onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,340 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ from logging import getLogger
6
+
7
+ from fusion_attention import AttentionMask, FusionAttention
8
+ from fusion_options import AttentionMaskFormat
9
+ from onnx import NodeProto
10
+ from onnx_model import OnnxModel
11
+
12
+ logger = getLogger(__name__)
13
+
14
+
15
+ class FusionAttentionClip(FusionAttention):
16
+ """
17
+ Fuse Attention subgraph of Clip into one Attention node.
18
+ """
19
+
20
+ def __init__(
21
+ self,
22
+ model: OnnxModel,
23
+ hidden_size: int,
24
+ num_heads: int,
25
+ ):
26
+ attention_mask = AttentionMask(model)
27
+ attention_mask.mask_format = AttentionMaskFormat.NoMask
28
+
29
+ super().__init__(
30
+ model,
31
+ hidden_size,
32
+ num_heads,
33
+ attention_mask,
34
+ use_multi_head_attention=False,
35
+ search_op_types=["SkipLayerNormalization"],
36
+ )
37
+
38
+ def get_num_heads_and_hidden_size(self, reshape_q: NodeProto) -> tuple[int, int]:
39
+ """Detect num_heads and hidden_size for ONNX model from MiDaS
40
+ Args:
41
+ reshape_q (NodeProto): reshape node for q
42
+ Returns:
43
+ Tuple[int, int]: num_heads and hidden_size
44
+ """
45
+ concat = self.model.match_parent(reshape_q, "Concat", 1)
46
+ if concat is None or len(concat.input) != 4:
47
+ return self.num_heads, self.hidden_size
48
+
49
+ # The shape is a tensor like [?, ?, num_heads, head_size]
50
+ num_head_value = self.model.get_constant_value(concat.input[2])
51
+ if num_head_value is None:
52
+ return self.num_heads, self.hidden_size # Fall back to user specified value
53
+
54
+ if len(num_head_value) != 1 or num_head_value[0] <= 0:
55
+ return self.num_heads, self.hidden_size # Fall back to user specified value
56
+
57
+ num_heads = num_head_value[0]
58
+
59
+ head_size_value = self.model.get_constant_value(concat.input[3])
60
+ if head_size_value is None:
61
+ return self.num_heads, self.hidden_size # Fall back to user specified value
62
+
63
+ if len(head_size_value) != 1 or head_size_value[0] <= 0:
64
+ return self.num_heads, self.hidden_size # Fall back to user specified value
65
+
66
+ head_size = head_size_value[0]
67
+
68
+ hidden_size = num_heads * head_size
69
+
70
+ if self.num_heads > 0 and num_heads != self.num_heads:
71
+ if self.num_heads_warning:
72
+ logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.")
73
+ self.num_heads_warning = False # Do not show the warning more than once
74
+
75
+ if self.hidden_size > 0 and hidden_size != self.hidden_size:
76
+ if self.hidden_size_warning:
77
+ logger.warning(
78
+ f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value."
79
+ )
80
+ self.hidden_size_warning = False # Do not show the warning more than once
81
+
82
+ return num_heads, hidden_size
83
+
84
+ def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
85
+ skip_input_index = None
86
+ node_before_layer_norm = None
87
+ for i in [1, 0]:
88
+ parent = self.model.match_parent(normalize_node, "SkipLayerNormalization", i)
89
+ if parent is not None:
90
+ skip_input_index = i
91
+ node_before_layer_norm = parent
92
+
93
+ root_input = None
94
+ if node_before_layer_norm is not None:
95
+ root_input = node_before_layer_norm.output[0]
96
+ else:
97
+ # Deal with the first attention after the embedding layer.
