onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,492 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ from logging import getLogger
6
+
7
+ from fusion_base import Fusion
8
+ from onnx import helper
9
+ from onnx_model import OnnxModel
10
+
11
+ logger = getLogger(__name__)
12
+
13
+
14
+ class FusionFastGelu(Fusion):
15
+ def __init__(self, model: OnnxModel):
16
+ super().__init__(model, "FastGelu", "Tanh")
17
+
18
+ def fuse(self, tanh_node, input_name_to_nodes: dict, output_name_to_node: dict):
19
+ if self.fuse_1(tanh_node, input_name_to_nodes, output_name_to_node):
20
+ return
21
+
22
+ if self.fuse_2(tanh_node, input_name_to_nodes, output_name_to_node):
23
+ return
24
+
25
+ if self.fuse_3(tanh_node, input_name_to_nodes, output_name_to_node):
26
+ return
27
+
28
+ if self.fuse_4(tanh_node, input_name_to_nodes, output_name_to_node):
29
+ return
30
+
31
+ def fuse_1(self, tanh_node, input_name_to_nodes, output_name_to_node) -> bool | None:
32
+ """
33
+ Fuse Gelu with tanh into one node:
34
+ +---------------------------+
35
+ | |
36
+ | v
37
+ [root] --> Pow --> Mul -----> Add --> Mul --> Tanh --> Add --> Mul
38
+ | (Y=3) (B=0.0447...) (B=0.7978...) (B=1) ^
39
+ | |
40
+ +------> Mul(B=0.5)--------------------------------------------+
41
+ Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
42
+ """
43
+ if tanh_node.output[0] not in input_name_to_nodes:
44
+ return
45
+ children = input_name_to_nodes[tanh_node.output[0]]
46
+ if len(children) != 1 or children[0].op_type != "Add":
47
+ return
48
+ add_after_tanh = children[0]
49
+
50
+ if not self.model.has_constant_input(add_after_tanh, 1.0):
51
+ return
52
+
53
+ if add_after_tanh.output[0] not in input_name_to_nodes:
54
+ return
55
+ children = input_name_to_nodes[add_after_tanh.output[0]]
56
+ if len(children) != 1 or children[0].op_type != "Mul":
57
+ return
58
+ mul_after_tanh = children[0]
59
+
60
+ mul_half = self.model.match_parent(mul_after_tanh, "Mul", None, output_name_to_node)
61
+ if mul_half is None:
62
+ return
63
+
64
+ i = self.model.find_constant_input(mul_half, 0.5)
65
+ if i < 0:
66
+ return
67
+
68
+ root_input = mul_half.input[0 if i == 1 else 1]
69
+
70
+ # root_node could be None when root_input is graph input
71
+ root_node = self.model.get_parent(mul_half, 0 if i == 1 else 1, output_name_to_node)
72
+
73
+ mul_before_tanh = self.model.match_parent(tanh_node, "Mul", 0, output_name_to_node)
74
+ if mul_before_tanh is None:
75
+ return
76
+
77
+ i = self.model.find_constant_input(mul_before_tanh, 0.7978, delta=0.0001)
78
+ if i < 0:
79
+ return
80
+
81
+ add_before_tanh = self.model.match_parent(mul_before_tanh, "Add", 0 if i == 1 else 1, output_name_to_node)
82
+ if add_before_tanh is None:
83
+ return
84
+
85
+ mul_after_pow = self.model.match_parent(
86
+ add_before_tanh,
87
+ "Mul",
88
+ None,
89
+ output_name_to_node,
90
+ exclude=[root_node] if root_node else [],
91
+ )
92
+ if mul_after_pow is None:
93
+ return
94
+
95
+ i = self.model.find_constant_input(mul_after_pow, 0.0447, delta=0.0001)
96
+ if i < 0:
97
+ return
98
+
99
+ pow = self.model.match_parent(mul_after_pow, "Pow", 0 if i == 1 else 1, output_name_to_node)
100
+ if pow is None:
101
+ return
102
+
103
+ if not self.model.has_constant_input(pow, 3.0):
104
+ return
105
+
106
+ if pow.input[0] != root_input:
107
+ return
108
+
109
+ subgraph_nodes = [
110
+ mul_after_tanh,
111
+ mul_half,
112
+ add_after_tanh,
113
+ tanh_node,
114
+ mul_before_tanh,
115
+ add_before_tanh,
116
+ mul_after_pow,
117
+ pow,
118
+ ]
119
+ if not self.model.is_safe_to_fuse_nodes(
120
+ subgraph_nodes,
121
+ [mul_after_tanh.output[0]],
122
+ input_name_to_nodes,
123
+ output_name_to_node,
124
+ ):
125
+ return
126
+
127
+ self.nodes_to_remove.extend(subgraph_nodes)
128
+ fused_node = helper.make_node(
129
+ "FastGelu",
130
+ inputs=[root_input],
131
+ outputs=mul_after_tanh.output,
132
+ name=self.model.create_node_name("FastGelu"),
133
+ )
134
+ fused_node.domain = "com.microsoft"
135
+ self.nodes_to_add.append(fused_node)
136
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
137
+ return True
138
+
139
+ def fuse_2(self, tanh_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
140
+ """
141
+ This pattern is from Tensorflow model.
