onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,63 @@
1
+ import onnx
2
+
3
+ from ..quant_utils import QuantizedValue, QuantizedValueType, attribute_to_kwarg
4
+ from .base_operator import QuantOperatorBase
5
+ from .qdq_base_operator import QDQOperatorBase
6
+
7
+
8
+ class QSplit(QuantOperatorBase):
9
+ def __init__(self, onnx_quantizer, onnx_node):
10
+ super().__init__(onnx_quantizer, onnx_node)
11
+
12
+ def quantize(self):
13
+ node = self.node
14
+ (
15
+ quantized_input_names,
16
+ zero_point_names,
17
+ scale_names,
18
+ nodes,
19
+ ) = self.quantizer.quantize_activation(node, [0])
20
+ if quantized_input_names is None:
21
+ return super().quantize()
22
+
23
+ quantized_node_name = ""
24
+ if node.name:
25
+ quantized_node_name = node.name + "_quant"
26
+ kwargs = {}
27
+ for attribute in node.attribute:
28
+ kwargs.update(attribute_to_kwarg(attribute))
29
+
30
+ # Output just derive the scale/zero from input
31
+ quantized_output_names = []
32
+ for output_name in node.output:
33
+ quantized_output_name = output_name + "quantized"
34
+ quantized_output_names.append(quantized_output_name)
35
+ q_output = QuantizedValue(
36
+ output_name,
37
+ quantized_output_name,
38
+ scale_names[0],
39
+ zero_point_names[0],
40
+ QuantizedValueType.Input,
41
+ )
42
+ self.quantizer.quantized_value_map[output_name] = q_output
43
+
44
+ if len(node.input) > 1:
45
+ quantized_input_names.extend(node.input[1:])
46
+ quantized_node = onnx.helper.make_node(
47
+ node.op_type, quantized_input_names, quantized_output_names, quantized_node_name, **kwargs
48
+ )
49
+
50
+ nodes.append(quantized_node)
51
+ self.quantizer.new_nodes += nodes
52
+
53
+
54
+ class QDQSplit(QDQOperatorBase):
55
+ def quantize(self):
56
+ node = self.node
57
+ assert node.op_type == "Split"
58
+
59
+ if not self.quantizer.is_tensor_quantized(node.input[0]):
60
+ self.quantizer.quantize_activation_tensor(node.input[0])
61
+ if not self.disable_qdq_for_node_output:
62
+ for output in node.output:
63
+ self.quantizer.quantize_output_same_as_input(output, node.input[0], node.name)
@@ -0,0 +1,87 @@
1
+ import onnx
2
+
3
+ from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType, attribute_to_kwarg, ms_domain
4
+ from .base_operator import QuantOperatorBase
5
+ from .qdq_base_operator import QDQOperatorBase
6
+
7
+
8
+ class QLinearWhere(QuantOperatorBase):
9
+ def should_quantize(self):
10
+ return True
11
+
12
+ def quantize(self):
13
+ node = self.node
14
+ assert node.op_type == "Where"
15
+ if not self.quantizer.force_quantize_no_input_check:
16
+ self.quantizer.new_nodes += [node]
17
+ return
18
+ (
19
+ data_found,
20
+ output_scale_name,
21
+ output_zp_name,
22
+ _,
23
+ _,
24
+ ) = self.quantizer._get_quantization_params(node.output[0])
25
+ (
26
+ q_input_names,
27
+ zero_point_names,
28
+ scale_names,
29
+ nodes,
30
+ ) = self.quantizer.quantize_activation(node, [1, 2])
31
+ if not data_found or q_input_names is None:
32
+ return super().quantize()
33
+ qlinear_output = node.output[0] + TENSOR_NAME_QUANT_SUFFIX
34
+ qlinear_output_name = node.name + "_quant" if node.name else ""
35
+
36
+ q_output = QuantizedValue(
37
+ node.output[0],
38
+ qlinear_output,
39
+ output_scale_name,
40
+ output_zp_name,
41
+ QuantizedValueType.Input,
42
+ )
43
+ self.quantizer.quantized_value_map[node.output[0]] = q_output
44
+
45
+ kwargs = {}
46
+ for attribute in node.attribute:
47
+ kwargs.update(attribute_to_kwarg(attribute))
48
+ kwargs["domain"] = ms_domain
49
+
50
+ qlwhere_inputs = [
51
