onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType
|
|
2
|
+
from .base_operator import QuantOperatorBase
|
|
3
|
+
from .qdq_base_operator import QDQOperatorBase
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
# For operators that support 8bits operations directly, and output could
|
|
7
|
+
# reuse input[0]'s type, zeropoint, scale; For example,Transpose, Reshape, etc.
|
|
8
|
+
class Direct8BitOp(QuantOperatorBase):
|
|
9
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
10
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
11
|
+
|
|
12
|
+
def quantize(self):
|
|
13
|
+
node = self.node
|
|
14
|
+
|
|
15
|
+
if not self.quantizer.force_quantize_no_input_check:
|
|
16
|
+
# Keep backward compatibility
|
|
17
|
+
# Quantize when input[0] is quantized already. Otherwise keep it.
|
|
18
|
+
quantized_input_value = self.quantizer.find_quantized_value(node.input[0])
|
|
19
|
+
if quantized_input_value is None:
|
|
20
|
+
self.quantizer.new_nodes += [node]
|
|
21
|
+
return
|
|
22
|
+
|
|
23
|
+
quantized_output_value = QuantizedValue(
|
|
24
|
+
node.output[0],
|
|
25
|
+
node.output[0] + TENSOR_NAME_QUANT_SUFFIX,
|
|
26
|
+
quantized_input_value.scale_name,
|
|
27
|
+
quantized_input_value.zp_name,
|
|
28
|
+
quantized_input_value.value_type,
|
|
29
|
+
)
|
|
30
|
+
self.quantizer.quantized_value_map[node.output[0]] = quantized_output_value
|
|
31
|
+
|
|
32
|
+
node.input[0] = quantized_input_value.q_name
|
|
33
|
+
node.output[0] = quantized_output_value.q_name
|
|
34
|
+
self.quantizer.new_nodes += [node]
|
|
35
|
+
|
|
36
|
+
else:
|
|
37
|
+
# Force quantize those ops if possible, use exclude node list if this is not you want
|
|
38
|
+
if not self.quantizer.is_valid_quantize_weight(node.input[0]):
|
|
39
|
+
super().quantize()
|
|
40
|
+
return
|
|
41
|
+
|
|
42
|
+
(
|
|
43
|
+
quantized_input_names,
|
|
44
|
+
zero_point_names,
|
|
45
|
+
scale_names,
|
|
46
|
+
nodes,
|
|
47
|
+
) = self.quantizer.quantize_activation(node, [0])
|
|
48
|
+
if quantized_input_names is None:
|
|
49
|
+
return super().quantize()
|
|
50
|
+
|
|
51
|
+
# Create an entry for output quantized value
|
|
52
|
+
quantized_output_value = QuantizedValue(
|
|
53
|
+
node.output[0],
|
|
54
|
+
node.output[0] + TENSOR_NAME_QUANT_SUFFIX,
|
|
55
|
+
scale_names[0],
|
|
56
|
+
zero_point_names[0],
|
|
57
|
+
QuantizedValueType.Input,
|
|
58
|
+
)
|
|
59
|
+
self.quantizer.quantized_value_map[node.output[0]] = quantized_output_value
|
|
60
|
+
|
|
61
|
+
node.input[0] = quantized_input_names[0]
|
|
62
|
+
node.output[0] = quantized_output_value.q_name
|
|
63
|
+
nodes.append(node)
|
|
64
|
+
|
|
65
|
+
self.quantizer.new_nodes += nodes
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class QDQDirect8BitOp(QDQOperatorBase):
|
|
69
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
70
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
71
|
+
|
|
72
|
+
def quantize(self):
|
|
73
|
+
if self.quantizer.force_quantize_no_input_check:
|
|
74
|
+
self.quantizer.quantize_activation_tensor(self.node.input[0])
|
|
75
|
+
if not self.disable_qdq_for_node_output:
|
|
76
|
+
self.quantizer.quantize_output_same_as_input(self.node.output[0], self.node.input[0], self.node.name)
|
|
77
|
+
elif self.quantizer.is_tensor_quantized(self.node.input[0]) and not self.disable_qdq_for_node_output:
|
|
78
|
+
self.quantizer.quantize_output_same_as_input(self.node.output[0], self.node.input[0], self.node.name)
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import onnx
|
|
4
|
+
from onnx import onnx_pb as onnx_proto # noqa: F401
|
|
5
|
+
|
|
6
|
+
from ..quant_utils import attribute_to_kwarg, ms_domain
|
|
7
|
+
from .base_operator import QuantOperatorBase
|
|
8
|
+
|
|
9
|
+
"""
|
|
10
|
+
Quantizes the EmbedLayerNorm fused ONNXRuntime Op.
