path.isdir(model_name_or_path):
|
|
61
|
+
model_name = Path(model_name_or_path).parts[-1]
|
|
62
|
+
else:
|
|
63
|
+
model_name = model_name.split("/")[-1]
|
|
64
|
+
|
|
65
|
+
model_name += suffix
|
|
66
|
+
|
|
67
|
+
directory = os.path.join(output_dir, model_name) if new_folder else output_dir
|
|
68
|
+
return os.path.join(directory, model_name + ".onnx")
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def save_processing(
|
|
72
|
+
model_name_or_path: str,
|
|
73
|
+
provider: str,
|
|
74
|
+
separate_encoder_and_decoder_init: bool,
|
|
75
|
+
use_decoder_masked_mha: bool,
|
|
76
|
+
output_qk: bool,
|
|
77
|
+
encoder_path: str,
|
|
78
|
+
decoder_path: str,
|
|
79
|
+
output_dir: str,
|
|
80
|
+
cache_dir: str,
|
|
81
|
+
) -> None:
|
|
82
|
+
config = WhisperConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
83
|
+
config.save_pretrained(output_dir)
|
|
84
|
+
|
|
85
|
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
86
|
+
tokenizer.save_pretrained(output_dir)
|
|
87
|
+
|
|
88
|
+
processor = WhisperProcessor.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
89
|
+
processor.save_pretrained(output_dir)
|
|
90
|
+
|
|
91
|
+
# Return early since the next files are for ONNX Runtime GenAI
|
|
92
|
+
if separate_encoder_and_decoder_init:
|
|
93
|
+
return
|
|
94
|
+
|
|
95
|
+
audio_processor_cfg = {
|
|
96
|
+
"feature_extraction": {
|
|
97
|
+
"sequence": [
|
|
98
|
+
{"operation": {"name": "audio_decoder", "type": "AudioDecoder"}},
|
|
99
|
+
{
|
|
100
|
+
"operation": {
|
|
101
|
+
"name": "STFT",
|
|
102
|
+
"type": "STFTNorm",
|
|
103
|
+
"attrs": {
|
|
104
|
+
"n_fft": 400,
|
|
105
|
+
"frame_length": 400,
|
|
106
|
+
"hop_length": 160,
|
|
107
|
+
"_comment": [
|
|
108
|
+
0.0,
|
|
109
|
+
0.0000616908073425293,
|
|
110
|
+
0.0002467334270477295,
|
|
111
|
+
0.0005550682544708252,
|
|
112
|
+
0.000986635684967041,
|
|
113
|
+
0.0015413463115692139,
|
|
114
|
+
0.0022190213203430176,
|
|
115
|
+
0.0030195116996765137,
|
|
116
|
+
0.003942638635635376,
|
|
117
|
+
0.004988163709640503,
|
|
118
|
+
0.006155818700790405,
|
|
119
|
+
0.007445335388183594,
|
|
120
|
+
0.008856385946273804,
|
|
121
|
+
0.010388582944869995,
|
|
122
|
+
0.012041628360748291,
|
|
123
|
+
0.013815045356750488,
|
|
124
|
+
0.01570841670036316,
|
|
125
|
+
0.01772129535675049,
|
|
126
|
+
0.019853144884109497,
|
|
127
|
+
0.022103488445281982,
|
|
128
|
+
0.02447172999382019,
|
|
129
|
+
0.026957333087921143,
|
|
130
|
+
0.029559612274169922,
|
|
131
|
+
0.03227800130844116,
|
|
132
|
+
0.03511175513267517,
|
|
133
|
+
0.03806024789810181,
|
|
134
|
+
0.0411226749420166,
|
|
135
|
+
0.044298380613327026,
|
|
136
|
+
0.04758647084236145,
|
|
137
|
+
0.05098623037338257,
|
|
138
|
+
0.05449673533439636,
|
|
139
|
+
0.058117181062698364,
|
|
140
|
+
0.06184667348861694,
|
|
141
|
+
0.0656842589378357,
|
|
142
|
+
0.06962898373603821,
|
|
143
|
+
0.07367992401123047,
|
|
144
|
+
0.0778360664844513,
|
|
145
|
+
0.08209633827209473,
|
|
146
|
+
0.08645972609519958,
|
|
147
|
+
0.09092515707015991,
|
|
148
|
+
0.09549149870872498,
|
|
149
|
+
0.10015767812728882,
|
|
150
|
+
0.10492250323295593,
|
|
151
|
+
0.1097848117351532,
|
|
152
|
+
0.11474338173866272,
|
|
153
|
+
0.11979702115058899,
|
|
154
|
+
0.12494447827339172,
|
|
155
|
+
0.13018447160720825,
|
|
156
|
+
0.1355157196521759,
|
|
157
|
+
0.14093685150146484,
|
|
158
|
+
0.1464466154575348,
|
|
159
|
+
0.15204361081123352,
|
|
160
|
+
0.1577264666557312,
|
|
161
|
+
0.16349375247955322,
|
|
162
|
+
0.16934409737586975,
|
|
163
|
+
0.1752760112285614,
|
|
164
|
+
0.18128803372383118,
|
|
165
|
+
0.18737870454788208,
|
|
166
|
+
0.19354650378227234,
|
|
167
|
+
0.1997898817062378,
|
|
168
|
+
0.20610737800598145,
|
|
169
|
+
0.21249738335609436,
|
|
170
|
+
0.21895831823349,
|
|
171
|
+
0.2254886031150818,
|
|
172
|
+
0.23208662867546082,
|
|
173
|
+
0.23875075578689575,
|
|
174
|
+
0.24547931551933289,
|
|
175
|
+
0.2522706985473633,
|
|
176
|
+
0.25912320613861084,
|
|
177
|
+
0.26603513956069946,
|
|
178
|
+
0.27300477027893066,
|
|
179
|
+
0.2800304591655731,
|
|
180
|
+
0.2871103882789612,
|
|
181
|
+
0.29424285888671875,
|
|
182
|
+
0.30142611265182495,
|
|
183
|
+
0.30865830183029175,
|
|
184
|
+
0.31593772768974304,
|
|
185
|
+
0.3232625722885132,
|
|
186
|
+
0.3306310474872589,
|
|
187
|
+
0.3380413055419922,
|
|
188
|
+
0.34549152851104736,
|
|
189
|
+
0.352979838848114,
|
|
190
|
+
0.3605044484138489,
|
|
191
|
+
0.3680635094642639,
|
|
192
|
+
0.37565508484840393,
|
|
193
|
+
0.38327735662460327,
|
|
194
|
+
0.3909284174442291,
|
|
195
|
+
0.39860638976097107,
|
|
196
|
+
0.4063093662261963,
|
|
197
|
+
0.41403549909591675,
|
|
198
|
+
0.42178282141685486,
|
|
199
|
+
0.4295494258403778,
|
|
200
|
+
0.43733343482017517,
|
|
201
|
+
0.44513291120529175,
|
|
202
|
+
0.45294591784477234,
|
|
203
|
+
0.46077051758766174,
|
|
204
|
+
0.46860480308532715,
|
|
205
|
+
0.4764467775821686,
|
|
206
|
+
0.4842946231365204,
|
|
207
|
+
0.492146372795105,
|
|
208
|
+
0.5,
|
|
209
|
+
0.5078536868095398,
|
|
210
|
+
0.515705406665802,
|
|
