onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,513 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License. See License.txt in the project root for
|
|
4
|
+
# license information.
|
|
5
|
+
# --------------------------------------------------------------------------
|
|
6
|
+
|
|
7
|
+
# This script uses different configurations in mixed precision conversion for GPT-2 model, and
|
|
8
|
+
# measures the inference latency, top 1 match rate (compared to PyTorch FP32 model) and ONNX model size.
|
|
9
|
+
# It outputs a csv file with Mann-Whitney U test and T-Test on each pair of experiments, where
|
|
10
|
+
# pvalue < 0.05 means two experiments have significant difference on top 1 match rate.
|
|
11
|
+
# User could use this script to select the best mixed precision model according to these metrics.
|
|
12
|
+
|
|
13
|
+
import argparse
|
|
14
|
+
import csv
|
|
15
|
+
import datetime
|
|
16
|
+
import json
|
|
17
|
+
import logging
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
import onnx
|
|
21
|
+
import scipy.stats
|
|
22
|
+
from benchmark_helper import get_ort_environment_variables, setup_logger
|
|
23
|
+
from convert_to_onnx import main
|
|
24
|
+
from gpt2_helper import PRETRAINED_GPT2_MODELS, Gpt2Helper
|
|
25
|
+
from onnx_model import OnnxModel
|
|
26
|
+
|
|
27
|
+
logger = logging.getLogger("")
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def parse_arguments(argv=None):
|
|
31
|
+
parser = argparse.ArgumentParser()
|
|
32
|
+
|
|
33
|
+
parser.add_argument(
|
|
34
|
+
"-m",
|
|
35
|
+
"--model_name_or_path",
|
|
36
|
+
required=True,
|
|
37
|
+
type=str,
|
|
38
|
+
help="Model path, or pretrained model name in the list: " + ", ".join(PRETRAINED_GPT2_MODELS),
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
parser.add_argument(
|
|
42
|
+
"--csv",
|
|
43
|
+
required=False,
|
|
44
|
+
type=str,
|
|
45
|
+
default="gpt2_parity_results.csv",
|
|
46
|
+
help="path of csv file to save the result",
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
parser.add_argument(
|
|
50
|
+
"--test_cases",
|
|
51
|
+
required=False,
|
|
52
|
+
type=int,
|
|
53
|
+
default=500,
|
|
54
|
+
help="number of test cases per run",
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
parser.add_argument("--runs", required=False, type=int, default=40, help="number of repeated runs")
|
|
58
|
+
|
|
59
|
+
parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU for inference")
|
|
60
|
+
parser.set_defaults(use_gpu=False)
|
|
61
|
+
|
|
62
|
+
parser.add_argument(
|
|
63
|
+
"--all",
|
|
64
|
+
required=False,
|
|
65
|
+
action="store_true",
|
|
66
|
+
help="run all combinations of mixed precision",
|
|
67
|
+
)
|
|
68
|
+
parser.set_defaults(all=False)
|
|
69
|
+
|
|
70
|
+
parser.add_argument("-e", "--use_external_data_format", required=False, action="store_true")
|
|
71
|
+
parser.set_defaults(use_external_data_format=False)
|
|
72
|
+
|
|
73
|
+
parser.add_argument("--verbose", required=False, action="store_true")
|
|
74
|
+
parser.set_defaults(verbose=False)
|
|
75
|
+
|
|
76
|
+
parser.add_argument(
|
|
77
|
+
"--skip_test",
|
|
78
|
+
required=False,
|
|
79
|
+
action="store_true",
|
|
80
|
+
help="do not run test, and only rank experiments based on existing csv file",
|
|
81
|
+
)
|
|
82
|
+
parser.set_defaults(skip_test=False)
|
|
83
|
+
|
|
84
|
+
parser.add_argument(
|
|
85
|
+
"--overwrite",
|
|
86
|
+
required=False,
|
|
87
|
+
action="store_true",
|
|
88
|
+
help="Overwrite existing csv file",
|
|
89
|
+
)
|
|
90
|
+
parser.set_defaults(overwrite=False)
|
|
91
|
+
|
|
92
|
+
args = parser.parse_args(argv)
|
|
93
|
+
|
|
94
|
+
return args
