onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,300 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
from logging import getLogger
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
from fusion_base import Fusion
|
|
9
|
+
from onnx import NodeProto, TensorProto, helper, numpy_helper
|
|
10
|
+
from onnx_model import OnnxModel
|
|
11
|
+
|
|
12
|
+
logger = getLogger(__name__)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class FusionAttentionVae(Fusion):
|
|
16
|
+
"""
|
|
17
|
+
Fuse Attention subgraph of Vae Decoder into one Attention node.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
def __init__(self, model: OnnxModel, hidden_size: int, num_heads: int):
|
|
21
|
+
super().__init__(model, "Attention", ["Softmax"])
|
|
22
|
+
self.hidden_size = hidden_size
|
|
23
|
+
self.num_heads = num_heads
|
|
24
|
+
|
|
25
|
+
# Flags to show warning only once
|
|
26
|
+
self.num_heads_warning = True
|
|
27
|
+
self.hidden_size_warning = True
|
|
28
|
+
|
|
29
|
+
def get_num_heads_and_hidden_size(self, reshape_q: NodeProto, add_q: NodeProto) -> tuple[int, int]:
|
|
30
|
+
"""Detect num_heads and hidden_size from a reshape node.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
reshape_q (NodeProto): reshape node for Q
|
|
34
|
+
add_q (NodeProto): add node for Q
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
Tuple[int, int]: num_heads and hidden_size
|
|
38
|
+
"""
|
|
39
|
+
concat = self.model.get_parent(reshape_q, 1)
|
|
40
|
+
if concat is None or len(concat.input) != 4:
|
|
41
|
+
return self.num_heads, self.hidden_size # Fall back to user specified value
|
|
42
|
+
|
|
43
|
+
value = self.model.get_constant_value(concat.input[2])
|
|
44
|
+
if not (value is not None and isinstance(value, np.ndarray) and value.size == 1):
|
|
45
|
+
return self.num_heads, self.hidden_size # Fall back to user specified value
|
|
46
|
+
num_heads = int(value)
|
|
47
|
+
if num_heads <= 0:
|
|
48
|
+
return self.num_heads, self.hidden_size # Fall back to user specified value
|
|
49
|
+
|
|
50
|
+
_, bias = self.model.get_constant_input(add_q)
|
|
51
|
+
if (bias is None) or (not isinstance(bias, np.ndarray)) or bias.ndim != 1:
|
|
52
|
+
return self.num_heads, self.hidden_size # Fall back to user specified value
|
|
53
|
+
|
|
54
|
+
hidden_size = bias.shape[0]
|
|
55
|
+
|
|
56
|
+
if self.num_heads > 0 and num_heads != self.num_heads:
|
|
57
|
+
if self.num_heads_warning:
|
|
58
|
+
logger.warning(
|
|
59
|
+
"Detected number of attention heads is %d. Ignore --num_heads %d", num_heads, self.num_heads
|
|
60
|
+
)
|
|
61
|
+
self.num_heads_warning = False # Do not show the warning more than once
|
|
62
|
+
|
|
63
|
+
if self.hidden_size > 0 and hidden_size != self.hidden_size:
|
|
64
|
+
if self.hidden_size_warning:
|
|
65
|
+
logger.warning("Detected hidden size is %d. Ignore --hidden_size %d", hidden_size, self.hidden_size)
|
|
66
|
+
self.hidden_size_warning = False # Do not show the warning more than once
|
|
67
|
+
|
|
68
|
+
return num_heads, hidden_size
|
|
69
|
+
|
|
70
|
+
def create_attention_node(
|
|
71
|
+
self,
|
|
72
|
+
q_matmul: NodeProto,
|
|
73
|
+
q_add: NodeProto,
|
|
74
|
+
k_matmul: NodeProto,
|
|
75
|
+
k_add: NodeProto,
|
|
76
|
+
v_matmul: NodeProto,
|
|
77
|
+
v_add: NodeProto,
|
|
78
|
+
num_heads: int,
|
|
79
|
+
hidden_size: int,
|
|
80
|
+
input_name: str,
|
|
81
|
+
output_name: str,
|
|
82
|
+
) -> NodeProto | None:
|
|
83
|
+
"""Create an Attention node.