211
|
+
0.5235532522201538,
|
|
212
|
+
0.5313953161239624,
|
|
213
|
+
0.5392295718193054,
|
|
214
|
+
0.5470541715621948,
|
|
215
|
+
0.5548672080039978,
|
|
216
|
+
0.562666654586792,
|
|
217
|
+
0.5704506635665894,
|
|
218
|
+
0.5782172679901123,
|
|
219
|
+
0.5859646201133728,
|
|
220
|
+
0.5936906933784485,
|
|
221
|
+
0.6013936996459961,
|
|
222
|
+
0.609071671962738,
|
|
223
|
+
0.6167227625846863,
|
|
224
|
+
0.6243450045585632,
|
|
225
|
+
0.6319366097450256,
|
|
226
|
+
0.6394955515861511,
|
|
227
|
+
0.6470202207565308,
|
|
228
|
+
0.6545085310935974,
|
|
229
|
+
0.6619587540626526,
|
|
230
|
+
0.6693689823150635,
|
|
231
|
+
0.6767374277114868,
|
|
232
|
+
0.6840623021125793,
|
|
233
|
+
0.691341757774353,
|
|
234
|
+
0.6985740065574646,
|
|
235
|
+
0.7057572603225708,
|
|
236
|
+
0.7128896713256836,
|
|
237
|
+
0.719969630241394,
|
|
238
|
+
0.7269952893257141,
|
|
239
|
+
0.7339649796485901,
|
|
240
|
+
0.7408769130706787,
|
|
241
|
+
0.7477294206619263,
|
|
242
|
+
0.7545207738876343,
|
|
243
|
+
0.761249303817749,
|
|
244
|
+
0.7679134607315063,
|
|
245
|
+
0.774511456489563,
|
|
246
|
+
0.7810417413711548,
|
|
247
|
+
0.7875027060508728,
|
|
248
|
+
0.7938927412033081,
|
|
249
|
+
0.800210177898407,
|
|
250
|
+
0.8064535856246948,
|
|
251
|
+
0.8126214146614075,
|
|
252
|
+
0.8187121152877808,
|
|
253
|
+
0.8247240781784058,
|
|
254
|
+
0.8306560516357422,
|
|
255
|
+
0.8365063667297363,
|
|
256
|
+
0.8422735929489136,
|
|
257
|
+
0.8479564785957336,
|
|
258
|
+
0.8535534143447876,
|
|
259
|
+
0.8590631484985352,
|
|
260
|
+
0.8644843101501465,
|
|
261
|
+
0.8698155879974365,
|
|
262
|
+
0.8750555515289307,
|
|
263
|
+
0.8802030086517334,
|
|
264
|
+
0.8852566480636597,
|
|
265
|
+
0.8902152180671692,
|
|
266
|
+
0.8950775265693665,
|
|
267
|
+
0.899842381477356,
|
|
268
|
+
0.9045084714889526,
|
|
269
|
+
0.9090749025344849,
|
|
270
|
+
0.9135403037071228,
|
|
271
|
+
0.9179036617279053,
|
|
272
|
+
0.9221639633178711,
|
|
273
|
+
0.9263200759887695,
|
|
274
|
+
0.9303710460662842,
|
|
275
|
+
0.9343158006668091,
|
|
276
|
+
0.9381533861160278,
|
|
277
|
+
0.941882848739624,
|
|
278
|
+
0.945503294467926,
|
|
279
|
+
0.9490138292312622,
|
|
280
|
+
0.9524135589599609,
|
|
281
|
+
0.9557017087936401,
|
|
282
|
+
0.9588773250579834,
|
|
283
|
+
0.961939811706543,
|
|
284
|
+
0.9648882746696472,
|
|
285
|
+
0.9677220582962036,
|
|
286
|
+
0.9704403877258301,
|
|
287
|
+
0.9730427265167236,
|
|
288
|
+
0.9755282998085022,
|
|
289
|
+
0.9778965711593628,
|
|
290
|
+
0.9801468849182129,
|
|
291
|
+
0.9822787046432495,
|
|
292
|
+
0.9842916131019592,
|
|
293
|
+
0.9861849546432495,
|
|
294
|
+
0.9879584312438965,
|
|
295
|
+
0.9896113872528076,
|
|
296
|
+
0.9911436438560486,
|
|
297
|
+
0.9925546646118164,
|
|
298
|
+
0.9938441514968872,
|
|
299
|
+
0.9950118064880371,
|
|
300
|
+
0.996057391166687,
|
|
301
|
+
0.9969804883003235,
|
|
302
|
+
0.997780978679657,
|
|
303
|
+
0.9984586238861084,
|
|
304
|
+
0.999013364315033,
|
|
305
|
+
0.9994449615478516,
|
|
306
|
+
0.9997532367706299,
|
|
307
|
+
0.9999383091926575,
|
|
308
|
+
1,
|
|
309
|
+
0.9999383091926575,
|
|
310
|
+
0.9997532367706299,
|
|
311
|
+
0.9994449615478516,
|
|
312
|
+
0.999013364315033,
|
|
313
|
+
0.9984586238861084,
|
|
314
|
+
0.997780978679657,
|
|
315
|
+
0.9969804286956787,
|
|
316
|
+
0.9960573315620422,
|
|
317
|
+
0.9950118064880371,
|
|
318
|
+
0.9938441514968872,
|
|
319
|
+
0.9925546646118164,
|
|
320
|
+
0.9911435842514038,
|
|
321
|
+
0.9896113872528076,
|
|
322
|
+
0.9879583716392517,
|
|
323
|
+
0.9861849546432495,
|
|
324
|
+
0.9842915534973145,
|
|
325
|
+
0.9822787046432495,
|
|
326
|
+
0.9801468253135681,
|
|
327
|
+
0.9778964519500732,
|
|
328
|
+
0.9755282402038574,
|
|
329
|
+
0.9730426073074341,
|
|
330
|
+
0.9704403877258301,
|
|
331
|
+
0.9677219390869141,
|
|
332
|
+
0.9648882150650024,
|
|
333
|
+
0.9619396924972534,
|
|
334
|
+
0.9588772654533386,
|
|
335
|
+
0.9557015895843506,
|
|
336
|
+
0.9524134397506714,
|
|
337
|
+
0.9490137100219727,
|
|
338
|
+
0.9455032348632812,
|
|
339
|
+
0.9418827295303345,
|
|
340
|
+
0.9381532669067383,
|
|
341
|
+
0.9343156814575195,
|
|
342
|
+
0.9303709268569946,
|
|
343
|
+
0.9263200759887695,
|
|
344
|
+
0.9221639633178711,
|
|
345
|
+
0.9179036617279053,
|
|
346
|
+
0.913540244102478,
|
|
347
|
+
0.9090747833251953,
|
|
348
|
+
0.9045084714889526,
|
|
349
|
+
0.8998422622680664,
|
|
350
|
+
0.8950774669647217,
|
|
351
|
+
0.8902151584625244,
|
|
352
|
+
0.8852565884590149,
|
|
353
|
+
0.8802029490470886,
|
|
354
|
+
0.8750554919242859,
|
|
355
|
+
0.869815468788147,
|
|
356
|
+
0.8644842505455017,
|
|
357
|
+
0.8590630888938904,
|
|
358
|
+
0.853553295135498,
|
|
359
|
+
0.8479562997817993,
|
|
360
|
+
0.842273473739624,
|
|
361
|
+
0.836506187915802,
|
|
362
|
+
0.8306558728218079,
|
|
363
|
+
0.8247239589691162,
|
|
364
|
+
0.8187118768692017,
|
|
365
|
+
0.8126212358474731,
|
|
366
|
+
0.8064534664154053,
|
|
367
|
+
0.8002099990844727,
|
|
368
|
+
0.793892502784729,
|
|
369
|
+
0.7875025272369385,
|
|
370
|
+
0.7810416221618652,
|
|
371
|
+