+ node.input[0],
52
+ q_input_names[0],
53
+ scale_names[0],
54
+ zero_point_names[0],
55
+ q_input_names[1],
56
+ scale_names[1],
57
+ zero_point_names[1],
58
+ output_scale_name,
59
+ output_zp_name,
60
+ ]
61
+ qlwhere_node = onnx.helper.make_node(
62
+ "QLinearWhere", qlwhere_inputs, [qlinear_output], qlinear_output_name, **kwargs
63
+ )
64
+
65
+ self.quantizer.new_nodes += nodes
66
+ self.quantizer.new_nodes += [qlwhere_node]
67
+
68
+
69
+ class QDQWhere(QDQOperatorBase):
70
+ def quantize(self):
71
+ node = self.node
72
+ assert node.op_type == "Where"
73
+ if self.quantizer.force_quantize_no_input_check:
74
+ if not self.quantizer.is_tensor_quantized(node.input[1]):
75
+ self.quantizer.quantize_activation_tensor(node.input[1])
76
+ if not self.quantizer.is_tensor_quantized(node.input[2]):
77
+ self.quantizer.quantize_activation_tensor(node.input[2])
78
+ if not self.disable_qdq_for_node_output:
79
+ for output in node.output:
80
+ self.quantizer.quantize_activation_tensor(output)
81
+ elif (
82
+ self.quantizer.is_tensor_quantized(node.input[1])
83
+ and self.quantizer.is_tensor_quantized(node.input[2])
84
+ and not self.disable_qdq_for_node_output
85
+ ):
86
+ for output in node.output:
87
+ self.quantizer.quantize_activation_tensor(output)
@@ -0,0 +1,141 @@
1
+ # --------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft, Intel Corporation. All rights reserved.
3
+ # Licensed under the MIT License. See License.txt in the project root for
4
+ # license information.
5
+ # --------------------------------------------------------------------------
6
+
7
+ import argparse
8
+ import logging
9
+ import sys
10
+
11
+ from .shape_inference import quant_pre_process
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def parse_arguments():
17
+ parser = argparse.ArgumentParser(
18
+ description="""Model optimizer and shape inferencer, in preparation for quantization,
19
+ Consists of three optional steps:
20
+ 1. Symbolic shape inference (best for transformer models).
21
+ 2. Model optimization.
22
+ 3. ONNX shape inference.
23
+
24
+ Model quantization with QDQ format, i.e. inserting QuantizeLinear/DeQuantizeLinear on
25
+ the tensor, requires tensor shape information to perform its best. Currently, shape inferencing
26
+ works best with optimized model. As a result, it is highly recommended to run quantization
27
+ on optimized model with shape information. This is the tool for optimization and shape
28
+ inferencing.
29
+
30
+ Essentially this tool performs the following three (skippable) steps:
31
+
32
+ 1. Symbolic shape inference.
33
+ 2. Model optimization
34
+ 3. ONNX shape inference"""
35
+ )
36
+
37
+ parser.add_argument("--input", required=True, help="Path to the input model file")
38
+ parser.add_argument("--output", required=True, help="Path to the output model file")
39
+ parser.add_argument(
40
+ "--skip_optimization",
41
+ type=bool,
42
+ default=False,
43
+ help="Skip model optimization step if true. It's a known issue that ORT"
44
+ " optimization has difficulty with model size greater than 2GB, rerun with"
45
+ " this option to get around this issue.",
46
+ )
47
+ parser.add_argument(
48
+ "--skip_onnx_shape",
49
+ type=bool,
50
+ default=False,
51
+ help="Skip ONNX shape inference. Symbolic shape inference is most effective"
52
+ " with transformer based models. Skipping all shape inferences may"
53
+ " reduce the effectiveness of quantization, as a tensor with unknown"
54
+ " shape can not be quantized.",
55
+ )
56
+ parser.add_argument(
