onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,347 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
# Generate test data for a longformer model, so that we can use onnxruntime_perf_test.exe to evaluate the inference latency.
|
|
7
|
+
|
|
8
|
+
import argparse
|
|
9
|
+
import os
|
|
10
|
+
import random
|
|
11
|
+
from pathlib import Path
|
|
12
|
+
|
|
13
|
+
import numpy as np
|
|
14
|
+
from bert_test_data import fake_input_ids_data, fake_input_mask_data, output_test_data
|
|
15
|
+
from onnx import ModelProto, TensorProto
|
|
16
|
+
from onnx_model import OnnxModel
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def parse_arguments():
|
|
20
|
+
parser = argparse.ArgumentParser()
|
|
21
|
+
|
|
22
|
+
parser.add_argument("--model", required=True, type=str, help="bert onnx model path.")
|
|
23
|
+
|
|
24
|
+
parser.add_argument(
|
|
25
|
+
"--output_dir",
|
|
26
|
+
required=False,
|
|
27
|
+
type=str,
|
|
28
|
+
default=None,
|
|
29
|
+
help="output test data path. If not specified, .",
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
parser.add_argument("--batch_size", required=False, type=int, default=1, help="batch size of input")
|
|
33
|
+
|
|
34
|
+
parser.add_argument(
|
|
35
|
+
"--sequence_length",
|
|
36
|
+
required=False,
|
|
37
|
+
type=int,
|
|
38
|
+
default=128,
|
|
39
|
+
help="maximum sequence length of input",
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
parser.add_argument(
|
|
43
|
+
"-a",
|
|
44
|
+
"--average_sequence_length",
|
|
45
|
+
default=-1,
|
|
46
|
+
type=int,
|
|
47
|
+
help="average sequence length excluding padding",
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
parser.add_argument(
|
|
51
|
+
"-r",
|
|
52
|
+
"--random_sequence_length",
|
|
53
|
+
required=False,
|
|
54
|
+
action="store_true",
|
|
55
|
+
help="use uniform random instead of fixed sequence length",
|
|
56
|
+
)
|
|
57
|
+
parser.set_defaults(random_sequence_length=False)
|
|
58
|
+
|
|
59
|
+
parser.add_argument(
|
|
60
|
+
"--global_tokens",
|
|
61
|
+
required=False,
|
|
62
|
+
type=int,
|
|
63
|
+
default=10,
|
|
64
|
+
help="number of global tokens",
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
parser.add_argument(
|
|
68
|
+
"--input_ids_name",
|
|
69
|
+
required=False,
|
|
70
|
+
type=str,
|
|
71
|
+
default=None,
|
|
72
|
+
help="input name for input ids",
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
parser.add_argument(
|
|
76
|
+
"--input_mask_name",
|
|
77
|
+
required=False,
|
|
78
|
+
type=str,
|
|
79
|
+
default=None,
|
|
80
|
+
help="input name for attention mask",
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
parser.add_argument(
|
|
84
|
+
"--global_mask_name",
|
|
85
|
+
required=False,
|
|
86
|
+
type=str,
|
|
87
|
+
default=None,
|
|
88
|
+
help="input name for global attention mask",
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
parser.add_argument(
|
|
92
|
+
"--samples",
|
|
93
|
+
required=False,
|
|
94
|
+
type=int,
|
|
95
|
+
default=1,
|
|
96
|
+
help="number of test cases to be generated",
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
parser.add_argument("--seed", required=False, type=int, default=3, help="random seed")
|
|
100
|
+
|
|
101
|
+
parser.add_argument(
|
|
102
|
+
"--verbose",
|
|
103
|
+
required=False,
|
|
104
|
+
action="store_true",
|
|
105
|
+
help="print verbose information",
|
|
106
|
+
)
|
|
107
|
+
parser.set_defaults(verbose=False)
|
|
108
|
+
|
|
109
|
+
args = parser.parse_args()
|
|
110
|
+
return args
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def get_longformer_inputs(onnx_file, input_ids_name=None, input_mask_name=None, global_mask_name=None):
|
|
114
|
+
"""
|
|
115
|
+
Get graph inputs for longformer model.