0.7745113372802734,
|
|
372
|
+
0.767913281917572,
|
|
373
|
+
0.7612491846084595,
|
|
374
|
+
0.7545205950737,
|
|
375
|
+
0.7477291822433472,
|
|
376
|
+
0.7408767342567444,
|
|
377
|
+
0.7339648008346558,
|
|
378
|
+
0.7269951105117798,
|
|
379
|
+
0.7199694514274597,
|
|
380
|
+
0.7128894925117493,
|
|
381
|
+
0.7057570219039917,
|
|
382
|
+
0.6985738277435303,
|
|
383
|
+
0.6913415789604187,
|
|
384
|
+
0.684062123298645,
|
|
385
|
+
0.6767372488975525,
|
|
386
|
+
0.6693688035011292,
|
|
387
|
+
0.6619585752487183,
|
|
388
|
+
0.6545083522796631,
|
|
389
|
+
0.6470199823379517,
|
|
390
|
+
0.6394953727722168,
|
|
391
|
+
0.6319363117218018,
|
|
392
|
+
0.6243447661399841,
|
|
393
|
+
0.6167224645614624,
|
|
394
|
+
0.6090714335441589,
|
|
395
|
+
0.601393461227417,
|
|
396
|
+
0.5936904549598694,
|
|
397
|
+
0.5859643220901489,
|
|
398
|
+
0.5782170295715332,
|
|
399
|
+
0.5704504251480103,
|
|
400
|
+
0.5626664161682129,
|
|
401
|
+
0.5548669099807739,
|
|
402
|
+
0.5470539331436157,
|
|
403
|
+
0.5392293334007263,
|
|
404
|
+
0.5313950181007385,
|
|
405
|
+
0.5235530138015747,
|
|
406
|
+
0.5157051682472229,
|
|
407
|
+
0.507853627204895,
|
|
408
|
+
0.5,
|
|
409
|
+
0.4921463429927826,
|
|
410
|
+
0.484294593334198,
|
|
411
|
+
0.4764467477798462,
|
|
412
|
+
0.46860471367836,
|
|
413
|
+
0.4607704281806946,
|
|
414
|
+
0.4529458284378052,
|
|
415
|
+
0.4451328217983246,
|
|
416
|
+
0.437333345413208,
|
|
417
|
+
0.42954933643341064,
|
|
418
|
+
0.4217827320098877,
|
|
419
|
+
0.4140354096889496,
|
|
420
|
+
0.4063093066215515,
|
|
421
|
+
0.3986063003540039,
|
|
422
|
+
0.39092832803726196,
|
|
423
|
+
0.3832772672176361,
|
|
424
|
+
0.37565499544143677,
|
|
425
|
+
0.36806342005729675,
|
|
426
|
+
0.3605043888092041,
|
|
427
|
+
0.35297977924346924,
|
|
428
|
+
0.3454914391040802,
|
|
429
|
+
0.338041216135025,
|
|
430
|
+
0.33063095808029175,
|
|
431
|
+
0.3232625126838684,
|
|
432
|
+
0.3159376382827759,
|
|
433
|
+
0.3086581826210022,
|
|
434
|
+
0.3014259934425354,
|
|
435
|
+
0.2942427396774292,
|
|
436
|
+
0.28711026906967163,
|
|
437
|
+
0.2800303101539612,
|
|
438
|
+
0.2730046510696411,
|
|
439
|
+
0.2660350203514099,
|
|
440
|
+
0.2591230869293213,
|
|
441
|
+
0.25227057933807373,
|
|
442
|
+
0.24547919631004333,
|
|
443
|
+
0.2387506067752838,
|
|
444
|
+
0.23208650946617126,
|
|
445
|
+
0.22548848390579224,
|
|
446
|
+
0.21895819902420044,
|
|
447
|
+
0.2124972641468048,
|
|
448
|
+
0.2061072587966919,
|
|
449
|
+
0.19978976249694824,
|
|
450
|
+
0.1935463547706604,
|
|
451
|
+
0.18737855553627014,
|
|
452
|
+
0.18128788471221924,
|
|
453
|
+
0.17527586221694946,
|
|
454
|
+
0.1693439483642578,
|
|
455
|
+
0.16349363327026367,
|
|
456
|
+
0.15772631764411926,
|
|
457
|
+
0.15204349160194397,
|
|
458
|
+
0.14644649624824524,
|
|
459
|
+
0.1409367322921753,
|
|
460
|
+
0.13551557064056396,
|
|
461
|
+
0.1301843225955963,
|
|
462
|
+
0.12494435906410217,
|
|
463
|
+
0.11979690194129944,
|
|
464
|
+
0.11474326252937317,
|
|
465
|
+
0.10978469252586365,
|
|
466
|
+
0.10492238402366638,
|
|
467
|
+
0.10015755891799927,
|
|
468
|
+
0.09549137949943542,
|
|
469
|
+
0.09092503786087036,
|
|
470
|
+
0.08645960688591003,
|
|
471
|
+
0.08209621906280518,
|
|
472
|
+
0.07783591747283936,
|
|
473
|
+
0.07367980480194092,
|
|
474
|
+
0.06962886452674866,
|
|
475
|
+
0.06568413972854614,
|
|
476
|
+
0.06184655427932739,
|
|
477
|
+
0.0581170916557312,
|
|
478
|
+
0.0544966459274292,
|
|
479
|
+
0.05098611116409302,
|
|
480
|
+
0.04758638143539429,
|
|
481
|
+
0.044298261404037476,
|
|
482
|
+
0.04112258553504944,
|
|
483
|
+
0.038060128688812256,
|
|
484
|
+
0.03511166572570801,
|
|
485
|
+
0.03227788209915161,
|
|
486
|
+
0.02955952286720276,
|
|
487
|
+
0.02695724368095398,
|
|
488
|
+
0.024471670389175415,
|
|
489
|
+
0.02210339903831482,
|
|
490
|
+
0.01985308527946472,
|
|
491
|
+
0.017721205949783325,
|
|
492
|
+
0.015708357095718384,
|
|
493
|
+
0.0138150155544281,
|
|
494
|
+
0.012041598558425903,
|
|
495
|
+
0.010388582944869995,
|
|
496
|
+
0.008856356143951416,
|
|
497
|
+
0.007445335388183594,
|
|
498
|
+
0.006155818700790405,
|
|
499
|
+
0.004988163709640503,
|
|
500
|
+
0.003942638635635376,
|
|
501
|
+
0.0030195116996765137,
|
|
502
|
+
0.0022190213203430176,
|
|
503
|
+
0.0015413165092468262,
|
|
504
|
+
0.000986635684967041,
|
|
505
|
+
0.0005550682544708252,
|
|
506
|
+
0.0002467334270477295,
|
|
507
|
+
0.0000616908073425293,
|
|
508
|
+
],
|
|
509
|
+
},
|
|
510
|
+
}
|
|
511
|
+
},
|
|
512
|
+
{
|
|
513
|
+
"operation": {
|
|
514
|
+
"name": "log_mel_spectrogram",
|
|
515
|
+
"type": "LogMelSpectrum",
|
|
516
|
+
"attrs": {"chunk_size": 30, "hop_length": 160, "n_fft": 400, "n_mel": config.num_mel_bins},
|
|
517
|
+
}
|
|
518
|
+
},
|
|
519
|
+
]
|
|
520
|
+
}
|
|
521
|
+
}
|
|
522
|
+
audio_processor_json = json.dumps(audio_processor_cfg, indent=4)
|
|
523
|
+
|
|
524
|
+
with open(os.path.join(output_dir, "audio_processor_config.json"), "w") as f:
|
|
525
|
+
f.write(audio_processor_json)
|
|
526
|
+
|
|
527
|
+
provider_options = [] if "cpu" in provider else [{f"{provider}": {}}]