57
+ "--skip_symbolic_shape",
58
+ type=bool,
59
+ default=False,
60
+ help="Skip symbolic shape inference. Symbolic shape inference is most"
61
+ " effective with transformer based models. Skipping all shape"
62
+ " inferences may reduce the effectiveness of quantization, as a tensor"
63
+ " with unknown shape can not be quantized.",
64
+ )
65
+ parser.add_argument(
66
+ "--auto_merge",
67
+ help="Automatically merge symbolic dims when confliction happens",
68
+ action="store_true",
69
+ default=False,
70
+ )
71
+ parser.add_argument(
72
+ "--int_max",
73
+ help="maximum value for integer to be treated as boundless for ops like slice",
74
+ type=int,
75
+ default=2**31 - 1,
76
+ )
77
+ parser.add_argument(
78
+ "--guess_output_rank",
79
+ help="guess output rank to be the same as input 0 for unknown ops",
80
+ action="store_true",
81
+ default=False,
82
+ )
83
+ parser.add_argument(
84
+ "--verbose",
85
+ help="Prints detailed logs of inference, 0: turn off, 1: warnings, 3: detailed",
86
+ type=int,
87
+ default=0,
88
+ )
89
+ parser.add_argument(
90
+ "--save_as_external_data",
91
+ help="Saving an ONNX model to external data",
92
+ action="store_true",
93
+ default=False,
94
+ )
95
+ parser.add_argument(
96
+ "--all_tensors_to_one_file",
97
+ help="Saving all the external data to one file",
98
+ action="store_true",
99
+ default=False,
100
+ )
101
+ parser.add_argument(
102
+ "--external_data_location",
103
+ help="The file location to save the external file",
104
+ default=None,
105
+ )
106
+ parser.add_argument(
107
+ "--external_data_size_threshold",
108
+ help="The size threshold for external data",
109
+ type=int,
110
+ default=1024,
111
+ )
112
+ return parser.parse_args()
113
+
114
+
115
+ if __name__ == "__main__":
116
+ args = parse_arguments()
117
+ if args.skip_optimization and args.skip_onnx_shape and args.skip_symbolic_shape:
118
+ logger.error("Skipping all three steps, nothing to be done. Quitting...")
119
+ sys.exit()
120
+
121
+ if (not args.skip_optimization) and args.save_as_external_data:
122
+ logger.error("ORT model optimization does not support external data yet!")
123
+ sys.exit()
124
+
125
+ logger.info("input model: %s", args.input)
126
+ logger.info("output model: %s", args.output)
127
+ quant_pre_process(
128
+ args.input,
129
+ args.output,
130
+ args.skip_optimization,
131
+ args.skip_onnx_shape,
132
+ args.skip_symbolic_shape,
133
+ args.auto_merge,
134
+ args.int_max,
135
+ args.guess_output_rank,
136
+ args.verbose,
137
+ args.save_as_external_data,
138
+ args.all_tensors_to_one_file,
139
+ args.external_data_location,
140
+ args.external_data_size_threshold,
141
+ )
@@ -0,0 +1,389 @@
1
+ # --------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft, Intel Corporation. All rights reserved.
3
+ # Licensed under the MIT License. See License.txt in the project root for
4
+ # license information.
5
+ # --------------------------------------------------------------------------
6
+
7
+ """Utilities to run a given ONNX model, while saving input/output tensors of
8
+ eligible operator nodes.
9
+
10
+ A use case is to debug quantization induced accuracy drop. An AI engineer can
11
+ run the original float32 model and the quantized model with the same inputs,
12
+ then compare the corresponding activations between the two models to find
13
+ where the divergence is.
14
+
15
+ Example Usage:
16
+
17
+ ```python
18
+ class ExampleDataReader(CalibrationDataReader):
19
+ def __init__(self):
20
+ ...
21
+ def get_next(self):
22
+ ...
