onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,437 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License. See License.txt in the project root for
|
|
4
|
+
# license information.
|
|
5
|
+
# --------------------------------------------------------------------------
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
import os
|
|
9
|
+
import tempfile
|
|
10
|
+
from pathlib import Path
|
|
11
|
+
|
|
12
|
+
import numpy
|
|
13
|
+
import onnx
|
|
14
|
+
import torch
|
|
15
|
+
from io_binding_helper import TypeHelper
|
|
16
|
+
from onnx_model import OnnxModel
|
|
17
|
+
from past_helper import PastKeyValuesHelper
|
|
18
|
+
from t5_encoder import T5EncoderInputs
|
|
19
|
+
from torch_onnx_export_helper import torch_onnx_export
|
|
20
|
+
from transformers import MT5Config, T5Config
|
|
21
|
+
|
|
22
|
+
from onnxruntime import InferenceSession
|
|
23
|
+
|
|
24
|
+
logger = logging.getLogger(__name__)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class T5DecoderInit(torch.nn.Module):
|
|
28
|
+
"""A T5 decoder with LM head to create initial past key values.
|
|
29
|
+
This model is only called once during starting decoding.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
decoder: torch.nn.Module,
|
|
35
|
+
lm_head: torch.nn.Module,
|
|
36
|
+
config: T5Config | MT5Config,
|
|
37
|
+
decoder_start_token_id: int | None = None,
|
|
38
|
+
):
|
|
39
|
+
super().__init__()
|
|
40
|
+
self.decoder = decoder
|
|
41
|
+
self.lm_head = lm_head
|
|
42
|
+
self.config = config
|
|
43
|
+
self.decoder_start_token_id = (
|
|
44
|
+
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
|
|
45
|
+
)
|
|
46
|
+
self.tie_word_embeddings = (
|
|
47
|
+
self.config.tie_word_embeddings if hasattr(self.config, "tie_word_embeddings") else True
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def forward(
|
|
51
|
+
self,
|
|
52
|
+
decoder_input_ids: torch.Tensor,
|
|
53
|
+
encoder_attention_mask: torch.Tensor,
|
|
54
|
+
encoder_hidden_states: torch.FloatTensor,
|
|
55
|
+
):
|
|
56
|
+
if decoder_input_ids is None:
|
|
57
|
+
batch_size = encoder_attention_mask.shape[0]
|
|
58
|
+
decoder_input_ids = (
|
|
59
|
+
torch.ones(
|
|
60
|
+
(batch_size, 1),
|
|
61
|
+
dtype=torch.long,
|
|
62
|
+
device=encoder_attention_mask.device,
|
|
63
|
+
)
|
|
64
|
+
* self.decoder_start_token_id
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
decoder_outputs = self.decoder(
|
|
68
|
+
input_ids=decoder_input_ids,
|
|
69
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
70
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
71
|
+
use_cache=True,
|
|
72
|
+
return_dict=True,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
sequence_output = decoder_outputs.last_hidden_state
|
|
76
|
+
present_key_values = decoder_outputs.past_key_values
|
|
77
|
+
|
|
78
|
+
if self.tie_word_embeddings:
|
|
79
|
+
sequence_output = sequence_output * (self.config.d_model**-0.5)
|
|
80
|
+
|
|
81
|
+
lm_logits = self.lm_head(sequence_output)
|
|
82
|
+
past_self, past_cross = PastKeyValuesHelper.group_by_self_or_cross(present_key_values)
|
|
83
|
+
return lm_logits, past_self, past_cross
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
class T5Decoder(torch.nn.Module):
|
|
87
|
+
"""A T5 decoder with LM head and past key values"""