|
|
528
|
+
genai_config = {
|
|
529
|
+
"model": {
|
|
530
|
+
"bos_token_id": config.bos_token_id,
|
|
531
|
+
"context_length": config.max_length,
|
|
532
|
+
"decoder": {
|
|
533
|
+
"session_options": {
|
|
534
|
+
"log_id": "onnxruntime-genai",
|
|
535
|
+
"provider_options": provider_options,
|
|
536
|
+
},
|
|
537
|
+
"filename": os.path.basename(decoder_path),
|
|
538
|
+
"head_size": config.d_model // config.decoder_attention_heads,
|
|
539
|
+
"hidden_size": config.d_model,
|
|
540
|
+
"inputs": {
|
|
541
|
+
"input_ids": "input_ids",
|
|
542
|
+
"past_key_names": "past_key_self_%d",
|
|
543
|
+
"past_value_names": "past_value_self_%d",
|
|
544
|
+
"cross_past_key_names": "past_key_cross_%d",
|
|
545
|
+
"cross_past_value_names": "past_value_cross_%d",
|
|
546
|
+
},
|
|
547
|
+
"outputs": {
|
|
548
|
+
"logits": "logits",
|
|
549
|
+
"present_key_names": "present_key_self_%d",
|
|
550
|
+
"present_value_names": "present_value_self_%d",
|
|
551
|
+
},
|
|
552
|
+
"num_attention_heads": config.decoder_attention_heads,
|
|
553
|
+
"num_hidden_layers": config.decoder_layers,
|
|
554
|
+
"num_key_value_heads": config.decoder_attention_heads,
|
|
555
|
+
},
|
|
556
|
+
"encoder": {
|
|
557
|
+
"session_options": {
|
|
558
|
+
"log_id": "onnxruntime-genai",
|
|
559
|
+
"provider_options": provider_options,
|
|
560
|
+
},
|
|
561
|
+
"filename": os.path.basename(encoder_path),
|
|
562
|
+
"head_size": config.d_model // config.encoder_attention_heads,
|
|
563
|
+
"hidden_size": config.d_model,
|
|
564
|
+
"inputs": {"audio_features": "audio_features"},
|
|
565
|
+
"outputs": {
|
|
566
|
+
"encoder_hidden_states": "encoder_hidden_states",
|
|
567
|
+
"cross_present_key_names": "present_key_cross_%d",
|
|
568
|
+
"cross_present_value_names": "present_value_cross_%d",
|
|
569
|
+
},
|
|
570
|
+
"num_attention_heads": config.encoder_attention_heads,
|
|
571
|
+
"num_hidden_layers": config.encoder_layers,
|
|
572
|
+
"num_key_value_heads": config.encoder_attention_heads,
|
|
573
|
+
},
|
|
574
|
+
"eos_token_id": config.eos_token_id,
|
|
575
|
+
"pad_token_id": config.pad_token_id,
|
|
576
|
+
"type": "whisper",
|
|
577
|
+
"vocab_size": config.vocab_size,
|
|
578
|
+
},
|
|
579
|
+
"search": {
|
|
580
|
+
"diversity_penalty": 0.0,
|
|
581
|
+
"do_sample": False,
|
|
582
|
+
"early_stopping": True,
|
|
583
|
+
"length_penalty": 1.0,
|
|
584
|
+
"max_length": config.max_length,
|
|
585
|
+
"min_length": 0,
|
|
586
|
+
"no_repeat_ngram_size": 0,
|
|
587
|
+
"num_beams": 1,
|
|
588
|
+
"num_return_sequences": 1,
|
|
589
|
+
"past_present_share_buffer": use_decoder_masked_mha,
|
|
590
|
+
"repetition_penalty": 1.0,
|
|
591
|
+
"temperature": 1.0,
|
|
592
|
+
"top_k": 1,
|
|
593
|
+
"top_p": 1.0,
|
|
594
|
+
},
|
|
595
|
+
}
|
|
596
|
+
|
|
597
|
+
# Requirements for the DMMHA kernel:
|
|
598
|
+
# - Buffer sharing = true
|
|
599
|
+
# - New input: past_sequence_length
|
|
600
|
+
# - New input: cache_indirection
|
|
601
|
+
# Otherwise, buffer sharing should be false and the new inputs should not be added
|
|
602
|
+
# for beam search to work in ORT GenAI.
|
|
603
|
+
if use_decoder_masked_mha:
|
|
604
|
+
genai_config["model"]["decoder"]["inputs"].update(
|
|
605
|
+
{
|
|
606
|
+
"past_sequence_length": "past_sequence_length",
|
|
607
|
+
"cache_indirection": "cache_indirection",
|
|
608
|
+
}
|
|
609
|
+
)
|
|
610
|
+
|
|
611
|
+
if output_qk:
|
|
612
|
+
genai_config["model"]["decoder"]["outputs"].update(
|
|
613
|
+
{
|
|
614
|
+
"output_cross_qk_names": "output_cross_qk_%d",
|
|
615
|
+
}
|
|
616
|
+
)
|
|
617
|
+
|
|
618
|
+
with open(os.path.join(output_dir, "genai_config.json"), "w") as f:
|
|
619
|
+
json.dump(genai_config, f, indent=4)
|
|
620
|
+
|
|
621
|
+
@staticmethod
|
|
622
|
+
def load_model(
|
|
623
|
+
model_name_or_path: str,
|
|
624
|
+
model_impl: str,
|
|
625
|
+
cache_dir: str,
|
|
626
|
+
device: torch.device,
|
|
627
|
+
dtype: torch.dtype,
|
|
628
|
+
merge_encoder_and_decoder_init: bool = True,
|
|
629
|
+
no_beam_search_op: bool = False,