23
+
24
+ input_data_reader = ExampleDataReader()
25
+
26
+ augmented_model_path = str(Path(self._tmp_model_dir.name).joinpath("augmented_model.onnx"))
27
+ modify_model_output_intermediate_tensors (path_to_onnx_model, augmented_model_path)
28
+
29
+ tensor_dict = collect_activations(augmented_model_path, input_data_reader)
30
+ ```
31
+
32
+ `tensor_dict` points to a dictionary where the keys are tensor names and each value
33
+ is a list of tensors, one from each model run
34
+
35
+ """
36
+
37
+ import logging
38
+ import math
39
+ import time
40
+ from collections.abc import Callable, Sequence
41
+ from pathlib import Path
42
+
43
+ import numpy
44
+ import onnx
45
+ from onnx import helper, numpy_helper
46
+
47
+ import onnxruntime
48
+
49
+ from .calibrate import CalibraterBase, CalibrationDataReader
50
+ from .onnx_model import ONNXModel
51
+ from .quant_utils import (
52
+ DEQUANT_OP_NAME,
53
+ DEQUANT_OUTPUT_SUFFIX,
54
+ QUANT_INPUT_SUFFIX,
55
+ TENSOR_NAME_QUANT_SUFFIX,
56
+ find_by_name,
57
+ load_model_with_shape_infer,
58
+ )
59
+
60
+ _TENSOR_SAVE_POSTFIX = "_ReshapedSavedOutput"
61
+ _TENSOR_SAVE_POSTFIX_LEN = len(_TENSOR_SAVE_POSTFIX)
62
+
63
+
64
+ def modify_model_output_intermediate_tensors(
65
+ input_model_path: str | Path,
66
+ output_model_path: str | Path,
67
+ op_types_for_saving: Sequence[str] | None = None,
68
+ save_as_external_data: bool = False,
69
+ ) -> None:
70
+ """Augment a given ONNX model to save node input/output tensors.
71
+
72
+ Add all input/output tensors of operator nodes to model outputs
73
+ so that their values can be retrieved for debugging purposes.
74
+
75
+ Args:
76
+ input_model: the path to load the model.
77
+ op_types_for_saving: Operator types for which the
78
+ input/output should be saved. By default, saving all the
79
+ float32/float16 tensors.
80
+
81
+ Returns:
82
+ The augmented ONNX model
83
+ """
84
+
85
+ if op_types_for_saving is None:
86
+ op_types_for_saving = []
87
+ saver = CalibraterBase(input_model_path, op_types_to_calibrate=op_types_for_saving)
88
+ model_to_augment = saver.model
89
+ tensors, value_infos = saver.select_tensors_to_calibrate(model_to_augment)
90
+ reshape_shape_name = "LinearReshape_" + str(time.time())
91
+ reshape_shape = numpy_helper.from_array(numpy.array([-1], dtype=numpy.int64), reshape_shape_name)
92
+ model_to_augment.graph.initializer.append(reshape_shape)
93
+
94
+ for tensor_name in tensors:
95
+ reshape_output = tensor_name + _TENSOR_SAVE_POSTFIX
96
+ reshape_node = onnx.helper.make_node(
97
+ "Reshape",
98
+ inputs=[tensor_name, reshape_shape_name],
99
+ outputs=[reshape_output],
100
+ name=reshape_output,
101
+ )
102
+ model_to_augment.graph.node.append(reshape_node)
103
+ reshape_output_value_info = helper.make_tensor_value_info(
104
+ reshape_output, value_infos[tensor_name].type.tensor_type.elem_type, [-1]
105
+ )
106
+ model_to_augment.graph.output.append(reshape_output_value_info)
107
+
108
+ onnx.save(
109
+ model_to_augment,
110
+ output_model_path,
111
+ save_as_external_data=save_as_external_data,
112
+ )
113
+
114
+
115
+ def collect_activations(
116
+ augmented_model: str,
117
+ input_reader: CalibrationDataReader,
118
+ session_options=None,
119
+ execution_providers: Sequence[str] | None = None,
120
+ ) -> dict[str, list[numpy.ndarray]]:
121
+ """Run augmented model and collect activations tensors.
122
+
123
+ Args:
124
+ augmented_model: Path to augmented model created by modify_model_output_intermediate_tensors ()
125
+ input_reader: Logic for reading input for the model, augmented model have the same
126
+ input with the original model.
127
+ session_options: Optional OnnxRuntime session options for controlling model run.
128
+ By default graph optimization is turned off
129
+ execution_providers: Collection of execution providers for running the model.
130
+ Only CPU EP is used by default.
131
+
132
+ Returns:
133
+ A dictionary where the key is tensor name and values are list of tensors from each batch
134
+ """
135
+
136
+ if session_options is None:
137
+ session_options = onnxruntime.SessionOptions()
138
+ session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
139
+ if execution_providers is None:
140
+ execution_providers = ["CPUExecutionProvider"]
141
+
142
+ inference_session = onnxruntime.InferenceSession(
143
+ augmented_model,
144
+ sess_options=session_options,
145
+ providers=execution_providers,
146
+ )
147
+
148
+ intermediate_outputs = []
149
+ for input_d in input_reader:
150
+ intermediate_outputs.append(inference_session.run(None, input_d))
151
+ if not intermediate_outputs:
152
+ raise RuntimeError("No data is collected while running augmented model!")