|
|
88
|
+
|
|
89
|
+
def __init__(self, decoder, lm_head, config):
|
|
90
|
+
super().__init__()
|
|
91
|
+
self.decoder = decoder
|
|
92
|
+
self.lm_head = lm_head
|
|
93
|
+
self.config = config
|
|
94
|
+
self.tie_word_embeddings = (
|
|
95
|
+
self.config.tie_word_embeddings if hasattr(self.config, "tie_word_embeddings") else True
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
def forward(self, decoder_input_ids, encoder_attention_mask, *past):
|
|
99
|
+
num_decoder_layers = self.config.num_decoder_layers
|
|
100
|
+
past_key_values = PastKeyValuesHelper.group_by_layer(past, num_decoder_layers)
|
|
101
|
+
|
|
102
|
+
# This is a hack since only the third dimension of encoder_hidden_states is used here
|
|
103
|
+
dummy_encoder_hidden_states = encoder_attention_mask.unsqueeze(2)
|
|
104
|
+
decoder_outputs = self.decoder(
|
|
105
|
+
input_ids=decoder_input_ids,
|
|
106
|
+
past_key_values=past_key_values,
|
|
107
|
+
encoder_hidden_states=dummy_encoder_hidden_states,
|
|
108
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
109
|
+
use_cache=True,
|
|
110
|
+
return_dict=True,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
sequence_output = decoder_outputs.last_hidden_state
|
|
114
|
+
present_key_values = decoder_outputs.past_key_values
|
|
115
|
+
|
|
116
|
+
if self.tie_word_embeddings:
|
|
117
|
+
sequence_output = sequence_output * (self.config.d_model**-0.5)
|
|
118
|
+
|
|
119
|
+
lm_logits = self.lm_head(sequence_output)
|
|
120
|
+
present_self, _ = PastKeyValuesHelper.group_by_self_or_cross(present_key_values)
|
|
121
|
+
|
|
122
|
+
# Do not return present_cross since they are identical to corresponding past_cross input
|
|
123
|
+
return lm_logits, present_self
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
class T5DecoderInputs:
|
|
127
|
+
def __init__(
|
|
128
|
+
self,
|
|
129
|
+
decoder_input_ids,
|
|
130
|
+
encoder_attention_mask,
|
|
131
|
+
past_key_values=None,
|
|
132
|
+
):
|
|
133
|
+
self.decoder_input_ids: torch.LongTensor = decoder_input_ids
|
|
134
|
+
self.encoder_attention_mask: torch.LongTensor = encoder_attention_mask
|
|
135
|
+
self.past_key_values: list[torch.FloatTensor] | list[torch.HalfTensor] | None = past_key_values
|
|
136
|
+
|
|
137
|
+
@staticmethod
|
|
138
|
+
def create_dummy(
|
|
139
|
+
config: T5Config | MT5Config,
|
|
140
|
+
batch_size: int,
|
|
141
|
+
encode_sequence_length: int,
|
|
142
|
+
past_decode_sequence_length: int,
|
|
143
|
+
device: torch.device,
|
|
144
|
+
float16: bool = False,
|
|
145
|
+
use_int32_inputs: bool = False,
|
|
146
|
+
): # -> T5DecoderInputs:
|
|
147
|
+
"""Create dummy inputs for T5Decoder.
|
|
148
|
+
|
|
149
|
+
Args:
|
|
150
|
+
decoder: decoder
|
|
151
|
+
batch_size (int): batch size
|
|
152
|
+
encode_sequence_length (int): sequence length of input_ids for encoder
|
|
153
|
+
past_decode_sequence_length (int): past sequence length of input_ids for decoder
|
|
154
|
+
device (torch.device): device of output tensors
|
|
155
|
+
float16 (bool): whether the model uses float32 or float16 in input
|
|
156
|
+
use_int32_inputs(bool): whether use int32 instead of int64 for some inputs
|
|
157
|
+
|
|
158
|
+
Returns:
|
|
159
|
+
T5DecoderInputs: dummy inputs for decoder
|
|
160
|
+
"""