|
|
630
|
+
output_qk: bool = False,
|
|
631
|
+
) -> dict[str, torch.nn.Module]:
|
|
632
|
+
"""Load model given a pretrained name or path, then build models for ONNX conversion.
|
|
633
|
+
|
|
634
|
+
Args:
|
|
635
|
+
model_name_or_path (str): pretrained model name or path
|
|
636
|
+
model_impl (str): library to load model from
|
|
637
|
+
cache_dir (str): cache directory
|
|
638
|
+
device (torch.device): device to run the model
|
|
639
|
+
dtype (torch.dtype): dtype to run the model
|
|
640
|
+
merge_encoder_and_decoder_init (bool, optional): Whether merge encoder and decoder initialization into one ONNX model. Defaults to True.
|
|
641
|
+
no_beam_search_op (bool, optional): Whether to use beam search op or not. Defaults to False.
|
|
642
|
+
output_qk (bool, optional): Whether to output QKs to calculate batched jump times for word-level timestamps. Defaults to False.
|
|
643
|
+
Returns:
|
|
644
|
+
Dict[str, torch.nn.Module]: mapping from name to modules for ONNX conversion.
|
|
645
|
+
"""
|
|
646
|
+
# Load PyTorch model
|
|
647
|
+
if model_impl == "hf":
|
|
648
|
+
# Load from Hugging Face
|
|
649
|
+
model = WhisperForConditionalGeneration.from_pretrained(
|
|
650
|
+
model_name_or_path, cache_dir=cache_dir, attn_implementation="eager"
|
|
651
|
+
)
|
|
652
|
+
else:
|
|
653
|
+
# Load from OpenAI
|
|
654
|
+
import whisper # noqa: PLC0415
|
|
655
|
+
|
|
656
|
+
if not os.path.exists(model_name_or_path):
|
|
657
|
+
name_or_path = model_name_or_path.split("/")[-1][8:]
|
|
658
|
+
else:
|
|
659
|
+
name_or_path = model_name_or_path
|
|
660
|
+
model = whisper.load_model(name_or_path, device, download_root=cache_dir, in_memory=True)
|
|
661
|
+
|
|
662
|
+
# Set PyTorch model properties
|
|
663
|
+
model.eval().to(device=device)
|
|
664
|
+
if model_impl == "hf":
|
|
665
|
+
model.to(dtype=dtype)
|
|
666
|
+
config = WhisperConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
667
|
+
|
|
668
|
+
# Load each component of PyTorch model
|
|
669
|
+
decoder = WhisperDecoder(config, model, model_impl, no_beam_search_op).eval()
|
|
670
|
+
components = {"decoder": decoder}
|
|
671
|
+
if merge_encoder_and_decoder_init:
|
|
672
|
+
encoder_decoder_init = WhisperEncoderDecoderInit(config, model, model_impl, no_beam_search_op).eval()
|
|
673
|
+
components.update({"encoder": encoder_decoder_init})
|
|
674
|
+
else:
|
|
675
|
+
encoder = WhisperEncoder(config, model, model_impl).eval()
|
|
676
|
+
components.update({"encoder": encoder, "decoder_init": decoder})
|
|
677
|
+
|
|
678
|
+
if output_qk:
|
|
679
|
+
batched_jump_times = WhisperJumpTimes(config, device, cache_dir).eval()
|
|
680
|
+
components.update({"jump_times": batched_jump_times})
|
|
681
|
+
return components
|
|
682
|
+
|
|
683
|
+
@staticmethod
|
|
684
|
+
def export_onnx(
|
|
685
|
+
model: WhisperEncoder | WhisperEncoderDecoderInit | WhisperDecoder,
|
|
686
|
+
onnx_model_path: str,
|
|
687
|
+
provider: str,
|
|
688
|
+
verbose: bool,
|
|
689
|
+
use_external_data_format: bool,
|
|
690
|
+
use_fp16_inputs: bool,
|
|
691
|
+
use_int32_inputs: bool,
|
|
692
|
+
use_encoder_hidden_states: bool,
|
|
693
|
+
use_kv_cache_inputs: bool,
|
|
694
|
+
):
|
|
695
|
+
"""Export model component to ONNX
|
|
696
|
+
|
|
697
|
+
Args:
|
|
698
|
+
model (class): PyTorch class to export
|
|
699
|
+
onnx_model_path (str): path to save ONNX model
|
|
700
|
+
provider (str): provider to use for verifying parity on ONNX model
|
|
701
|
+
verbose (bool): print verbose information.
|
|
702
|
+
use_external_data_format (bool): use external data format or not.
|
|
703
|
+
use_fp16_inputs (bool): use float16 inputs for the audio_features, encoder_hidden_states, logits, and KV caches.
|
|
704
|
+
use_int32_inputs (bool): use int32 inputs for the decoder_input_ids.
|
|
705
|
+
use_encoder_hidden_states (bool): use encoder_hidden_states as model input for decoder-init/decoder-without-past models.
|
|
706
|
+
use_kv_cache_inputs (bool): use KV caches as model inputs for decoder-with-past models.