153
+
154
+ output_dict = {}
155
+ output_info = inference_session.get_outputs()
156
+ for batch in intermediate_outputs:
157
+ for output, output_data in zip(output_info, batch, strict=False):
158
+ if output.name.endswith(_TENSOR_SAVE_POSTFIX):
159
+ output_name = output.name[:-_TENSOR_SAVE_POSTFIX_LEN]
160
+ output_dict.setdefault(output_name, []).append(output_data)
161
+
162
+ return output_dict
163
+
164
+
165
+ _POST_QDQ_POSTFIX1 = DEQUANT_OUTPUT_SUFFIX + "_1"
166
+
167
+
168
+ def _add_pre_post_qdq_pair(
169
+ qdq_cmp: dict[str, dict[str, Sequence[numpy.ndarray]]],
170
+ activation_name: str,
171
+ pre_qdq_tensors: Sequence[numpy.ndarray] | None,
172
+ post_qdq_tensors: Sequence[numpy.ndarray] | None,
173
+ ) -> None:
174
+ if post_qdq_tensors is not None and pre_qdq_tensors is not None:
175
+ qdq_cmp[activation_name] = {}
176
+ qdq_cmp[activation_name]["pre_qdq"] = pre_qdq_tensors
177
+ qdq_cmp[activation_name]["post_qdq"] = post_qdq_tensors
178
+
179
+
180
+ def create_activation_matching(
181
+ qdq_activations: dict[str, Sequence[numpy.ndarray]],
182
+ float_activations: dict[str, Sequence[numpy.ndarray]] | None = None,
183
+ ) -> dict[str, dict[str, Sequence[numpy.ndarray]]]:
184
+ """Comparing activation values to help debugging accuracy loss due to quantization.
185
+
186
+ This functions takes saved activations from the QDQ model and (optionally) the
187
+ float point model, and provides a data structure for comparing:
188
+ * from the qdq model, activation values before and after QDQ operation
189
+ * across both models, activations from the orignal model vs the corresponding
190
+ activations in the QDQ model
191
+
192
+ Arg:
193
+ qdq_activations: Output of `collect_activations`. This must be from a quantized
194
+ model with QDQ format.
195
+ float_activations: Output of `collect_activations`. This must be from the float
196
+ point model.
197
+
198
+ Returns:
199
+ Dict for comparing pre and post quantized activation tensors. E.g.
200
+ ```
201
+ qdq_cmp = cmp_qdq_input_output(qdq_activations)
202
+ print(qdq_cmp['activation1']['pre_qdq'][0])
203
+ print(qdq_cmp['activation1'][`post_qdq'][0])
204
+
205
+
206
+ qdq_cmp = cmp_qdq_input_output(qdq_activations, float_activations)
207
+ print(qdq_cmp['activation1']['float'][0])
208
+ print(qdq_cmp['activation1']['pre_qdq'][0])
209
+ print(qdq_cmp['activation1'][`post_qdq'][0])
210
+ ```
211
+ """
212
+
213
+ qdq_cmp: dict[str, dict[str, Sequence[numpy.ndarray]]] = {}
214
+ for tensor_name, tensors in qdq_activations.items():
215
+ if tensor_name.endswith(QUANT_INPUT_SUFFIX):
216
+ pre_name = tensor_name[: -len(QUANT_INPUT_SUFFIX)]
217
+ post_qdq_tensors = qdq_activations.get(pre_name)
218
+ pre_qdq_tensors = tensors
219
+ _add_pre_post_qdq_pair(qdq_cmp, pre_name, pre_qdq_tensors, post_qdq_tensors)
220
+ elif tensor_name.endswith(DEQUANT_OUTPUT_SUFFIX):
221
+ pre_name = tensor_name[: -len(DEQUANT_OUTPUT_SUFFIX)]
222
+ pre_qdq_tensors = qdq_activations.get(pre_name)
223
+ post_qdq_tensors = tensors
224
+ _add_pre_post_qdq_pair(qdq_cmp, pre_name, pre_qdq_tensors, post_qdq_tensors)
225
+ elif tensor_name.endswith(_POST_QDQ_POSTFIX1):
226
+ pre_name = tensor_name[: -len(_POST_QDQ_POSTFIX1)]
227