|
|
11
|
+
|
|
12
|
+
This Quant operator keeps the input and segment IDs at int32 but will quantize all initializer and
|
|
13
|
+
weight inputs associated with the node to uint8.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class EmbedLayerNormalizationQuant(QuantOperatorBase):
|
|
18
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
19
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
20
|
+
|
|
21
|
+
def should_quantize(self):
|
|
22
|
+
return self.quantizer.should_quantize_node(self.node)
|
|
23
|
+
|
|
24
|
+
def quantize(self):
|
|
25
|
+
node = self.node
|
|
26
|
+
assert node.op_type == "EmbedLayerNormalization"
|
|
27
|
+
|
|
28
|
+
if len(node.output) > 2:
|
|
29
|
+
logging.info(f"Quantization is not applied to {node.name} since it has 3 outputs")
|
|
30
|
+
return super().quantize()
|
|
31
|
+
|
|
32
|
+
"""
|
|
33
|
+
Pre-quantization EmbedLayerNorm inputs:
|
|
34
|
+
[0] input_ids (int32)
|
|
35
|
+
[1] segment_ids (int32)
|
|
36
|
+
[2] word_embedding (float32)
|
|
37
|
+
[3] position_embedding (float32)
|
|
38
|
+
[4] segment_embedding (float32)
|
|
39
|
+
[5] gamma (float32)
|
|
40
|
+
[6] beta (float32)
|
|
41
|
+
[7] mask (int32) (optional)
|
|
42
|
+
"""
|
|
43
|
+
(
|
|
44
|
+
quantized_input_names,
|
|
45
|
+
zero_point_names,
|
|
46
|
+
scale_names,
|
|
47
|
+
nodes,
|
|
48
|
+
) = self.quantizer.quantize_activation(node, [2, 3, 4, 5, 6])
|
|
49
|
+
if quantized_input_names is None:
|
|
50
|
+
return super().quantize()
|
|
51
|
+
|
|
52
|
+
qembed_layer_norm_name = "" if not node.name else node.name + "_quant"
|
|
53
|
+
|
|
54
|
+
"""
|
|
55
|
+
Quantized Input Tensor List
|
|
56
|
+
[0] input_ids (int32)
|
|
57
|
+
[1] segment_ids (int32)
|
|
58
|
+
[2] word_embedding (uint8)
|
|
59
|
+
[3] position_embedding (uint8)
|
|
60
|
+
[4] segment_embedding (uint8)
|
|
61
|
+
[5] gamma (uint8)
|
|
62
|
+
[6] beta (uint8)
|
|
63
|
+
[7] mask (int32) (optional)
|
|
64
|
+
[8] word_embedding_scale (float)
|
|
65
|
+
[9] position_embedding_scale (float)
|
|
66
|
+
[10] segment_embedding_scale (float)
|
|
67
|
+
[11] gamma_scale (float)
|
|
68
|
+
[12] beta_scale (float)
|
|
69
|
+
[13] word_embedding_zero_point (uint8)
|
|
70
|
+
[14] position_embedding_zero_point (uint8)
|
|
71
|
+
[15] segment_embedding_zero_point (uint8)
|
|
72
|
+
[16] gamma_zero_point (uint8)
|
|
73
|
+
[17] beta_zero_point (uint8)
|
|
74
|
+
"""
|
|
75
|
+
inputs = []
|
|
76
|
+
# 'input_ids'
|
|
77
|
+
inputs.extend([node.input[0]])
|
|
78
|
+
# 'segment_ids'
|
|
79
|
+
inputs.extend([node.input[1]])
|
|
80
|
+
# 'word_embedding_quant'
|
|
81
|
+
inputs.extend([quantized_input_names[0]])
|
|
82
|
+
# 'position_embedding_quant'
|
|
83
|
+
inputs.extend([quantized_input_names[1]])
|
|
84
|
+
# 'segment_embedding_quant'
|
|
85
|
+
inputs.extend([quantized_input_names[2]])
|
|
86
|
+
# 'gamma_quant'
|
|
87
|
+
inputs.extend([quantized_input_names[3]])
|
|
88
|
+
# 'beta_quant'
|
|
89
|
+
inputs.extend([quantized_input_names[4]])
|
|
90
|
+
# 'mask' (optional)
|
|
91
|
+
inputs.extend([node.input[7] if len(node.input) > 7 else ""])
|
|
92
|
+
|
|
93
|
+
# Add all scales:
|
|
94
|
+
inputs.extend([scale_names[0]])
|
|
95
|
+
inputs.extend([scale_names[1]])
|
|
96
|
+