98
+ for i in [0, 1]:
99
+ node_before_layer_norm = None
100
+
101
+ node_before_layer_norm_1 = self.model.match_parent(normalize_node, "Add", i)
102
+ node_before_layer_norm_2 = self.model.match_parent(normalize_node, "LayerNormalization", i)
103
+ if node_before_layer_norm_1 is not None:
104
+ # Add -----------+
105
+ # | |
106
+ # LayerNorm |
107
+ # | |
108
+ # LayerNorm |
109
+ # | |
110
+ # Attention subgraph |
111
+ # | |
112
+ # SkipLayerNorm ------+
113
+ node_before_layer_norm = node_before_layer_norm_1
114
+ elif node_before_layer_norm_2 is not None:
115
+ # Add
116
+ # |
117
+ # LayerNorm --------+
118
+ # | |
119
+ # LayerNorm |
120
+ # | |
121
+ # Attention subgraph |
122
+ # | |
123
+ # SkipLayerNorm ------+
124
+ node_before_layer_norm = node_before_layer_norm_2
125
+
126
+ if node_before_layer_norm is None:
127
+ continue
128
+ child = self.model.find_first_child_by_type(
129
+ node_before_layer_norm,
130
+ "LayerNormalization",
131
+ input_name_to_nodes,
132
+ False,
133
+ )
134
+ if child is None:
135
+ continue
136
+ root_input = child.output[0]
137
+ skip_input_index = i
138
+ break
139
+
140
+ if skip_input_index is None:
141
+ return
142
+
143
+ qkv_nodes = self.model.match_parent_path(
144
+ normalize_node,
145
+ ["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"],
146
+ [1 - skip_input_index, None, None, 0, 0, 0],
147
+ )
148
+ if qkv_nodes is None:
149
+ qkv_nodes = self.model.match_parent_path(
150
+ normalize_node,
151
+ ["Add", "MatMul", "Reshape", "Transpose", "MatMul"],
152
+ [1, None, 0, 0, 0],
153
+ )
154
+ if qkv_nodes is None:
155
+ logger.debug("fuse_attention: failed to match qkv path")
156
+ return
157
+ reshape_qkv, transpose_qkv, matmul_qkv = (
158
+ qkv_nodes[2],
159
+ qkv_nodes[3],
160
+ qkv_nodes[-1],
161
+ )
162
+
163
+ v_nodes = self.model.match_parent_path(
164
+ matmul_qkv,
165
+ ["Reshape", "Transpose", "Reshape", "Add", "MatMul"],
166
+ [1, 0, 0, 0, None],
167
+ )
168
+ if v_nodes is None:
169
+ v_nodes = self.model.match_parent_path(
170
+ matmul_qkv, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None]
171
+ )
172
+ if v_nodes is None:
173
+ logger.debug("fuse_attention: failed to match v path")
174
+ return
175
+
176
+ add_v, matmul_v = v_nodes[-2], v_nodes[-1]
177
+
178
+ causal_mask_input_index = None
179
+ add_mask = None
180
+ add_mask_indices = []
181
+ qk_nodes = self.model.match_parent_path(
182
+ matmul_qkv,
183
+ ["Softmax", "Reshape", "Add", "Reshape", "MatMul"],
184
+ [0, 0, 0, None, 0],
185
+ return_indice=add_mask_indices,
186
+ )
187
+ if qk_nodes is None:
188
+ qk_nodes = self.model.match_parent_path(
189
+ matmul_qkv,
190
+ ["Softmax", "MatMul"],
191
+ [0, 0],
192
+ )
193
+ if qk_nodes is None:
194
+ qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, 0])
195
+ if qk_nodes is not None:
196
+ add_mask = qk_nodes[1]
197
+ else:
198
+ # If attention mask is not used, we can still match the qk path.
199
+ qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Mul", "MatMul"], [0, 0, 0])
200
+ if qk_nodes is None:
201
+ # Cast nodes are added in the model for fp16.
202
+ qk_nodes = self.model.match_parent_path(
203
+ matmul_qkv,
204
+ ["Cast", "Cast", "Softmax", "Add", "Mul", "MatMul"],
205
+ [0, 0, 0, 0, 0, 0],
206
+ )
207
+ if qk_nodes is not None:
208
+ add_mask = qk_nodes[3]
209
+ else:
210
+ # If attention mask is not used, we can still match the qk path.