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
class ParityTask:
|
|
98
|
+
def __init__(self, test_cases, total_runs, csv_path):
|
|
99
|
+
self.total_runs = total_runs
|
|
100
|
+
self.test_cases = test_cases
|
|
101
|
+
self.csv_path = csv_path
|
|
102
|
+
self.results = []
|
|
103
|
+
self.run_id = 0
|
|
104
|
+
|
|
105
|
+
def run(self, argv, experiment_name):
|
|
106
|
+
start_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
107
|
+
run_id = f"{start_time}_{self.run_id}"
|
|
108
|
+
self.run_id += 1
|
|
109
|
+
|
|
110
|
+
try:
|
|
111
|
+
result = main(
|
|
112
|
+
[*argv, "-t", f"{self.test_cases}", "-r", f"{self.total_runs}"],
|
|
113
|
+
experiment_name=experiment_name,
|
|
114
|
+
run_id=run_id,
|
|
115
|
+
csv_filename=self.csv_path,
|
|
116
|
+
)
|
|
117
|
+
if result:
|
|
118
|
+
self.results.append(result)
|
|
119
|
+
except Exception:
|
|
120
|
+
logger.exception(f"Failed to run experiment {experiment_name}")
|
|
121
|
+
result = None
|
|
122
|
+
|
|
123
|
+
return result
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def load_results_from_csv(csv_path):
|
|
127
|
+
rows = []
|
|
128
|
+
import csv # noqa: PLC0415
|
|
129
|
+
|
|
130
|
+
with open(csv_path, newline="") as csvfile:
|
|
131
|
+
reader = csv.DictReader(csvfile)
|
|
132
|
+
for row in reader:
|
|
133
|
+
rows.append(row) # noqa: PERF402
|
|
134
|
+
return rows
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
def get_latency(row):
|
|
138
|
+
for name in row:
|
|
139
|
+
if name.startswith("average_latency(batch_size="):
|
|
140
|
+
return float(row[name])
|
|
141
|
+
|
|
142
|
+
raise RuntimeError("Failed to get average_latency from output")
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def score(row):
|
|
146
|
+
"""Scoring function based on 3 metrics. The larger score is better."""
|
|
147
|
+
latency_in_ms = get_latency(row)
|
|
148
|
+
top1_match_rate = float(row["top1_match_rate"])
|
|
149
|
+
onnx_size_in_MB = float(row["onnx_size_in_MB"]) # noqa: N806
|
|
150
|
+
# A simple scoring function: cost of 0.1ms latency ~ 0.1% match rate ~ 100MB size
|
|
151
|
+
return top1_match_rate * 1000 - latency_in_ms * 10 - onnx_size_in_MB / 100
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def print_wins(wins, rows, test_name):
|
|
155
|
+
print()
|
|
156
|
+
print("*" * 10)
|
|
157
|
+
|
|
158
|
+
row_map = {}
|
|
159
|
+
for row in rows:
|
|
160
|
+
row_map[row["run_id"]] = row
|
|
161
|
+
|
|
162
|
+
sorted_wins = dict(
|
|
163
|
+
sorted(
|
|
164
|
+
wins.items(),
|
|
165
|
+
key=lambda item: (item[1], score(row_map[item[0]])),
|
|
166
|
+
reverse=True,
|
|
167
|
+
)
|
|
168
|
+
)
|
|
169
|
+
logger.debug(f"{test_name} Wins:{sorted_wins}")
|
|
170
|
+
logger.info(f"Based on {test_name} wins and a scoring function, the ranking:")
|
|
171
|
+
|
|
172
|
+
rank = 0
|
|
173
|
+
previous_value = -1
|
|
174
|
+
for count, (key, value) in enumerate(sorted_wins.items()):
|
|
175
|
+
if value != previous_value:
|
|
176
|
+
rank = count
|
|
177
|
+
previous_value = value
|
|
178
|
+
|
|
179
|
+
for row in rows:
|
|
180
|
+
if row["run_id"] == key:
|
|
181
|
+
logger.info(
|
|
182
|
+
"{:02d}: WINs={:02d}, run_id={}, latency={:5.2f}, top1_match={:.4f}, size={}_MB, experiment={}, {}".format( # noqa: G001
|
|
183
|
+
rank,
|
|
184
|
+
value,
|
|
185
|
+
key,
|
|
186
|
+
get_latency(row),
|
|
187
|
+
float(row["top1_match_rate"]),
|
|
188
|
+
row["onnx_size_in_MB"],
|
|
189
|
+
row["experiment"],
|
|
190
|
+
get_ort_environment_variables(),
|
|
191
|
+
)
|
|
192
|
+
)
|
|
193
|
+
break
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def run_significance_test(rows, output_csv_path):
|
|
197
|
+
"""Run U test and T test."""