|
|
116
|
+
"""
|
|
117
|
+
model = ModelProto()
|
|
118
|
+
with open(onnx_file, "rb") as f:
|
|
119
|
+
model.ParseFromString(f.read())
|
|
120
|
+
|
|
121
|
+
onnx_model = OnnxModel(model)
|
|
122
|
+
graph_inputs = onnx_model.get_graph_inputs_excluding_initializers()
|
|
123
|
+
|
|
124
|
+
if input_ids_name is not None:
|
|
125
|
+
input_ids = onnx_model.find_graph_input(input_ids_name)
|
|
126
|
+
if input_ids is None:
|
|
127
|
+
raise ValueError(f"Graph does not have input named {input_ids_name}")
|
|
128
|
+
|
|
129
|
+
input_mask = None
|
|
130
|
+
if input_mask_name:
|
|
131
|
+
input_mask = onnx_model.find_graph_input(input_mask_name)
|
|
132
|
+
if input_mask is None:
|
|
133
|
+
raise ValueError(f"Graph does not have input named {input_mask_name}")
|
|
134
|
+
|
|
135
|
+
global_mask = None
|
|
136
|
+
if global_mask_name:
|
|
137
|
+
global_mask = onnx_model.find_graph_input(global_mask_name)
|
|
138
|
+
if global_mask is None:
|
|
139
|
+
raise ValueError(f"Graph does not have input named {global_mask_name}")
|
|
140
|
+
|
|
141
|
+
expected_inputs = 1 + (1 if input_mask else 0) + (1 if global_mask else 0)
|
|
142
|
+
if len(graph_inputs) != expected_inputs:
|
|
143
|
+
raise ValueError(f"Expect the graph to have {expected_inputs} inputs. Got {len(graph_inputs)}")
|
|
144
|
+
|
|
145
|
+
return input_ids, input_mask, global_mask
|
|
146
|
+
|
|
147
|
+
if len(graph_inputs) != 3:
|
|
148
|
+
raise ValueError(f"Expect the graph to have 3 inputs. Got {len(graph_inputs)}")
|
|
149
|
+
|
|
150
|
+
# Try guess the inputs based on naming.
|
|
151
|
+
input_ids = None
|
|
152
|
+
input_mask = None
|
|
153
|
+
global_mask = None
|
|
154
|
+
for input in graph_inputs:
|
|
155
|
+
input_name_lower = input.name.lower()
|
|
156
|
+
if "global" in input_name_lower:
|
|
157
|
+
global_mask = input
|
|
158
|
+
elif "mask" in input_name_lower:
|
|
159
|
+
input_mask = input
|
|
160
|
+
else:
|
|
161
|
+
input_ids = input
|
|
162
|
+
|
|
163
|
+
if input_ids and input_mask and global_mask:
|
|
164
|
+
return input_ids, input_mask, global_mask
|
|
165
|
+
|
|
166
|
+
raise ValueError("Fail to assign 3 inputs. You might try rename the graph inputs.")
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def fake_global_mask_data(global_mask, batch_size, sequence_length, num_global_tokens):
|
|
170
|
+
"""
|
|
171
|
+
Fake data based on the graph input of segment_ids.
|
|
172
|
+
Args:
|
|
173
|
+
segment_ids (TensorProto): graph input of input tensor.