|
|
161
|
+
num_attention_heads: int = config.num_heads
|
|
162
|
+
num_layers: int = config.num_decoder_layers
|
|
163
|
+
vocab_size: int = config.vocab_size
|
|
164
|
+
|
|
165
|
+
# Do not use head_size = hidden_size / num_attention_heads here.
|
|
166
|
+
# For example, mt5-small, d_model=512 and num_heads=6
|
|
167
|
+
head_size: int = config.d_kv
|
|
168
|
+
|
|
169
|
+
sequence_length: int = 1 # fixed for decoding
|
|
170
|
+
decoder_input_ids = torch.randint(
|
|
171
|
+
low=0,
|
|
172
|
+
high=vocab_size - 1,
|
|
173
|
+
size=(batch_size, sequence_length),
|
|
174
|
+
dtype=(torch.int32 if use_int32_inputs else torch.int64),
|
|
175
|
+
device=device,
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
encoder_inputs = T5EncoderInputs.create_dummy(
|
|
179
|
+
batch_size,
|
|
180
|
+
encode_sequence_length,
|
|
181
|
+
vocab_size,
|
|
182
|
+
device,
|
|
183
|
+
use_int32_inputs=use_int32_inputs,
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
float_type = torch.float16 if float16 else torch.float32
|
|
187
|
+
|
|
188
|
+
if past_decode_sequence_length > 0:
|
|
189
|
+
self_attention_past_shape = [
|
|
190
|
+
batch_size,
|
|
191
|
+
num_attention_heads,
|
|
192
|
+
past_decode_sequence_length,
|
|
193
|
+
head_size,
|
|
194
|
+
]
|
|
195
|
+
cross_attention_past_shape = [
|
|
196
|
+
batch_size,
|
|
197
|
+
num_attention_heads,
|
|
198
|
+
encode_sequence_length,
|
|
199
|
+
head_size,
|
|
200
|
+
]
|
|
201
|
+
|
|
202
|
+
past = []
|
|
203
|
+
for _ in range(2 * num_layers):
|
|
204
|
+
past.append(torch.rand(self_attention_past_shape, dtype=float_type, device=device))
|
|
205
|
+
|
|
206
|
+
for _ in range(2 * num_layers):
|
|
207
|
+
past.append(torch.rand(cross_attention_past_shape, dtype=float_type, device=device))
|
|
208
|
+
else:
|
|
209
|
+
past = None
|
|
210
|
+
|
|
211
|
+
return T5DecoderInputs(decoder_input_ids, encoder_inputs.attention_mask, past)
|
|
212
|
+
|
|
213
|
+
def to_list(self) -> list:
|
|
214
|
+
input_list = [
|
|
215
|
+
self.decoder_input_ids,
|
|
216
|
+
self.encoder_attention_mask,
|
|
217
|
+
]
|
|
218
|
+
if self.past_key_values:
|
|
219
|
+
input_list.extend(self.past_key_values)
|
|
220
|
+
return input_list
|
|
221
|
+
|
|
222
|
+
def to_fp32(self):
|
|
223
|
+
past = [p.to(dtype=torch.float32) for p in self.past_key_values] if self.past_key_values else None
|
|
224
|
+
return T5DecoderInputs(
|
|
225
|
+
self.decoder_input_ids.clone(),
|
|
226
|
+
self.encoder_attention_mask.clone(),
|
|
227
|
+
past,
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
class T5DecoderHelper:
|
|
232
|
+
@staticmethod
|
|
233
|
+
def export_onnx(
|
|
234
|
+
decoder: T5Decoder | T5DecoderInit,
|
|
235
|
+
device: torch.device,
|
|
236
|
+
onnx_model_path: str,
|
|
237
|
+
verbose: bool = True,
|
|
238
|
+
use_external_data_format: bool = False,
|
|
239
|
+
use_int32_inputs: bool = False,
|
|
240
|
+
):
|
|
241
|
+
"""Export decoder to ONNX
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
decoder (Union[T5Decoder, T5DecoderNoPastState]): decoder object
|
|
245
|
+
device (torch.device): device of decoder object
|
|
246
|
+
onnx_model_path (str): onnx path
|
|
247
|
+
verbose (bool, optional): print verbose information. Defaults to True.
|
|
248
|
+
use_external_data_format (bool, optional): use external data format or not. Defaults to False.