inputs.extend([scale_names[2]])
|
|
97
|
+
inputs.extend([scale_names[3]])
|
|
98
|
+
inputs.extend([scale_names[4]])
|
|
99
|
+
|
|
100
|
+
# Add all zero points:
|
|
101
|
+
inputs.extend([zero_point_names[0]])
|
|
102
|
+
inputs.extend([zero_point_names[1]])
|
|
103
|
+
inputs.extend([zero_point_names[2]])
|
|
104
|
+
inputs.extend([zero_point_names[3]])
|
|
105
|
+
inputs.extend([zero_point_names[4]])
|
|
106
|
+
|
|
107
|
+
kwargs = {}
|
|
108
|
+
for attribute in node.attribute:
|
|
109
|
+
kwargs.update(attribute_to_kwarg(attribute))
|
|
110
|
+
kwargs["domain"] = ms_domain
|
|
111
|
+
|
|
112
|
+
qembed_layer_norm_node = onnx.helper.make_node(
|
|
113
|
+
"QEmbedLayerNormalization",
|
|
114
|
+
inputs,
|
|
115
|
+
node.output,
|
|
116
|
+
qembed_layer_norm_name,
|
|
117
|
+
**kwargs,
|
|
118
|
+
)
|
|
119
|
+
nodes.append(qembed_layer_norm_node)
|
|
120
|
+
|
|
121
|
+
self.quantizer.new_nodes += nodes
|
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType
|
|
2
|
+
from .base_operator import QuantOperatorBase
|
|
3
|
+
from .qdq_base_operator import QDQOperatorBase
|
|
4
|
+
|
|
5
|
+
"""
|
|
6
|
+
Quantize Gather
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class GatherQuant(QuantOperatorBase):
|
|
11
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
12
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
13
|
+
|
|
14
|
+
def should_quantize(self):
|
|
15
|
+
if not self.quantizer.should_quantize_node(self.node):
|
|
16
|
+
return False
|
|
17
|
+
|
|
18
|
+
return self.quantizer.is_valid_quantize_weight(self.node.input[0])
|
|
19
|
+
|
|
20
|
+
def quantize(self):
|
|
21
|
+
node = self.node
|
|
22
|
+
assert node.op_type == "Gather"
|
|
23
|
+
|
|
24
|
+
(
|
|
25
|
+
quantized_input_names,
|
|
26
|
+
zero_point_names,
|
|
27
|
+
scale_names,
|
|
28
|
+
nodes,
|
|
29
|
+
) = self.quantizer.quantize_activation(node, [0])
|
|
30
|
+
if quantized_input_names is None:
|
|
31
|
+
return super().quantize()
|
|
32
|
+
|
|
33
|
+
gather_new_output = node.output[0] + TENSOR_NAME_QUANT_SUFFIX
|
|
34
|
+
|
|
35
|
+
# Create an entry for this quantized value
|
|
36
|
+
q_output = QuantizedValue(
|
|
37
|
+
node.output[0],
|
|
38
|
+
gather_new_output,
|
|
39
|
+
scale_names[0],
|
|
40
|
+
zero_point_names[0],
|
|
41
|
+
QuantizedValueType.Input,
|
|
42
|
+
)
|
|
43
|
+
self.quantizer.quantized_value_map[node.output[0]] = q_output
|
|
44
|
+
|
|
45
|
+
node.output[0] = gather_new_output
|
|
46
|
+
node.input[0] = quantized_input_names[0]
|
|
47
|
+
nodes.append(node)
|
|
48
|
+
|
|
49
|
+
self.quantizer.new_nodes += nodes
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class QDQGather(QDQOperatorBase):
|
|
53
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
54
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
55
|
+
|
|
56
|
+
def quantize(self):
|
|
57
|
+
node = self.node
|
|
58
|
+
assert node.op_type == "Gather" or node.op_type == "GatherElements"
|
|
59
|
+
|
|
60
|
+
if self.quantizer.is_valid_quantize_weight(node.input[0]) or self.quantizer.force_quantize_no_input_check:
|
|
61
|
+
self.quantizer.quantize_activation_tensor(node.input[0])
|
|
62
|
+
self.quantizer.quantize_output_same_as_input(node.output[0], node.input[0], node.name)
|
|
63
|