|
|
174
|
+
Returns:
|
|
175
|
+
data (np.array): the data for input tensor
|
|
176
|
+
"""
|
|
177
|
+
data_type = global_mask.type.tensor_type.elem_type
|
|
178
|
+
assert data_type in [TensorProto.FLOAT, TensorProto.INT32, TensorProto.INT64]
|
|
179
|
+
|
|
180
|
+
if num_global_tokens > 0:
|
|
181
|
+
assert num_global_tokens <= sequence_length
|
|
182
|
+
data = np.zeros((batch_size, sequence_length), dtype=np.int32)
|
|
183
|
+
temp = np.ones((batch_size, num_global_tokens), dtype=np.int32)
|
|
184
|
+
data[: temp.shape[0], : temp.shape[1]] = temp
|
|
185
|
+
else:
|
|
186
|
+
data = np.zeros((batch_size, sequence_length), dtype=np.int32)
|
|
187
|
+
|
|
188
|
+
if data_type == TensorProto.FLOAT:
|
|
189
|
+
data = np.float32(data)
|
|
190
|
+
elif data_type == TensorProto.INT64:
|
|
191
|
+
data = np.int64(data)
|
|
192
|
+
|
|
193
|
+
return data
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def fake_test_data(
|
|
197
|
+
batch_size,
|
|
198
|
+
sequence_length,
|
|
199
|
+
test_cases,
|
|
200
|
+
dictionary_size,
|
|
201
|
+
verbose,
|
|
202
|
+
random_seed,
|
|
203
|
+
input_ids,
|
|
204
|
+
input_mask,
|
|
205
|
+
global_mask,
|
|
206
|
+
num_global_tokens,
|
|
207
|
+
average_sequence_length,
|
|
208
|
+
random_sequence_length,
|
|
209
|
+
):
|
|
210
|
+
"""
|
|
211
|
+
Generate fake input data for test.
|
|
212
|
+
"""
|
|
213
|
+
assert input_ids is not None
|
|
214
|
+
|
|
215
|
+
np.random.seed(random_seed)
|
|
216
|
+
random.seed(random_seed)
|
|
217
|
+
|
|
218
|
+
all_inputs = []
|
|
219
|
+
for _ in range(test_cases):
|
|
220
|
+
input_1 = fake_input_ids_data(input_ids, batch_size, sequence_length, dictionary_size)
|
|
221
|
+
inputs = {input_ids.name: input_1}
|
|
222
|
+
|
|
223
|
+
if input_mask:
|
|
224
|
+
inputs[input_mask.name] = fake_input_mask_data(
|
|
225
|
+
input_mask, batch_size, sequence_length, average_sequence_length, random_sequence_length
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
if global_mask:
|
|
229
|
+
inputs[global_mask.name] = fake_global_mask_data(
|
|
230
|
+
global_mask, batch_size, sequence_length, num_global_tokens
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
if verbose and len(all_inputs) == 0:
|
|
234
|
+
print("Example inputs", inputs)
|
|
235
|
+
all_inputs.append(inputs)
|
|
236
|
+
|
|
237
|
+
return all_inputs
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
def generate_test_data(
|
|
241
|
+
batch_size,
|
|
242
|
+
sequence_length,
|
|
243
|
+
test_cases,
|
|
244
|
+
seed,
|
|
245
|
+
verbose,
|
|
246
|
+
input_ids,
|
|
247
|
+
input_mask,
|
|
248
|
+
global_mask,
|
|
249
|
+
num_global_tokens,
|
|
250
|
+
average_sequence_length,
|
|
251
|
+
random_sequence_length,
|
|
252
|
+
):
|
|
253
|
+
dictionary_size = 10000
|
|
254
|
+
all_inputs = fake_test_data(
|
|
255
|
+
batch_size,
|
|
256
|
+
sequence_length,
|
|
257
|
+
test_cases,
|
|
258
|
+
dictionary_size,
|
|
259
|
+
verbose,
|
|
260
|
+
seed,
|
|
261
|
+
input_ids,
|
|
262
|
+
input_mask,
|
|
263
|
+
global_mask,
|
|
264
|
+
num_global_tokens,
|
|
265
|
+
average_sequence_length,
|
|
266
|
+
random_sequence_length,
|
|
267
|
+
)
|
|
268
|
+
if len(all_inputs) != test_cases:
|
|
269
|
+
print("Failed to create test data for test.")