|
|
198
|
+
utest_wins = {}
|
|
199
|
+
ttest_wins = {}
|
|
200
|
+
for row in rows:
|
|
201
|
+
run_id = row["run_id"]
|
|
202
|
+
utest_wins[run_id] = 0
|
|
203
|
+
ttest_wins[run_id] = 0
|
|
204
|
+
|
|
205
|
+
with open(output_csv_path, "w", newline="") as csvfile:
|
|
206
|
+
column_names = [
|
|
207
|
+
"model_name",
|
|
208
|
+
"run_id_1",
|
|
209
|
+
"experiment_1",
|
|
210
|
+
"top1_match_rate_1",
|
|
211
|
+
"run_id_2",
|
|
212
|
+
"experiment_2",
|
|
213
|
+
"top1_match_rate_2",
|
|
214
|
+
"U_statistic",
|
|
215
|
+
"U_pvalue",
|
|
216
|
+
"T_statistic",
|
|
217
|
+
"T_pvalue",
|
|
218
|
+
]
|
|
219
|
+
|
|
220
|
+
writer = csv.DictWriter(csvfile, fieldnames=column_names)
|
|
221
|
+
writer.writeheader()
|
|
222
|
+
|
|
223
|
+
required_match_columns = ["model_name", "test_cases", "runs"]
|
|
224
|
+
num_results = len(rows)
|
|
225
|
+
for i in range(num_results - 1):
|
|
226
|
+
result1 = rows[i]
|
|
227
|
+
|
|
228
|
+
if isinstance(result1["top1_match_rate_per_run"], str):
|
|
229
|
+
a = json.loads(result1["top1_match_rate_per_run"])
|
|
230
|
+
else:
|
|
231
|
+
a = result1["top1_match_rate_per_run"]
|
|
232
|
+
|
|
233
|
+
for j in range(i + 1, num_results, 1):
|
|
234
|
+
result2 = rows[j]
|
|
235
|
+
|
|
236
|
+
all_matched = True
|
|
237
|
+
for column in required_match_columns:
|
|
238
|
+
if result1[column] != result2[column]:
|
|
239
|
+
all_matched = False
|
|
240
|
+
break
|
|
241
|
+
if not all_matched:
|
|
242
|
+
continue
|
|
243
|
+
|
|
244
|
+
if isinstance(result2["top1_match_rate_per_run"], str):
|
|
245
|
+
b = json.loads(result2["top1_match_rate_per_run"])
|
|
246
|
+
else:
|
|
247
|
+
b = result2["top1_match_rate_per_run"]
|
|
248
|
+
|
|
249
|
+
try:
|
|
250
|
+
utest_statistic, utest_pvalue = scipy.stats.mannwhitneyu(
|
|
251
|
+
a, b, use_continuity=True, alternative="two-sided"
|
|
252
|
+
) # TODO: shall we use one-sided: less or greater according to "top1_match_rate"
|
|
253
|
+
except ValueError: # ValueError: All numbers are identical in mannwhitneyu
|
|
254
|
+
utest_statistic = None
|
|
255
|
+
utest_pvalue = None
|
|
256
|
+
ttest_statistic, ttest_pvalue = scipy.stats.ttest_ind(a, b, axis=None, equal_var=True)
|
|
257
|
+
|
|
258
|
+
if utest_pvalue is not None and utest_pvalue < 0.05:
|
|
259
|
+
if float(result1["top1_match_rate"]) > float(result2["top1_match_rate"]):
|
|
260
|
+
utest_wins[result1["run_id"]] += 1
|
|
261
|
+
else:
|
|
262
|
+
utest_wins[result2["run_id"]] += 1
|
|
263
|
+
|
|
264
|
+
if ttest_pvalue < 0.05:
|
|
265
|
+
if float(result1["top1_match_rate"]) > float(result2["top1_match_rate"]):
|
|
266
|
+
ttest_wins[result1["run_id"]] += 1
|
|
267
|
+
else:
|
|
268
|
+
ttest_wins[result2["run_id"]] += 1
|
|
269
|
+
|
|
270
|
+
row = {
|
|
271
|
+
"model_name": result1["model_name"],
|
|
272
|
+
"run_id_1": result1["run_id"],
|
|
273
|
+
"experiment_1": result1["experiment"],
|
|
274
|
+
"top1_match_rate_1": float(result1["top1_match_rate"]),
|
|
275
|
+
"run_id_2": result2["run_id"],
|
|
276
|
+
"experiment_2": result2["experiment"],
|
|
277
|
+
"top1_match_rate_2": float(result2["top1_match_rate"]),
|
|
278
|
+
"U_statistic": utest_statistic,
|
|
279
|
+
"U_pvalue": utest_pvalue,
|
|
280
|
+
"T_statistic": ttest_statistic,
|
|
281
|
+
"T_pvalue": ttest_pvalue,