+
elif self.quantizer.is_tensor_quantized(node.input[0]):
|
|
64
|
+
self.quantizer.quantize_output_same_as_input(node.output[0], node.input[0], node.name)
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
import onnx
|
|
2
|
+
|
|
3
|
+
from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType, attribute_to_kwarg, ms_domain
|
|
4
|
+
from .base_operator import QuantOperatorBase
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class QGlobalAveragePool(QuantOperatorBase):
|
|
8
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
9
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
10
|
+
|
|
11
|
+
def quantize(self):
|
|
12
|
+
node = self.node
|
|
13
|
+
assert node.op_type == "GlobalAveragePool"
|
|
14
|
+
|
|
15
|
+
# If input to this node is not quantized then keep this node.
|
|
16
|
+
if node.input[0] not in self.quantizer.quantized_value_map:
|
|
17
|
+
return super().quantize()
|
|
18
|
+
|
|
19
|
+
quantized_input_value = self.quantizer.quantized_value_map[node.input[0]]
|
|
20
|
+
|
|
21
|
+
# Create an entry for output quantized value.
|
|
22
|
+
quantized_input_value = self.quantizer.quantized_value_map[node.input[0]]
|
|
23
|
+
(
|
|
24
|
+
data_found,
|
|
25
|
+
output_scale_name_from_parameter,
|
|
26
|
+
output_zp_name_from_parameter,
|
|
27
|
+
_,
|
|
28
|
+
_,
|
|
29
|
+
) = self.quantizer._get_quantization_params(node.output[0])
|
|
30
|
+
# Just use input scale and zp if parameters for output is not specified.
|
|
31
|
+
output_scale_name = output_scale_name_from_parameter if data_found else quantized_input_value.scale_name
|
|
32
|
+
output_zp_name = output_zp_name_from_parameter if data_found else quantized_input_value.zp_name
|
|
33
|
+
quantized_output_value = QuantizedValue(
|
|
34
|
+
node.output[0],
|
|
35
|
+
node.output[0] + TENSOR_NAME_QUANT_SUFFIX,
|
|
36
|
+
output_scale_name,
|
|
37
|
+
output_zp_name,
|
|
38
|
+
QuantizedValueType.Input,
|
|
39
|
+
)
|
|
40
|
+
self.quantizer.quantized_value_map[node.output[0]] = quantized_output_value
|
|
41
|
+
|
|
42
|
+
kwargs = {}
|
|
43
|
+
for attribute in node.attribute:
|
|
44
|
+
kwargs.update(attribute_to_kwarg(attribute))
|
|
45
|
+
kwargs["domain"] = ms_domain
|
|
46
|
+
kwargs["channels_last"] = 0
|
|
47
|
+
qnode_name = node.name + "_quant" if node.name else ""
|
|
48
|
+
|
|
49
|
+
qnode = onnx.helper.make_node(
|
|
50
|
+
"QLinear" + node.op_type,
|
|
51
|
+
[
|
|
52
|
+
quantized_input_value.q_name,
|
|
53
|
+
quantized_input_value.scale_name,
|
|
54
|
+
quantized_input_value.zp_name,
|
|
55
|
+
output_scale_name,
|
|
56
|
+
output_zp_name,
|
|
57
|
+
],
|
|
58
|
+
[quantized_output_value.q_name],
|
|
59
|
+
qnode_name,
|
|
60
|
+
**kwargs,
|
|
61
|
+
)
|
|
62
|
+
self.quantizer.new_nodes += [qnode]
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
import numpy as np # noqa: F401
|
|
4
|
+
import onnx
|
|
5
|
+
|
|
6
|
+
from ..quant_utils import (
|
|
7
|
+
TENSOR_NAME_QUANT_SUFFIX,
|
|
8
|
+
QuantizedValue,
|
|
9
|
+
QuantizedValueType,
|
|
10
|
+
attribute_to_kwarg,
|
|
11
|
+
find_by_name, # noqa: F401
|
|
12
|
+
get_mul_node, # noqa: F401
|
|
13
|
+
ms_domain,
|
|
14
|
+
)
|
|
15
|
+
from .base_operator import QuantOperatorBase # noqa: F401
|
|
16
|
+