|
|
707
|
+
"""
|
|
708
|
+
if isinstance(model, WhisperEncoder):
|
|
709
|
+
model.export_onnx(
|
|
710
|
+
onnx_model_path,
|
|
711
|
+
provider,
|
|
712
|
+
verbose,
|
|
713
|
+
use_external_data_format,
|
|
714
|
+
use_fp16_inputs,
|
|
715
|
+
)
|
|
716
|
+
elif isinstance(model, WhisperEncoderDecoderInit):
|
|
717
|
+
model.export_onnx(
|
|
718
|
+
onnx_model_path,
|
|
719
|
+
provider,
|
|
720
|
+
verbose,
|
|
721
|
+
use_external_data_format,
|
|
722
|
+
use_fp16_inputs,
|
|
723
|
+
use_int32_inputs,
|
|
724
|
+
)
|
|
725
|
+
elif isinstance(model, WhisperDecoder):
|
|
726
|
+
model.export_onnx(
|
|
727
|
+
onnx_model_path,
|
|
728
|
+
provider,
|
|
729
|
+
verbose,
|
|
730
|
+
use_external_data_format,
|
|
731
|
+
use_fp16_inputs,
|
|
732
|
+
use_int32_inputs,
|
|
733
|
+
use_encoder_hidden_states,
|
|
734
|
+
use_kv_cache_inputs,
|
|
735
|
+
)
|
|
736
|
+
elif isinstance(model, WhisperJumpTimes):
|
|
737
|
+
model.export_onnx(
|
|
738
|
+
onnx_model_path,
|
|
739
|
+
provider,
|
|
740
|
+
verbose,
|
|
741
|
+
use_external_data_format,
|
|
742
|
+
use_fp16_inputs,
|
|
743
|
+
use_int32_inputs,
|
|
744
|
+
)
|
|
745
|
+
else:
|
|
746
|
+
raise ValueError(f"Unknown instance for model detected: {type(model)}")
|
|
747
|
+
|
|
748
|
+
@staticmethod
|
|
749
|
+
def optimize_onnx(
|
|
750
|
+
onnx_model_path: str,
|
|
751
|
+
optimized_model_path: str,
|
|
752
|
+
is_float16: bool,
|
|
753
|
+
num_attention_heads: int,
|
|
754
|
+
hidden_size: int,
|
|
755
|
+
num_decoder_layers: int,
|
|
756
|
+
use_external_data_format: bool = False,
|
|
757
|
+
use_gpu: bool = False,
|
|
758
|
+
provider: str = "cpu",
|
|
759
|
+
is_decoder: bool = False,
|
|
760
|
+
no_beam_search_op: bool = False,
|
|
761
|
+
use_decoder_masked_mha: bool = False,
|
|
762
|
+
output_qk: bool = False,
|
|
763
|
+
):
|
|
764
|
+
"""Optimize ONNX model with an option to convert it to use mixed precision."""
|
|
765
|
+
|
|
766
|
+
from fusion_options import FusionOptions # noqa: PLC0415
|
|
767
|
+
|
|
768
|
+
optimization_options = FusionOptions("bart")
|
|
769
|
+
optimization_options.use_multi_head_attention = True
|
|
770
|
+
optimization_options.disable_multi_head_attention_bias = False
|
|
771
|
+
|
|
772
|
+
m = optimize_model(
|
|
773
|
+
onnx_model_path,
|
|
774
|
+
model_type="bart",
|
|
775
|
+
num_heads=num_attention_heads,
|
|
776
|
+
hidden_size=hidden_size,
|
|
777
|
+
opt_level=0,
|
|
778
|
+
optimization_options=optimization_options,
|
|
779
|
+
use_gpu=use_gpu,
|
|
780
|
+
only_onnxruntime=False,
|
|
781
|
+
)
|
|
782
|
+
|
|
783
|
+
# Add `past_sequence_length`, `cache_indirection`, and `output_qk` to `MultiHeadAttention` ops
|
|
784
|
+
if is_decoder and no_beam_search_op:
|
|
785
|
+
if use_decoder_masked_mha:
|
|
786
|
+
# FP16 CUDA, FP32 CUDA, and FP32 CPU use the `DecoderMaskedMultiHeadAttention` kernel
|
|
787
|
+
# via `MultiHeadAttention`, which requires the `past_sequence_length` and
|
|
788
|
+
# `cache_indirection` inputs
|
|
789
|
+
m, past_seq_len_name = fix_past_sequence_length(m)
|
|
790
|
+
m = add_cache_indirection_to_mha(m, past_seq_len_name)
|
|
791
|
+
|
|
792
|
+
if output_qk:
|
|
793
|
+
m = add_output_qk_to_mha(m, skip_node_idxs=list(range(0, 2 * num_decoder_layers, 2)))
|
|
794
|
+
|
|
795
|
+
m.save_model_to_file(optimized_model_path, use_external_data_format, all_tensors_to_one_file=True)
|
|
796
|
+
|
|
797
|
+
@staticmethod
|
|
798
|
+
def pt_transcription_for_verify_onnx(
|
|
799
|
+
processor: WhisperProcessor,
|
|
800
|
+
pt_model: torch.nn.Module,
|
|
801
|
+
device: torch.device,
|
|
802
|
+
batch_size: int = 1,
|
|
803
|
+
prompt_mode: bool = False,
|
|
804
|
+
):
|
|
805
|
+
# Try to import `datasets` pip package
|
|
806
|
+
try:
|
|
807
|
+
from datasets import load_dataset # noqa: PLC0415
|
|
808
|
+
except Exception as e:
|
|
809
|
+
logger.error(f"An error occurred while importing `datasets`: {e}", exc_info=True) # noqa: G201
|
|
810
|
+
install_cmd = "pip install datasets"
|
|
811
|
+
logger.warning(f"Could not import `datasets`. Attempting to install `datasets` via `{install_cmd}`.")