|
|
249
|
+
use_int32_inputs (bool, optional): use int32 inputs
|
|
250
|
+
"""
|
|
251
|
+
assert isinstance(decoder, (T5Decoder, T5DecoderInit))
|
|
252
|
+
|
|
253
|
+
inputs = T5DecoderInputs.create_dummy(
|
|
254
|
+
decoder.config,
|
|
255
|
+
batch_size=2,
|
|
256
|
+
encode_sequence_length=3,
|
|
257
|
+
past_decode_sequence_length=5 if isinstance(decoder, T5Decoder) else 0,
|
|
258
|
+
device=device,
|
|
259
|
+
use_int32_inputs=use_int32_inputs,
|
|
260
|
+
)
|
|
261
|
+
input_list = inputs.to_list()
|
|
262
|
+
|
|
263
|
+
num_decoder_layers = decoder.config.num_decoder_layers
|
|
264
|
+
|
|
265
|
+
past_names = PastKeyValuesHelper.get_past_names(num_decoder_layers, present=False)
|
|
266
|
+
present_names = PastKeyValuesHelper.get_past_names(num_decoder_layers, present=True)
|
|
267
|
+
present_self_names = present_names[: 2 * num_decoder_layers]
|
|
268
|
+
|
|
269
|
+
input_past_names = past_names if isinstance(decoder, T5Decoder) else []
|
|
270
|
+
output_present_names = present_self_names if isinstance(decoder, T5Decoder) else present_names
|
|
271
|
+
output_names = ["logits", *output_present_names]
|
|
272
|
+
|
|
273
|
+
# Shape of input tensors (sequence_length==1):
|
|
274
|
+
# input_ids: (batch_size, sequence_length)
|
|
275
|
+
# encoder_attention_mask: (batch_size, encode_sequence_length)
|
|
276
|
+
# past_self_*: (batch_size, num_heads, past_decode_sequence_length, head_size)
|
|
277
|
+
# past_cross_*: (batch_size, num_heads, encode_sequence_length, head_size)
|
|
278
|
+
|
|
279
|
+
# Shape of output tensors:
|
|
280
|
+
# logits: (batch_size, sequence_length, vocab_size)
|
|
281
|
+
# past_self_*: (batch_size, num_heads, past_decode_sequence_length + sequence_length, head_size)
|
|
282
|
+
# past_cross_*: (batch_size, num_heads, encode_sequence_length, head_size)
|
|
283
|
+
|
|
284
|
+
input_names = ["input_ids"]
|
|
285
|
+
input_names.append("encoder_attention_mask")
|
|
286
|
+
input_names.extend(input_past_names)
|
|
287
|
+
|
|
288
|
+
dynamic_axes = {
|
|
289
|
+
"input_ids": {
|
|
290
|
+
0: "batch_size",
|
|
291
|
+
# 1: 'sequence_length'
|
|
292
|
+
},
|
|
293
|
+
"encoder_attention_mask": {0: "batch_size", 1: "encode_sequence_length"},
|
|
294
|
+
"encoder_hidden_states": {0: "batch_size", 1: "encode_sequence_length"},
|
|
295
|
+
"logits": {
|
|
296
|
+
0: "batch_size",
|
|
297
|
+
# 1: 'sequence_length'
|
|
298
|
+
},
|
|
299
|
+
}
|
|
300
|
+
|
|
301
|
+
for name in input_past_names:
|
|
302
|
+
dynamic_axes[name] = {
|
|
303
|
+
0: "batch_size",
|
|
304
|
+
2: "past_decode_sequence_length" if "self" in name else "encode_sequence_length",
|
|
305
|
+
}
|
|
306
|
+
|
|
307
|
+
for name in output_present_names:
|
|
308
|
+
if "cross" in name:
|
|
309
|
+
dynamic_axes[name] = {0: "batch_size", 2: "encode_sequence_length"}
|
|
310
|
+
else: # self attention past state
|
|
311
|
+
if isinstance(decoder, T5Decoder):
|
|
312
|
+
dynamic_axes[name] = {
|
|
313
|
+
0: "batch_size",
|
|
314
|
+
2: "past_decode_sequence_length + 1",
|
|
315
|
+
}
|
|
316
|
+
else:
|
|
317
|
+
dynamic_axes[name] = {
|
|
318
|
+
0: "batch_size",
|
|
319
|
+
# 2: 'sequence_length'
|
|
320
|
+
}
|
|
321
|
+
|
|
322
|
+
Path(onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
|
|
323
|
+
|
|
324
|
+
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
325
|
+
temp_onnx_model_path = os.path.join(tmp_dir_name, "decoder.onnx")
|
|
326
|
+
Path(temp_onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
|
|
327
|
+
torch_onnx_export(
|
|
328
|
+
decoder,
|
|
329
|
+
args=tuple(input_list),
|
|
330
|
+
f=temp_onnx_model_path if use_external_data_format else onnx_model_path,
|
|
331
|
+
export_params=True,
|
|
332
|
+
input_names=input_names,
|
|
333
|
+
output_names=output_names,
|
|
334
|
+
dynamic_axes=dynamic_axes,
|
|
335
|
+
opset_version=12,
|
|
336
|
+
do_constant_folding=True,
|
|
337
|
+
use_external_data_format=use_external_data_format,
|
|
338
|
+
verbose=verbose,
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
if use_external_data_format:
|
|
342
|
+
model = onnx.load_model(temp_onnx_model_path, load_external_data=True)
|
|
343
|
+
OnnxModel.save(
|
|
344
|
+
model,
|
|
345
|
+
onnx_model_path,
|
|
346
|
+
save_as_external_data=True,
|
|
347
|
+
all_tensors_to_one_file=True,
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
@staticmethod
|
|
351
|
+
def onnxruntime_inference(ort_session, inputs: T5DecoderInputs):
|
|
352
|
+
"""Run inference of ONNX model."""