from .matmul import QOpMatMul
|
|
17
|
+
from .qdq_base_operator import QDQOperatorBase
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def is_B_transposed(gemm_node): # noqa: N802
|
|
21
|
+
transB_attribute = [attr for attr in gemm_node.attribute if attr.name == "transB"] # noqa: N806
|
|
22
|
+
if transB_attribute:
|
|
23
|
+
return onnx.helper.get_attribute_value(transB_attribute[0]) > 0
|
|
24
|
+
|
|
25
|
+
return False
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def get_beta(gemm_node):
|
|
29
|
+
beta_attribute = [attr for attr in gemm_node.attribute if attr.name == "beta"]
|
|
30
|
+
if beta_attribute:
|
|
31
|
+
return onnx.helper.get_attribute_value(beta_attribute[0])
|
|
32
|
+
|
|
33
|
+
return 1.0
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def set_default_beta(gemm_node):
|
|
37
|
+
beta_attribute = [attr for attr in gemm_node.attribute if attr.name == "beta"]
|
|
38
|
+
if beta_attribute:
|
|
39
|
+
beta_attribute[0].f = 1.0
|
|
40
|
+
|
|
41
|
+
return 1.0
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class QLinearGemm(QOpMatMul):
|
|
45
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
46
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
47
|
+
|
|
48
|
+
def quantize(self):
|
|
49
|
+
node = self.node
|
|
50
|
+
assert node.op_type == "Gemm"
|
|
51
|
+
|
|
52
|
+
(
|
|
53
|
+
data_found,
|
|
54
|
+
output_scale_name,
|
|
55
|
+
output_zp_name,
|
|
56
|
+
_,
|
|
57
|
+
_,
|
|
58
|
+
) = self.quantizer._get_quantization_params(node.output[0])
|
|
59
|
+
|
|
60
|
+
if self.quantizer.is_input_a_initializer(node.input[1]) and self.quantizer.is_per_channel():
|
|
61
|
+
(
|
|
62
|
+
quantized_input_names,
|
|
63
|
+
zero_point_names,
|
|
64
|
+
scale_names,
|
|
65
|
+
nodes,
|
|
66
|
+
) = self.quantizer.quantize_activation(node, [0])
|
|
67
|
+
quant_weight_tuple = self.quantizer.quantize_weight_per_channel(
|
|
68
|
+
node.input[1],
|
|
69
|
+
self.quantizer.weight_qType,
|
|
70
|
+
0 if is_B_transposed(node) else 1,
|
|
71
|
+
)
|
|
72
|
+
quantized_input_names.append(quant_weight_tuple[0])
|
|
73
|
+
zero_point_names.append(quant_weight_tuple[1])
|
|
74
|
+
scale_names.append(quant_weight_tuple[2])
|
|
75
|
+
else:
|
|
76
|
+
# Get Quantized from both activation(input[0]) and weight(input[1])
|
|
77
|
+
(
|
|
78
|
+
quantized_input_names,
|
|
79
|
+
zero_point_names,
|
|
80
|
+
scale_names,
|
|
81
|
+
nodes,
|
|
82
|
+
) = self.quantizer.quantize_activation(node, [0])
|
|
83
|
+
|
|
84
|
+
(
|
|
85
|
+
quantized_input_names_weight,
|
|
86
|
+
zero_point_names_weight,
|
|
87
|
+
scale_names_weight,
|
|
88
|
+
nodes_weight,
|
|
89
|
+
) = self.quantizer.quantize_weight(node, [1], reduce_range=self.quantizer.reduce_range)
|
|
90
|
+
quantized_input_names.extend(quantized_input_names_weight)
|
|
91
|
+
zero_point_names.extend(zero_point_names_weight)
|
|
92
|
+
scale_names.extend(scale_names_weight)
|
|
93
|
+
nodes.extend(nodes_weight)
|
|
94
|
+
|
|
95
|
+
if not data_found or quantized_input_names is None:
|
|
96
|
+
return super().quantize()
|
|
97
|
+
|
|
98
|
+
quantized_bias_name = ""
|
|
99
|
+
if len(node.input) == 3:
|
|
100
|
+
if not self.quantizer.is_input_a_initializer(node.input[2]):
|
|
101
|
+
return super().quantize()