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
writer.writerow(row)
|
|
285
|
+
logger.info(f"U-Test and T-Test results are output to {output_csv_path}")
|
|
286
|
+
print_wins(utest_wins, rows, "U-Test")
|
|
287
|
+
print_wins(ttest_wins, rows, "T-Test")
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
def get_last_matmul_node_name(raw_onnx_model: str):
|
|
291
|
+
model = onnx.load(raw_onnx_model)
|
|
292
|
+
onnx_model = OnnxModel(model)
|
|
293
|
+
output_name_to_node = onnx_model.output_name_to_node()
|
|
294
|
+
|
|
295
|
+
assert model.graph.output[0].name in output_name_to_node
|
|
296
|
+
node = output_name_to_node[model.graph.output[0].name]
|
|
297
|
+
if node.op_type == "MatMul":
|
|
298
|
+
logger.info(f"Found last MatMul node for logits: {node.name}")
|
|
299
|
+
return node.name
|
|
300
|
+
|
|
301
|
+
logger.warning(f"Failed to find MatMul node for logits. Found {node.op_type} of node {node.name}")
|
|
302
|
+
return None
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
def get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list):
|
|
306
|
+
model = args.model_name_or_path
|
|
307
|
+
parameters = f"-m {model} -o --use_gpu -p fp16".split()
|
|
308
|
+
if args.use_external_data_format:
|
|
309
|
+
parameters.append("--use_external_data_format")
|
|
310
|
+
parameters += [
|
|
311
|
+
"--io_block_list",
|
|
312
|
+
"logits",
|
|
313
|
+
"--node_block_list",
|
|
314
|
+
last_matmul_node_name,
|
|
315
|
+
]
|
|
316
|
+
|
|
317
|
+
if op_block_list:
|
|
318
|
+
parameters.extend(["--op_block_list", *op_block_list])
|
|
319
|
+
|
|
320
|
+
return parameters
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
def run_candidate(
|
|
324
|
+
task: ParityTask,
|
|
325
|
+
args,
|
|
326
|
+
last_matmul_node_name,
|
|
327
|
+
op_block_list=["FastGelu", "LayerNormalization"], # noqa: B006
|
|
328
|
+
):
|
|
329
|
+
parameters = get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list)
|
|
330
|
+
op_block_list_str = ",".join(sorted(op_block_list))
|
|
331
|
+
|
|
332
|
+
if op_block_list:
|
|
333
|
+
name = f"Mixed precision baseline + {op_block_list_str} in FP32"
|
|
334
|
+
else:
|
|
335
|
+
name = f"Mixed precision baseline (logits output and last MatMul node {last_matmul_node_name} in FP32)"
|
|
336
|
+
|
|
337
|
+
env_vars = get_ort_environment_variables()
|
|
338
|
+
if env_vars:
|
|
339
|
+
name = name + f" ({env_vars})"
|
|
340
|
+
|
|
341
|
+
task.run(parameters, name)
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
def get_baselines(args):
|
|
345
|
+
model = args.model_name_or_path
|
|
346
|
+
fp32_baseline = f"-m {model} -o -p fp32".split()
|
|
347
|
+
if args.use_gpu:
|
|
348
|
+
fp32_baseline.append("--use_gpu")
|
|
349
|
+
if args.use_external_data_format:
|
|
350
|
+
fp32_baseline.append("--use_external_data_format")
|
|
351
|
+
|
|
352
|
+
fp16_baseline = f"-m {model} -o --use_gpu -p fp16".split()
|
|
353
|
+
if args.use_external_data_format:
|
|
354
|
+
fp16_baseline.append("--use_external_data_format")
|
|
355
|
+
|
|
356
|
+
return fp32_baseline, fp16_baseline
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
def run_tuning_step0(task, fp16_baseline, all_ops, optimized_ops):
|
|
360
|
+
"""Step 0 is to check which operator in FP16 causes most loss"""
|
|
361
|
+
fp32_logits = ["--io_block_list", "logits"]