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
q_matmul (NodeProto): MatMul node in fully connection for Q
|
|
87
|
+
q_add (NodeProto): Add bias node in fully connection for Q
|
|
88
|
+
k_matmul (NodeProto): MatMul node in fully connection for K
|
|
89
|
+
k_add (NodeProto): Add bias node in fully connection for K
|
|
90
|
+
v_matmul (NodeProto): MatMul node in fully connection for V
|
|
91
|
+
v_add (NodeProto): Add bias node in fully connection for V
|
|
92
|
+
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
|
|
93
|
+
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
|
|
94
|
+
input_name (str): input name
|
|
95
|
+
output_name (str): output name
|
|
96
|
+
|
|
97
|
+
Returns:
|
|
98
|
+
Union[NodeProto, None]: the node created or None if failed.
|
|
99
|
+
"""
|
|
100
|
+
if q_matmul.input[0] != input_name or k_matmul.input[0] != input_name or v_matmul.input[0] != input_name:
|
|
101
|
+
logger.debug(
|
|
102
|
+
"For self attention, input hidden state for q and k/v shall be same. Got %s, %s, %s",
|
|
103
|
+
q_matmul.input[0],
|
|
104
|
+
k_matmul.input[0],
|
|
105
|
+
v_matmul.input[0],
|
|
106
|
+
)
|
|
107
|
+
return None
|
|
108
|
+
|
|
109
|
+
if hidden_size > 0 and (hidden_size % num_heads) != 0:
|
|
110
|
+
logger.debug("input hidden size %d is not a multiple of num of heads %d", hidden_size, num_heads)
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
q_weight_tensor = self.model.get_initializer(q_matmul.input[1])
|
|
114
|
+
k_weight_tensor = self.model.get_initializer(k_matmul.input[1])
|
|
115
|
+
v_weight_tensor = self.model.get_initializer(v_matmul.input[1])
|
|
116
|
+
if not (q_weight_tensor and k_weight_tensor and v_weight_tensor):
|
|
117
|
+
return None
|
|
118
|
+
|
|
119
|
+
q_bias_tensor = self.model.get_initializer(q_add.input[1]) or self.model.get_initializer(q_add.input[0])
|
|
120
|
+
k_bias_tensor = self.model.get_initializer(k_add.input[1]) or self.model.get_initializer(k_add.input[0])
|
|
121
|
+
v_bias_tensor = self.model.get_initializer(v_add.input[1]) or self.model.get_initializer(v_add.input[0])
|
|
122
|
+
|
|
123
|
+
q_bias = numpy_helper.to_array(q_bias_tensor)
|
|
124
|
+
k_bias = numpy_helper.to_array(k_bias_tensor)
|
|
125
|
+
v_bias = numpy_helper.to_array(v_bias_tensor)
|
|
126
|
+
|
|
127
|
+
q_bias_shape = np.prod(q_bias.shape)
|
|
128
|
+
k_bias_shape = np.prod(k_bias.shape)
|
|
129
|
+
v_bias_shape = np.prod(v_bias.shape)
|
|
130
|
+
|
|
131
|
+
# Sometimes weights are stored in fp16
|
|
132
|
+
if q_weight_tensor.data_type == 10:
|
|
133
|
+
logger.debug("weights are in fp16. Please run fp16 conversion after optimization")
|
|
134
|
+
return None
|
|
135
|
+
|
|
136
|
+
q_weight = numpy_helper.to_array(q_weight_tensor)
|
|
137
|
+
k_weight = numpy_helper.to_array(k_weight_tensor)
|
|
138
|
+
v_weight = numpy_helper.to_array(v_weight_tensor)
|
|
139
|
+
|
|
140
|
+
# assert q and k have same shape as expected
|
|
141
|
+
if q_weight.shape != k_weight.shape or q_weight.shape != v_weight.shape:
|
|
142
|
+
return None
|
|
143
|
+
|
|
144
|
+
qw_in_size = q_weight.shape[0]
|
|
145
|
+
kw_in_size = k_weight.shape[0]
|
|
146
|
+
vw_in_size = v_weight.shape[0]
|
|
147
|
+
|
|
148
|
+
assert qw_in_size == kw_in_size and kw_in_size == vw_in_size
|
|
149
|
+
|
|
150
|
+
if hidden_size > 0 and hidden_size != qw_in_size:
|
|
151
|
+
raise ValueError(
|
|
152
|
+
f"Input hidden size ({hidden_size}) is not same as weight dimension of q,k,v ({qw_in_size}). "
|
|
153
|
+
"Please provide a correct input hidden size or pass in 0"