|
|
812
|
+
os.system(install_cmd)
|
|
813
|
+
|
|
814
|
+
from datasets import load_dataset # noqa: PLC0415
|
|
815
|
+
|
|
816
|
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
817
|
+
input_features_ = []
|
|
818
|
+
if batch_size == 1:
|
|
819
|
+
input_features = processor([ds[0]["audio"]["array"]], return_tensors="pt").input_features
|
|
820
|
+
else:
|
|
821
|
+
input_features_ = [
|
|
822
|
+
processor([ds[3]["audio"]["array"]], return_tensors="pt").input_features,
|
|
823
|
+
processor([ds[3]["audio"]["array"]], return_tensors="pt").input_features,
|
|
824
|
+
]
|
|
825
|
+
assert len(input_features_) == batch_size
|
|
826
|
+
input_features = torch.cat((input_features_[0], input_features_[1]))
|
|
827
|
+
|
|
828
|
+
max_length, min_length, num_beams, num_return_sequences = 30, 0, 1, 1
|
|
829
|
+
length_penalty, repetition_penalty = 1.0, 1.0
|
|
830
|
+
inputs = {
|
|
831
|
+
"input_features": input_features.to(device),
|
|
832
|
+
"max_length": max_length,
|
|
833
|
+
"min_length": min_length,
|
|
834
|
+
"num_beams": num_beams,
|
|
835
|
+
"num_return_sequences": num_return_sequences,
|
|
836
|
+
"length_penalty": length_penalty,
|
|
837
|
+
"repetition_penalty": repetition_penalty,
|
|
838
|
+
"early_stopping": True,
|
|
839
|
+
"use_cache": True,
|
|
840
|
+
}
|
|
841
|
+
|
|
842
|
+
if prompt_mode:
|
|
843
|
+
prompts = ["John has doubts", "Maria has grave doubts"]
|
|
844
|
+
prompt_ids = [processor.get_prompt_ids(p) for p in prompts]
|
|
845
|
+
pt_transcription = []
|
|
846
|
+
pt_outputs = []
|
|
847
|
+
# The looping for model.generate is necessary here due to the limitation as per
|
|
848
|
+
# https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate.prompt_ids
|
|
849
|
+
# prompt_ids input requires a tensor of rank 1
|
|
850
|
+
for i in range(batch_size):
|
|
851
|
+
inputs["prompt_ids"] = torch.from_numpy(prompt_ids[i]).to(device=device)
|
|
852
|
+
inputs["input_features"] = input_features_[i].to(device)
|
|
853
|
+
pt_output = pt_model.generate(**inputs).detach().cpu().numpy()
|
|
854
|
+
pt_outputs.append(pt_output)
|
|
855
|
+
pt_transcription.append(processor.batch_decode(pt_output, skip_special_tokens=True)[0])
|
|
856
|
+
inputs["input_features"] = input_features
|
|
857
|
+
del inputs["prompt_ids"]
|
|
858
|
+
else:
|
|
859
|
+
prompt_ids = []
|
|
860
|
+
pt_outputs = pt_model.generate(**inputs).detach().cpu().numpy()
|
|
861
|
+
pt_transcription = [processor.batch_decode(pt_outputs, skip_special_tokens=True)[0]]
|
|
862
|
+
pt_outputs = list(pt_outputs)
|
|
863
|
+
del inputs["early_stopping"]
|
|
864
|
+
del inputs["use_cache"]
|
|
865
|
+
return inputs, pt_transcription, pt_outputs, prompt_ids
|
|
866
|
+
|
|
867
|
+
@staticmethod
|
|
868
|
+
def select_transcription_options(
|
|
869
|
+
batch_size: int,
|
|
870
|
+
prompt_mode: bool,
|
|
871
|
+
):
|
|
872
|
+
if batch_size > 1 and prompt_mode:
|
|
873
|
+
expected_transcription_no_comma_prompt1 = " John has doubts whether Sir Frederick Layton's work is really Greek after all and can discover in it but little of Rocky I"
|
|
874
|
+
expected_transcription_misspelled_prompt1 = " John has doubts whether Sir Frederick Latins work is really Greek after all and can discover in it but little of Rocky I"
|
|
875
|
+
expected_transcription_no_comma_prompt2 = " Maria has grave doubts whether Sir Frederick Layton's work is really Greek after all and can discover in it but little of Rocky"
|
|
876
|
+
expected_transcription_misspelled_prompt2 = " Maria has grave doubts whether Sir Frederick Latins work is really Greek after all and can discover in it but little of Rocky I"
|
|
877
|
+
expected_transcription_options = {
|
|
878
|
+
expected_transcription_no_comma_prompt1,
|
|
879
|
+
expected_transcription_no_comma_prompt2,
|
|
880
|
+
expected_transcription_misspelled_prompt1,
|
|
881
|
+
expected_transcription_misspelled_prompt2,
|
|
882
|
+
}
|
|
883
|
+
else:
|
|
884
|
+
expected_transcription_no_comma = (
|
|
885
|
+
" Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."
|
|
886
|
+
)
|
|
887
|
+
expected_transcription_with_comma = (
|
|
888
|
+
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
|
889
|
+
)
|
|
890
|
+
expected_transcription_with_quote_and_comma = (
|
|
891
|
+
' "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
|
|
892
|
+
)
|
|
893
|
+
expected_transcription_options = {
|
|
894
|
+
expected_transcription_no_comma,
|
|
895
|
+
expected_transcription_with_comma,
|
|
896
|
+
expected_transcription_with_quote_and_comma,
|
|
897
|
+
}
|
|
898
|
+
return expected_transcription_options
|
|
899
|
+
|
|
900
|
+
@staticmethod
|
|
901
|
+
def get_outputs(
|
|
902
|
+
pt_outputs: np.ndarray,
|
|
903
|
+
ort_outputs: np.ndarray,
|
|
904
|
+
i: int,
|
|
905
|
+
):
|
|
906
|
+
"""Get PyTorch and ONNX Runtime output token ids at index i"""
|
|
907
|
+
pt_output, ort_output = pt_outputs[i], ort_outputs[i]
|
|
908
|
+
pt_shape, ort_shape = pt_output.shape, ort_output.shape
|
|
909
|
+
|
|
910
|
+
# Hugging Face impl. + Beam Search op: PyTorch = (26,) and ORT = (30,)
|
|
911
|
+
# OpenAI impl. + Beam Search op: PyTorch = (1, 30) and ORT = (30,)
|
|
912
|
+
if pt_shape != ort_shape:
|
|
913
|
+
if len(pt_shape) > 1:
|
|
914
|
+
pt_output = pt_output[0]
|
|
915
|
+
pt_shape = pt_output.shape
|
|
916
|
+
if len(ort_shape) > 1:
|
|
917
|
+
ort_output = ort_output[0]
|
|
918
|
+
ort_shape = ort_output.shape
|
|
919
|
+
if pt_shape[0] != ort_shape[0]:
|
|
920
|
+
min_len = min(pt_shape[0], ort_shape[0])
|
|
921
|
+
pt_output = pt_output[:min_len]
|
|
922
|
+
ort_output = ort_output[:min_len]
|
|
923
|
+
|
|
924
|
+
assert pt_output.shape == ort_output.shape
|
|
925
|
+
return pt_output, ort_output
|
|
926
|
+
|
|
927
|
+
@staticmethod
|
|
928
|
+
def verify_onnx(
|
|
929
|
+
model_name_or_path: str,
|
|
930
|
+
cache_dir: str,
|
|
931
|
+
ort_session: InferenceSession,
|
|
932
|
+
device: torch.device,
|
|
933
|
+
batch_size: int = 1,
|
|
934
|
+
prompt_mode: bool = False,
|
|
935
|
+
):
|
|
936
|
+
"""Compare the result from PyTorch and ONNX Runtime to verify the ONNX model is good."""