|
|
102
|
+
|
|
103
|
+
# Note: if the quantized type is float 8, the bias is converted into float 16.
|
|
104
|
+
# cublasLtMatMul only supports (b)float16 or float32 bias.
|
|
105
|
+
quantized_bias_name = self.quantizer.quantize_bias_static(
|
|
106
|
+
node.input[2], node.input[0], node.input[1], get_beta(self.node)
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
qgemm_output = node.output[0] + TENSOR_NAME_QUANT_SUFFIX
|
|
110
|
+
qgemm_name = node.name + "_quant" if node.name else ""
|
|
111
|
+
|
|
112
|
+
kwargs = {}
|
|
113
|
+
for attribute in node.attribute:
|
|
114
|
+
if attribute.name != "beta":
|
|
115
|
+
kwargs.update(attribute_to_kwarg(attribute))
|
|
116
|
+
kwargs["domain"] = ms_domain
|
|
117
|
+
|
|
118
|
+
# generate input
|
|
119
|
+
qgemm_inputs = []
|
|
120
|
+
for i in range(2):
|
|
121
|
+
qgemm_inputs.extend([quantized_input_names[i], scale_names[i], zero_point_names[i]])
|
|
122
|
+
|
|
123
|
+
qgemm_inputs.extend([quantized_bias_name, output_scale_name, output_zp_name])
|
|
124
|
+
|
|
125
|
+
qgemm_node = onnx.helper.make_node("QGemm", qgemm_inputs, [qgemm_output], qgemm_name, **kwargs)
|
|
126
|
+
nodes.append(qgemm_node)
|
|
127
|
+
|
|
128
|
+
# Create an entry for this quantized value
|
|
129
|
+
q_output = QuantizedValue(
|
|
130
|
+
node.output[0],
|
|
131
|
+
qgemm_output,
|
|
132
|
+
output_scale_name,
|
|
133
|
+
output_zp_name,
|
|
134
|
+
QuantizedValueType.Input,
|
|
135
|
+
node_type=node.op_type,
|
|
136
|
+
node_qtype=self.quantizer.weight_qType,
|
|
137
|
+
)
|
|
138
|
+
self.quantizer.quantized_value_map[node.output[0]] = q_output
|
|
139
|
+
|
|
140
|
+
self.quantizer.new_nodes += nodes
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
class QDQGemm(QDQOperatorBase):
|
|
144
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
145
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
146
|
+
|
|
147
|
+
def quantize(self):
|
|
148
|
+
node = self.node
|
|
149
|
+
assert node.op_type == "Gemm"
|
|
150
|
+
|
|
151
|
+
self.quantizer.quantize_activation_tensor(node.input[0])
|
|
152
|
+
if not self.disable_qdq_for_node_output:
|
|
153
|
+
self.quantizer.quantize_activation_tensor(node.output[0])
|
|
154
|
+
|
|
155
|
+
is_weight_per_channel, weight_axis = self.quantizer.is_tensor_per_channel(
|
|
156
|
+
node.input[1], default_axis=0 if is_B_transposed(node) else 1
|
|
157
|
+
)
|
|
158
|
+
if is_weight_per_channel:
|
|
159
|
+
self.quantizer.quantize_weight_tensor_per_channel(node.input[1], weight_axis)
|
|
160
|
+
else:
|
|
161
|
+
self.quantizer.quantize_weight_tensor(node.input[1])
|
|
162
|
+
|
|
163
|
+
if len(node.input) == 3:
|
|
164
|
+
if self.quantizer.is_input_a_initializer(node.input[2]):
|
|
165
|
+
self.quantizer.quantize_bias_tensor(
|
|
166
|
+
node.name, node.input[2], node.input[0], node.input[1], get_beta(self.node)
|
|
167
|
+
)
|
|
168
|
+
set_default_beta(self.node)
|
|
169
|
+
else:
|
|
170
|
+
logging.warning(
|
|
171
|
+
f"Bias of Gemm node '{self.node.name}' is not constant. Please exclude this node for better performance."