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
# All the matrices can have the same shape or q, k matrics can have the same shape with v being different
|
|
157
|
+
# For 2d weights, the shapes would be [in_size, out_size].
|
|
158
|
+
# For 3d weights, shape would be [in_size, a, b] where a*b = out_size
|
|
159
|
+
qw_out_size = np.prod(q_weight.shape[1:])
|
|
160
|
+
|
|
161
|
+
qkv_weight = np.stack((q_weight, k_weight, v_weight), axis=1)
|
|
162
|
+
qkv_weight_dim = 3 * int(qw_out_size)
|
|
163
|
+
|
|
164
|
+
attention_node_name = self.model.create_node_name("Attention")
|
|
165
|
+
|
|
166
|
+
assert q_bias_shape == k_bias_shape == v_bias_shape
|
|
167
|
+
|
|
168
|
+
qkv_bias_dim = 0
|
|
169
|
+
qkv_bias = np.stack((q_bias, k_bias, v_bias), axis=0)
|
|
170
|
+
qkv_bias_dim = 3 * q_bias_shape
|
|
171
|
+
|
|
172
|
+
self.add_initializer(
|
|
173
|
+
name=attention_node_name + "_qkv_weight",
|
|
174
|
+
data_type=TensorProto.FLOAT,
|
|
175
|
+
dims=[qw_in_size, qkv_weight_dim],
|
|
176
|
+
vals=qkv_weight,
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
# No bias, use zeros
|
|
180
|
+
qkv_bias = np.zeros([3, hidden_size], dtype=np.float32)
|
|
181
|
+
qkv_bias_dim = 3 * hidden_size
|
|
182
|
+
|
|
183
|
+
self.add_initializer(
|
|
184
|
+
name=attention_node_name + "_qkv_bias",
|
|
185
|
+
data_type=TensorProto.FLOAT,
|
|
186
|
+
dims=[qkv_bias_dim],
|
|
187
|
+
vals=qkv_bias,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
attention_inputs = [
|
|
191
|
+
input_name,
|
|
192
|
+
attention_node_name + "_qkv_weight",
|
|
193
|
+
attention_node_name + "_qkv_bias",
|
|
194
|
+
]
|
|
195
|
+
|
|
196
|
+
attention_node = helper.make_node(
|
|
197
|
+
"Attention",
|
|
198
|
+
inputs=attention_inputs,
|
|
199
|
+
outputs=[output_name],
|
|
200
|
+
name=attention_node_name,
|
|
201
|
+
)
|
|
202
|
+
attention_node.domain = "com.microsoft"
|
|
203
|
+
attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])
|
|
204
|
+
|
|
205
|
+
self.increase_counter("Attention (self attention)")
|
|
206
|
+
return attention_node
|
|
207
|
+
|
|
208
|
+
def fuse(self, softmax_node, input_name_to_nodes, output_name_to_node):
|
|
209
|
+
matmul_qkv = self.model.find_first_child_by_type(softmax_node, "MatMul", input_name_to_nodes, recursive=False)
|
|
210
|
+
if matmul_qkv is None:
|
|
211
|
+
return
|
|
212
|
+
|
|
213
|
+
reshape_qkv = self.model.find_first_child_by_type(matmul_qkv, "Reshape", input_name_to_nodes, recursive=False)
|
|
214
|
+
if reshape_qkv is None:
|
|
215
|
+
return
|
|
216
|
+
|
|
217
|
+
transpose_qkv = self.model.find_first_child_by_type(
|
|
218
|
+
reshape_qkv, "Transpose", input_name_to_nodes, recursive=False
|
|
219
|
+
)
|
|
220
|
+
if transpose_qkv is None:
|
|
221
|
+
return
|
|
222
|
+
|
|
223
|
+
reshape_out = self.model.find_first_child_by_type(
|
|
224
|
+
transpose_qkv, "Reshape", input_name_to_nodes, recursive=False
|
|
225
|
+
)
|
|
226
|
+
if reshape_out is None:
|
|
227
|
+
return
|
|
228