+ pre_qdq_tensors = qdq_activations.get(pre_name)
228
+ post_qdq_tensors = tensors
229
+ _add_pre_post_qdq_pair(qdq_cmp, pre_name, pre_qdq_tensors, post_qdq_tensors)
230
+
231
+ if not float_activations:
232
+ return qdq_cmp
233
+
234
+ for act_name, act_values in qdq_cmp.items():
235
+ float_acts = float_activations.get(act_name)
236
+ if float_acts is not None:
237
+ act_values["float"] = float_acts
238
+
239
+ return qdq_cmp
240
+
241
+
242
+ def _run_dequantize_linear(
243
+ weight_tensor: numpy.ndarray, weight_scale: numpy.ndarray, weight_zp: numpy.ndarray, channel_axis: int
244
+ ) -> numpy.ndarray | None:
245
+ assert weight_scale.shape == weight_zp.shape
246
+ if weight_zp.size == 1:
247
+ return (weight_tensor - weight_zp) * weight_scale
248
+
249
+ assert weight_zp.ndim == 1
250
+ reshape_dims = list(weight_tensor.shape) # deep copy
251
+ reshape_dims[channel_axis] = 1 # only one per channel for reshape
252
+ channel_count = weight_tensor.shape[channel_axis]
253
+ dequantized_weights = None
254
+ for i in range(channel_count):
255
+ per_channel_data = weight_tensor.take(i, channel_axis)
256
+ dequantized_per_channel_data = (per_channel_data - weight_zp[i]) * weight_scale[i]
257
+ if i == 0:
258
+ dequantized_weights = numpy.asarray(dequantized_per_channel_data).reshape(reshape_dims)
259
+ else:
260
+ channel_weights = numpy.asarray(dequantized_per_channel_data).reshape(reshape_dims)
261
+ dequantized_weights = numpy.concatenate((dequantized_weights, channel_weights), channel_axis)
262
+
263
+ if dequantized_weights is None:
264
+ return None
265
+
266
+ dequantized_weights.reshape(weight_tensor.shape)
267
+ return dequantized_weights
268
+
269
+
270
+ def create_weight_matching(float_model_path: str, qdq_model_path: str) -> dict[str, dict[str, numpy.ndarray]]:
271
+ """Comparing weight values to help debugging accuracy loss due to quantization.
272
+
273
+ This functions takes the float model and the qdq model, and provides a data structure for comparing
274
+ their corresponding weights to locate quantization errors
275
+
276
+ Arg:
277
+ float_model_path: Path points to the float point model.
278
+ qdq_model_path: Path points to the qdq model.
279
+
280
+ Returns:
281
+ Dict for comparing weight tensors. E.g.
282
+ ```
283
+ qdq_weight_cmp = create_weight_matching(float_model, qdq_model)
284
+ print(qdq_weight_cmp['activation1']['float'])
285
+ print(qdq_weight_cmp['activation1']['dequantized'])
286
+ ```
287
+ """
288
+ float_onnx_model = ONNXModel(load_model_with_shape_infer(Path(float_model_path)))
289
+ qdq_onnx_model = ONNXModel(load_model_with_shape_infer(Path(qdq_model_path)))
290
+
291
+ matched_weights: dict[str, dict[str, numpy.ndarray]] = {}
292
+ initializers = qdq_onnx_model.initializer()
293
+ for node in qdq_onnx_model.nodes():
294
+ if node.op_type != DEQUANT_OP_NAME:
295
+ continue # Only care about DQ node
296
+ weight_name: str = node.input[0]
297
+ weight_values = find_by_name(weight_name, initializers)
298
+ if not weight_values:
299
+ continue # Only care about DQ node with const inputs
300
+ if not weight_name.endswith(TENSOR_NAME_QUANT_SUFFIX):
301
+ logging.error(f"Model Error in '{qdq_model_path}': Dequantized tensor name '{weight_name}' not recognized!")