|
|
937
|
+
pt_model = WhisperForConditionalGeneration.from_pretrained(
|
|
938
|
+
model_name_or_path, cache_dir=cache_dir, attn_implementation="eager"
|
|
939
|
+
).to(device)
|
|
940
|
+
processor = WhisperProcessor.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
941
|
+
config = WhisperConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir)
|
|
942
|
+
|
|
943
|
+
inputs, pt_transcription, pt_outputs, decoder_prompt_ids = WhisperHelper.pt_transcription_for_verify_onnx(
|
|
944
|
+
processor,
|
|
945
|
+
pt_model,
|
|
946
|
+
device,
|
|
947
|
+
batch_size=batch_size,
|
|
948
|
+
prompt_mode=prompt_mode,
|
|
949
|
+
)
|
|
950
|
+
|
|
951
|
+
start_id = [config.decoder_start_token_id] # ex: [50258]
|
|
952
|
+
prompt_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe")
|
|
953
|
+
prompt_ids = [token[1] for token in prompt_ids] # ex: [50259, 50358, 50363]
|
|
954
|
+
forced_decoder_ids = start_id + prompt_ids # ex: [50258, 50259, 50358, 50363]
|
|
955
|
+
|
|
956
|
+
ort_names = [entry.name for entry in ort_session.get_inputs()]
|
|
957
|
+
ort_dtypes = [entry.type for entry in ort_session.get_inputs()]
|
|
958
|
+
ort_to_np = {
|
|
959
|
+
"tensor(float)": np.float32,
|
|
960
|
+
"tensor(float16)": np.float16,
|
|
961
|
+
"tensor(int64)": np.int64,
|
|
962
|
+
"tensor(int32)": np.int32,
|
|
963
|
+
"tensor(int8)": np.int8,
|
|
964
|
+
"tensor(uint8)": np.uint8,
|
|
965
|
+
}
|
|
966
|
+
|
|
967
|
+
use_extra_decoding_ids = "extra_decoding_ids" in ort_names
|
|
968
|
+
for name, dtype in zip(ort_names, ort_dtypes, strict=False):
|
|
969
|
+
if name == "input_features":
|
|
970
|
+
inputs[name] = inputs[name].detach().cpu().numpy()
|
|
971
|
+
elif name == "vocab_mask":
|
|
972
|
+
inputs[name] = np.ones(config.vocab_size, dtype=ort_to_np[dtype])
|
|
973
|
+
elif name == "prefix_vocab_mask":
|
|
974
|
+
inputs[name] = np.ones((batch_size, config.vocab_size), dtype=ort_to_np[dtype])
|
|
975
|
+
elif name == "decoder_input_ids":
|
|
976
|
+
if not prompt_mode:
|
|
977
|
+
raw_input_ids = [start_id] if use_extra_decoding_ids else [forced_decoder_ids]
|
|
978
|
+
inputs[name] = np.array(raw_input_ids, dtype=ort_to_np[dtype])
|
|
979
|
+
else:
|
|
980
|
+
# This logic handles the scenario for when prompts are not of the same size
|
|
981
|
+
# For example if our prompt ids are [p1_id_1, p1_id_2] and [p2_id_1]
|
|
982
|
+
# The final decoder_input_ids will look as such after padding
|
|
983
|
+
# [prev_token, p1_id_1, p1_id_2, start_token, lang_token, transcribe_token]
|
|
984
|
+
# [prev_token, p2_id_1, PAD_TOKEN, start_token, lang_token, transcribe_token]
|
|
985
|
+
ort_prompts = []
|
|
986
|
+
for i in range(batch_size):
|
|
987
|
+
ort_prompts.append(decoder_prompt_ids[i].tolist())
|
|
988
|
+
max_len = max(len(p) for p in ort_prompts)
|
|
989
|
+
padded_prompts = []
|
|
990
|
+
for p in ort_prompts:
|
|
991
|
+
padded_prompt = [*p, *([config.pad_token_id] * (max_len - len(p)))]
|
|
992
|
+
padded_prompts.append(padded_prompt + forced_decoder_ids)
|
|
993
|
+
inputs[name] = np.array(padded_prompts, dtype=ort_to_np[dtype])
|
|
994
|
+
elif name == "logits_processor":
|
|
995
|
+
inputs[name] = np.array([1], dtype=ort_to_np[dtype])
|
|
996
|
+
elif name == "cross_qk_layer_head":
|
|
997
|
+
inputs[name] = np.array([[0, 0]], dtype=ort_to_np[dtype])
|
|
998
|
+
elif name == "extra_decoding_ids":
|
|
999
|
+
inputs[name] = np.repeat(np.array([prompt_ids], dtype=ort_to_np[dtype]), batch_size, 0)
|
|
1000
|
+
elif name == "temperature":
|
|
1001
|
+
inputs[name] = np.array([1.0], dtype=ort_to_np[dtype])
|
|
1002
|
+
else:
|
|
1003
|
+
inputs[name] = np.array([inputs[name]], dtype=ort_to_np[dtype])
|
|
1004
|
+
|
|
1005
|
+
ort_outputs = ort_session.run(None, inputs)[0][:, 0, :]
|
|
1006
|
+
ort_transcription = processor.batch_decode(ort_outputs, skip_special_tokens=True)
|
|
1007
|
+
expected_transcription_options = WhisperHelper.select_transcription_options(batch_size, prompt_mode)
|
|
1008
|
+
|
|
1009
|
+
parity = 1
|
|
1010
|
+
for i in range(batch_size):
|
|
1011
|
+
pt_output, ort_output = WhisperHelper.get_outputs(pt_outputs, ort_outputs, i)
|
|
1012
|
+
|
|
1013
|
+
# Check if token ids match
|
|
1014
|
+
parity *= np.allclose(pt_output, ort_output)
|
|
1015
|
+
|
|
1016
|
+
# Check if transcribed outputs match
|
|
1017
|
+
parity *= (
|
|
1018
|
+
pt_transcription[i] in expected_transcription_options
|
|
1019
|
+
and ort_transcription[i] in expected_transcription_options
|
|
1020
|
+
)
|
|
1021
|
+
max_diff = 0
|
|
1022
|
+
|
|
1023
|
+
if not parity:
|
|
1024
|
+
for i in range(batch_size):
|
|
1025
|
+
pt_output, ort_output = WhisperHelper.get_outputs(pt_outputs, ort_outputs, i)
|
|
1026
|
+
diff = pt_output - ort_output
|
|
1027
|
+
|
|
1028
|
+
max_diff_i = max(diff.min(), diff.max(), key=abs)
|
|
1029
|
+
max_diff = max(max_diff, max_diff_i)
|
|
1030
|
+
|
|
1031
|
+
if max_diff != 0:
|
|
1032
|
+
logger.warning(f"PyTorch outputs: {pt_transcription}")
|
|
1033
|
+
logger.warning(f"ONNX Runtime outputs: {ort_transcription}")
|
|
1034
|
+
|
|
1035
|
+
return 0
|