|
|
362
|
+
task.run(fp16_baseline + fp32_logits, "FP16 except logits")
|
|
363
|
+
|
|
364
|
+
fp32_io = ["--keep_io_types"]
|
|
365
|
+
task.run(fp16_baseline + fp32_io, "Graph I/O FP32, Other FP16")
|
|
366
|
+
|
|
367
|
+
# Only weights in FP16
|
|
368
|
+
task.run(
|
|
369
|
+
fp16_baseline + fp32_io + ["--op_block_list"] + list(all_ops) + ["--force_fp16_initializers"],
|
|
370
|
+
"FP32 except weights in FP16",
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
optimized_ops_results = []
|
|
374
|
+
op_list = optimized_ops
|
|
375
|
+
for op in op_list:
|
|
376
|
+
op_block_list = ["--op_block_list"] + [o for o in op_list if o != op]
|
|
377
|
+
result = task.run(fp16_baseline + fp32_io + op_block_list, f"FP32 except {op} in FP16")
|
|
378
|
+
if result:
|
|
379
|
+
optimized_ops_results.append(result)
|
|
380
|
+
|
|
381
|
+
# Check which optimized operator causes the most loss in precision
|
|
382
|
+
min_result = min(optimized_ops_results, key=lambda y: y["top1_match_rate"])
|
|
383
|
+
print("step 0: optimized operator causes the most loss in precision", min_result)
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def run_tuning_step1(task, mixed_precision_baseline, optimized_ops):
|
|
387
|
+
"""Step 1 is to figure out which optimized operator in FP32 could benefit most"""
|
|
388
|
+
for op in optimized_ops:
|
|
389
|
+
op_block_list = ["--op_block_list", op]
|
|
390
|
+
task.run(
|
|
391
|
+
mixed_precision_baseline + op_block_list,
|
|
392
|
+
f"Mixed precision baseline + {op} in FP32",
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
def run_tuning_step2(task, mixed_precision_baseline, optimized_ops):
|
|
397
|
+
"""Assumed that you have run step 0 and 1 to figure out that Logits FP32 and some operators shall be in FP32,
|
|
398
|
+
This step will try add one more operator.
|
|
399
|
+
"""
|
|
400
|
+
candidate_fp32_ops = ["FastGelu", "LayerNormalization", "SkipLayerNormalization"]
|
|
401
|
+
fp32_ops = [x for x in candidate_fp32_ops if x in optimized_ops]
|
|
402
|
+
for op in optimized_ops:
|
|
403
|
+
if op not in fp32_ops:
|
|
404
|
+
op_block_list = [*fp32_ops, op]
|
|
405
|
+
task.run(
|
|
406
|
+
[*mixed_precision_baseline, "--op_block_list", *op_block_list],
|
|
407
|
+
"Mixed precision baseline + {},{} in FP32".format(",".join(fp32_ops), op),
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def run_parity(task: ParityTask, args):
|
|
412
|
+
onnx_model_paths = Gpt2Helper.get_onnx_paths(
|
|
413
|
+
"onnx_models",
|
|
414
|
+
args.model_name_or_path,
|
|
415
|
+
new_folder=args.use_external_data_format,
|
|
416
|
+
remove_existing=[],
|
|
417
|
+
)
|
|
418
|
+
|
|
419
|
+
fp32_baseline, fp16_baseline = get_baselines(args)
|
|
420
|
+
|
|
421
|
+
result = task.run(fp32_baseline, "FP32 baseline")
|
|
422
|
+
|
|
423
|
+
optimized_ops = []
|
|
424
|
+
if result and ("optimized_operators" in result) and result["optimized_operators"]:
|
|
425
|
+
optimized_ops = result["optimized_operators"].split(",")
|
|
426
|
+
else:
|
|
427
|
+
raise RuntimeError("Failed to get optimized operators")
|
|
428
|
+
|
|
429
|
+
all_ops = []
|
|
430
|
+
if result and ("operators" in result) and result["operators"]:
|
|
431
|
+
all_ops = result["operators"].split(",")
|
|
432
|
+
else:
|
|
433
|
+