211
+ qk_nodes = self.model.match_parent_path(
212
+ matmul_qkv,
213
+ ["Cast", "Cast", "Softmax", "Mul", "MatMul"],
214
+ [0, 0, 0, 0, 0],
215
+ )
216
+ if qk_nodes is None:
217
+ logger.debug("fuse_attention: failed to match qk path")
218
+ return
219
+ else:
220
+ assert len(add_mask_indices) == 1
221
+ causal_mask_input_index = 1 - add_mask_indices[0]
222
+ add_mask = qk_nodes[2]
223
+
224
+ matmul_qk = qk_nodes[-1]
225
+
226
+ q_nodes = self.model.match_parent_path(
227
+ matmul_qk,
228
+ ["Reshape", "Transpose", "Reshape", "Mul", "Add", "MatMul"],
229
+ [0, 0, 0, 0, None, None],
230
+ )
231
+ if q_nodes is None:
232
+ q_nodes = self.model.match_parent_path(
233
+ matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [0, 0, 0, None]
234
+ )
235
+ if q_nodes is None:
236
+ logger.debug("fuse_attention: failed to match q path")
237
+ return
238
+
239
+ reshape_q = q_nodes[1]
240
+ else:
241
+ reshape_q = q_nodes[2]
242
+
243
+ add_q, matmul_q = q_nodes[-2], q_nodes[-1]
244
+
245
+ k_nodes = self.model.match_parent_path(
246
+ matmul_qk,
247
+ ["Transpose", "Reshape", "Transpose", "Reshape", "Add", "MatMul"],
248
+ [1, 0, 0, 0, 0, None],
249
+ )
250
+ if k_nodes is None:
251
+ k_nodes = self.model.match_parent_path(
252
+ matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None]
253
+ )
254
+ if k_nodes is None:
255
+ logger.debug("fuse_attention: failed to match k path")
256
+ return
257
+
258
+ add_k, matmul_k = k_nodes[-2], k_nodes[-1]
259
+
260
+ if matmul_q.input[0] != root_input or matmul_k.input[0] != root_input or matmul_v.input[0] != root_input:
261
+ logger.debug("fuse_attention: expect to have same input to q, k and v matmul")
262
+ return
263
+
264
+ num_heads, hidden_size = self.get_num_heads_and_hidden_size(reshape_q)
265
+ if num_heads <= 0 or hidden_size <= 0:
266
+ logger.debug("fuse_attention: failed to detect num_heads or hidden_size")
267
+ return
268
+
269
+ attention_last_node = reshape_qkv
270
+
271
+ add_qk = ""
272
+ causal_mask_nodes_1 = None
273
+ causal_mask_nodes_2 = None
274
+ if add_mask is not None:
275
+ if add_mask.input[1] == "attention_mask":
276
+ add_qk = add_mask.input[1]
277
+ else:
278
+ # 4D Add after Q x K'
279
+ add_qk_nodes = self.model.match_parent_path(
280
+ add_mask,
281
+ [
282
+ "Where",
283
+ "Sub",
284
+ "Cast",
285
+ "Expand",
286
+ "Unsqueeze",
287
+ "Unsqueeze",
288
+ "Reshape",
289
+ "Reshape",
290
+ "Cast",
291
+ ],
292
+ [1, 2, 1, 0, 0, 0, 0, 0, 0],
293
+ )
294
+ if add_qk_nodes is not None:
295
+ add_qk = add_mask.input[1]
296
+ else:
297
+ # Here we do not match the whole subgraph since it is very complex. Instead, we just check whether a key path
298
+ # of computing causal mask.
299
+ causal_mask_nodes_1 = self.model.match_parent_path(
300
+ add_mask,
301
+ ["Concat", "Expand", "Unsqueeze", "Unsqueeze", "Where", "Less"],
302
+ [causal_mask_input_index, 0, 0, 0, 0, 0],
303
+ )
304
+ # If the model is exported with batch_size == 1, there is no Concat node
305
+ causal_mask_nodes_2 = self.model.match_parent_path(
306
+ add_mask,
307
+ ["Expand", "Unsqueeze", "Unsqueeze", "Where", "Less"],
308
+ [causal_mask_input_index, 0, 0, 0, 0],
309
+ )
310
+
311
+ if causal_mask_nodes_1 is None and causal_mask_nodes_2 is None:
312
+ logger.debug("fuse_attention: failed to match causal mask subgraph")
313
+ return
314
+
315
+ new_node = self.create_attention_node(
316
+ mask_index=None,
317
+ q_matmul=matmul_q,
318
+ k_matmul=matmul_k,
319
+ v_matmul=matmul_v,
320
+ q_add=add_q,
321
+ k_add=add_k,
322
+ v_add=add_v,
323
+ num_heads=num_heads,
324
+ hidden_size=hidden_size,
325
+ first_input=root_input,
326
+ output=attention_last_node.output[0],
327
+ add_qk_str=add_qk,
328
+ scale=None,
329
+ causal=(causal_mask_nodes_1 is not None) or (causal_mask_nodes_2 is not None),
330
+ )
331
+ if new_node is None:
332
+ logger.debug("fuse_attention: failed to create fused node")
333
+ return
334
+
335
+ self.nodes_to_add.append(new_node)
336
+ self.node_name_to_graph_name[new_node.name] = self.this_graph_name
337
+ self.nodes_to_remove.extend([attention_last_node, transpose_qkv])
338
+
339
+ # Use prune graph to remove nodes since they are shared by all attention nodes.
340
+ self.prune_graph = True