|
|
172
|
+
)
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
import numpy
|
|
2
|
+
import onnx
|
|
3
|
+
from onnx import onnx_pb as onnx_proto
|
|
4
|
+
|
|
5
|
+
from ..quant_utils import QuantType, attribute_to_kwarg, ms_domain # noqa: F401
|
|
6
|
+
from .base_operator import QuantOperatorBase
|
|
7
|
+
|
|
8
|
+
"""
|
|
9
|
+
Quantize LSTM
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class LSTMQuant(QuantOperatorBase):
|
|
14
|
+
def __init__(self, onnx_quantizer, onnx_node):
|
|
15
|
+
super().__init__(onnx_quantizer, onnx_node)
|
|
16
|
+
|
|
17
|
+
def quantize(self):
|
|
18
|
+
"""
|
|
19
|
+
parameter node: LSTM node.
|
|
20
|
+
parameter new_nodes_list: List of new nodes created before processing this node.
|
|
21
|
+
return: a list of nodes in topological order that represents quantized Attention node.
|
|
22
|
+
"""
|
|
23
|
+
node = self.node
|
|
24
|
+
assert node.op_type == "LSTM"
|
|
25
|
+
|
|
26
|
+
if not self.quantizer.is_valid_quantize_weight(node.input[1]) or not self.quantizer.is_valid_quantize_weight(
|
|
27
|
+
node.input[2]
|
|
28
|
+
):
|
|
29
|
+
super().quantize()
|
|
30
|
+
return
|
|
31
|
+
|
|
32
|
+
model = self.quantizer.model
|
|
33
|
+
W = model.get_initializer(node.input[1]) # noqa: N806
|
|
34
|
+
R = model.get_initializer(node.input[2]) # noqa: N806
|
|
35
|
+
|
|
36
|
+
if len(W.dims) != 3 or len(R.dims) != 3:
|
|
37
|
+
super().quantize()
|
|
38
|
+
return
|
|
39
|
+
|
|
40
|
+
[W_num_dir, W_4_hidden_size, W_input_size] = W.dims # noqa: N806
|
|
41
|
+
[R_num_dir, R_4_hidden_size, R_hidden_size] = R.dims # noqa: N806
|
|
42
|
+
|
|
43
|
+
if self.quantizer.is_per_channel():
|
|
44
|
+
del W.dims[0]
|
|
45
|
+
del R.dims[0]
|
|
46
|
+
W.dims[0] = W_num_dir * W_4_hidden_size
|
|
47
|
+
R.dims[0] = R_num_dir * R_4_hidden_size
|
|
48
|
+
|
|
49
|
+
quant_input_weight_tuple = self.quantizer.quantize_weight_per_channel(
|
|
50
|
+
node.input[1],
|
|
51
|
+
onnx_proto.TensorProto.INT8,
|
|
52
|
+
0, # self.quantizer.weight_qType?
|
|
53
|
+
)
|
|
54
|
+
quant_recurrent_weight_tuple = self.quantizer.quantize_weight_per_channel(
|
|
55
|
+
node.input[2],
|
|
56
|
+
onnx_proto.TensorProto.INT8,
|
|
57
|
+
0, # self.quantizer.weight_qType?