142
+ Fuse Gelu with tanh into one node:
143
+ +---------------------------+
144
+ | |
145
+ | v
146
+ [root] --> Pow --> Mul -----> Add --> Mul --> Tanh --> Add --> Mul(B=0.5)-->Mul-->
147
+ | (Y=3) (B=0.0447...) (B=0.7978...) (B=1) ^
148
+ | |
149
+ +---------------------------------------------------------------------------+
150
+ Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
151
+ """
152
+ if tanh_node.output[0] not in input_name_to_nodes:
153
+ return
154
+ children = input_name_to_nodes[tanh_node.output[0]]
155
+ if len(children) != 1 or children[0].op_type != "Add":
156
+ return
157
+ add_after_tanh = children[0]
158
+
159
+ if not self.model.has_constant_input(add_after_tanh, 1.0):
160
+ return
161
+
162
+ if add_after_tanh.output[0] not in input_name_to_nodes:
163
+ return
164
+ children = input_name_to_nodes[add_after_tanh.output[0]]
165
+ if len(children) != 1 or children[0].op_type != "Mul":
166
+ return
167
+ mul_half = children[0]
168
+
169
+ i = self.model.find_constant_input(mul_half, 0.5)
170
+ if i < 0:
171
+ return
172
+
173
+ if mul_half.output[0] not in input_name_to_nodes:
174
+ return
175
+ children = input_name_to_nodes[mul_half.output[0]]
176
+ if len(children) != 1 or children[0].op_type != "Mul":
177
+ return
178
+ mul_after_mul_half = children[0]
179
+
180
+ # root_node could be None when root_input is graph input
181
+ root_node = self.model.get_parent(
182
+ mul_after_mul_half,
183
+ 0 if mul_after_mul_half.input[1] == mul_half.output[0] else 1,
184
+ output_name_to_node,
185
+ )
186
+
187
+ mul_before_tanh = self.model.match_parent(tanh_node, "Mul", 0, output_name_to_node)
188
+ if mul_before_tanh is None:
189
+ return
190
+
191
+ i = self.model.find_constant_input(mul_before_tanh, 0.7978, delta=0.0001)
192
+ if i < 0:
193
+ return
194
+
195
+ add_before_tanh = self.model.match_parent(mul_before_tanh, "Add", 0 if i == 1 else 1, output_name_to_node)
196
+ if add_before_tanh is None:
197
+ return
198
+
199
+ mul_after_pow = self.model.match_parent(
200
+ add_before_tanh,
201
+ "Mul",
202
+ None,
203
+ output_name_to_node,
204
+ exclude=[root_node] if root_node else [],
205
+ )
206
+ if mul_after_pow is None:
207
+ return
208
+
209
+ i = self.model.find_constant_input(mul_after_pow, 0.0447, delta=0.0001)
210
+ if i < 0:
211
+ return
212
+
213
+ pow = self.model.match_parent(mul_after_pow, "Pow", 0 if i == 1 else 1, output_name_to_node)
214
+ if pow is None:
215
+ return
216
+
217
+ if not self.model.has_constant_input(pow, 3.0):
218
+ return
219
+
220
+ root_input = mul_after_mul_half.input[0 if mul_after_mul_half.input[1] == mul_half.output[0] else 1]
221
+
222
+ if pow.input[0] != root_input:
223
+ return
224
+
225
+ subgraph_nodes = [
226
+ mul_after_mul_half,
227
+ mul_half,
228
+ add_after_tanh,
229
+ tanh_node,
230
+ mul_before_tanh,
231
+ add_before_tanh,
232
+ mul_after_pow,
233
+ pow,
234
+ ]
235
+ if not self.model.is_safe_to_fuse_nodes(
236
+ subgraph_nodes,
237
+ [mul_after_mul_half.output[0]],
238
+ input_name_to_nodes,
239
+ output_name_to_node,
240
+ ):
241
+ return
242
+
243
+ self.nodes_to_remove.extend(subgraph_nodes)
244
+ fused_node = helper.make_node(
245
+ "FastGelu",
246
+ inputs=[root_input],
247
+ outputs=mul_after_mul_half.output,
248
+ name=self.model.create_node_name("FastGelu"),
249
+ )
250
+ fused_node.domain = "com.microsoft"
251
+ self.nodes_to_add.append(fused_node)
252
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
253
+ return True
254
+
255
+ def fuse_3(self, tanh_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
256
+ """
257
+ OpenAI's gelu implementation, also used in Megatron:
258
+ Gelu(x) = x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1.0 + 0.044715 * x * x)))
259
+
260
+ Fuse subgraph into a FastGelu node:
261
+ +------------ Mul (B=0.79788456) -------------------+
262
+ | |
263
+ +-------------------------------+ |
264