|
|
353
|
+
logger.debug("start onnxruntime_inference")
|
|
354
|
+
|
|
355
|
+
ort_inputs = {
|
|
356
|
+
"input_ids": numpy.ascontiguousarray(inputs.decoder_input_ids.cpu().numpy()),
|
|
357
|
+
"encoder_attention_mask": numpy.ascontiguousarray(inputs.encoder_attention_mask.cpu().numpy()),
|
|
358
|
+
}
|
|
359
|
+
|
|
360
|
+
if inputs.past_key_values:
|
|
361
|
+
assert len(inputs.past_key_values) % 4 == 0
|
|
362
|
+
num_layers = int(len(inputs.past_key_values) / 4)
|
|
363
|
+
past_names = PastKeyValuesHelper.get_past_names(num_layers)
|
|
364
|
+
for i, past_tensor in enumerate(inputs.past_key_values):
|
|
365
|
+
ort_inputs[past_names[i]] = numpy.ascontiguousarray(past_tensor.cpu().numpy())
|
|
366
|
+
|
|
367
|
+
ort_outputs = ort_session.run(None, ort_inputs)
|
|
368
|
+
return ort_outputs
|
|
369
|
+
|
|
370
|
+
@staticmethod
|
|
371
|
+
def verify_onnx(
|
|
372
|
+
model: T5Decoder | T5DecoderInit,
|
|
373
|
+
ort_session: InferenceSession,
|
|
374
|
+
device: torch.device,
|
|
375
|
+
use_int32_inputs: bool,
|
|
376
|
+
max_cases: int = 4,
|
|
377
|
+
):
|
|
378
|
+
"""Compare the result from PyTorch and OnnxRuntime to verify the ONNX model is good."""
|
|
379
|
+
float16: bool = TypeHelper.get_input_type(ort_session, "past_key_self_0") == "tensor(float16)"
|
|
380
|
+
|
|
381
|
+
test_cases = [(4, 11, 3), (1, 2, 5), (3, 1, 1), (8, 5, 2)]
|
|
382
|
+
test_cases_max_diff = []
|
|
383
|
+
for (
|
|
384
|
+
batch_size,
|
|
385
|
+
encode_sequence_length,
|
|
386
|
+
past_decode_sequence_length,
|
|
387
|
+
) in test_cases[:max_cases]:
|
|
388
|
+
if isinstance(model, T5DecoderInit):
|
|
389
|
+
past_decode_sequence_length = 0 # noqa: PLW2901
|
|
390
|
+
|
|
391
|
+
inputs = T5DecoderInputs.create_dummy(
|
|
392
|
+
model.config,
|
|
393
|
+
batch_size,
|
|
394
|
+
encode_sequence_length,
|
|
395
|
+
past_decode_sequence_length,
|
|
396
|
+
device=device,
|
|
397
|
+
float16=float16,
|
|
398
|
+
use_int32_inputs=use_int32_inputs,
|
|
399
|
+
)
|
|
400
|
+
|
|
401
|
+
# We use fp32 PyTroch model as baseline even when ONNX model is fp16
|
|
402
|
+
input_list = inputs.to_fp32().to_list()
|
|
403
|
+
|
|
404
|
+
# Run inference of PyTorch model
|
|
405
|
+
with torch.no_grad():
|
|
406
|
+
torch_outputs = model(*input_list)
|
|
407
|
+
|
|
408
|
+
ort_outputs = T5DecoderHelper.onnxruntime_inference(ort_session, inputs)
|
|
409
|
+
num_decoder_layers = model.config.num_decoder_layers
|
|
410
|
+
|
|
411
|
+
max_diff = numpy.amax(numpy.abs(torch_outputs[0].cpu().numpy() - ort_outputs[0]))
|
|
412
|
+
max_diff_all = max_diff
|
|
413
|
+
logger.debug(f"logits max_diff={max_diff}")
|
|
414
|
+
|
|
415
|
+
for i in range(2 * num_decoder_layers):
|
|
416
|
+
max_diff = numpy.amax(numpy.abs(torch_outputs[1][i].cpu().numpy() - ort_outputs[1 + i]))
|
|
417
|
+
logger.debug(f"self attention past state {i} max_diff={max_diff}")
|
|
418
|
+
max_diff_all = max(max_diff_all, max_diff)
|
|
419
|
+
|
|
420
|
+
if isinstance(model, T5DecoderInit):
|
|
421
|
+
for i in range(2 * num_decoder_layers):
|
|
422
|
+
max_diff = numpy.amax(
|
|
423
|
+