|
|
270
|
+
return all_inputs
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def create_longformer_test_data(
|
|
274
|
+
model,
|
|
275
|
+
output_dir,
|
|
276
|
+
batch_size,
|
|
277
|
+
sequence_length,
|
|
278
|
+
test_cases,
|
|
279
|
+
seed,
|
|
280
|
+
verbose,
|
|
281
|
+
input_ids_name,
|
|
282
|
+
input_mask_name,
|
|
283
|
+
global_mask_name,
|
|
284
|
+
num_global_tokens,
|
|
285
|
+
average_sequence_length,
|
|
286
|
+
random_sequence_length,
|
|
287
|
+
):
|
|
288
|
+
input_ids, input_mask, global_mask = get_longformer_inputs(model, input_ids_name, input_mask_name, global_mask_name)
|
|
289
|
+
all_inputs = generate_test_data(
|
|
290
|
+
batch_size,
|
|
291
|
+
sequence_length,
|
|
292
|
+
test_cases,
|
|
293
|
+
seed,
|
|
294
|
+
verbose,
|
|
295
|
+
input_ids,
|
|
296
|
+
input_mask,
|
|
297
|
+
global_mask,
|
|
298
|
+
num_global_tokens,
|
|
299
|
+
average_sequence_length,
|
|
300
|
+
random_sequence_length,
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
for i, inputs in enumerate(all_inputs):
|
|
304
|
+
output_test_data(output_dir, i, inputs)
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
def main():
|
|
308
|
+
args = parse_arguments()
|
|
309
|
+
|
|
310
|
+
output_dir = args.output_dir
|
|
311
|
+
if output_dir is None:
|
|
312
|
+
# Default output directory is a sub-directory under the directory of model.
|
|
313
|
+
output_dir = os.path.join(
|
|
314
|
+
Path(args.model).parent,
|
|
315
|
+
f"b{args.batch_size}_s{args.sequence_length}_g{args.global_tokens}",
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
if output_dir is not None:
|
|
319
|
+
# create the output directory if not existed
|
|
320
|
+
path = Path(output_dir)
|
|
321
|
+
path.mkdir(parents=True, exist_ok=True)
|
|
322
|
+
else:
|
|
323
|
+
print("Directory existed. test data files will be overwritten.")
|
|
324
|
+
|
|
325
|
+
if args.average_sequence_length <= 0:
|
|
326
|
+
args.average_sequence_length = args.sequence_length
|
|
327
|
+
|
|
328
|
+
create_longformer_test_data(
|
|
329
|
+
args.model,
|
|
330
|
+
output_dir,
|
|
331
|
+
args.batch_size,
|
|
332
|
+
args.sequence_length,
|
|
333
|
+
args.samples,
|
|
334
|
+
args.seed,
|
|
335
|
+
args.verbose,
|
|
336
|
+
args.input_ids_name,
|
|
337
|
+
args.input_mask_name,
|
|
338
|
+
args.global_mask_name,
|
|
339
|
+
args.global_tokens,
|
|
340
|
+
args.average_sequence_length,
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
print("Test data is saved to directory:", output_dir)
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
if __name__ == "__main__":
|
|
347
|
+
main()
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License. See License.txt in the project root for