raise RuntimeError("Failed to get operators")
|
|
434
|
+
|
|
435
|
+
# The following tests for fp16 requires GPU
|
|
436
|
+
if not args.use_gpu:
|
|
437
|
+
logger.info("skip mixed precision since --use_gpu is not specified")
|
|
438
|
+
return
|
|
439
|
+
|
|
440
|
+
task.run(fp16_baseline, "FP16 baseline")
|
|
441
|
+
|
|
442
|
+
last_matmul_node_name = get_last_matmul_node_name(onnx_model_paths["raw"])
|
|
443
|
+
|
|
444
|
+
# Mixed precision baseline
|
|
445
|
+
run_candidate(task, args, last_matmul_node_name, op_block_list=[])
|
|
446
|
+
|
|
447
|
+
def get_fp32_ops(x):
|
|
448
|
+
return [op for op in x if op in all_ops]
|
|
449
|
+
|
|
450
|
+
if args.all:
|
|
451
|
+
run_tuning_step0(task, fp16_baseline, all_ops, optimized_ops)
|
|
452
|
+
mixed_precision_baseline = get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list=[])
|
|
453
|
+
run_tuning_step1(task, mixed_precision_baseline, optimized_ops)
|
|
454
|
+
run_tuning_step2(task, mixed_precision_baseline, optimized_ops)
|
|
455
|
+
else:
|
|
456
|
+
run_candidate(
|
|
457
|
+
task,
|
|
458
|
+
args,
|
|
459
|
+
last_matmul_node_name,
|
|
460
|
+
op_block_list=get_fp32_ops(["SkipLayerNormalization", "LayerNormalization", "Add"]),
|
|
461
|
+
)
|
|
462
|
+
run_candidate(task, args, last_matmul_node_name, op_block_list=["FastGelu"])
|
|
463
|
+
|
|
464
|
+
# Run a few good candidates
|
|
465
|
+
run_candidate(
|
|
466
|
+
task,
|
|
467
|
+
args,
|
|
468
|
+
last_matmul_node_name,
|
|
469
|
+
op_block_list=get_fp32_ops(["FastGelu", "SkipLayerNormalization", "LayerNormalization", "Add"]),
|
|
470
|
+
)
|
|
471
|
+
run_candidate(
|
|
472
|
+
task,
|
|
473
|
+
args,
|
|
474
|
+
last_matmul_node_name,
|
|
475
|
+
op_block_list=get_fp32_ops(
|
|
476
|
+
["FastGelu", "EmbedLayerNormalization", "SkipLayerNormalization", "LayerNormalization", "Add"]
|
|
477
|
+
),
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
if __name__ == "__main__":
|
|
482
|
+
args = parse_arguments()
|
|
483
|
+
setup_logger(args.verbose)
|
|
484
|
+
|
|
485
|
+
if args.test_cases < 100 or args.runs < 20 or args.test_cases * args.runs < 10000:
|
|
486
|
+
logger.warning(
|
|
487
|
+
"Not enough test cases or runs to get stable results or test significance. "
|
|
488
|
+
"Recommend test_cases >= 100, runs >= 20, test_cases * runs >= 10000."
|
|
489
|
+
)
|
|
490
|
+
|
|
491
|
+
if os.path.exists(args.csv) and not args.skip_test:
|
|
492
|
+
if not args.overwrite:
|
|
493
|
+
raise RuntimeError(
|
|
494
|
+
f"Output file {args.csv} existed. Please remove the file, or use either --skip_test or --overwrite."
|
|
495
|
+
)
|
|
496
|
+
else:
|
|
497
|
+
logger.info("Remove existing file %s since --overwrite is specified", args.csv)
|
|
498
|
+
os.remove(args.csv)
|
|
499
|
+
|
|
500
|
+
task = ParityTask(args.test_cases, args.runs, args.csv)
|
|
501
|
+
|
|
502
|
+
if not args.skip_test:
|
|
503
|
+
run_parity(task, args)
|
|
504
|
+
|
|
505
|
+
try:
|
|
506
|
+
rows = load_results_from_csv(task.csv_path)
|
|
507
|
+
except Exception:
|
|
508
|
+
logger.exception(f"Failed to load csv {task.csv_path}")
|
|
509
|
+
rows = task.results
|
|
510
|
+
|
|
511
|
+
logger.info("Start running significance tests...")
|
|
512
|
+
summary_csv = task.csv_path.replace(".csv", ".stats.csv")
|
|
513
|
+
run_significance_test(rows, summary_csv)
|