+ | | |
265
+ | v v
266
+ [root] --> Mul (B=0.044715) --> Mul --> Add(B=1) --> Mul --> Tanh --> Add(B=1) --> Mul-->
267
+ | ^
268
+ | |
269
+ +-----------> Mul (B=0.5) --------------------------------------------------------+
270
+ """
271
+ if tanh_node.output[0] not in input_name_to_nodes:
272
+ return
273
+
274
+ children = input_name_to_nodes[tanh_node.output[0]]
275
+ if len(children) != 1 or children[0].op_type != "Add":
276
+ return
277
+ add_after_tanh = children[0]
278
+
279
+ if not self.model.has_constant_input(add_after_tanh, 1.0):
280
+ return
281
+
282
+ if add_after_tanh.output[0] not in input_name_to_nodes:
283
+ return
284
+ children = input_name_to_nodes[add_after_tanh.output[0]]
285
+ if len(children) != 1 or children[0].op_type != "Mul":
286
+ return
287
+ mul_last = children[0]
288
+
289
+ mul_half = self.model.match_parent(mul_last, "Mul", None, output_name_to_node)
290
+ if mul_half is None:
291
+ return
292
+
293
+ i = self.model.find_constant_input(mul_half, 0.5)
294
+ if i < 0:
295
+ return
296
+
297
+ root_input = mul_half.input[0 if i == 1 else 1]
298
+
299
+ mul_before_tanh = self.model.match_parent(tanh_node, "Mul", 0, output_name_to_node)
300
+ if mul_before_tanh is None:
301
+ return
302
+
303
+ add_1 = self.model.match_parent(mul_before_tanh, "Add", None, output_name_to_node)
304
+ if add_1 is None:
305
+ return
306
+ j = self.model.find_constant_input(add_1, 1.0)
307
+ if j < 0:
308
+ return
309
+
310
+ mul_7978 = self.model.match_parent(mul_before_tanh, "Mul", None, output_name_to_node)
311
+ if mul_7978 is None:
312
+ return
313
+ k = self.model.find_constant_input(mul_7978, 0.7978, delta=0.0001)
314
+ if k < 0:
315
+ return
316
+ if mul_7978.input[0 if k == 1 else 1] != root_input:
317
+ return
318
+
319
+ mul_before_add_1 = self.model.match_parent(add_1, "Mul", 0 if j == 1 else 1, output_name_to_node)
320
+ if mul_before_add_1 is None:
321
+ return
322
+
323
+ if mul_before_add_1.input[0] == root_input:
324
+ another = 1
325
+ elif mul_before_add_1.input[1] == root_input:
326
+ another = 0
327
+ else:
328
+ return
329
+
330
+ mul_0447 = self.model.match_parent(mul_before_add_1, "Mul", another, output_name_to_node)
331
+ if mul_0447 is None:
332
+ return
333
+ m = self.model.find_constant_input(mul_0447, 0.0447, delta=0.0001)
334
+ if m < 0:
335
+ return
336
+
337
+ if mul_0447.input[0 if m == 1 else 1] != root_input:
338
+ return
339
+
340
+ subgraph_nodes = [
341
+ mul_0447,
342
+ mul_before_add_1,
343
+ add_1,
344
+ mul_before_tanh,
345
+ tanh_node,
346
+ add_after_tanh,
347
+ mul_7978,
348
+ mul_half,
349
+ mul_last,
350
+ ]
351
+ if not self.model.is_safe_to_fuse_nodes(
352
+ subgraph_nodes,
353
+ [mul_last.output[0]],
354
+ input_name_to_nodes,
355
+ output_name_to_node,
356
+ ):
357
+ return
358
+
359
+ self.nodes_to_remove.extend(subgraph_nodes)
360
+ fused_node = helper.make_node(
361
+ "FastGelu",
362
+ inputs=[root_input],
363
+ outputs=mul_last.output,
364
+ name=self.model.create_node_name("FastGelu"),
365
+ )
366
+ fused_node.domain = "com.microsoft"
367
+ self.nodes_to_add.append(fused_node)
368
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
369
+ return True
370
+
371
+ def fuse_4(self, tanh_node, input_name_to_nodes: dict, output_name_to_node: dict) -> bool | None:
372
+ """
373
+ PyTorch's gelu implementation with tanh approximation:
374
+ Gelu(x) = 0.5 * x * (1 + torch.tanh(0.7978845834732056 * (x + 0.044714998453855515 * x * x * x)))
375
+
376
+ Fuse Gelu with tanh into one node:
377
+ +-----------------+------------------+
378
+ | | |
379
+ | v v
380
+ [root] ==> Mul --> Mul --> Mul -----> Add --> Mul --> Tanh --> Add -----> Mul --> Mul -->
381
+ | (A=0.0447) (A=0.7978) (A=1) ^ (A=0.5)
382
+ | |
383
+ +-------------------------------------------------------------------------+
384
+ Note that constant input for Add and Mul could be first or second input.