|
|
4
|
+
# license information.
|
|
5
|
+
# --------------------------------------------------------------------------
|
|
6
|
+
# This script helps creating dummy inputs for Longformer model.
|
|
7
|
+
|
|
8
|
+
import logging
|
|
9
|
+
|
|
10
|
+
import numpy
|
|
11
|
+
import torch
|
|
12
|
+
|
|
13
|
+
logger = logging.getLogger(__name__)
|
|
14
|
+
|
|
15
|
+
PRETRAINED_LONGFORMER_MODELS = {
|
|
16
|
+
"longformer-base-4096": "allenai/longformer-base-4096",
|
|
17
|
+
"longformer-large-4096": "allenai/longformer-large-4096",
|
|
18
|
+
"longformer-random-tiny": "patrickvonplaten/longformer-random-tiny", # A tiny model for debugging
|
|
19
|
+
}
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class LongformerInputs:
|
|
23
|
+
def __init__(self, input_ids, attention_mask, global_attention_mask):
|
|
24
|
+
self.input_ids: torch.LongTensor = input_ids
|
|
25
|
+
self.attention_mask: torch.FloatTensor | torch.HalfTensor = attention_mask
|
|
26
|
+
self.global_attention_mask: torch.FloatTensor | torch.HalfTensor = global_attention_mask
|
|
27
|
+
|
|
28
|
+
def to_list(self) -> list:
|
|
29
|
+
return [v for v in [self.input_ids, self.attention_mask, self.global_attention_mask] if v is not None]
|
|
30
|
+
|
|
31
|
+
def to_tuple(self) -> tuple:
|
|
32
|
+
return tuple(v for v in self.to_list())
|
|
33
|
+
|
|
34
|
+
def get_ort_inputs(self) -> dict:
|
|
35
|
+
return {
|
|
36
|
+
"input_ids": numpy.ascontiguousarray(self.input_ids.cpu().numpy()),
|
|
37
|
+
"attention_mask": numpy.ascontiguousarray(self.attention_mask.cpu().numpy()),
|
|
38
|
+
"global_attention_mask": numpy.ascontiguousarray(self.global_attention_mask.cpu().numpy()),
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class LongformerHelper:
|
|
43
|
+
"""A helper class for Longformer model conversion, inference and verification."""
|
|
44
|
+
|
|
45
|
+
@staticmethod
|
|
46
|
+
def get_dummy_inputs(
|
|
47
|
+
batch_size: int,
|
|
48
|
+
sequence_length: int,
|
|
49
|
+
num_global_tokens: int,
|
|
50
|
+
device: torch.device,
|
|
51
|
+
vocab_size: int = 100,
|
|
52
|
+
) -> LongformerInputs:
|
|
53
|
+
"""Create random inputs for Longformer model.
|
|
54
|
+
Returns torch tensors of input_ids, attention_mask and global_attention_mask tensors.
|
|
55
|
+
"""
|
|
56
|
+
|
|
57
|
+
input_ids = torch.randint(
|
|
58
|
+
low=0,
|
|
59
|
+
high=vocab_size - 1,
|
|
60
|
+
size=(batch_size, sequence_length),
|
|
61
|
+
dtype=torch.long,
|
|
62
|
+
device=device,
|
|
63
|
+
)
|
|
64
|
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
|
|
65
|
+
global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=device)
|
|
66
|
+
global_token_index = list(range(num_global_tokens))
|
|
67
|
+
global_attention_mask[:, global_token_index] = 1
|
|
68
|
+
return LongformerInputs(input_ids, attention_mask, global_attention_mask)
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def get_output_shapes(batch_size: int, sequence_length: int, hidden_size: int) -> dict[str, list[int]]:
|
|
72
|
+
"""Returns a dictionary with output name as key, and shape as value."""
|
|
73
|
+
return {
|
|
74
|
+
"last_state": [batch_size, sequence_length, hidden_size],
|
|
75
|
+
"pooler": [batch_size, sequence_length],
|
|
76
|
+
}
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
import os
|
|
6
|
+
import sys
|
|
7
|
+
|
|
8
|
+
sys.path.append(os.path.dirname(__file__))
|
|
9
|
+
|
|
10
|
+
transformers_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
11
|
+
if transformers_dir not in sys.path:
|
|
12
|
+
sys.path.append(transformers_dir)
|