302
+ continue
303
+
304
+ axis = -1
305
+ for attr in node.attribute:
306
+ if attr.name == "axis":
307
+ axis = attr.i
308
+
309
+ weight_tensor = numpy_helper.to_array(weight_values)
310
+ weight_scale = numpy_helper.to_array(find_by_name(node.input[1], initializers))
311
+ if len(node.input) > 2:
312
+ weight_zp = numpy_helper.to_array(find_by_name(node.input[2], initializers))
313
+ else:
314
+ weight_zp = numpy.zeros(weight_scale.shape, dtype=numpy.int32)
315
+
316
+ # Perform dequantization:
317
+ if weight_scale.size == weight_zp.size == 1:
318
+ # Avoids the confusion between a scaler and a tensor of one element.
319
+ weight_scale = weight_scale.reshape(())
320
+ weight_zp = weight_zp.reshape(())
321
+ if weight_scale.shape != weight_zp.shape:
322
+ raise RuntimeError(
323
+ f"scale and zero_point must have the same shape but {weight_scale.shape} != {weight_zp.shape}"
324
+ )
325
+ weight_quant = _run_dequantize_linear(weight_tensor, weight_scale, weight_zp, channel_axis=axis)
326
+ weight_name = weight_name[: -len(TENSOR_NAME_QUANT_SUFFIX)]
327
+ if weight_quant is None:
328
+ logging.error(f"Model Error in '{qdq_model_path}': '{weight_name}' per-channel quantization on 0 channel")
329
+ continue
330
+
331
+ float_values = find_by_name(weight_name, float_onnx_model.initializer())
332
+ if not float_values:
333
+ logging.error(f"Model Error in '{float_model_path}': weight tensor '{weight_name}' not found!")
334
+ continue
335
+ weight_float = numpy_helper.to_array(float_values)
336
+ matched_weights[weight_name] = {"float": weight_float, "dequantized": weight_quant}
337
+
338
+ return matched_weights
339
+
340
+
341
+ def compute_signal_to_quantization_noice_ratio(
342
+ x: Sequence[numpy.ndarray] | numpy.ndarray, y: Sequence[numpy.ndarray] | numpy.ndarray
343
+ ) -> float:
344
+ if isinstance(x, numpy.ndarray):
345
+ xlist = [x]
346
+ else:
347
+ xlist = x
348
+ if isinstance(y, numpy.ndarray):
349
+ ylist = [y]
350
+ else:
351
+ ylist = y
352
+ if len(xlist) != len(ylist):
353
+ raise RuntimeError("Unequal number of tensors to compare!")
354
+
355
+ left = numpy.concatenate(xlist).flatten()
356
+ right = numpy.concatenate(ylist).flatten()
357
+
358
+ epsilon = numpy.finfo("float").eps
359
+ tensor_norm = max(numpy.linalg.norm(left), epsilon)
360
+ diff_norm = max(numpy.linalg.norm(left - right), epsilon)
361
+ res = tensor_norm / diff_norm
362
+ return 20 * math.log10(res)
363
+
364
+
365
+ def compute_weight_error(
366
+ weights_match: dict[str, dict[str, numpy.ndarray]],
367
+ err_func: Callable[[numpy.ndarray, numpy.ndarray], float] = compute_signal_to_quantization_noice_ratio,
368
+ ) -> dict[str, float]:
369
+ result: dict[str, float] = {}
370
+ for weight_name, weight_match in weights_match.items():
371
+ result[weight_name] = err_func(weight_match["float"], weight_match["dequantized"])
372
+ return result
373
+
374
+
375
+ def compute_activation_error(
376
+ activations_match: dict[str, dict[str, Sequence[numpy.ndarray]]],
377
+ err_func: Callable[
378
+ [Sequence[numpy.ndarray], Sequence[numpy.ndarray]], float
379
+ ] = compute_signal_to_quantization_noice_ratio,
380
+ ) -> dict[str, dict[str, float]]:
381
+ result: dict[str, dict[str, float]] = {}
382
+ for name, match in activations_match.items():
383
+ err_result: dict[str, float] = {}
384
+ err_result["qdq_err"] = err_func(match["pre_qdq"], match["post_qdq"])
385
+ float_activation = match["float"]
386
+ if float_activation:
387
+ err_result["xmodel_err"] = err_func(float_activation, match["post_qdq"])
388
+ result[name] = err_result
389
+ return result