385
+ """
386
+ if tanh_node.output[0] not in input_name_to_nodes:
387
+ return
388
+
389
+ children = input_name_to_nodes[tanh_node.output[0]]
390
+ if len(children) != 1 or children[0].op_type != "Add":
391
+ return
392
+ add_after_tanh = children[0]
393
+
394
+ if not self.model.has_constant_input(add_after_tanh, 1.0):
395
+ return
396
+
397
+ if add_after_tanh.output[0] not in input_name_to_nodes:
398
+ return
399
+ children = input_name_to_nodes[add_after_tanh.output[0]]
400
+ if len(children) != 1 or children[0].op_type != "Mul":
401
+ return
402
+ mul_after_tanh = children[0]
403
+
404
+ if mul_after_tanh.output[0] not in input_name_to_nodes:
405
+ return
406
+ children = input_name_to_nodes[mul_after_tanh.output[0]]
407
+ if len(children) != 1 or children[0].op_type != "Mul":
408
+ return
409
+ mul_half = children[0]
410
+
411
+ if not self.model.has_constant_input(mul_half, 0.5):
412
+ return
413
+
414
+ root_input = mul_after_tanh.input[0 if mul_after_tanh.input[1] == add_after_tanh.output[0] else 1]
415
+
416
+ mul_before_tanh = self.model.match_parent(tanh_node, "Mul", 0, output_name_to_node)
417
+ if mul_before_tanh is None:
418
+ return
419
+
420
+ k = self.model.find_constant_input(mul_before_tanh, 0.7978, delta=0.01)
421
+ if k < 0:
422
+ return
423
+
424
+ add_before_tanh = self.model.match_parent(mul_before_tanh, "Add", 0 if k == 1 else 1, output_name_to_node)
425
+ if add_before_tanh is None:
426
+ return
427
+
428
+ if add_before_tanh.input[0] == root_input:
429
+ another = 1
430
+ elif add_before_tanh.input[1] == root_input:
431
+ another = 0
432
+ else:
433
+ return
434
+
435
+ mul_after_pow = self.model.match_parent(add_before_tanh, "Mul", another, output_name_to_node)
436
+ if mul_after_pow is None:
437
+ return
438
+
439
+ m = self.model.find_constant_input(mul_after_pow, 0.0447, delta=0.01)
440
+ if m < 0:
441
+ return
442
+
443
+ mul_cubed = self.model.match_parent(mul_after_pow, "Mul", 0 if m == 1 else 1, output_name_to_node)
444
+ if mul_cubed is None:
445
+ return
446
+
447
+ if mul_cubed.input[0] == root_input:
448
+ another = 1
449
+ elif mul_cubed.input[1] == root_input:
450
+ another = 0
451
+ else:
452
+ return
453
+
454
+ mul_squared = self.model.match_parent(mul_cubed, "Mul", another, output_name_to_node)
455
+ if mul_squared is None:
456
+ return
457
+
458
+ if mul_squared.input[0] != root_input or mul_squared.input[1] != root_input:
459
+ return
460
+
461
+ subgraph_nodes = [
462
+ mul_squared,
463
+ mul_cubed,
464
+ mul_after_pow,
465
+ add_before_tanh,
466
+ mul_before_tanh,
467
+ tanh_node,
468
+ add_after_tanh,
469
+ mul_after_tanh,
470
+ mul_half,
471
+ ]
472
+
473
+ if not self.model.is_safe_to_fuse_nodes(
474
+ subgraph_nodes,
475
+ [mul_half.output[0]],
476
+ input_name_to_nodes,
477
+ output_name_to_node,
478
+ ):
479
+ return
480
+
481
+ self.nodes_to_remove.extend(subgraph_nodes)
482
+ fused_node = helper.make_node(
483
+ "FastGelu",
484
+ inputs=[root_input],
485
+ outputs=mul_half.output,
486
+ name=self.model.create_node_name("FastGelu"),
487
+ )
488
+ fused_node.domain = "com.microsoft"
489
+ self.nodes_to_add.append(fused_node)
490
+ self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
491
+ self.increase_counter("FastGelu")
492
+ return True