numpy.abs(torch_outputs[2][i].cpu().numpy() - ort_outputs[1 + 2 * num_decoder_layers + i])
|
|
424
|
+
)
|
|
425
|
+
logger.debug(f"cross attention past state {i} max_diff={max_diff}")
|
|
426
|
+
max_diff_all = max(max_diff_all, max_diff)
|
|
427
|
+
|
|
428
|
+
test_cases_max_diff.append(max_diff_all)
|
|
429
|
+
logger.info(
|
|
430
|
+
"batch_size=%s, encode_sequence_length=%s, past_decode_sequence_length=%s, max_diff=%s",
|
|
431
|
+
batch_size,
|
|
432
|
+
encode_sequence_length,
|
|
433
|
+
past_decode_sequence_length,
|
|
434
|
+
max_diff_all,
|
|
435
|
+
)
|
|
436
|
+
|
|
437
|
+
return max_diff_all
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# -------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
import logging
|
|
7
|
+
import random
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
from transformers import MT5Config, T5Config
|
|
11
|
+
|
|
12
|
+
logger = logging.getLogger(__name__)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class T5Encoder(torch.nn.Module):
|
|
16
|
+
"""T5 encoder outputs only the last hidden state"""
|
|
17
|
+
|
|
18
|
+
def __init__(self, encoder, config: T5Config | MT5Config):
|
|
19
|
+
super().__init__()
|
|
20
|
+
self.encoder = encoder
|
|
21
|
+
self.config = config
|
|
22
|
+
|
|
23
|
+
def forward(self, input_ids, attention_mask):
|
|
24
|
+
return self.encoder(input_ids, attention_mask)[0]
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class T5EncoderInputs:
|
|
28
|
+
def __init__(self, input_ids, attention_mask):
|
|
29
|
+
self.input_ids: torch.LongTensor = input_ids
|
|
30
|
+
self.attention_mask: torch.LongTensor = attention_mask
|
|
31
|
+
|
|
32
|
+
@staticmethod
|
|
33
|
+
def create_dummy(
|
|
34
|
+
batch_size: int,
|
|
35
|
+
sequence_length: int,
|
|
36
|
+
vocab_size: int,
|
|
37
|
+
device: torch.device,
|
|
38
|
+
use_int32_inputs: bool = False,
|
|
39
|
+
): # -> T5EncoderInputs
|
|
40
|
+
"""Create dummy inputs for T5 encoder.
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
batch_size (int): batch size
|
|
44
|
+
sequence_length (int): sequence length
|
|
45
|
+
vocab_size (int): vocabulary size
|
|
46
|
+
device (torch.device): device of output tensors
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
T5EncoderInputs: dummy inputs for encoder
|
|
50
|
+
"""
|
|
51
|
+
dtype = torch.int32 if use_int32_inputs else torch.int64
|
|
52
|
+
|
|
53
|
+
input_ids = torch.randint(
|
|
54
|
+
low=0,
|
|
55
|
+
high=vocab_size - 1,
|
|
56
|
+
size=(batch_size, sequence_length),
|
|
57
|
+
dtype=dtype,
|
|
58
|
+
device=device,
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
attention_mask = torch.ones([batch_size, sequence_length], dtype=dtype, device=device)
|
|
62
|
+
if sequence_length >= 2:
|
|
63
|
+
for i in range(batch_size):
|
|
64
|
+
padding_position = random.randint(0, sequence_length - 1)
|
|
65
|
+
attention_mask[i, :padding_position] = 0
|
|
66
|
+
return T5EncoderInputs(input_ids, attention_mask)
|
|
67
|
+
|
|
68
|
+
def to_list(self) -> list:
|
|
69
|
+
input_list = [v for v in [self.input_ids, self.attention_mask] if v is not None]
|
|
70
|
+
return input_list
|