|
+
|
|
229
|
+
matmul_out = self.model.find_first_child_by_type(reshape_out, "MatMul", input_name_to_nodes, recursive=False)
|
|
230
|
+
if matmul_out is None:
|
|
231
|
+
return
|
|
232
|
+
|
|
233
|
+
add_out = self.model.find_first_child_by_type(matmul_out, "Add", input_name_to_nodes, recursive=False)
|
|
234
|
+
if add_out is None:
|
|
235
|
+
return
|
|
236
|
+
|
|
237
|
+
transpose_out = self.model.find_first_child_by_type(add_out, "Transpose", input_name_to_nodes, recursive=False)
|
|
238
|
+
if transpose_out is None:
|
|
239
|
+
return
|
|
240
|
+
|
|
241
|
+
v_nodes = self.model.match_parent_path(
|
|
242
|
+
matmul_qkv, ["Reshape", "Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, 0, None]
|
|
243
|
+
)
|
|
244
|
+
if v_nodes is None:
|
|
245
|
+
logger.debug("fuse_attention: failed to match v path")
|
|
246
|
+
return
|
|
247
|
+
(_, _, _, add_v, matmul_v) = v_nodes
|
|
248
|
+
|
|
249
|
+
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, 0])
|
|
250
|
+
if qk_nodes is not None:
|
|
251
|
+
(_softmax_qk, _add_zero, _mul_qk, matmul_qk) = qk_nodes
|
|
252
|
+
else:
|
|
253
|
+
logger.debug("fuse_attention: failed to match qk path")
|
|
254
|
+
return
|
|
255
|
+
|
|
256
|
+
q_nodes = self.model.match_parent_path(
|
|
257
|
+
matmul_qk, ["Reshape", "Transpose", "Reshape", "Add", "MatMul"], [0, 0, 0, 0, None]
|
|
258
|
+
)
|
|
259
|
+
if q_nodes is None:
|
|
260
|
+
logger.debug("fuse_attention: failed to match q path")
|
|
261
|
+
return
|
|
262
|
+
(_, _transpose_q, reshape_q, add_q, matmul_q) = q_nodes
|
|
263
|
+
k_nodes = self.model.match_parent_path(
|
|
264
|
+
matmul_qk, ["Transpose", "Reshape", "Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, 0, 0, None]
|
|
265
|
+
)
|
|
266
|
+
if k_nodes is None:
|
|
267
|
+
logger.debug("fuse_attention: failed to match k path")
|
|
268
|
+
return
|
|
269
|
+
(_, _, _, _, add_k, matmul_k) = k_nodes
|
|
270
|
+
|
|
271
|
+
attention_last_node = reshape_out
|
|
272
|
+
|
|
273
|
+
q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q, add_q)
|
|
274
|
+
if q_num_heads <= 0:
|
|
275
|
+
logger.debug("fuse_attention: failed to detect num_heads")
|
|
276
|
+
return
|
|
277
|
+
|
|
278
|
+
# number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads
|
|
279
|
+
new_node = self.create_attention_node(
|
|
280
|
+
matmul_q,
|
|
281
|
+
add_q,
|
|
282
|
+
matmul_k,
|
|
283
|
+
add_k,
|
|
284
|
+
matmul_v,
|
|
285
|
+
add_v,
|
|
286
|
+
q_num_heads,
|
|
287
|
+
q_hidden_size,
|
|
288
|
+
matmul_q.input[0],
|
|
289
|
+
attention_last_node.output[0],
|
|
290
|
+
)
|
|
291
|
+
if new_node is None:
|
|
292
|
+
return
|
|
293
|
+
|
|
294
|
+
self.nodes_to_add.append(new_node)
|
|
295
|
+
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
|
|
296
|
+
|
|
297
|
+
self.nodes_to_remove.extend([attention_last_node, transpose_qkv])
|
|
298
|
+
|
|
299
|
+
# Use prune graph to remove nodes since they are shared by all attention nodes.
|
|
300
|
+
self.prune_graph = True
|