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
W_quant_weight = model.get_initializer(quant_input_weight_tuple[0]) # noqa: N806
|
|
61
|
+
R_quant_weight = model.get_initializer(quant_recurrent_weight_tuple[0]) # noqa: N806
|
|
62
|
+
|
|
63
|
+
W_quant_array = onnx.numpy_helper.to_array(W_quant_weight) # noqa: N806
|
|
64
|
+
R_quant_array = onnx.numpy_helper.to_array(R_quant_weight) # noqa: N806
|
|
65
|
+
|
|
66
|
+
W_quant_array = numpy.reshape(W_quant_array, (W_num_dir, W_4_hidden_size, W_input_size)) # noqa: N806
|
|
67
|
+
R_quant_array = numpy.reshape(R_quant_array, (R_num_dir, R_4_hidden_size, R_hidden_size)) # noqa: N806
|
|
68
|
+
|
|
69
|
+
W_quant_array = numpy.transpose(W_quant_array, (0, 2, 1)) # noqa: N806
|
|
70
|
+
R_quant_array = numpy.transpose(R_quant_array, (0, 2, 1)) # noqa: N806
|
|
71
|
+
|
|
72
|
+
W_quant_tranposed = onnx.numpy_helper.from_array(W_quant_array, quant_input_weight_tuple[0]) # noqa: N806
|
|
73
|
+
R_quant_tranposed = onnx.numpy_helper.from_array(R_quant_array, quant_recurrent_weight_tuple[0]) # noqa: N806
|
|
74
|
+
|
|
75
|
+
model.remove_initializers([W_quant_weight, R_quant_weight])
|
|
76
|
+
model.add_initializer(W_quant_tranposed)
|
|
77
|
+
model.add_initializer(R_quant_tranposed)
|
|
78
|
+
|
|
79
|
+
W_quant_zp = model.get_initializer(quant_input_weight_tuple[1]) # noqa: N806
|
|
80
|
+
R_quant_zp = model.get_initializer(quant_recurrent_weight_tuple[1]) # noqa: N806
|
|
81
|
+
W_quant_scale = model.get_initializer(quant_input_weight_tuple[2]) # noqa: N806
|
|
82
|
+
R_quant_scale = model.get_initializer(quant_recurrent_weight_tuple[2]) # noqa: N806
|
|
83
|
+
|
|
84
|
+
if self.quantizer.is_per_channel():
|
|
85
|
+
W_quant_zp.dims[:] = [W_num_dir, W_4_hidden_size]
|
|
86
|
+
R_quant_zp.dims[:] = [R_num_dir, R_4_hidden_size]
|
|
87
|
+
W_quant_scale.dims[:] = [W_num_dir, W_4_hidden_size]
|
|
88
|
+
R_quant_scale.dims[:] = [R_num_dir, R_4_hidden_size]
|
|
89
|
+
|
|
90
|
+
inputs = []
|
|
91
|
+
input_len = len(node.input)
|
|
92
|
+
inputs.extend([node.input[0]])
|
|
93
|
+
inputs.extend([quant_input_weight_tuple[0], quant_recurrent_weight_tuple[0]])
|
|
94
|
+
inputs.extend([node.input[3] if input_len > 3 else ""])
|
|
95
|
+
inputs.extend([node.input[4] if input_len > 4 else ""])
|
|
96
|
+
inputs.extend([node.input[5] if input_len > 5 else ""])
|
|
97
|
+
inputs.extend([node.input[6] if input_len > 6 else ""])
|
|
98
|
+
inputs.extend([node.input[7] if input_len > 7 else ""])
|
|
99
|
+
inputs.extend(
|
|
100
|
+
[
|
|
101
|
+
quant_input_weight_tuple[2],
|
|
102
|
+
quant_input_weight_tuple[1],
|
|
103
|
+
quant_recurrent_weight_tuple[2],
|
|
104
|
+
quant_recurrent_weight_tuple[1],
|
|
105
|
+
]
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
kwargs = {}
|
|
109
|
+
for attribute in node.attribute:
|
|
110
|
+
if attribute.name == "layout":
|
|
111
|
+
continue
|
|
112
|
+
kwargs.update(attribute_to_kwarg(attribute))
|
|
113
|
+
kwargs["domain"] = ms_domain
|
|
114
|
+
|
|
115
|
+
quant_lstm_name = "" if not node.name else node.name + "_quant"
|
|
116
|
+
quant_lstm_node = onnx.helper.make_node("DynamicQuantizeLSTM", inputs, node.output, quant_lstm_name, **kwargs)
|
|
117
|
+
self.quantizer.new_nodes.append(quant_lstm_node)
|
|
118
|
+
|
|
119
|
+
dequantize_node = self.quantizer._dequantize_value(node.input[0])
|
|
120
|
+
if dequantize_node is not None:
|
|
121
|
+
self.quantizer.new_nodes.append(dequantize_node)
|